Net wor k Wor ki ng Group R Braden
Request for Comments: 1337 | Sl
May 1992

TI ME-WAI T Assassi nati on Hazards in TCP

Status of This Menp

This meno provides information for the Internet community. It does
not specify an Internet standard. Distribution of this meno is
unlimted.

Abst ract

This note describes sone theoretically-possible failure nodes for TCP
connections and di scusses possible renedies. In particular, one very
sinmple fix is identified.

1. | NTRODUCTI ON

Experinments to validate the recently-proposed TCP extensions [RFC
1323] have led to the discovery of a new class of TCP failures, which
have been dubbed the "TIME-WAIT Assassi nati on hazards". This note
descri bes these hazards, gives exanples, and discusses possible
prevention neasures.

The failures in question all result fromold duplicate segnents. In
brief, the TCP nechanisns to protect against old duplicate segnents
are [RFC-793]:

(1) The 3-way handshake rejects old duplicate initial <SYN>
segnents, avoiding the hazard of replaying a connection

(2) Sequence nunbers are used to reject old duplicate data and ACK
segnments fromthe current incarnation of a given connection
(defined by a particular host and port pair). Sequence numbers
are also used to reject old duplicate <SYN, ACK> segnents.

For very high-speed connections, Jacobson’s PAWS ("Protect

Agai nst W apped Sequences") nechani sm [RFC 1323] effectively

ext ends the sequence nunbers so wap-around will not introduce a
hazard within the sane incarnation.

(3) There are two mechanisns to avoid hazards due to old duplicate

segnents froman earlier instance of the sane connection; see
the Appendi x to [RFC-1185] for details.

Br aden [Page 1]

RFC 1337 TCP TI ME-WAI T Hazar ds May 1992

For "short and sl ow' connections [RFC-1185], the clock-driven
SN (initial sequence nunber) selection prevents the overlap of
t he sequence spaces of the old and new i ncarnations [RFC 793].
(The al gorithm used by Berkeley BSD TCP for stepping | SN
conplicates the analysis slightly but does not change the
concl usi ons.)

(4) TIME-WAIT state renpves the hazard of old duplicates for "fast"
or "long" connections, in which clock-driven |ISN selection is
unable to prevent overlap of the old and new sequence spaces.
The TIME-WAIT delay allows all old duplicate segnents tine
enough to die in the Internet before the connection is reopened.

(5) After a systemcrash, the Quiet Tinme at systemstartup all ows
ol d duplicates to di sappear before any connections are opened.

Qur new observation is that (4) is unreliable: TIME-WAIT state can be
prematurely term nated ("assassinated") by an old duplicate data or
ACK segnment fromthe current or an earlier incarnation of the sane
connection. W refer to this as "TIME-WAIT Assassination” (TWA).

Figure 1 shows an exanple of TIME-WAIT assassi nation. Segments 1-5
are copied exactly fromFigure 13 of RFC-793, showing a normal close
handshake. Packets 5.1, 5.2, and 5.3 are an extension to this

sequence, illustrating TWA Here 5.1 is *any* old segnent that is
unacceptable to TCP A. It might be unacceptabl e because of its
sequence nunber or because of an old PAWS tinmestanp. |n either case,

TCP A sends an ACK segnent 5.2 for its current SND. NXT and RCV. NXT.
Since it has no state for this connection, TCP B reflects this as RST
segnent 5.3, which assassinates the TIME-WAIT state at Al

Br aden [Page 2]

RFC 1337 TCP TI ME-WAI T Hazar ds May 1992

TCP A TCP B
1. ESTABLI SHED ESTABLI SHED
(d ose)
2. FINWAIT-1 --> <SEQ@100><ACK=300><CTL=FI N, ACK> --> CLOSE-WAIT
3. FINWAIT-2 <-- <SEQ=300><ACK=101><CTL=ACK> <-- CLOSE-WAIT
(d ose)
4. TIME-VWAIT <-- <SEQ@=300><ACK=101><CTL=FI N, ACK> <-- LAST-ACK
5. TIME-WAIT --> <SEQ=101><ACK=301><CTL=ACK> --> CLOSED
5.1. TIME-WAIT <-- <SEQ=255><ACK=33> ... old duplicate
5.2 TIME-WAIT --> <SEQ=101><ACK=301><CTL=ACK> --> 2?77
5.3 CLGSED <-- <SEQ=301><CTL=RST> <-- 2?77

