Net wor k Wor ki ng G- oup Paul R Johnson (BBN- TENEX)
RFC # 677 Robert H. Thomas (BBN- TENEX)
NI C # 31507 January 27, 1975

The Mai ntenance of Duplicate Dat abases

Pr ef ace:

This RFC is a working paper on the problem of maintaining duplicated

dat abases in an ARPA-1ike network. It briefly discusses the genera
dupl i cat e dat abase problem and then outlines in sone detail a solution
for a particular type of duplicate database. The concepts devel oped
here were used in the design of the User Identification Database for the
TI P user authentication and accounting system W believe that these
concepts are generally applicable to distributed database probl ens.

Johnson & Thomas [Page 1]

RFC 677 The Mai ntenance of Duplicate Databases January 1975

| ntroducti on

There are a nunber of notivations for maintaining redundant,
duplicate copies of databases in a distributed network environnent. Two
i mportant notivations are:

- to increase reliability of data access.

The accessibility of critical data can be increased by redundantly
mai ntaining it. The database used for TIP login and accounting is
redundantly distributed to achieve highly reliabl e access.

- to insure efficiency of data access.

Data can be nmore quickly and efficiently accessed when it is "near"
the accessing process. A copy of the TIP user |ID database is

mai nt ai ned at each site supporting the TIP login service to insure
rapid, efficient access. (Reliability considerations dictate that

this database be redundantly naintai ned, and efficiency

consi derations dictate that a copy be naintained at each

aut hentication site.)

The design of a systemto maintain redundant, duplicate databases is
a chal l engi ng task because of the inherent communication delay between
copi es of the database, as well as the real world constraints of system
crashes, operator error, comunication channel failure, etc. This paper
di scusses some of the problems we encountered in designing such a
system and outlines a system design for mmintaining a particular type
of dat abase whi ch sol ves those probl ens.

The Mode

A system for supporting duplicate copies of a database can be
nodel ed by a group of independent database managenent processes (DBMPS)
each maintaining its own copy of the database. These processes
conmuni cate with each ot her over network comruni cation paths. Each DBWMP
has conplete control over its copy of the database. It handl es al
accesses to and nodifications of the database in response to requests
from ot her processes. Though the DBMPs act only upon requests, in the
following they will often be said to be actually causing or originating
the nodifications.

An inportant design consideration is that the comunication paths
bet ween the DBMPs are subject to failures. Thus one DBMP nay have its
interactions with other DBMPs interrupted and/or have to wait unti
conmuni cati on paths are re-established before it can comunicate with
ot her DBMPs. An assunption made in this paper about the comunication

Johnson & Thomas [Page 2]

RFC 677 The Mai ntenance of Duplicate Databases January 1975

paths is that nessages from one process to another are delivered in the
sanme order that they are sent. This is true of the ARPANET. For networks
that make no such guarantee, comuni cation protocols between the DBMPs
can be used to correctly order the nmessages.

In order to proceed further, it is necessary to be nore precise
about the nature of the duplicated database and the operations all owed
on it. A constant, read-only database is at one extrenme. The task of the
DBMPs is trivial in this case. They sinply respond to value retrieva
requests. At the other extrenme is a general shared dat abase where
functional nodification requests (such as "X :=f(X Y,2)") are all owed
and/ or where it is necessary to conpletely restrict access to entries
while they are being nodified. In this case all the problens of shared
dat abases on a single conmputer systemarise (e.g., the need for
synchroni zati on mechani sns and the resulting potential deadl ock
situations), as well as those unique to having multiple database copies
di stri buted anmong i ndependent comnputers. For exanple, a conpletely
general system nust deal with the possibility of comunication failures
whi ch cause the network to becone partitioned into two or nore sub-
networ ks. Any solution which relies on |ocking an el ement of the
dat abase for synchroni zed nodification nust cope with the possibility of
processes in non-comruni cati ng sub-networks attenpting to | ock the same
element. Either they both nmust be allowed to do so (which violates the
| ock discipline), or they both nust wait till the partition ceases
(which nay take arbitrarily long), or some formof centralized or
hi erarchi cal control nust be used, with a resulting dependency of sone
DBMPs on others for all nodifications and perhaps accesses as well.

