I nt ernet Engi neering Task Force (1 ETF) T. Richardson

Request for Comments: 6143 J. Levine
Cat egory: I nfornmational Real VNC Lt d.
| SSN: 2070-1721 March 2011

The Renote Franebuffer Protoco
Abstract

RFB ("renote framebuffer”) is a sinple protocol for renpte access to
graphi cal user interfaces that allows a client to view and control a
wi ndow system on anot her conputer. Because it works at the
franmebuffer level, RFB is applicable to all w ndowi ng systens and
applications. This docunment describes the protocol used to

comuni cate between an RFB client and RFB server. RFB is the
protocol used in VNC

Status of This Menp

Thi s docunent is not an Internet Standards Track specification; it is
published for informational purposes.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Not all docunents
approved by the IESG are a candidate for any |evel of Internet

St andard; see Section 2 of RFC 5741.

I nformati on about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc6143.

Copyri ght Notice

Copyright (c) 2011 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Ri chardson & Levi ne | nf or mati onal [Page 1]

RFC 6143

The Renote Franebuffer

Tabl e of Contents

1. Introduction . .

2. Initial Connection .

3. Display Protocol

4. |1 nput Protocol .o

5. Representation of P| er Data .

6. Protocol Versions and Extensions .
7. Protocol Messages

7.1. Handshake Messages . . .
7.1.1. Protocol Version Handshake
7.1.2. Security Handshake
7.1.3. SecurityResult Handshake .

7.2. Security Types . S
7.2.1. None

7.2.2. VNC Aut hent [cat ion .

7.3. Initialization Messages
7.3.1. dientlnit
7.3.2. Serverlnit

7.4. Pixel Format Data St ructure

7.5. dient-to-Server Messages
7.5.1. SetPixel For mat
7.5.2. SetEncodings . .

7.5.3. Fr armbufferUpdateRequest
7.5.4. KeyEvent e
7.5.5. PointerEvent

7.5.6. dientCut Text .

7.6. Server-to-Cient Messages
7.6.1. FranebufferUpdate
7.6.2. SetColor I\/apEnt ries .

7.6.3. Bell . . -
7.6.4. ServerCut Text

7.7. Encodings . . .
7.7.1. Raw Encodi ng . .
7.7.2. CopyRect Encoding
7.7.3. RRE Encoding . .
7.7.4. Hextile Encoding .
7.7.5. TRLE .

7.7.6. ZRLE . -

7.8. Pseudo- Encodi ngs . .
7.8.1. Cursor Pseudo- Encod| ng Coe
7.8.2. DesktopSi ze Pseudo- Encodi ng

8. |ANA ConS| derations .

8.1. RFB Security Types .

8.1.1. Registry Nane . .
8.1.2. Registry Contents . .

8.2. dient-to-Server Message Types .
8.2.1. Registry Nane . .

Ri char dson

& Levi ne | nf or mat i onal

Pr ot ocol March 2011

oo ~NOGTOh~ bW

WWWWWWWWWWNNNNNNNNNNNRPRPRPRRPRPRPRPRPRPRERPRRERR
NNNNNRPRPRPOOONPRAPRWWWNNNRFRPOOOOOUIARWWNRERPRPRPPLPOOOO

[Page 2]

RFC 6143 The Renote Franebuffer Protocol March 2011

8.2.2. Registry Contents . . . e s
8.3. Server-to-Cient Message Types S K
8.3.1. Registry Namre e e e 38
8.3.2. Registry Contents 33

8.4. RFB Encoding Types 34
8.4.1. Registry Name 34
8.4.2. Registry Contents 34

9. Security . . P)
10. Acknomﬂedgenents e 1
11. References . . e e e e e 36
11.1. Nornmative References 1)
11.2. Informative References . . < 1)
Appendi x A. Differences in Earl|er Protocol Versions 38
A.1l. Differences in the Version 3.3 Protocol 38
A.2. Differences in the Version 3.7 Protocol 38

1. Introduction

RFB ("renote framebuffer”) is a sinple protocol for renpte access to
graphi cal user interfaces. Because it works at the franebuffer
level, it is applicable to all w ndowi ng systens and applications,

i ncluding X11, Wndows, and Macintosh. RFB is the protocol used in
VNC. The protocol is wdely inplenented and has had fairly good

i nteroperability.

The renote endpoi nt where the user sits (typically with a display,
keyboard, and pointer) is called the RFB client or viewer. The
endpoi nt where changes to the franebuffer originate (i.e., the

wi ndowi ng system and applications) is known as the RFB server.

RFB is a "thin client" protocol. The enphasis in the design of the
RFB protocol is to nmake very few requirenents of the client. In this
way, clients can run on the w dest range of hardware, and the task of
i mpl enenting a client is made as sinple as possible.

The protocol also nakes the client stateless. |If a client

di sconnects froma given server and subsequently reconnects to that
sane server, the state of the user interface is preserved
Furthernore, a different client endpoint can be used to connect to
the sane RFB server. At the new endpoint, the user will see exactly
the sanme graphical user interface as at the original endpoint. In
effect, the interface to the user’s applications becones conpletely
nobil e. Wherever suitable network connectivity exists, the user can
access their own personal applications, and the state of these
applications is preserved between accesses fromdifferent |ocations.
This provides the user with a fam liar, uniformview of the computing
i nfrastructure wherever they go.

Ri chardson & Levi ne I nf or mati onal [Page 3]

RFC 6143 The Renote Franebuffer Protocol March 2011

The RFB protocol has evol ved over the past decade, and has been
i mpl enented several tines, including at |east one open source
version. This docunent describes the RFB protocol as actually
i npl enented, so that future inplementers can interoperate with
existing clients and servers.

2. Initial Connection

An RFB server is typically a long-lived process that maintains the
state of a franebuffer. RFB clients typically connect, comunicate
with the server for a period of tine to use and mani pul ate the
franebuffer, then disconnect. A subsequent RFB session will then
pi ck up where a prior session left off, with the state of the
framebuffer intact.

An RFB client contacts the server on TCP port 5900. On systens with
mul tiple RFB servers, server Ntypically listens on port 5900+N
anal ogous to the way that X Wndow servers |isten on port 6000+N

Sone browser-based clients use a Java application to run the RFB
protocol. RFB servers sometines provide a sinple HITP server on port
5800 that provides the requisite Java applet.

In sone cases, the initial roles of the client and server are
reversed, with the RFB client listening on port 5500, and the RFB
server contacting the RFB client. Once the connection is
established, the two sides take their nornmal roles, with the RFB
server sending the first handshake nessage.

Note that the only port nunber assigned by IANA for RFB is port 5900,
so RFB clients and servers should avoid using other port nunbers

unl ess they are conmunicating with servers or clients known to use
the non-standard ports.

3. Display Protoco

The display side of the protocol is based around a single graphics
primtive: "put a rectangle of pixel data at a given x,y position".
This mght seeman inefficient way of draw ng many user interface
conponents. However, allow ng various different encodings for the

pi xel data gives us a |large degree of flexibility in howto trade off
various paraneters such as network bandwi dth, client draw ng speed,
and server processing speed.

Ri chardson & Levi ne I nf or mati onal [Page 4]

RFC 6143 The Renote Franebuffer Protocol March 2011

A sequence of these rectangl es makes a franebuffer update (sinply
referred to here as "update"). An update represents a change from
one valid framebuffer state to another, so in sone ways is simlar to
a frame of video. The rectangles in an update are usually but not

al ways di sj oint.

The update protocol is demand-driven by the client. That is, an
update is only sent fromthe server to the client in response to an
explicit request fromthe client. This gives the protocol an
adaptive quality. The slower the client and the network are, the

| ower the rate of updates. Wth typical applications, changes to the
sane area of the framebuffer tend to happen soon after one another
Wth a slow client or network, transient states of the framebuffer
can be ignored, resulting in less network traffic and | ess draw ng
for the client.

After the initial handshake sequence, the protocol is asynchronous,
with each side sending nmessages as needed. The server nust not send
unsolicited updates. An update nust only be sent in response to a
request fromthe client. Wen several requests fromthe client are
out standi ng, a single update fromthe server may satisfy all of them

4. Input Protoco

The input side of the protocol is based on a standard workstation
nodel of a keyboard and multi-button pointing device. Input events
are sinmply sent to the server by the client whenever the user presses
a key or pointer button, or whenever the pointing device is noved.
These input events can al so be synthesized from ot her non-standard
I/ O devices. For exanple, a pen-based handwiting recognition engine
m ght generate keyboard events.

