Net wor k Wor ki ng Group A. Bhushan
Request for Comments: 114 M T Project MAC
NI C. 5823 16 April 1971

A FI LE TRANSFER PROTOCOL

| . Introduction

Conput er network usage nay be divided into two broad categories --
direct and indirect. Direct usage inplies that you, the network
user, are "logged" into a renote host and use it as a |l ocal user

You interact with the renpte systemvia a termnal (teletypewiter,
graphi cs console) or a conputer. Differences in ternm na
characteristics are handl ed by host system prograns, in accordance
with standard protocols (such as TELNET (RFC 97) for teletypewiter
conmuni cati ons, NETRJS (RFC 88) for renote job entry). You, however,
have to know the different conventions of renote systens, in order to
use them

I ndi rect usage, by contrast, does not require that you explicitly |og
into a renote system or even know how to "use" the renpte system An
i ntermedi ate process makes nost of the differences in conmands and
conventions invisible to you. For exanple, you need only know a
standard set of network file transfer conmands for your |ocal system
in order to utilize renote file system This assumes the existence
of a network file transfer process at each host cooperating via a
conmon pr ot ocol

Indirect use is not limted to file transfers. It may include
execution of programs in renmpte hosts and the transfer of core

i mges. The extended file transfer protocol would facilitate the
exchange of prograns and data between conputers, the use of storage
and file handling capabilities of other conputers (possibly including
the trillion-bit store data conputer), and have programs in renote
hosts operate on your input and return an output.

The protocol described herein has been devel oped for i mediate

i npl enentation on two hosts at MT, the GE645/Miltics and the PDP-
10/DM CG I TS (and possibly Harvard's PDP-10). An interimversion
with [inmted capabilities is currently in the debugging stage. [1]

Si nce our inplenentation involves two dissimlar systens (Miltics is
a "service" system ITSis not) with different file systens (Miltics
provi des el aborate access controls, ITS provides none), we feel that
the file transfer nmechani sns proposed are generalizable. 1In

addi tion, our specification reflects a consideration of other file
systens on the network. W conducted a survey [2] of network host

Bhushan [Page 1]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

systens to determne the requirenents and capabilities. This paper
is a"first cut" at a protocol that will allow users at any host on
the network to use the file system of every cooperating host.

Il. D scussion

A few definitions are in order before the discussion of the protocol
Afile is an ordered set consisting of computer instructions and/or
data. A file can be of arbitrary length [3]. A nanmed file is
uniquely identified in a systemby its file name and directory nane.
The directory name nmay be the nane of a physical directory or it may
be the nanme of a physical device. An exanple of physical directory
nane i s owner’s project-programer nunber and an exanpl e of physica
devi ce nane is tape nunber

A file may or may not have access controls associated with it. The
access controls designate the users’ access privileges. 1In the
absence of access controls, the files cannot be protected from

acci dental or unauthorized usage.

A principal objective of the protocol is to pronote the indirect use
of computers on the network. Therefore, the user or his program
shoul d have a sinple and uniforminterface to the file systenms on the
network and be shielded fromthe variations in file and storage
systens of different host conmputers. This is achieved by the

exi stence of a standard protocol in each host.

Criteria by which a user-level protocol may be judged were described
by Mealy in RFC 91, as involving the notion of |ogical records,
ability to access files w thout program nodifications, and

i mpl enentability. | would add to these efficiency, extendibility,
adaptability, and provision of error-recovery nechani sns.

The attenpt in this specification has been to enable the reliable
transfer of network ASCII (7-bit ASCII in 8-bit field with | eftnost
bit zero) as well as "binary" data files with relative ease. The use
of other character codes, such as EBCDIC, and variously formatted
data (decimal, octal, ASCI|I characters packed differently) is
facilitated by inclusion of data type in descriptor headings. An
alternative nechanismfor defining data is also available in the form
of attributes in file headings. The format control characters
reserved for the syntax of this protocol have identical code
representation in ASCII and EBCDI C. (These character are SOH, STX,
ETX, DCl, DC2, DC3, Us, RS, GS, and FS.)

Bhushan [Page 2]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

The notion of nessages (the physical blocks of data comruni cated

bet ween NCP's) is suppressed herein and that of "logical" records and
transactions is enphasi zed. The data passed by the NCP is parsed
into | ogical blocks by use of sinple descriptors (code and count
mechani sns) as described in Section Ill. The alternative to count is
fixed I ength blocks or standard end-of-file characters (scan data
stream). Both seem|ess desirable than count.

The cooperating processes may be "daenon" processes which "listen" to
agr eed- upon sockets, and follow the initial connection protocol nuch
in the same way as a "logger"” does. W reconmend using a single

full -dupl ex connection for the exchange of both data and contro
information [4], and using CLS to achi eve synchroni zati on when
necessary (a CLS is not transmtted until a RFNMis received).

