Net wor k Wor ki ng Group R Kalin
Request for Comments: 203 M T Lincoln Lab
NI C. 7168 10 August 1971

Achi evi ng Rel i abl e Communi cati on

"This material has not been reviewed for public release and is
i ntended only for use with the ARPA network. It should not be quoted
or cited in any publication not related to the ARPA network.’

ABSTRACT

A non-standard protocol, suitable for either second or third | eve
use, is proposed with the intent of providing error resistant and
highly reliable conmmunication channels. Errors introduced by nessage
garbling, nmessage | oss, and nessage pickup are considered. Measures
for increasing throughput are al so di scussed.

Al M5 AND LI M TATI ONS

It is not our intent to propose the design of a perfect communication
channel, rather it is our contention that in the real world there can
be no perfect channels and that no anpbunt of protocol can insure the
error free transfer of information. Qur goal is to explicate the
various types of errors that are possible and to provide for each
techni ques of detection and recovery that, at a cost, can be made
arbitrarily good. |In this way the nean tine between undetected
errors can be made as | arge as necessary.

ERROR TYPES AND DETECTI ON

Over a nessage switching facility, such as the ARPA network, al
transm ssion errors can be divided into two classes -- those that
result in the loss of an expected nessage, and those that result in
the picking up of an unexpected message. A single bit inversion can
cause errors of both types. Error detection can therefore be divided
into two components -- one which attenpts to determine if the nessage
just received is appropriate at that tinme, and another which attenpts
to determine if a nessage has been | ost.

The detection of garbled i nput nessages has been adequately covered
by cl assical coding (el sewhere, mstakenly terned ' comunication’)
t heory. I nternal message consi stency can be determ ned through the
use parity bits, checksumfields, or any of the various coding
techni ques avail able for addi ng sone neasure of redundancy. Wth
relative sinplicity, the likelyhood of an undetected error of this
type can be nmade snmall enough so as to becone inconsequenti al

Kal i n [Page 1]

RFC 203 ACHI EVI NG RELI ABLE COVMUNI CATI ON 10 August 1971

Because it is adequately covered el sewhere, no further discussion
shal | be given here.

The detection of a nessage’ s external consistency, whether or not it
can possibly follow the nmessage that arrived just before it, can al so
be straight forward. Sequence nunbers, if used, can be easily
checked. A nodulo N sequence field will allow detection of up to N1
successi ve nessage |osses. |f several concurrent links are in use
then sequenci ng can be maintained for each link. Milti-link single
sequence schemes are nore conplicated and, although used between | MPs
for transm ssion of nmessage packets, they shall be ignored here.

The detection by a receiving host of a | ost nmessage can not be

determ ned directly, but rather rmust be inferred from other
observations. Any automatic correction schene nmust be prepared to
handl e the possibility of faulty inference. Message |oss would
normal ly be inferred upon the arrival of a message that should follow
the one expected. It mght also be inferred by the fact that the
nessage expected is |ong overdue.

ERROR CORRECTI ON

If a BCH or other error correcting code is used for transm ssion
errors detected in a nessage’s internal consistency can soneti mes be
corrected by the receiving host. |In the event that this is not
possi bl e, the content of the nmessage is of little use because it can
not be relied upon. The only reasonable solution is that of

di scardi ng the nessage and relying upon the recovery procedures

i mpl enented for | ost nessages.

Errors of external consistency can also be treated in the sane way.
The nessage can be thrown away and the techni ques for recovering | ost
nmessages relied upon. Over a critical channel, a slightly fancier
techni que can at tines save some retransmissions. |If message Nis
expected, but message N+1 arrives, there is no need to throw away
nessage N+1 and then recover two nessages, it could be saved, and
only nmessage N retransmtted.

On noi sy channel s the techni que of saving out of sequence nmessages
can be used to sone advantage, especially if recovering froma | ost
nmessage requires several nmessages of overhead. On the ARPA network,
the neasured error rate is so low that its advantages are outwei ghed
by the increase in resident coding.

RECOVERI NG LOST MESSAGES

The sinplest technique | know of for recovering | ost can be defined
by the follow ng rul es:

Kal i n [Page 2]

RFC 203 ACHI EVI NG RELI ABLE COVMUNI CATI ON 10 August 1971

1) Al undiscarded nessages have reply nessages.

2) Messages with coding errors that can not be corrected are
di scar ded.

3) The receiver can determine if a message is in sequence.

4) Messages received that are out of sequence are discarded.

5) If no reply nessage is received in Ntinme units since the | ast
transm ssion, the |ast nessage sent is retransnmitted (space need
not be isochronic).

6) A new nessage is not sent until the reply for the |last one has
been received.

The above protocol, if run, is highly effective for continuous
conmuni cation. Since by rule 6) only one nessage can be in transit

at a tine, the necessary sequencing information can be contained in a
single bit. Unnodified, it is not suitable for finite conmunication
since rules 1) and 5) guarantee that there will be no 'l ast message’
The protocol also does not nake very effective use of a pipelined
channel, since there is only one nessage being sent at a tine.

Channel throughput can be increased by several techniques, the first
of which would be to disassenble the data streaminto several (eg
four or eight) streans, transmt each using the above protocol, and
then reassenble the streans at the far end. Another technique is to
nodify rules 5) and 6).

5a) If no reply has been received to nessage Min Ntine units
since the last transm ssion, then messages M Mtl,... are
retransmtted.

6a) There nmust be no nore than L outstanding unreplied nessages.

Wth L equal to one, this protocol degenerates into the first
protocol. Increasing L increases throughput until the gainis
out wei ghed by the tine spent in error recovery. The larger L, the
costlier error recovery. The value of N should be adjusted so that
the reply tinme for a nessage is usually less than N plus the tine to
send L-1 nessages. Increasing Ntoo nuch will have the effect of

| owering the response tine to errors. Decreasing N increases the
probability initiating unnecessary retransni ssions.

A CRITI CAL RACE

The above protocols | eave unresolved the the particulars of starting

and stopping a finite transmi ssion. |n opening a comrunication
channel , what is the sequence nunmber of the first nmessage sent? Wat
will be the first sequence nunber of the first nessage sent? What

Kal i n [Page 3]

RFC 203 ACHI EVI NG RELI ABLE COVMUNI CATI ON 10 August 1971

will be the first sequence nunber of the first reply received? At
the end of transm ssion, how does one signal the ’'last nmessage’ ? The
following two rules are introduced:

7) If the sane nessage has been received Ktinmes (eg. 50), then it
shoul d be accepted as being 'in sequence’. The expected
sequenci ng shoul d be adjusted accordingly. K identical reply
nmessages are then sent.

8) If no reply has been received in J seconds, then the
retransm ssion of the last unreplied nessage shoul d cease.

Wth these additional rules a finite transmssion is started by
repeatedly transmtting the first nmessage until K identical reply
nmessages are received. Sequencing is adjusted accordingly and then
subsequent nessages can be sent. A conversation is broken by
quitting transm ssion after the reply to the |ast message you care
about has been received. Eventually the other end will stop
resending the reply. To avoid anbiguity, the variable J should be
less than Ntinmes K Problens will arise if the network crashes for
J seconds, for there is a race condition over whether or not the |ack
of areply is the result of a channel failure or the end of a
conversati on.

[This RFC was put into nachine readable formfor entry]
[into the online RFC archives by Ryan Kato 6/01]

Kal i n [Page 4]