5. Representation of Pixel Data

Initial interaction between the RFB client and server involves a
negoti ation of the format and encodi ng of the pixel data that will be
sent. This negotiation has been designed to nake the job of the
client as easy as possible. The server nust always be able to supply
pi xel data in the formthe client wants. However, if the client is
able to cope equally with several different formats or encodings, it
may choose one that is easier for the server to produce.

Pi xel format refers to the representation of individual colors by
pi xel values. The nost common pixel formats are 24-bit or 16-bit
“"true color", where bit-fields within the pixel value translate
directly to red, green, and blue intensities, and 8-bit "col or map"
(palette) where the pixel values are indices into a 256-entry table
that contains the actual RG intensities.

Ri chardson & Levi ne I nf or mati onal [Page 5]

RFC 6143 The Renote Franebuffer Protocol March 2011

Encoding refers to the way that a rectangle of pixel data will be
sent to the client. Every rectangle of pixel data is prefixed by a
header giving the X, Y position of the rectangle on the screen, the
wi dt h and hei ght of the rectangle, and an encodi ng type which
specifies the encoding of the pixel data. The data itself then
foll ows using the specified encoding.

The encoding types defined at present are: Raw, CopyRect, RRE, TRLE
Hextile, and ZRLE. In practice, current servers use the ZRLE, TRLE
and CopyRect encodi ngs since they provide the best conpression for
typical desktops. Cients generally also support Hextile, which was
often used by older RFB servers that didn't support TRLE. See
Section 7.7 for a description of each of the encodings.

6. Protocol Versions and Extensions

The RFB protocol has evol ved through three published versions: 3.3,
3.7, and 3.8. This docurment primarily docunents the final version
3.8; differences fromthe earlier versions, which are mnor, are
descri bed in Appendix A Under no circunmstances should an

i mpl ement ati on use a protocol version nunber other than one defined
in this document. Over the years, different inplementations of RFB
have attenpted to use different version nunbers to add undocumnented
extensions, with the result being that to interoperate, any unknown
3.x version nust be treated as 3.3, so it is not possible to add a
3.9 or higher version in a backward-conpatible fashion. Future
evolution of RFB will use 4.x version nunbers.

It is not necessary to change the protocol version nunber to extend
the protocol. The protocol can be extended within an existing
versi on by:

New encodi ngs
A new encodi ng type can be added to the protocol relatively easily
whi | e mai ntaining conpatibility with existing clients and servers.
Exi sting servers will sinply ignore requests for a new encodi ng
that they don’t support. Existing clients will never request the
new encoding so will never see rectangl es encoded that way.

Pseudo- encodi ngs
In addition to genuine encodings, a client can request a "pseudo-
encodi ng" to declare to the server that it supports a certain
extension to the protocol. A server that does not support the
extension will sinply ignore the pseudo-encoding. Note that this
nmeans the client nmust assune that the server does not support the

extension until it gets some extension-specific confirmation from
the server. See Section 7.8 for a description of current pseudo-
encodi ngs.

Ri chardson & Levi ne I nf or mati onal [Page 6]

RFC 6143 The Renote Franebuffer Protocol March 2011

New security types
Addi ng a new security type gives full flexibility in nodifying the
behavi or of the protocol w thout sacrificing conmpatibility with
existing clients and servers. A client and server that agree on a
new security type can effectively talk whatever protocol they |ike
after that -- it doesn’t necessarily have to be anything like the
RFB pr ot ocol

See Section 8 for information on obtaining an ID for a new encodi ng
or security type.

7. Protocol Messages

The RFB protocol can operate over any reliable transport, either
byte-stream or nessage based. It usually operates over a TCP/IP
connection. There are three stages to the protocol. First is the
handshaki ng phase, the purpose of which is to agree upon the protoco
version and the type of security to be used. The second stage is an
initialization phase where the client and server exchange Clientlnit
and Serverlnit nessages. The final stage is the normal protoco
interaction. The client can send whichever nessages it wants, and
may receive nmessages fromthe server as a result. Al these nmessages
begin with a nessage-type byte, followed by nessage-specific data.

The foll owi ng descriptions of protocol nmessages use the basic types
ug, Ul6, U32, S8, S16, and S32. These represent, respectively, 8-,
16-, and 32-bit unsigned integers and 8-, 16-, and 32-bit signed
integers. Al nmultiple-byte integers (other than pixel val ues
thensel ves) are in big endian order (nobst significant byte first).
Sone nessages use arrays of the basic types, with the nunber of
entries in the array determned fromfields preceding the array.

The type PI XEL nmeans a pixel val ue of bytesPerPixel bytes, where

byt esPer Pi xel is the nunber of bits-per-pixel divided by 8 The
bits-per-pixel is agreed by the client and server, either in the
Serverlnit message (Section 7.3.2) or a SetPixel Format nessage
(Section 7.5.1). See Section 7.4 for the detail ed description of the
pi xel format.

Several message formats include padding bits or bytes. For maxi num
conpatibility, nmessages should be generated with padding set to zero,
but nmessage recipients should not assune paddi ng has any particul ar
val ue.

Ri chardson & Levi ne I nf or mati onal [Page 7]

RFC 6143 The Renote Franebuffer Protocol March 2011

7.

7.

7.

1

1

1

Handshake Messages

When an RFB client and server first connect, they exchange a sequence
of handshake messages that determ ne the protocol version, what type
of connection security (if any) to use, a password check if the
security type requires it, and sonme initialization information.

1. Protocol Versi on Handshake

Handshaki ng begi ns by the server sending the client a Protocol Version
message. This lets the client know which is the highest RFB protoco
versi on nunber supported by the server. The client then replies with
a simlar nmessage giving the version nunber of the protocol that
shoul d actually be used (which may be different to that quoted by the
server). A client should never request a protocol version higher
than that offered by the server. It is intended that both clients
and servers may provide some | evel of backwards conpatibility by this
mechani sm

The only published protocol versions at this time are 3.3, 3.7, and
3.8. Oher version nunbers are reported by sone servers and clients,
but should be interpreted as 3.3 since they do not inplenment the

di fferent handshake in 3.7 or 3.8. Addition of a new encoding or
pseudo- encodi ng type does not require a change in protocol version
since a server can sinmply ignore encodings it does not understand.

The Protocol Versi on nmessage consists of 12 bytes interpreted as a
string of ASCII characters in the format "RFB xxx.yyy\n" where XxxX
and yyy are the major and m nor version nunbers, |eft-padded with
zeros:

RFB 003.008\n (hex 52 46 42 20 30 30 33 2e 30 30 38 0a)
2. Security Handshake
Once the protocol version has been decided, the server and client

nust agree on the type of security to be used on the connection. The
server lists the security types that it supports:

o m e e e e e e aa o Fom e e e e oo - o m e e e e e e aa o +
| No. of bytes | Type | Description |
| | [Val ue] | |
o m e e e e eaea oo n U o m e e e e eaea oo n +
| 1 | U8 | nunber-of -security-types

| number-of-security-types | U8 array | security-types |
o m e e e e e e aa o Fom e e e e oo - o m e e e e e e aa o +

Ri chardson & Levi ne I nf or mati onal [Page 8]

RFC 6143 The Renote Franebuffer Protocol March 2011

If the server listed at | east one valid security type supported by
the client, the client sends back a single byte indicating which
security type is to be used on the connection

oo oo Fom e e e oo - +
| No. of bytes | Type [Value] | Description
oo oo o +
| 1 | U8 | security-type

o e o o e o oo +

I f nunmber-of-security-types is zero, then for some reason the
connection failed (e.g., the server cannot support the desired
protocol version). This is followed by a string describing the
reason (where a string is specified as a length followed by that nmany
ASClI | characters):

Fom e e e oo - oo Fom e e e oo - +
| No. of bytes | Type [Value] | Description
o oo o +
| 4 | U32 | reason-Ilength

| reason-length | U8 array | reason-string

Fom e e e e oo - Fomm oo o - Fom e e e e oo - +

The server closes the connection after sending the reason-string.

The security types defined in this docunent are:

Fomm e m oo - Fom e e e oo +
| Number | Nane |
Fomm oo o e e e e e oo +
| O | I'nvalid |
| 1 | None |
| 2 | VNC Aut henti cation

Fomm e m oo - Fom e e e oo +

Q her security types exist but are not publicly docunented.

Once the security-type has been deci ded, data specific to that
security-type follows (see Section 7.2 for details). At the end of
the security handshaki ng phase, the protocol normally continues wth
the SecurityResult nessage.