(prematurely)

Figure 1. TWA Exanple

Note that TWA is not at all an unlikely event if there are any
duplicate segments that may be del ayed in the network. Furthernore,
TWA cannot be prevented by PAWS tinestanps; the event may happen
within the sane tick of the tinmestanp clock. TWA is a consequence of
TCP' s hal f-open connection di scovery nechani sm (see pp 33-34 of
[RFC-793]), which is designed to clean up after a system crash.

2. The TWA Hazar ds
2.1 Introduction

If the connection is imrediately reopened after a TWA event, the
new i ncarnation will be exposed to old duplicate segnents (except
for the initial <SYN> segment, which is handl ed by the 3-way
handshake). There are three possible hazards that result:
Hl. dd duplicate data may be accepted erroneously.
H2. The new connection may be de-synchronized, with the two ends

i n permanent di sagreenent on the state. Follow ng the spec
of RFC-793, this desynchronization results in an infinite ACK

Br aden [Page 3]

RFC 1337 TCP TI ME-WAI T Hazar ds May 1992

loop. (It might be reasonable to change this aspect of RFC
793 and kill the connection instead.)

This hazard results from acknow edgi ng somnet hing that was not
sent. This may result froman old duplicate ACK or as a
si de-effect of hazard Hl

H3. The new connection may die.

A duplicate segment (data or ACK) arriving in SYN-SENT state
may kill the new connection after it has apparently opened
successful ly.

Each of these hazards requires that the segence space of the new
connection overlap to sonme extent with the sequence space of the
previous incarnation. As noted above, this is only possible for
"fast"™ or "long" connections. Since these hazards all require the
coi nci dence of an old duplicate falling into a particular range of
new sequence nunbers, they are nuch | ess probable than TWA itself.

TWA and the three hazards Hl, H2, and H3 have been denonstrated on
a stock Sun OGS 4.1.1 TCP running in an sinul ated environnent that
massi vel y duplicates segments. This environnent is far nore
hazardous than nost real TCP's nust cope with, and the conditions
were carefully tuned to create the necessary conditions for the
failures. However, these denpnstrations are in effect an

exi stence proof for the hazards.

We now present exanple scenarios for each of these hazards. Each
scenario is assunmed to follow imediately after a TWA event
term nated the previous incarnation of the sane connection
2.2 HAZARD Hl: Acceptance of erroneous old duplicate data.
Wthout the protection of the TIME-WAIT delay, it is possible for

erroneous old duplicate data fromthe earlier incarnation to be
accepted. Figure 2 shows precisely how this m ght happen

Br aden [Page 4]

RFC 1337 TCP TI ME-WAI T Hazar ds May 1992

TCP A TCP B
1. ESTABL. --> <SEQ=400><ACK=101><DATA=100><CTL=ACK> --> ESTABL.
2. ESTABL. <-- <SEQ=101><ACK=500><CTL=ACK> <-- ESTABL.

3. (old dupl)...<SEQ=560><ACK=101><DATA=80><CTL=ACK> --> ESTABL.

4. ESTABL. <-- <SEQ=101><ACK=500><CTL=ACK> <-- ESTABL.
5. ESTABL. --> <SEQ=500><ACK=101><DATA=100><CTL=ACK> --> ESTABL.
6. ... <SEQ@101><ACK=640><CTL=ACK> <-- ESTABL

7a. ESTABL. --> <SEQ=600><ACK=101><DATA=100><CTL=ACK> --> ESTABL.

8a. ESTABL. <-- <SEQ=101><ACK=640><CTL=ACK> ..