The Dat abase

The type of database to be exanined in this paper can be represented
as a collection of entries which are (Selector, Value) pairs. Each
sel ector is unique and the values are atomc entities as far as the
DBMPs are concerned. The mechani snms to be presented nay be extended to
handl e databases with greater structure - where the val ues my
thensel ves be coll ections of (selector,value) pairs - but this extension
wi Il not be considered further here.

Four operations are to be allowed on the database:

1) Selection - given a selector, the current associated value is
returned.

2) Assignment - a selector and a value are given and the given val ue
repl aces the old value associated with the sel ector.

Johnson & Thomas [Page 3]

RFC 677 The Mai ntenance of Duplicate Databases January 1975

3) Creation - a new selector and an initial value are given and a
new (selector,initial value) entry is added to the database.

4) Deletion- a selector is given and the existing (sel ector, val ue)
entry is renoved fromthe dat abase

Note that value nodification is limted to assignnent. Functiona

nodi fication requests - such as "Change X to be Factorial (X)" - are
specifically ruled out. Allowing themwould force the use of system wi de
synchroni zati on interl ocks.

Consi st ency

The extent to which the copies of the database can be kept
"identical" nust be exam ned. Because of the inherent delay in
conmuni cati ons between DBMPs, it is inpossible to guarantee that the
data bases are identical at all tinmes. Rather, our goal is to guarantee
that the copies are "consistent” with each other. By this we nean that
gi ven a cessation of update activity to any entry, and enough tine for
each DBWP to conmunicate with all other DBMPs, then the state of that
entry (its existence and value) will be identical in all copies of the
dat abase.

Ti mest anps

We pernmit nodifications to the database to originate at any of the
DBMPs maintaining it. These changes nust, of course, be communicated to
the other DBMPs. To insure consistency, all of the DBWMPs nmust nmke the
sanme decision as to which nodification to a particular entry is to be
considered "final". It is desirable to select the "nost recent" change.
However, since there is no way to absolutely deternine the time sequence
of events in a distributed systemw thout a universal, always accessible
sequence nunber generator (a network time standard should suffice),

"most recent" can only be approxi mated. W acconplish the approxi mation
by associating a tinmestanp with each nodification and with each entry,
the latter being the tinmestanp of the nodification which set its current
val ue. (1) Since the uni queness of tinmestanps given out at nore than one
(1) Time is useful in this context because it has the desired properties
of being nonotonically increasing, and of being available with a
reasonabl e degree of accuracy. Any other sequence nunbering schenme with
these properties can be used, "tinme-of-day" was chosen because it is
sinple to obtain. Its main faults are that it is often manually set (and
thus prone to error), and it nmay stop during system service

Johnson & Thomas [Page 4]

RFC 677 The Mai ntenance of Duplicate Databases January 1975

interruptions. As conputer systens learn to adapt to a network
environnent, the use of an independent tine source should becone nore
conmon. This is beginning to happen with the TENEX sites on the ARPANET.

DBMP can not be guaranteed, a "DBMP of origin" is included as part of
each tinestanp. By (arbitrarily) ordering the DBVMPs, we thus have a
nmeans of uniquely ordering tinestanps. Each

timestanp is a pair (T,D: Tis atime, Dis a DBW identifier. For two
timestanps (T1,Dl) and (T2,D2) we have the foll ow ng:

(T1,D1)>(T2,D2) <=> (T1>T2) or (T1=T2 and D1>D2)
(T1,Dl) is said to be "nore recent” than (T2, D2)

If D1=D2 and T1=T2 it is assuned that the two nodifications are
really two copies of the same nodification request.