Note that after the security handshaki ng phase, it is possible that
further comunication is over an encrypted or otherw se altered
channel if the two ends agree on an extended security type beyond the
ones descri bed here.

Ri chardson & Levi ne I nf or mati onal [Page 9]

RFC 6143 The Renote Franebuffer Protocol March 2011

7.1.3. SecurityResult Handshake

The server sends a word to informthe client whether the security
handshaki ng was successful .

R R S +
| No. of bytes | Type [Value] | Description

o e ok o e ok Fom e +
| 4 | U32 | status

| | O (014

| | 1 | failed |
R R S +

I f successful, the protocol passes to the initialization phase
(Section 7.3).

I f unsuccessful, the server sends a string describing the reason for
the failure, and then closes the connection

oo o e ok oo +
| No. of bytes | Type [Value] | Description

Fom e e e e oo - Fomm oo o - Fom e e e e oo - +
| 4 | U32 | reason-length

| reason-length | U8 array | reason-string
o oo o +

7.2. Security Types
Two security types are defined here.
7.2.1. None

No aut hentication is needed. The protocol continues with the
SecurityResult nessage.

7.2.2. VNC Aut hentication

VNC aut hentication is to be used. The server sends a random 16-byte

chal | enge:
oo oo S +
| No. of bytes | Type [Value] | Description
oo oo U +
| 16 | U8 | chal |l enge
o e o o e o R +

Ri chardson & Levi ne I nf or mati onal [Page 10]

RFC 6143 The Renote Franebuffer Protocol March 2011

The client encrypts the challenge with DES, using a password supplied
by the user as the key. To formthe key, the password is truncated
to eight characters, or padded with null bytes on the right. The
client then sends the resulting 16-byte response:

R R S +
| No. of bytes | Type [Value] | Description

o e ok o e ok Fom e +
| 16 | U8 | response

Fomm oo o - Fomm oo o - Fom e e e e oo - +

The protocol continues with the SecurityResult nessage.

This type of authentication is known to be cryptographically weak and
is not intended for use on untrusted networks. Many inplenentations
will want to use stronger security, such as running the session over
an encrypted channel provided by | Psec [RFC4301] or SSH [RFC4254].

7.3. Initialization Messages
Once the client and server agree on and perhaps validate a security
type, the protocol passes to the initialization stage. The client
sends a Cientlnit nessage. Then, the server sends a Serverlnit
nessage.

7.3.1. dientlnit

B B S +
| No. of bytes | Type [Value] | Description
R R T +
| 1 | U8 | shared-flag
e e B - +

Shared-flag is non-zero (true) if the server should try to share the
desktop by | eaving other clients connected, and zero (false) if it
shoul d gi ve exclusive access to this client by disconnecting al

other clients.

7.3.2. Serverlnit
After receiving the Cientlnit nessage, the server sends a Serverlnit
nessage. This tells the client the width and hei ght of the server’s

franebuffer, its pixel format, and the nane associated with the
deskt op:

Ri chardson & Levi ne I nf or mati onal [Page 11]

RFC 6143 The Renote Franebuffer Protocol March 2011

oo oo o m e e e e e e ie e aaa +
| No. of bytes | Type [Value] | Description |
o e o o e o o m e e e e e e e e e e +
| 2 | Ul6 | framebuffer-width in pixels

| 2 | Ul6 | framebuffer-height in pixels

| 16 | PI XEL_FORVAT | server-pixel -format |
| 4 | U32 | name-1ength

| name-length | U3 array | name-string |
o e o o e o o m e e e e e e e e e e +

Server-pi xel -format specifies the server’s natural pixel format.
This pixel format will be used unless the client requests a different
format using the SetPi xel Format nessage (Section 7.5.1).

7.4. Pixel Format Data Structure

Several server-to-client nessages include a Pl XEL_FORMAT, a 16-byte
structure that describes the way a pixel is transmtted.

o e ok o e ok o e e oo +
| No. of bytes | Type [Value] | Description

Fomm oo o - Fomm oo o - o e e e e oo - +
| 1 | U8 | bits-per-pixel

| 1 | U8 | depth |
| 1 | U8 | big-endian-flag

| 1 | U8 | true-color-flag

| 2 | Ul6 | red-max

| 2 | Ul6 | green-nmax

| 2 | U16 | bl ue-max

1	U8	red-shift
1	U8	green-shift
1	U8	blue-shift
3		padding
Fomm oo o - Fomm oo o - o e e e e oo - +

Bits-per-pixel is the nunber of bits used for each pixel value on the
wire. This nust be greater than or equal to the depth, which is the
nunber of useful bits in the pixel value. Currently bits-per-pixe
must be 8, 16, or 32. Big-endian-flag is non-zero (true) if multi-
byte pixels are interpreted as big endian. Al though the depth should
be consistent with the bits-per-pixel and the various -max val ues,
clients do not use it when interpreting pixel data.

If true-color-flag is non-zero (true), then the last six itens
specify how to extract the red, green, and blue intensities fromthe
pi xel value. Red-nmax is the maxi mumred value and rmust be 2”N - 1,
where N is the nunmber of bits used for red. Note the -nmax val ues are
always in big endian order. Red-shift is the nunber of shifts needed

Ri chardson & Levi ne I nf or mati onal [Page 12]

RFC 6143 The Renote Franebuffer Protocol March 2011

to get the red value in a pixel to the least significant bit. G een-
max, green-shift, blue-nmax, and blue-shift are simlar for green and
blue. For exanple, to find the red value (between 0 and red- max)
froma given pixel, do the follow ng:

o Swap the pixel value according to big-endian-flag, e.g., if big-
endian-flag is zero (false) and host byte order is big endian
t hen swap.

o Shift right by red-shift.
o0 AND with red-max (in host byte order).

If true-color-flag is zero (false), then the server uses pixel val ues
that are not directly conposed fromthe red, green, and bl ue
intensities, but serve as indices into a color map. Entries in the
color map are set by the server using the Set Col or MapEntri es nessage
(See Section 7.6.2).

7.5. dient-to-Server Messages

The client-to-server message types defined in this docunment are:

| Set Pi xel For mat |
| Set Encodi ngs |
| FranebufferUpdat eRequest |
| KeyEvent

| Poi nterEvent |
| dientCutText |

O her nmessage types exist but are not publicly docunented. Before
sendi ng a nessage other than those described in this docunent, a
client nust have determ ned that the server supports the rel evant

ext ensi on by receiving an appropriate extension-specific confirmation
fromthe server.

7.5.1. Set Pi xel For nat

A Set Pi xel Format nessage sets the fornmat in which pixel values should
be sent in FranebufferUpdate nmessages. |f the client does not send a
Set Pi xel Format nessage, then the server sends pixel values in its
natural format as specified in the Serverlnit nessage

(Section 7.3.2).

Ri chardson & Levi ne I nf or mati onal [Page 13]

RFC 6143 The Renote Franebuffer Protocol March 2011

If true-color-flag is zero (false), then this indicates that a "col or
map" is to be used. The server can set any of the entries in the
col or map using the SetCol or MapEntri es nmessage (Section 7.6.2).

I mredi ately after the client has sent this message, the contents of
the color map are undefined, even if entries had previously been set
by the server.

o e ok o e ok o e ok +
| No. of bytes | Type [Value] | Description

Fomm oo o - Fomm oo o - Fomm oo o - +
| 1 | U8 [0] | message-type

| 3 | | padding |
| 16 | PI XEL_FORNMAT | pi xel -format

o e ok o e ok o e ok +

Pl XEL_FORMAT is as described in Section 7. 4.
7.5.2. SetEncodi ngs

A Set Encodi ngs nessage sets the encoding types in which pixel data
can be sent by the server. The order of the encoding types given in
this nessage is a hint by the client as to its preference (the first
encodi ng specified being nost preferred). The server nmay or may not
choose to make use of this hint. Pixel data may al ways be sent in
raw encodi ng even if not specified explicitly here.

In addition to genuine encodings, a client can request "pseudo-

encodi ngs" to declare to the server that it supports certain
extensions to the protocol. A server that does not support the
extension will sinply ignore the pseudo-encoding. Note that this
neans the client nmust assune that the server does not support the
extension until it gets some extension-specific confirmation fromthe
server.