9a. ESTABL. --> <SEQ=700><ACK=101><DATA=100><CTL=ACK> --> ESTABL.
Figure 2: Accepting Erroneous Data

The connection has al ready been successfully reopened after the
assuned TWA event. Segnent 1 is a nornal data segment and segnent
2 is the corresponding ACK segnent. dd duplicate data segnent 3
fromthe earlier incarnation happens to fall within the current
receive window, resulting in a duplicate ACK segnent #4. The
erroneous data is queued and "lurks" in the TCP reassenbly queue
until data segnment 5 overlaps it. At that point, either 80 or 40
bytes of erroneous data is delivered to the user B; the choice
depends upon the particulars of the reassenbly algorithm which
may accept the first or the last duplicate data

As a result, B sends segnent 6, an ACK for sequence = 640, which
is 40 beyond any data sent by A Assune for the present that this
ACK arrives at A *after* A has sent segnment 7a, the next full data
segnment. In that case, the ACK segnent 8a acknow edges data that
has been sent, and the error goes undetected. Another possible
continuation after segnent 6 | eads to hazard H3, shown bel ow.

2.3 HAZARD H2: De-synchroni zed Connection
This hazard may result either as a side effect of HL or directly

froman old duplicate ACK that happens to be acceptabl e but
acknow edges sonething that has not been sent.

Br aden [Page 5]

RFC 1337 TCP TI ME-WAI T Hazar ds

(

May 1992

Referring to Figure 2 above, suppose that the ACK generated by the
ol d duplicate data segnent arrived before the next data segnent

had been sent. The result is an infinite ACK | oop
the following alternate continuation of Figure 2.

7b. ESTABL. <-- <SEQ=101><ACK=640><CTL=ACK>
ACK sonet hi ng not yet
sent => send ACK)

as shown by

8b. ESTABL. --> <SEQ=600><ACK101><CTL=ACK> --> ESTABL.
(Bel ow wi ndow =>
send ACK)
9b. ESTABL. <-- <SEQ=101><ACK=640><CTL=ACK> <-- ESTABL.
(etc.!)
Figure 3: Infinite ACK | oop
2.4 HAZARD H3: Connection Failure

An ol d duplicate ACK segnent nay |lead to an apparent refusal of

TCP A's next connection attenpt, as illustrated in Figure 4. Here

<WE...> indicates the TCP wi ndow field SEG W ND. *

TCP A TCP B
1. CLCSED LI STEN
2. SYN- SENT --> <SEQ=100><CTL=SYN> --> SYN-RCVD
3. <SEQ=400><ACK=101><CTL=SYN, ACK><W£800> <-- SYN- RCVD
4. SYN- SENT <-- <SEQ=300><ACK=123><CTL=ACK> ... (ol d duplicate)
5. SYN- SENT --> <SEQ@=123><CTL=RST> --> LI STEN
6. ESTABLI SHED <-- <SEQ=400><ACK=101><CTL=SYN, ACK><W-900> ...
7. ESTABLI SHED --> <SEQ=101><ACK=401><CTL=ACK> --> LI STEN
8. CLOSED <-- <SEQ=401><CTL=RST> <-- LI STEN
Figure 4: Connection Failure fromdd Duplicate
Br aden [Page 6]

RFC 13

3. Fix
e

(F1

(F2

Br aden

37 TCP TI ME-WAI T Hazar ds May 1992

The key to the failure in Figure 4 is that the RST segnment 5 is
acceptable to TCP B in SYN RECEI VED state, because the sequence
space of the earlier connection that produced this old duplicate
over|l aps the new connection space. Thus, <SEQ=123> in segnment #5

falls within TCP B's receive wi ndow [101,900). In experinents,
this failure node was very easy to denobnstrate. (Kurt Matthys has
poi nted out that this scenario is tine-dependent: if TCP A should

timeout and retransnit the initial SYN after segnent 5 arrives and
bef ore segnent 6, then the open will conplete successfully.)

es for TWA Hazards
di scuss three possible fixes to TCP to avoi d these hazards.
) Ignore RST segnents in TIME-WAIT state.

If the 2 mnute MSL is enforced, this fix avoids all three
hazar ds.

This is the sinplest fix. One could also argue that it is
formally the correct thing to do; since allowing time for old
duplicate segments to die is one of TIME-WAIT state’s functi ons,
the state should not be truncated by a RST segnent.

) Use PAWS to avoid the hazards.