In order to insure the uniqueness of tinestanps, it is necessary
that each individual DBMP associate different tinmes with different
nodi fications. This is certainly possible to do, though the fineness of
the unit of time may restrict the frequency of nodifications at a single
DBMWP site.

Each entry in the data base is now a triple:
E::= (S VT, where
S is the selector
V is the associ ated val ue
Tis the tinestanp (a Tine, DBMP pair) of the |last change to the
entry

The task of each DBMP is to keep its copy of the database up-to-
date, given the information on nodifications that it has received so
far. At the same tinme it nust insure that each of its entries stays
consistent with those of all the other DBMPs. This nust be done despite
the fact that the order in which it receives nodifications may be very
different fromthe order in which they are received by other DBMPs. In
the remai nder of this paper we exam ne the all owabl e dat abase operations
with respect to their effect on DBMP operation.

Assi gnnent

Consi der the case of assignment to an existing entry. \Wen the
assignment is initiated (by a person or process) the DBWP invol ved nakes
the change locally, and creates a copy of the nodified entry and an
associ ated list of DBMPs to which the change nust be sent. As the
nodi fication is delivered to the other DBWPs, they are renoved fromthe
[ist until no DBMPs remain. The copy of the nodification is then
del eted. This distribution mechanismnust be error free (i.e., receipt

Johnson & Thomas [Page 5]

RFC 677 The Mai ntenance of Duplicate Databases January 1975

of a nodification nmust be positively confirned before renoving a DBWP
fromthe Iist of recipients).(2)

VWhen a DBMP receives an assignment nodification (either locally or
fromanother DBMP) it conpares the tinestanp of the nodification with
the timestanp of the copy of the entry in its database and keeps
whi chever is nore "recent" as defined by the ordering given above. Thus
when all existing assignments to a given entry have been distributed to
all the DBMPs, they are guaranteed have the sane "latest" val ue
associated with that entry.

Creation

Creation and deletion of entries pose nore of a problem Note that
the ability to create new, previously unknown entries requires that a
DBMP be able to handl e assignments to unknown entries. For exanpl e,
consi der the case of an entry XYZ created by DBMP A, and the foll ow ng
sequence of events: DBWMP A tells DBWMP B about the new entry, and
subsequently B assigns a new value to XYZ, DBWMP B then tells DBWP C
about the assignment before C has heard from A about the creation. DBW
C nust either save the assignment to XYZ until it hears about the
creation, or sinply assunme the creation will be com ng and use the "new'
entry right away. The latter is nore in the spirit of trying to keep the
dat abase as "up-to-date" as possible and | eads to no inconsistencies.

Del eti on

Del etion of entries is the main problemfor this database system

If deletion is taken to nean i mredi ate renpval from the database, then
probl ens arise. Consider the follow ng scenario:

XYZ is an entry known by all DBMPs.

XYZ is del eted at DBMP A.

XYZ is modified at DBMP B (before B is notified of the deletion

by A).

Now, consider a third DBMP, C. C may hear from DBVMP B before DBMP A, in
whi ch case XYZ ends up deleted at DBMP C. C may however hear from DBVMP A

(2) This sanme process (local nodification and queuing for rempte
distribution) is, of course, perforned for the other possible operations
on the database. The details of how the | ocal nodification is done
safely, how the nessages are queued, how confirmation of delivery is
done, etc., though inportant, will not be discussed here. The use of an
addressee list attached to the nodification to be delivered is
conceptual ly easy to work with and not difficult to inplenent in
practice.

Johnson & Thomas [Page 6]

RFC 677 The Mai ntenance of Duplicate Databases January 1975

before DBMP B. In this case, if C renmpves XYZ fromits database, then

the assignment to XYZ initiated by DBWMP B will result in the re-creation
of XYZ at DBMP C. To prevent this C must renenber that XYZ has been
deleted until it is "safe" to conpletely forget about XYZ.