See Section 7.7 for a description of each encoding and Section 7.8
for the neani ng of pseudo-encodi ngs.

o e ok o e ok o e e e e e oo +
| No. of bytes | Type [Value] | Description |
Fomm oo o - Fomm oo o - o m e e e e aa o - +
| 1 | U8 [2] | message-type |
| 1 | | paddi ng |
| 2 | Ul6 | nunber - of - encodi ngs

o e ok o e ok o e e e e e oo +

Ri chardson & Levi ne I nf or mati onal [Page 14]

RFC 6143 The Renote Franebuffer Protocol March 2011

This is followed by nunber-of-encodings repetitions of the follow ng:

. . . +
| No. of bytes | Type [Value] | Description
oo oo Fom e e e oo - +
| 4 | S32 | encodi ng-type
. . S TR +

7.5.3. FranebufferUpdat eRequest

A Franebuf f er Updat eRequest nessage notifies the server that the
client is interested in the area of the franebuffer specified by
X-position, y-position, width, and height. The server usually
responds to a FranebufferUpdat eRequest by sending a
Framebuf f er Update. A single FranebufferUpdate may be sent in reply
to several FramebufferUpdat eRequests.

The server assunes that the client keeps a copy of all parts of the
franebuffer in which it is interested. This neans that nornmally the
server only needs to send increnental updates to the client.

If the client has lost the contents of a particular area that it
needs, then the client sends a FranebufferUpdat eRequest with
increnental set to zero (false). This requests that the server send
the entire contents of the specified area as soon as possible. The
area will not be updated using the CopyRect encoding.

If the client has not |ost any contents of the area in which it is
interested, then it sends a FranebufferUpdat eRequest with increnenta
set to non-zero (true). |If and when there are changes to the
specified area of the franebuffer, the server will send a
Framebuf f er Update. Note that there may be an indefinite period

bet ween t he FranebufferUpdat eRequest and the Framebuffer Update.

In the case of a fast client, the client may want to regul ate the
rate at which it sends increnental FranebufferUpdat eRequests to avoid
excessive network traffic.

. . . +
| No. of bytes | Type [Value] | Description
oo oo oo +
| 1 | U8 [3] | nessage-type

| 1 | U8 | increnental

| 2 | U16 | Xx-position

| 2 | U16 | y-position

| 2 | Ul6 | width |
| 2 | Ul6 | hei ght |
R R R +

Ri chardson & Levi ne I nf or mati onal [Page 15]

RFC 6143 The Renote Franebuffer Protocol March 2011

7.5.4. KeyEvent

A KeyEvent nessage indicates a key press or release. Down-flag is
non-zero (true) if the key is now pressed, and zero (false) if it is
now rel eased. The key itself is specified using the "keysym' val ues
defined by the X Wndow System even if the client or server is not
runni ng the X Wndow System

. . . +
| No. of bytes | Type [Value] | Description |
oo oo oo +
1	U8 [4]	message-type
1	U8	down-flag
2		padding
4	U32	key
Fomm oo o - Fomm oo o - Fomm oo o - +

For nmost ordinary keys, the keysymis the sane as the correspondi ng
ASCI | value. For full details, see [XLIBREF] or see the header file
<X11/ keysyndef. h> in the X Wndow System di stribution. Sonme other
common keys are:

Ri chardson & Levi ne I nf or mati onal [Page 16]

RFC 6143

The Renote Franebuffer

BackSpace
Tab
Return or
Escape

I nsert

Del et e
Horme

End

Page Up
Page Down
Left

Up

Ri ght
Down

F1

F2

F3

F4

F12

Shift (left)
Shift (right)
(left)
(right)
Meta (left)
Meta (right)

Contro
Contro

At (left)

At (right)

I

I

I

I

| Oxff63
| Oxffff
| Oxff50
| Oxff57
| Oxff55
| Oxff56
| Oxffb51
| Oxff52
| Oxff53
| Oxff54
| Oxffbe
| Oxff bf
| OxffcO
| Oxffcl
| ...

| Oxffc9
| Oxffel
| Oxffe2
| Oxffe3
| Oxffed
| Oxffe7
| Oxffe8
| Oxffe9
| Oxffea

Pr ot oco

The interpretati on of keysyns is a conplex area.

wi dely interoperable as possible,

f ol | oned:

o

The "shift state" (i.e.

March 2011

In order to be as
the follow ng guidelines should be

whet her either of the Shift keysyns is

down) should only be used as a hint when interpreting a keysym

For exanpl e,

a WK keyboard it

on a US keyboard the '#

i'S not.

char act er

"#' character froma client with a UK keyboard wi ||
sent any shift presses.

server wll

systemin order to get a '#

Ri chardson & Levi ne

In this case

character

| nf or mat i ona

is shifted, but on
A server with a US keyboard receiving a
not have been

it is likely that the
internally need to simulate a shift press on its |oca

and not a '3

[Page 17]

RFC 6143 The Renote Franebuffer Protocol March 2011

o The difference between upper and | ower case keysyns is
significant. This is unlike some of the keyboard processing in
the X Wndow Systemthat treats themas the same. For exanple, a
server receiving an upper case 'A keysym wi thout any shift
presses should interpret it as an upper case "A'. Again this may
i nvol ve an internal sinmulated shift press.

o Servers should ignore "l ock" keysyms such as CapsLock and NumnlLock
where possible. Instead, they should interpret each character-
based keysym according to its case.

o Unlike Shift, the state of nodifier keys such as Control and At
shoul d be taken as nodifying the interpretati on of other keysyns.
Note that there are no keysyns for ASCI| control characters such
as Crl-A -- these should be generated by clients sending a
Control press followed by an "a' press.

0 On aclient where nodifiers Iike Control and Alt can al so be used
to generate character-based keysyns, the client may need to send
extra "rel ease" events in order that the keysymis interpreted
correctly. For exanple, on a Gernman PC keyboard, Crl-At-Q
generates the '@ character. In this case, the client needs to
send simul ated rel ease events for Control and Al't in order that
the '@ character is interpreted correctly, since Crl-At-@my
nmean sonething conpletely different to the server.

o There is no universal standard for "backward tab" in the X W ndow
System On some systens shift+tab gives the keysym
"I SO Left_Tab", on others it gives a private "BackTab" keysym and
on others it gives "Tab" and applications tell fromthe shift
state that it neans backward-tab rather than forward-tab. 1In the
RFB protocol, the |atter approach is preferred. dients should
generate a shifted Tab rather than ISO Left_Tab. However, to be
backwar ds- conmpati ble with existing clients, servers should al so
recogni ze |1 SO Left _Tab as neaning a shifted Tab

o Modern versions of the X Wndow System handl e keysyns for Uni code
characters, consisting of the Unicode character with the hex
1000000 bit set. For maximum conpatibility, if a key has both a
Uni code and a | egacy encoding, clients should send the | egacy
encodi ng.

0 Sonme systens give a special interpretation to key conbi nations
such as CGrl-Alt-Delete. RFB clients typically provide a nenu or
tool bar function to send such key conbinati ons. The RFB protoco
does not treat themspecially; to send Ctrl-Alt-Delete, the client
sends the key presses for left or right Control, left or right

Ri chardson & Levi ne I nf or mati onal [Page 18]

RFC 6143 The Renote Franebuffer Protocol March 2011

Al't, and Delete, followed by the key rel eases. Many RFB servers
accept Shift-Crl-At-Delete as a synonymfor Cirl-At-Delete that
can be entered directly fromthe keyboard.

7.5.5. PointerEvent

A Poi nter Event nessage indicates either pointer novenent or a pointer
button press or release. The pointer is now at (Xx-position
y-position), and the current state of buttons 1 to 8 are represented
by bits 0 to 7 of button-mask, respectively; 0 neans up, 1 means down
(pressed).

On a conventional nouse, buttons 1, 2, and 3 correspond to the left,
m ddl e, and right buttons on the nouse. On a wheel npuse, each step
of the wheel upwards is represented by a press and rel ease of button
4, and each step downwards is represented by a press and rel ease of
button 5.

oo oo oo +
| No. of bytes | Type [Value] | Description

o e o o e o o e o +
| 1 | U8 [5] | message-type

| 1 | U8 | button-mask

| 2 | U16 | Xx-position

| 2 | Ul6 | y-position

o e ok o e ok o e ok +

7.5.6. dientCut Text

RFB provides |imted support for synchronizing the "cut buffer" of
sel ected text between client and server. This nessage tells the
server that the client has new | SO 8859-1 (Latin-1) text inits cut
buffer. Ends of lines are represented by the new ine character (hex
Oa) alone. No carriage-return (hex 0d) is used. There is no way to
transfer text outside the Latin-1 character set.

oo oo oo +
| No. of bytes | Type [Value] | Description

o e o o e o o e o +
| 1 | U8 [6] | message-type

3		padding
4	U32	Iength
length	U8 array	text
o e ok o e ok o e ok +

Ri chardson & Levi ne I nf or mati onal [Page 19]

RFC 6143 The Renote Franebuffer Protocol March 2011

7.6. Server-to-Cient Messages

The server-to-client message types defined in this docunent are:

Fomm e o e e e oo +
| Number | Nane

Fomm e e Fom e e e e e oo +
| O | FranebufferUpdate

| 1 | Set Col or MapEntri es

| 2 | Bell

| 3 | Server Cut Text |
Fomm oo o e e e e e oo +

Q her private nmessage types exi st but are not publicly docunented.
Bef ore sendi ng a message other than those described in this docunent
a server nust have determined that the client supports the rel evant
ext ensi on by receiving sone extension-specific confirmation fromthe
client -- usually a request for a given pseudo-encodi ng.