Suppose that the TCP ignores RST segnents in TIME-WAIT state,
but only long enough to guarantee that the timestanp cl ocks on
both ends have ticked. Then the PAWS nmechani sm [RFC 1323] will
prevent old duplicate data segnments frominterfering with the
new i ncarnation, elimnating hazard HL. For reasons expl ai ned
bel ow, however, it may not elinminate all old duplicate ACK
segnents, so hazards H2 and H3 will still exist.

In the | anguage of the TCP Extensions RFC [RFC- 1323]:
When processing a RST bit in TIME-WAIT state:
If (Snd. TS.OK is off) or (Time.in. TWstate() >= W
then enter the CLOSED state, delete the TCB
drop the RST segnent, and return
el se sinply drop the RST segnent and return
Here "Tine.in. TWstate()" is a function returning the el apsed
time since TIME-WAIT state was entered, and Wis a constant that

is at least twice the |ongest possible period for tinestanp
clocks, i.e., W= 2 secs [RFC- 1323].

[Page 7]

RFC 1337 TCP TI ME-WAI T Hazar ds May 1992

This assunes that the tinestanp clock at each end continues to
advance at a constant rate whether or not there are any open
connections. W do not have to consider what happens across a
systemcrash (e.g., the timestanp clock may junp randomy),
because of the assumed Quiet Tine at system startup.

Once this change is in place, the initial timestanps that occur
on the SYN and {SYN, ACK} segnents reopening the connection wll
be | arger than any tinestanp on a segnment fromearlier
incarnations. As a result, the PAWS nmechani smoperating in the
new connection incarnation will avoid the Hl1 hazard, ie.
acceptance of old duplicate data

The effectiveness of fix (F2) in preventing acceptance of old
duplicate data segnments, i.e., hazard Hl, has been denonstrated
in the Sun OS TCP nentioned earlier. Unfortunately, these tests
reveal ed a sonewhat surprising fact: old duplicate ACKs from
the earlier incarnation can still slip past PAW5 so that (F2)
will not prevent failures H2 or H3. Wat happens is that TI M-
WAIT state effectively regenerates the tinmestanp of an old
duplicate ACK. That is, when an old duplicate arrives in TI M-
WAIT state, an extended TCP will send out its own ACK with a
timestanp option containing its CURRENT tinestanp cl ock val ue.
If this happens i mediately before the TWA nmechanismkills
TIME-WAIT state, the result will be a "new old duplicate"
segnment with a current tinmestanp that nmay pass the PAWS test on
the reopened connection

VWhet her H2 and H3 are critical depends upon how often they
happen and what assunptions the applications nake about TCP
semantics. In the case of the H3 hazard, nmerely trying the open
again is likely to succeed. Furthernore, many production TCPs
have (despite the advice of the researchers who devel oped TCP)

i ncorporated a "keep-alive" nechanism which may Kil

connections unnecessarily. The frequency of occurrence of H2
and H3 nay well be rmuch | ower than keep-alive failures or
transient internet routing failures.

(F3) Use 64-bit Sequence Nunbers

O Mal |l ey and Peterson [RFC-1264] have suggested expansion of the
TCP sequence space to 64 bits as an alternative to PAW for
avoi di ng the hazard of wrapped sequence nunbers within the sane
incarnation. It is worthwhile to inquire whether 64-bit
sequence nunbers could be used to avoid the TWA hazards as wel .

Using 64 bit sequence nunmbers woul d not prevent TWA - the early
term nation of TIME-WAIT state. However, it appears that a

Br aden [Page 8]

RFC 1337 TCP TI ME-WAI T Hazar ds May 1992

conbi nati on of 64-bit sequence nunbers with an appropriate

nodi fication of the TCP paraneters could defeat all of the TWA
hazards Hl, H2, and H3. The basis for this is explained in an
appendix to this neno. |In summary, it could be arranged that
the sanme sequence space would be reused only after a very | ong
period of time, so every connection would be "slow' and "short".

4. Concl usi ons

O the three fixes described in the previous section, fix (F1),

i gnoring RST segnments in TIME-WAIT state, seens |ike the best short-
termsolution. It is certainly the sinplest. It would be very
desirable to do an extended test of this change in a production
environnent, to ensure there is no unexpected bad effect of ignoring
RSTs in TIME-WAIT state.