One approach to this problemis to never actually renove an entry
fromthe database. Deletion just marks the entry as bei ng del eted by
setting a "deleted" flag associated each entry. However, the probl em of
recei ving assignments to deleted entries still exists. For exanple, DBW
A may receive an assignment fromDBMP B to an entry which A has marked
as deleted. DBMP A can not tell whether B has not heard about the
del etion, or has heard about it but has also received a re-creation
request for the entry, which hasn’t reached DBMP A. To enable Ato
resol ve such situations we include another timestanp in all entries: the
timestanp of the entry’'s creation. Thus in the above exanple, DBMP A can
conpare the creation tinestanps of the assignment and the deleted entry.
The one with the later creation tinmestanp is kept. |Indeed whenever a
nodification with an old creation tinestanp is received it can be
i ghor ed.

We now have a 5-tuple for entries and nodifications:
E::= (S VFCT,T
S is the selector
V is the associ ated val ue
F is the del eted/ not-deleted flag
CT is the tinestanp of creation
Tis the tinestamp of this (last) nodification

Note that the values of the F, CI, and T conmponents of a
nodi fication uniquely specify the type of nodification. Thus only the
5-tuple to becone the new entry for a selector, not the type of
nodi fi cati on, need be communi cat ed:

F = not deleted, CT = T => creation
F = not deleted, CT < T => assi gnnment
F = del eted => del etion

The nmechani sm descri bed above handl es all the desired operations on
the distributed database in a way that guarantees the consistency of al
copies. A nodification to the database will take effect at each DBMP as
soon as it receives the request fromthe DBMP originating the change.

A deficiency with this schene is that deleted entries are never

renoved fromthe database. A nethod which permits "garbage collection"
of deleted entries is discussed bel ow

Johnson & Thomas [Page 7]

RFC 677 The Mai ntenance of Duplicate Databases January 1975

Rermoval of Deleted Entries

The basic constraint is that a DBMP should not renmove a del eted

entry until it will never receive any assignnents with the same sel ector
(S) and the same or ol der create time (CT). If it fails to do this, then
it will be unable to distinguish these "out of date" assignments from

assignments to a newy created entry for the sane S. To be able do
this, each DBWMP nust know for each del eted entry whether all other DBMPs
have heard about the deletion. To acconplish this, each DBMP coul d
notify the other DBMPs whenever it hears about a deletion. If these
notifications are transmtted in order with the "normal" sequence of
nodi fications, then upon receipt of such a notification a DBVWP can be
sure that the sending DBMP has delivered any outstanding assignnents to
the deleted entry, has marked it as deleted, and will not generate any
new assi gnnents to it. Keeping track of, and exchangi ng nmessages about,
each individual deleted entry in this manner is, however, somewhat nore
el aborate t han necessary.

Havi ng each DBMP deliver all its own nodifications in sequentia
order (by tinestanp) allows the following sinplification. W have al
DBMPs maintain a table of the timestanps of the last nodification
recei ved from each other DBMP. Any DBMP, say A, is then guaranteed to
have received all nodifications originating at another DBWMP, say B.
whi ch have tinestanps earlier than (or equal to) the entry for Bin A's
copy of this table. If this table is exchanged between DBWMPs, then al
DBMPs woul d have a second N*N (N= nunber of DBMPs) table where entry
(I,J) would be the tinmestanp of the last nodification received by DBWP
fromDBMP J. Thus DBMP A can renove a del eted entry whose del etion
originated at DBMP K when all entries in the Kth colum of this table at
DBMP A are |later than or equal to the tinestanp of the deleted entry.
When a DBMP receives a deletion nodification, in addition to acting on
it and acknow edging receipt of it, the DBMP should also send its table
of last tinmestanps received to all other DBMPs. This is sent in a
ti mest anped message which is queued with the "normal” nodification
nmessages.