7.6.1. FranebufferUpdate

A franmebuffer update consists of a sequence of rectangles of pixe
data that the client should put into its framebuffer. It is sent in
response to a FranebufferUpdat eRequest fromthe client. Note that
there may be an indefinite period between the
Framebuf f er Updat eRequest and t he Franebuffer Updat e.

Fomm oo o - Fomm oo o - o m e e e a e oo +
| No. of bytes | Type [Value] | Description
R R o e e e e e oo +
| 1 | U8 [0] | message-type

| 1 | | paddi ng |
| 2 | Ul6 | number-of -rectangl es

Fomm oo o - Fomm oo o - o m e e e a e oo +

Thi s header is followed by nunber-of-rectangl es rectangles of pixe
data. Each rectangle starts with a rectangl e header

. . . +
| No. of bytes | Type [Value] | Description
oo oo Fom e e e oo - +
| 2 | U16 | Xx-position

| 2 | Ul6 | y-position

| 2 | U16 | width |
| 2 | U16 | height |
| 4 | S32 | encodi ng-type
oo oo Fom e e e oo - +

Ri chardson & Levi ne I nf or mati onal [Page 20]

RFC 6143 The Renote Franebuffer Protocol March 2011

The rectangl e header is followed by the pixel data in the specified
encodi ng. See Section 7.7 for the format of the data for each
encodi ng and Section 7.8 for the meani ng of pseudo-encodi ngs.

7.6.2. SetCol or MapEntries

When the pixel format uses a "color map", this nessage tells the
client that the specified pixel values should be rmapped to the given
RGB values. Note that this nessage nay only update part of the color
map. This message should not be sent by the server until after the
client has sent at |east one FranebufferUpdat eRequest, and only when
the agreed pixel format uses a col or nap

Col or map val ues are always 16 bits, with the range of val ues running
fromO to 65535, regardl ess of the display hardware in use. The
color map value for white, for exanple, is 65535, 65535, 65535.

The nessage starts with a header describing the range of col ormap
entries to be updated.

e e oo +
| No. of bytes | Type [Value] | Description |
oo oo o e e e e e oo - +
| 1 | U8 [1] | message-type

| 1 | | paddi ng |
| 2 | U16 | first-color

| 2 | Ul6 | number-of-colors

Fomm oo o - Fomm oo o - Fom e oo - +

This header is followed by nunber-of-colors R@& val ues, each of which
isinthis format:

. . . +
| No. of bytes | Type [Value] | Description

oo oo S +
2	U16	red
2	Ul6	green
2	Ul6	blue
. . . +

Ri chardson & Levi ne I nf or mati onal [Page 21]

RFC 6143 The Renote Franebuffer Protocol March 2011

7.6.3. Bel
A Bell message makes an audible signal on the client if it provides
one.
R R R +
| No. of bytes | Type [Value] | Description
o e ok o e ok o e ok +
| 1 | U8 [2] | message-type
Fomm oo o - Fomm oo o - Fomm oo o - +

7.6.4. Ser ver Cut Text

The server has new | SO 8859-1 (Latin-1) text in its cut buffer. Ends
of lines are represented by the newine character (hex 0a) alone. No
carriage-return (hex 0d) is used. There is no way to transfer text
outside the Latin-1 character set.

oo oo oo +
| No. of bytes | Type [Value] | Description

o e o o e o o e o +
| 1 | U8 [3] | message-type

3		padding
4	U32	Iength
length	U8 array	text
o e ok o e ok o e ok +

7.7. Encodi ngs

The encodi ngs defined in this docunent are:

S S +
| Number | Nane |
B R g +
O	Raw
1	CopyRect
2	RRE
5	Hextile

| 15 | TRLE

| 16 | ZRLE

| -239 | Cursor pseudo-encodi ng |
| | |

Deskt opSi ze pseudo-encodi ng

O her encodi ng types exist but are not publicly docunented.

Ri chardson & Levi ne I nf or mati onal [Page 22]

RFC 6143 The Renote Franebuffer Protocol March 2011

7.7.1. Raw Encoding

The sinplest encoding type is raw pixel data. |In this case, the data
consi sts of wi dt h*hei ght pixel values (where width and height are the
wi dt h and height of the rectangle). The values sinply represent each
pixel in left-to-right scan line order. Al RFB clients nust be able
to handl e pixel data in this raw encodi ng, and RFB servers shoul d
only produce raw encodi ng unless the client specifically asks for
sone ot her encodi ng type.

o mm e e e e eea—ooos Fom e e Fom e e +
| No. of bytes | Type [Value] | Description
oo oo - +
| width*hei ght*bytesPerPixel | PIXEL array | pixels
oo S oo +

7.7.2. CopyRect Encoding

The CopyRect (copy rectangle) encoding is a very sinple and efficient
encodi ng that can be used when the client already has the same pixe
data el sewhere in its framebuffer. The encoding on the wire sinply
consists of an X, Y coordinate. This gives a position in the
framebuffer fromwhich the client can copy the rectangle of pixe
data. This can be used in a variety of situations, the nbst comobn
of which are when the user npbves a w ndow across the screen, and when
the contents of a w ndow are scroll ed.

B B T +
| No. of bytes | Type [Value] | Description
R R oo o - +
| 2 | Ul6 | src-x-position

| 2 | U16 | src-y-position

o e o o e o oo +

For maxi mum conpatibility, the source rectangle of a CopyRect should
not include pixels updated by previous entries in the sane
Fr amebuf f er Updat e nessage.

7.7.3. RRE Encoding

Not e: RRE encoding is obsolescent. In general, ZRLE and TRLE
encodi ngs are nore conpact.

RRE stands for rise-and-run-length encoding. As its nane inplies, it

is essentially a two-dinensional anal ogue of run-Iength encoding.
RRE- encoded rectangles arrive at the client in a formthat can be

Ri chardson & Levi ne I nf or mati onal [Page 23]

RFC 6143 The Renote Franebuffer Protocol March 2011

rendered i mredi ately by the sinplest of graphics engines. RRE is not
appropriate for conpl ex desktops, but can be useful in sone
situations.

The basic idea behind RRE is the partitioning of a rectangle of pixe
data into rectangul ar subregions (subrectangl es) each of which

consi sts of pixels of a single value, and the union of which
conprises the original rectangul ar region. The near-optina
partition of a given rectangle into such subrectangles is relatively
easy to conpute.

The encodi ng consists of a background pi xel value, Vb (typically the
nost preval ent pixel value in the rectangle) and a count N, foll owed
by a list of N subrectangles, each of which consists of a tuple

<V, X,¥,w, h> where v (which should be different fromVb) is the pixe
val ue, (x,y) are the coordinates of the subrectangle relative to the
top-left corner of the rectangle, and (w, h) are the wi dth and hei ght
of the subrectangle. The client can render the original rectangle by
drawing a filled rectangle of the background pixel value and then
drawing a filled rectangle corresponding to each subrectangle.

On the wire, the data begins with the header

Fom e e e oo oo - R o e e e e e e oo oo +
| No. of bytes | Type [Value] | Description |
oo oo oo +
| 4 | U32 | number - of - subr ect angl es
| bytesPerPixel | PIXEL | background- pi xel -val ue
Fom e e e oo - oo o e e e e e e e +

This is followed by nunber-of-subrectangl es i nstances of the
followi ng structure

Fom e e e e oo - Fomm oo o - o m e e e e aa o - +
| No. of bytes | Type [Value] | Description
Fom e e e oo oo - R T +
| bytesPerPixel | PIXEL | subrect-pixel -val ue
| 2 | U16 | Xx-position
| 2 | U16 | y-position
| 2 | Ul6 | width |
| 2 | Ul6 | hei ght
Fom e e e oo oo - R T +

7.7.4. Hextile Encoding

Note: Hextile encoding is obsolescent. |In general, ZRLE and TRLE

encodi ngs are nore conpact.