The user may be identified by having the using process send at the
start of the connection the user’s nane information (either passed on
by user or known to the using system) [5]. This user nane

i nformati on (a sequence of standard ASCI| characters), along with the
host nunber (known to the NCP), positively identifies the user to the
serving process.

At present, nore el aborate access control nechani sns, such as
passwords, are not suggested. The user, however, w |l have the
security and protection provided by the serving system The serving
host, if it has access controls, can prevent unprivil eged access by
users fromother host sites. It is up to the using host to prevent
its own users fromviolating access rules.

The files in a file systemare identified by a pathnane, sinmlar to
the | abel s described in RFC 76 (Boukni ght, Madden, and Grossnan).

The pat hnane contains the essential information regarding the storage
and retrieval of data.

In order to facilitate use, default options should be provided. For
exanple, the main file directory on disk would be the default on the
PDP- 10/ TS, and a pool directory would be the default on Miltics.

The file to be transferred nay be a conplete file or may consi st of
smal ler records. It may or may not have a heading. A heading should
contain ASCI|I or EBCDI C characters defining file attributes. The
file attributes could be sone sinple agreed-upon types or they could
be described in a data reconfiguration or interpretation |anguage
simlar to that described in RFC 83 (Anderson, Haslern, and Heffner),
or a conbination

Bhushan [Page 3]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

The protocol does not restrict the nature of data in the file. For
exanple, a file could contain ASCI| text, binary core inage, graphics
data or any other type of data. The protocol includes an "execute"
request for files that are programs. This is intended to facilitate
the execution of progranms and subroutines in renpte host computers

[6].
I11. SPECI FI CATI ONS

1. Transactions

1A The protocol is transaction-oriented. A transaction is defined
to be an entity of informati on comunicated between cooperating
processes.

1B. Synt ax

A transaction has three fields, a 72-bit descriptor field and
variable length (including zero) data and filler fields, as
shown below. The total length of a transaction is (72 + data +
filler) bits.

<code><filler count><NUL><data count><NUL> | <data><filler>

| I N I | |
. | | | | o

24-bits 8-bits 8-bits 24-bits 8-bits| variabl e | ength

<------- descriptor field 72-bits--------- > | <--data and filler-->
|
1C Semanti cs

The code field has three 8-bit bytes. The first byte is
interpreted as transaction type, the second byte as data type
and the third byte as extension of data type.

The filler count is a binary count of bits used as "filler"
(i.e., not information) at the end of a transaction [7]. As
the length of the filler count field is 8-bits, the number of
bits of filler shall not exceed 255 bits.

The data count is a binary count of the nunber of data (i.e.
information) bits in the data field, not including filler bits.
The nunber of data bits is limted to (2*"24-1), as there are 24
bits in the data count field.

Bhushan [Page 4]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

The NUL bytes are inserted prinarily as fillers in the
descriptor field and allow the count information to appear at
conveni ent word boundaries for different word | ength machi nes

[8].
2. Transaction Types

2A. A transaction may be of the follow ng four basic types:
request, response, transfer and terminate. Al though |arge
nunber of request and transfer types are defined,
i mpl enentati on of a subset is specifically permtted. Host
conputers, on which a particular transaction type is not
i mpl enented, nay refuse to accept that transaction by
respondi ng with an unsuccessful termninate.

The followi ng transaction type codes are tentatively defined:

Transacti on Type Transaction Type Code
ASCI | Cct al Hexi deci ma
Request
| dentify I 111 49
Retrieve R 122 52
Store S 123 53
Append A 101 41
Del ete D 104 44
Renane N 116 4E
addname (Pl us) P 120 50
del et enane (M nus) M 115 4D
Lookup L 114 4C
Open 0] 117 4F
Cl ose C 103 43
Execute [9] E 105 45
Response
ready-to-receive (rr) < 074 3C
ready-to-send (rs) > 076 3E
Transfer
conplete file * 052
headi ng # 043 23
part_of file ' 054 2C
| ast _part . 056 2E
Term nat e
successful (pos.) + 053 2B
unsuccessful (neg.) - 055 2D

Bhushan [Page 5]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

2B. Synt ax
In the follow ng discussion US, RS, GS, FS, DCl1, DC2, and DC3
are the ASCI|I characters, unit separator (octal 037), record
separator (octal 036), group separator (octal 035), file
separator (octal 034), device control 1 (octal 021), device
control 2 (octal 022), and device control 3 (octal 023),
respectively. These have an identical interpretation in
EBCDI C.