Fix (F2) is nmore conplex and is at best a partial fix. (F3), using
64-bit sequence nunbers, would be a significant change in the
protocol, and its inplications need to be thoroughly understood.

(F3) may turn out to be a long-termfix for the hazards discussed in
this note.

APPENDI X: Usi ng 64-bit Sequence Nunbers

Thi s appendi x provides a justification of our statement that 64-bit
sequence nunbers could prevent the TWA hazards.

The theoretical |ISN calculation used by TCP is:

SN = (R*T) nmod 2**n
where T is the real time in seconds (froman arbitrary origin, fixed
when the systemis started), Ris a constant, currently 250 KBps, and
n =32 is the size of the sequence nunber field.
The Iimtations of current TCP are established by n, R and the
maxi mum segnment lifetime MSL = 4 minutes. The shortest time Twap to
wrap the sequence space is:

Twrap = (2**n)/r
where r is the maxi numtransfer rate. To avoid old duplicate

segnents in the sanme connection, we require that Twap > MSL (in
practice, we need Twap >> MSL).

Br aden [Page 9]

RFC 1337 TCP TI ME-WAI T Hazar ds May 1992

The cl ock-driven I SN nunbers wap in tinme Tw apl SN
Twapl SN = (2**n)/R
For current TCP, Twrapl SN = 4.55 hours.

The cases for old duplicates from previous connections can be divided
into four regions along tw di mensions:

* Sl ow vs. fast connections, corresponding tor < Ror r >= R

* Short vs. long connections, corresponding to duration E <
Twrapl SN or E >= Twrapl SN

On short slow connections, the clock-driven | SN selection rejects old
duplicates. For all other cases, the TIME-WAIT delay of 2*MSL is
required so old duplicates can expire before they infect a new
incarnation. This is discussed in detail in the Appendix to [RFC
1185].

Wth this background, we can consider the effect of increasing nto
64. We would like to increase both R and Tw apl SN far enough t hat

all connections will be short and slow, i.e., so that the cl ock-
driven I SN selection will reject all old duplicates. Put another
way, we want to every connection to have a unique chunk of the
segence space. For this purpose, we need R larger than the maxi num
foreseeable rate r, and Twapl SN greater than the | ongest foreseeable
connection duration E

In fact, this appears feasible with n = 64 bits. Suppose that we use
R = 2**33 Bps; this is approximtely 8 gi gabytes per second, a
reasonabl e upper limt on throughput of a single TCP connection

Then Twrapl SN = 68 years, a reasonable upper limt on TCP connection
duration. Note that this particular choice of R corresponds to
increnenting the I SN by 2**32 every 0.5 seconds, as woul d happen with
the Berkel ey BSD i npl enmentation of TCP. Then the |ow order 32 bits
of a 64-bit I SN would al ways be exactly zero.

REFERENCES

[RFC-793] Postel, J., "Transm ssion Control Protocol", RFC 793,
USC/ I nformation Sciences Institute, Septenber 1981

[RFC-1185] Jacobson, V., Braden, R, and Zhang, L., "TCP

Ext ensi on for Hi gh-Speed Paths", RFC- 1185, Law ence Berkel ey Labs,
USC/ I nformati on Sciences Institute, and Xerox Palo Alto Research
Center, Cctober 1990.

Br aden [Page 10]

RFC 13

Securi
Sec
Aut hor
Bob
Uni
| nf
467
Mar

Pho

37 TCP TI ME-WAI T Hazar ds May 1992

[RFC-1263] O Malley, S. and L. Peterson, "TCP Extensions
Consi dered Harnful ", RFC- 1263, University of Arizona, Cctober
1991.

[RFC- 1323] Jacobson, V., Braden, R and D. Borman "TCP Extensions
for H gh Performance", RFC- 1323, Lawrence Berkel ey Labs,
USC/ I nformation Sciences Institute, and Cray Research, May 1992.
ty Considerations
urity issues are not discussed in this neno.
's Address:
Br aden
versity of Southern California
ormati on Sciences Institute
6 Admralty Way
i na del Rey, CA 90292

ne: (213) 822-1511

EMai | : Braden@ Sl . EDU

Br aden

[Page 11]