Ri chardson & Levi ne I nf or mati onal [Page 24]

RFC 6143 The Renote Franebuffer Protocol March 2011

Hextile is a variation on RRE. Rectangles are split up into 16x16
tiles, allow ng the dinensions of the subrectangles to be specified
in 4 bits each, 16 bits in total. The rectangle is split into tiles
starting at the top left going in left-to-right, top-to-bottom order
The encoded contents of the tiles sinmply foll ow one another in the
predeterm ned order. |If the width of the whole rectangle is not an
exact multiple of 16, then the width of the last tile in each row
will be correspondingly snmaller. Sinmilarly, if the height of the
whol e rectangle is not an exact nultiple of 16, then the hei ght of
each tile in the final roww |l also be snaller

Each tile is either encoded as raw pixel data, or as a variation on
RRE. Each tile has a background pi xel value, as before. The
background pi xel val ue does not need to be explicitly specified for a
given tile if it is the same as the background of the previous tile.
However, the background pi xel value nmay not be carried over if the
previous tile was raw. If all of the subrectangles of a tile have
the sanme pi xel value, this can be specified once as a foreground

pi xel value for the whole tile. As with the background, the
foreground pixel value can be |eft unspecified, meaning it is carried
over fromthe previous tile. The foreground pixel value may not be
carried over if the previous tile was raw or had the SubrectsCol ored
bit set. It may, however, be carried over froma previous tile with
the AnySubrects bit clear, as long as that tile itself carried over a
valid foreground fromits previous tile.

The data consists of each tile encoded in order. Each tile begins
with a subencodi ng type byte, which is a mask made up of a nunber of
bits:

AnySubr ect s
Subr ect sCol or ed

oo oo e +
| No. of bytes | Type [Value] | Description |
o e o o e o o e e e +
| 1 | U8 | subencodi ng- mask:

| | [1] | Raw]
| | [2] | BackgroundSpecified

| | [4] | ForegroundSpecified

I I I I
I I I I

If the Raw bit is set, then the other bits are irrel evant;

wi dt h*hei ght pi xel values follow (where width and height are the

wi dt h and height of the tile). Qherw se, the other bits in the nask
are as foll ows:

Ri chardson & Levi ne I nf or mati onal [Page 25]

RFC 6143 The Renote Franebuffer Protocol March 2011

BackgroundSpeci fi ed
If set, a pixel value of bytesPerPixel bytes follows and specifies
the background color for this tile. The first non-rawtile in a
rectangl e nust have this bit set. |If this bit isn't set, then the
background is the sane as the last tile.

For egr oundSpeci fi ed
If set, a pixel value of bytesPerPixel bytes foll ows and specifies
the foreground color to be used for all subrectangles in this
tile.

If this bit is set, then the SubrectsCol ored bit nust be zero.

AnySubr ect s
If set, a single byte follows and gives the nunmber of
subrectangles following. |If not set, there are no subrectangles
(i.e., the whole tile is just solid background color).

Subr ect sCol or ed
If set, then each subrectangle is preceded by a pixel value giving
the col or of that subrectangle, so a subrectangle is:

Fom e e e oo - oo T +
| No. of bytes | Type [Value] | Description
o oo e +
| bytesPerPixel | PIXEL | subrect-pixel -val ue
| 1 | W8 | x-and-y-position
| 1 | U8 | wi dt h-and- hei ght
Fom e e e oo - oo T +
If not set, all subrectangles are the sane color -- the foreground

color; if the ForegroundSpecified bit wasn't set, then the
foreground is the same as the last tile. A subrectangle is:

oo oo o e e e e e oo - +
| No. of bytes | Type [Value] | Description |
oo oo o e e oo +
| 1 | U8 | x-and-y-position

| 1 | U8 | wi dth-and-hei ght |
Fomm oo o - Fomm oo o - Fom e oo - +

The position and size of each subrectangle is specified in two bytes,
Xx-and-y-position and wi dt h-and-hei ght. The nost significant 4 bits
of x-and-y-position specify the X position, the |east significant
specify the Y position. The nost significant 4 bits of w dth-and-
hei ght specify the width minus 1, the least significant specify the
hei ght m nus 1.

Ri chardson & Levi ne I nf or mati onal [Page 26]

RFC 6143 The Renote Franebuffer Protocol March 2011

7.7.5. TRLE

TRLE stands for Tiled Run-Length Encoding, and conbines tiling,

pal ettization, and run-length encoding. The rectangle is divided
into tiles of 16x16 pixels in left-to-right, top-to-bottom order
simlar to Hextile. |If the width of the rectangle is not an exact
nmultiple of 16, then the width of the last tile in each rowis
smaller, and if the height of the rectangle is not an exact multiple
of 16, then the height of each tile in the final rowis snmaller.

TRLE nmekes use of a new type CPI XEL (conpressed pixel). This is the
same as a PIXEL for the agreed pixel format, except as a specia

case, it uses a nore conpact format if true-color-flag is non-zero
bits-per-pixel is 32, depth is 24 or less, and all of the bits naking
up the red, green, and blue intensities fit in either the |east
significant 3 bytes or the nost significant 3 bytes. |If all of these
are the case, a CPIXEL is only 3 bytes Iong, and contains the |east
significant or the nost significant 3 bytes as appropriate.

byt esPer CPi xel is the nunber of bytes in a CPlI XEL

Each tile begins with a subencoding type byte. The top bit of this
byte is set if the tile has been run-length encoded, clear otherw se.
The bottom 7 bits indicate the size of the palette used: zero means
no palette, 1 neans that the tile is of a single color, and 2 to 127
indicate a palette of that size. The special subencoding val ues 129
and 127 indicate that the palette is to be reused fromthe last tile
that had a palette, with and w thout RLE, respectively.

Note: in this discussion, the div(a,b) function nmeans the result of
dividing a/b truncated to an integer

The possi bl e val ues of subencodi ng are:

0: Raw pi xel data. wi dth*hei ght pixel values follow (where width and
hei ght are the width and height of the tile):

e S S +
| No. of bytes | Type [Value] | Description
T . . +
| widt h*hei ght *Byt esPer CPi xel | CPIXEL array | pixels

o e m e e e e e e e e e oo S +

Ri chardson & Levi ne I nf or mati onal [Page 27]

RFC 6143 The Renote Franebuffer Protocol March 2011

1:. Asolidtile consisting of a single color. The pixel value

fol |l ows:
T B S +
| No. of bytes | Type [Value] | Description
oo o - R T +
| bytesPer CPi xel | CPI XEL | pixel Val ue
o o e ok Fom e +

2 to 16: Packed palette types. The paletteSize is the value of the
subencodi ng, which is followed by the palette, consisting of
pal etteSi ze pixel values. The packed pixels follow, with each
pi xel represented as a bit field yielding a zero-based index into
the palette. For paletteSize 2, a 1-bit field is used; for
paletteSize 3 or 4, a 2-bit field is used; and for paletteSize
from5 to 16, a 4-bit field is used. The bit fields are packed
into bytes, with the nobst significant bits representing the
| eftmost pixel (i.e., big endian). For tiles not a nultiple of 8,
4, or 2 pixels wide (as appropriate), padding bits are used to
align each row to an exact nunber of bytes.

o m e e e e e e e e o Fomm oo o - Fomm oo o - +
| No. of bytes | Type [Value] | Description
T R R +
| pal etteSi ze*bytesPerCPixel | CPI XEL array | palette |
| m | U8 array | packedPi xel s
o m e e e e e e e e e oo o e o o e o +

where mis the nunber of bytes representing the packed pixels.
For paletteSize of 2, this is div(w dth+7,8)*height; for

pal etteSize of 3 or 4, this is div(w dth+3,4)*height; or for
pal etteSize of 5 to 16, this is div(w dth+1, 2)*hei ght.

17 to 126: Unused. (Packed palettes of these sizes would offer no
advant age over palette RLE).

127: Packed palette with the palette reused fromthe previous tile.
The subencoding byte is foll owed by the packed pixels as descri bed
above for packed palette types.