A refinenent to this approach, which reduces the anount of
i nformation exchanged and the size of the tables, is to have the DBMPs
exchange only the ol dest of the entries in the first table (of
ti mestanps of |ast nodifications received fromother DBWPs). These woul d
then be saved in a 1*N table, replacing the N*N table. A DBMP receiving
a nodification with a tinmestanp equal to or older than the ol dest
timestanp in its second table knows that the nodification has been
confirmed as being received by all other DBMPs. A deleted entry can thus
be renoved when its tinmestanp satisfies this condition. A DBVP woul d,
upon recei pt of a deletion nodification, queue up a nessage with this
"timestanmp of ol dest last nodification received" for delivery to al
ot her DBMPs.

Johnson & Thomas [Page 8]

RFC 677 The Mai ntenance of Duplicate Databases January 1975

Sunmary of sol ution:

An entry in the database is a 5-tuple:

(S, V,F,CT, T) where

S is an selector used in all references to this entry.

Vis its present val ue.

F is a deleted/undel eted fl ag.

CT is the timestanp of the creation of this entry.

T is the timestanp of the nodification which set the current V
and/or F of the entry.

Atimestamp is a pair (time, DBMP) where the DBMP identifies the
site at which the time was generated, and the DBMPs are
(arbitrarily) ordered, so that tinestanps are conpletely
or der ed.

A nodification is a pair (Set-of-DBMPs, Entry) where Set-of-DBMPs is
the set of DBMPs to which the Entry has yet to be delivered.

An ordered (by tinmestanp) list of nodifications is kept at each
DBMP. The DBMP periodically attenpts to deliver nodification
requests to those DBMPs which remain in the Set-of-DBMPs associ at ed
with each nodification. Mddification entries are renmoved fromthis
list when they have been delivered to all DBMPs.

When a DBMP receives a nodification request from another DBMP, it
conpares the tinestanps of the request with the tinmestanps of the
corresponding entry (if any) in its database, and acts upon or

di sregards the new entry accordingly.

Each DBMP keeps a vector of the timestanp (T) of the |ast
nodi fication received by it fromeach ot her DBWP

When a DBMP receives a deletion nodification, it sends a tinmestanped
nmessage to all other DBMPs containing the oldest timestanp inits
vector of timestanps of last nodification received. Each DBMP keeps
a second vector of the last of these tinestanps received from each
ot her DBMP.

A deleted entry nay be renoved fromthe database when its tinestanp

(T) is older than all the tinmestanps in this second vector of
ti mestanps received from ot her DBMPS.

Johnson & Thomas [Page 9]

RFC 677 The Mai ntenance of Duplicate Databases January 1975

Concl usi on

Thi s paper has presented techni ques by which a nunber of |oosely
coupl ed processes can maintain duplicate copies of a database, despite
the unreliability of their only neans of communi cati on. The copies of
the dat abase can be kept "consistent’. However it is possible for
seem ngly anomal ous behavior to occur. For exanple a user may assign a
value to a selector using one DBWP, |ater use another DBMP and assignh a
new value, and still later find that the first value is the one that
remai ns in the database. This can occur if the clocks used by the two
DBMPs for their tinestanps are sufficiently out of synchrony that the
second assignment is tinmestanped as having taken place before the first
assignment. To the extent that the communication paths can be nade
reliable, and the clocks used by the processes kept close to synchrony,
the probability of seemi ngly strange behavior can be made very snall
However, the distributed nature of the systemdictates that this
probability can never be zero.

The maj or innovation presented here is the explicit representation
of the tinme sequence of nodifications through tinmestanps for both
nodi fi cati ons and entries. This enables the each DBMP to sel ect the sane
"most-recent” nodification of an entry. In addition, timestanps enable
the DBMPs to decide when a deleted entry is no | onger referenced (i.e.
still active anywhere) and can be deal |l ocated. These techni ques shoul d
have broader utility in building and nodeling other systens of
concurrent, cooperating processes.

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Al ex MKenzie with]
[support from GIE, fornerly BBN Corp. 12/ 99]

Johnson & Thomas [Page 10]