128: Plain RLE. The data consists of a number of runs, repeated
until the tile is done. Runs may continue fromthe end of one row
to the beginning of the next. Each run is represented by a single
pi xel value followed by the Iength of the run. The length is
represented as one or nore bytes. The length is cal cul ated as one
nore than the sumof all the bytes representing the I ength. Any
byte val ue other than 255 indicates the final byte. So for

Ri chardson & Levi ne I nf or mati onal [Page 28]

RFC 6143 The Renote Franebuffer Protocol March 2011

exanple, length 1 is represented as [0], 255 as [254], 256 as
[255,0], 257 as [255,1], 510 as [255,254], 511 as [255,255,0], and

so on.

o e e e e e e e oo o e e e e e +
| No. of bytes | Type [Value] | Description |
o e e e e e e aa oo oo o e e a o +
| byt esPer CPi xel | CPI XEL | pixel Val ue |
| div(runLength - 1, 255) | U8 array | 255

| 1 | U8 | (runLength-1) nod 255

o e e e e e e e oo o e e e e e +

129: Palette RLE with the palette reused fromthe previous tile.
Fol | owed by a nunber of runs, repeated until the tile is done, as
described bel ow for 130 to 255.

130 to 255: Palette RLE. Followed by the palette, consisting of
pal etteSi ze = (subencoding - 128) pixel val ues:

o m e e e e eee oo s o e ok Fom e +
| No. of bytes | Type [Value] | Description

o m e e e e e e e e e aamn B S +
| paletteSi ze*bytesPerCPixel | CPIXEL array | palette |
oo e e e e o - R T +

Following the palette is, as with plain RLE, a nunber of runs,
repeated until the tile is done. A run of length one is
represented sinmply by a palette index:

R R R +
| No. of bytes | Type [Value] | Description
o e ok o e ok o e ok +
| 1 | U8 | pal ettel ndex
Fomm oo o - Fomm oo o - Fomm oo o - +

A run of length nore than one is represented by a palette index
with the top bit set, followed by the Iength of the run as for

pl ai n RLE.
Fom e e e e e e aao - Fomm oo o - Tt +
| No. of bytes | Type [Value] | Description |
o e e e e e e oo oo R o e e e e e e a oo +
1 | U8 | palettelndex + 128
| div(runLength - 1, 255) | U8 array | 255
| 1 | U8 | (runLength-1) nmod 255
Fom e e e e e e aao - Fomm oo o - Tt +

Ri chardson & Levi ne I nf or mati onal [Page 29]

RFC 6143 The Renote Franebuffer Protocol March 2011

7.7.6. ZRLE

ZRLE stands for Zlib (see [RFC1950] and [RFC1951]) Run-Length
Encodi ng, and conbi nes an encoding simlar to TRRE with zlib
conpression. On the wire, the rectangle begins with a 4-byte length
field, and is followed by that many bytes of zlib-conpressed data. A
single zlib "streanm' object is used for a given RFB protoco
connection, so that ZRLE rectangles nust be encoded and decoded
strictly in order.

oo oo S +

| No. of bytes | Type [Value] | Description

oo oo U +
4 | U32 | length |

| length | U8 array | zlibData

Fomm oo o - Fomm oo o - Fom e e e e oo - +

The zlibData when unconpressed represents tiles in left-to-right,
top-to-bottomorder, simlar to TRLE, but with a tile size of 64x64
pixels. |If the width of the rectangle is not an exact multiple of
64, then the width of the last tile in each rowis smaller, and if
the height of the rectangle is not an exact multiple of 64, then the
hei ght of each tile in the final rowis snaller

The tiles are encoded in exactly the sane way as TRLE, except that
subencodi ng may not take the values 127 or 129, i.e., palettes cannot
be reused between tiles.

The server flushes the zlib streamto a byte boundary at the end of
each ZRLE-encoded rectangle. It need not flush the stream between
tiles within a rectangle. Since the zlibData for a single rectangle
can potentially be quite large, clients can increnentally decode and
interpret the zlibData but nmust not assume that encoded tile data is
byte aligned.

7.8. Pseudo- Encodi ngs

An update rectangle with a "pseudo-encodi ng" does not directly
represent pixel data but instead allows the server to send arbitrary
data to the client. Howthis data is interpreted depends on the
pseudo- encodi ng.

7.8.1. Cursor Pseudo-Encodi ng
A client that requests the Cursor pseudo-encoding is declaring that
it is capable of drawing a pointer cursor locally. This can

significantly inprove perceived performance over slow |links. The
server sets the cursor shape by sending a rectangle with the Cursor

Ri chardson & Levi ne I nf or mati onal [Page 30]

RFC 6143 The Renote Franebuffer Protocol March 2011

7.

8.

pseudo- encodi ng as part of an update. The rectangle’'s x-position and
y-position indicate the hotspot of the cursor, and wi dth and hei ght
indicate the width and hei ght of the cursor in pixels. The data
consi sts of wi dt h*hei ght raw pixel values followed by a shape

bi t mpask, with one bit corresponding to each pixel in the cursor
rectangle. The bitmask consists of left-to-right, top-to-bottom scan
I ines, where each scan line is padded to a whol e nunber of bytes, the
nunber being div(wi dth+7,8). Wthin each byte, the nost significant
bit represents the leftnost pixel; a bit set to 1 neans the
correspondi ng pixel in the cursor is valid.

T R Fom e e e oo oo - +
| No. of bytes | Type [Value] | Description
oo oo e +
| width*hei ght*bytesPerPixel | PIXEL array | cursor-pixels

| div(w dth+7,8)*hei ght | U8 array | bitmask |
o e e e e e e e e e e e am o oo Fom e e e oo - +

2. DesktopSi ze Pseudo- Encodi ng

A client that requests the DesktopSi ze pseudo-encodi ng i s declaring
that it is capable of coping with a change in the franebuffer w dth
and height. The server changes the desktop size by sending a
rectangle with the DesktopSi ze pseudo-encoding as the |ast rectangle
in an update. The rectangle’'s x-position and y-position are ignored,
and wi dth and hei ght indicate the new wi dth and hei ght of the
framebuffer.

There is no further data associated with the rectangle. After
changi ng the desktop size, the server nust assune that the client no
| onger has the previous franebuffer contents. This will usually
result in a conplete update of the franebuffer at the next update.
However, for maxi muminteroperability with existing servers the
client should preserve the top-left portion of the franebuffer

bet ween the old and new si zes.

| ANA Consi der ati ons

| ANA has allocated port 5900 to the RFB protocol. The other port
nunbers nentioned in Section 2 are called out for historical context
and do not match | ANA al | ocati ons.

Future assignnents to the I ANA registries created by this
specification are to be nade through either "Expert Review' or "IESG
Approval" (if there is no currently appointed expert) as defined in
[RFC5226] .

Ri chardson & Levi ne I nf or mati onal [Page 31]

RFC 6143 The Renote Franebuffer

8.1. RFB Security Types

8.1.1. Registry Nane

Pr ot ocol

March 2011

The nane of this registry is "Renote Franebuffer Security Types".

8.1.2. Registry Contents

| ANA established a registry for security types that are used with the

RFB protocol .

The initial entries in the registry are:

Fom o o e e e e e e e oo
| Number | Name

Fomm e oo - Fom e e e e e e aao -
| O | I'nvalid

| 1 | None

| 2 | VNC Aut hentication

| 3 to 15 | Real VNC

| 16 | Tight

| 17 | Utra

| 18 | TLS

| 19 | VeNCrypt

| 20 | GTK-VNC SASL

| 21 | MD5 hash authentication
| 22 | Colin Dean xvp

| 128 to 255 | Real VNC

S o e e e e e e e

8.2. dient-to-Server Message Types

8.2.1. Registry Nane

(this docunent)
(this docunent)
(this docunent)

(histori
(histori
(histori
(histori
(histori
(histori
(histori
(histori
(histori

c

O0O0O0O0O0O0O0O0O00

|

|

|
assi gnment) |
assi gnment) |
assi gnment) |
assignment) |
assi gnnent) |
assi gnnment) |
assi gnment) |
assi gnment) |
assi gnment) |

The nane of this registry is "Renote Franebuffer Cient-to-Server

Message Types".

8.2.2. Registry Contents

| ANA established a registry for client-to-server

are used with the RFB protocol.

The initial entries in the registry are:

Ri chardson & Levi ne

| nf or mat i onal

nmessage types that

[Page 32]

RFC 6143 The Renote Franebuffer Protocol March 2011

Fomm e e o m e e e e e e ie e aaa o e e a o +
| Number | Nane | References |
- o m e e e e e e e e e e o e e e e o +
| O | Set Pi xel For mat | (this documnent) |
| 2 | Set Encodi ngs | (this documnent) |
| 3 | Franebuff er Updat eRequest | (this docurent) |
| 4 | KeyEvent | (this docunent) |
| 5 | Poi nterEvent | (this document) |
| 6 | dientCutText | (this document) |
| 127 | VMAare | (historic assignment) |
| 128 | Nokia Term nal Mode Spec | (historic assignment) |
| 249 | OLIVE Call Control | (historic assignnment) |
| 250 | Colin Dean xvp | (historic assignnment) |
| 251 | Pierre Ossman Set DesktopSize | (historic assignnment) |
| 252 | tight | (historic assignnment) |
| 253 | gii | (historic assignment) |
| 254 | VMAare | (historic assignment) |
| 255 | Anthony Liguori | (historic assignnment) |
Fomm e e o m e e e e e e ie e aaa o e e a o +

8.3. Server-to-Cient Message Types
8.3.1. Registry Nane

The nane of this registry is "Renote Franebuffer Server-to-Cient
Message Types".

8.3.2. Registry Contents

| ANA established a registry for server-to-client nessage types that
are used with the RFB protocol.

The initial entries in the registry are:

Ri chardson & Levi ne I nf or mati onal [Page 33]

RFC 6143 The Renote Franebuffer Protocol March 2011

Fomm e e o m e e e e eaea oo n o e e a o +
| Number | Nane | References |
- o m e e e e e e e e oo o e e e e o +
| O | FranebufferUpdate | (this document) |
| 1 | Set Col our MapEntri es | (this documnent) |
| 2 | Bell | (this docurent) |
| 3 | Server Cut Text | (this docunent) |
| 127 | VMAare | (historic assignnment) |
| 128 | Nokia Termi nal Mode Spec | (historic assignnent) |
| 249 | OLIVE Call Control | (historic assignment) |
| 250 | Colin Dean xvp | (historic assignment) |
| 252 | tight | (historic assignnment) |
| 253 | gii | (historic assignnment) |
| 254 | VMAare | (historic assignnment) |
| 255 | Anthony Liguori | (historic assignnment) |
Fomm e m oo - o m e e e e e e aa o Tt +

8.4. RFB Encodi ng Types
8.4.1. Registry Nane

The nane of this registry is "Renote Franebuffer Encodi ng Types".
8.4.2. Registry Contents

| ANA established a registry for encoding types that are used with the
RFB protocol .

The initial entries in the registry are:

Ri chardson & Levi ne I nf or mati onal [Page 34]

RFC 6143

Ri chardson & Levi ne

8

15
17

1024 to 1099

-1 to -222
-224 to -238
-240 to -256
-257 to -272
-273 to -304
- 305

- 306

- 307

- 308

- 309

-310

-412 to -512

Renpt e Framebuffer

Raw
CopyRect
RRE
Hextil e
ZRLE
Cur sor
Deskt opSi ze
pseudo- enco
CoRRE

zlib

tight

zl i bhex

TRLE
Hi t achi

Real VNC
tight optio
tight optio
tight optio
Ant hony Lig
VMMr e

gi

popa

di ng

ZYVWRLE

ns
ns
ns

uor i

Pr ot oco

pseudo- encodi ng

Pet er Astrand Deskt opNane

Pierre Ossman

Ext endedDeskt opSi ze

Col i n Dean

OLl VE Cal

XVp

Contro

Tur boVNC fi ne-grai ned

quality lev

e

| nf or mat i ona

March 2011

docunent)
docunent)
docunent)
docunent)
docunent)
docunent)
docunent)

(historic
assi gnnent)
(historic
assi gnnment)
(historic
assi gnnment)
(historic
assi gnnent)
(this docunent)
(historic
assi gnnment)
(historic
assi gnnent)
(historic
assi gnnent)
(historic
assi gnnment)
(historic
assi gnnent)
(historic
assi gnnent)
(historic
assi gnnment)
(historic
assi gnnent)
(historic
assi gnnent)
(historic
assi gnnment)
(historic
assi gnnent)
(historic
assi gnnment)
(historic
assi gnnment)
(historic
assi gnnent)

[Page 35]

RFC 6143 The Renote Franebuffer Protocol March 2011

10.

11.

11.

11.

-523 to -524	Nokia Term nal Mode Spec	(historic
		assignnent)
-763 to -768	TurboVNC subsanpling level	(historic
		assignnent)
0x574d5600 to	VMAare	(historic
O0x574d56f f		assignment)
o e e ek o m e e e e e e ee oo o e e oo +
Security

The RFB protocol as defined here provides no security beyond the
optional and cryptographically weak password check described in
Section 7.2.2. |In particular, it provides no protection against
observation of or tampering with the data stream It has typically
been used on secure physical or virtual networks.

Security nethods beyond those described here may be used to protect
the integrity of the data. The client and server m ght agree to use
an extended security type to encrypt the session, or the session
m ght be transmitted over a secure channel such as |Psec [RFC4301] or
SSH [RFC4254] .

Acknowl edgenent s

Janmes Weat herall, Andy Harter, and Ken Wod al so contributed to the
design of the RFB protocol

RFB and VNC are registered trademarks of Real VNC Ltd. in the U S. and
in other countries.

Ref er ences
1. Nornmtive References

[RFC1950] Deutsch, L. and J-L. Gailly, "ZLIB Conpressed Data For nat
Speci fication version 3.3", RFC 1950, May 1996.

[RFC1951] Deutsch, P., "DEFLATE Conpressed Data Fornmat Specification
version 1.3", RFC 1951, May 1996.

[XLI BREF] Nye, A., "XLIB Reference Manual R5", June 1994.
2. Informative References

[RFC4254] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
Connection Protocol", RFC 4254, January 2006.

Ri chardson & Levi ne I nf or mati onal [Page 36]

RFC 6143 The Renote Franebuffer Protocol March 2011
[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, Decenber 2005.
[RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an

| ANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.

Ri chardson & Levi ne I nf or mati onal [Page 37]

RFC 6143 The Renote Franebuffer Protocol March 2011

Appendix A. Differences in Earlier Protocol Versions

For maxi muminteroperability, clients and servers shoul d be prepared
to fall back to the earlier 3.3 and 3.7 versions of the RFB protocol
Any version reported other than 3.7 or 3.8 should be treated as 3. 3.

Al of the differences occur in the initial handshake phase. Once
the session reaches the Cientlnit and Serverlnit nessages, all three
protocol versions are identical. Even within a protocol version
clients and servers may support different subsets of the encoding and
pseudo- encodi ng types.

A.l. Differences in the Version 3.3 Protoco
The Protocol Versi on nmessage is:

RFB 003.003\n (hex 52 46 42 20 30 30 33 2e 30 30 33 0a)

In the security handshake (Section 7.1.2), rather than a two-way
negoti ati on, the server decides the security type and sends a single

wor d:
oo oo Fom e e e oo - +
| No. of bytes | Type [Value] | Description
oo oo o +
| 4 | U32 | security-type
o e o o e o oo +

The security-type may only take the value 0, 1, or 2. A value of O
neans that the connection has failed and is followed by a string
giving the reason, as described in Section 7.1.2.
If the security-type is 1, for no authentication, the server does not
send the SecurityResult nessage but proceeds directly to the
initialization nessages (Section 7.3).
In VNC Aut hentication (Section 7.2.2), if the authentication fails,
the server sends the SecurityResult nmessage, but does not send an
error message before closing the connection

A.2. Differences in the Version 3.7 Protoco
The Protocol Versi on nessage is:

RFB 003.007\n (hex 52 46 42 20 30 30 33 2e 30 30 37 0a)

Ri chardson & Levi ne I nf or mati onal [Page 38]

RFC 6143 The Renote Franebuffer Protocol March 2011

After the security handshake, if the security-type is 1, for no
aut hentication, the server does not send the SecurityResult nessage
but proceeds directly to the initialization nessages (Section 7.3).

In VNC Aut hentication (Section 7.2.2), if the authentication fails,
the server sends the SecurityResult nmessage, but does not send an
error nessage before closing the connection

Aut hors’ Addr esses

Tristan Ri chardson

Real VNC Ltd.

Betj enan House, 104 Hills Road
Canbridge CB2 1LQ

UK

Phone: +44 1223 310400

EMai | : standards@ eal vnc. com
URI : http://ww. real vnc. com

John Levi ne
Real VNC Lt d.

Phone: +44 1223 790005

EMai | : standards@ augh. com
URI : http://jl.ly

Ri chardson & Levi ne I nf or mati onal [Page 39]