2B.1 Requests

Identify, retrieve, store, append, delete, open, |ookup and
execute requests have the follow ng data field:

<pat h name>

Renane request has the data field:
<pat h name> GS <nane>

Addnane and del et enane requests have the data field:
<path name> GS <fil enanes>

wher e pat hnanme [10], nanme and fil enames have the foll ow ng
syntax (expressed in BNF, the netal anguage of the ALGOL 60

report):

<pat hnane> :: = <devi ce nanme>| <name>| <pat hnane>US<nane>
<devi ce name> ::= DCl<nane>

<nane> ::= <char> | <nane> <char>

<char> ::= Al 8-bit ASCII or EBCDI C characters except

US, RS, G5, FS, DCl1, DC2, AND DC3.
<filenanes> ::= <nane>|<fil enames> RS <nane>

The data type for the request transaction shall be either A
(octal 101 for ASCII, or E (octal 105) for EBCD C [11].

Sone exanpl es of pathname are
DC1 Mros
DC1 DSK 1.2 US Net<3> US J. Doe US Foo

udd US proj. US h,n/x US user US file
filenane 1 filenane 2

Bhushan [Page 6]

RFC 114

2B. 2

2B. 3

2B. 4

2C.

2C. 1

Bhushan

A FI LE TRANSFER PROTCCOL 16 April 1971

Responses

The response transactions shall nornmally have an enpty data
field.

Transfers

The data types defined in section 4 will govern the syntax of
the data field in transfer transactions. No other syntactica
restrictions exist.

Ter m nat es

The successful terminate shall normally have an enpty data
field. The unsuccessful termnate may have a data field
defined by the data types A (octal 101) for ASCI I, E (octa
105) for EBCDIC, or S (octal 123) for status.

A data type code of 'S would inply byte oriented error return
status codes in the data field. The followi ng error return
status codes are defined tentatively:

Error Code Meani ng Error Code

ASCl | Octal Hexadeci nal
Undefi ned error U 125 55
Transaction type error T 124 54
Syntax error S 123 53
File search fail ed F 106 46
Data type error D 104 44
Access deni ed A 101 41
| mproper transacti on sequence | 111 49
Ti me-out error O 117 4F
Error condition by system E 105 45
Semanti cs
Request s
Requests are always sent by using host. In absence of a device

nane or conpl ete pathnane, default options should be provided
for all types of requests.

ldentify request identifies the user as indicated by
<pat hnane> from serving to using host.

Retrieve request achieves the transfer of file specified in
<pat hnane> from serving to usi ng host.

[Page 7]

RFC 114

2C. 2

Bhushan

A FI LE TRANSFER PROTCCOL 16 April 1971

Store request achieves the transfer of file specified in
<pat hnane> from using to serving host.

Append request causes data to be added to file specified in
pat hname.

Renane request causes nane of file specified in <pathnane> to
be repl aced by nane specified in <nane>

Delete request causes file specified in <pathname> to be
deleted. |If an extra level of protection for delete is desired
(such as the query "Do you wish to delete file x?'), it is to
be a local inplenmentation option.

Addnanme and _del etenane_ requests cause nanes in <fil enames>
to be added or deleted to existing nanes of file specified in
<pat hnane>. These requests are useful in systenms such as
Multics which allow nultiple nanes to be associated with a
file.

Lookup request achieves the transfer of attributes (such as
date | ast nodified, access list, etc) of file specified in
<pat hnane>, instead of the file itself.

Open request does not cause a data transfer, instead file
specified in <pathname> is "opened" for retrieve (read) or
store (wite). Subsequent requests are then treated as
requests pertaining to the file that is opened till such a tinme
that a close request is received.

Execute request achieves the execution of file specified in
<pat hnane>, whi ch nmust be an executable program Upon receipt
of rr response, using host will transmit the necessary input
data (paraneters, argunents, etc). Upon conpletion of
execution serving host will send the results to using host and
termnate [12].

Response

Responses are al ways sent by serving host. The rr response

i ndicates that serving host is ready to receive the file
indicated in the preceding request. The rs response indicates
that the next transaction fromserving host will be the
transfer of file indicated in the precedi ng request.

[Page 8]

RFC 114 A FI LE TRANSFER PROTOCOL 16 April 1971
2C.3 Transfers
Transfers may be sent by either host. Transfer transactions
indicate the transfer of file indicated by a request. Files
can be transferred either as conplete_file transactions or as
part_of file transactions followed by |last_part transactions.
The file nay al so have a headi ng transaction in the begi nning.
The syntax of a file, therefore, nmay be defined as:
<file> ::= <text> | <heading> <text>
<text> ::= <conmplete file> | <parts> <last_part>
<parts> ::= <part_of _file> | <parts> <part_of _file>
Headi ngs may be used to conmunicate the attributes of files.
The form of headings is not formally specified but is discussed
in Section IV as possible extension to this protocol
2C. 4 Term nates
The successful terminate is always sent by serving host. It
i ndi cates to using host that serving host has been successfu
in serving the request and has gone to an initial state. Using
host will then informuser that his request is successfully
served, and go to an initial state.
The unsuccessful term nate nay be sent by either host. It
i ndi cates that sender of the terminate is unable to (or does
not not wish to) go through with the request. Both hosts wll
then go to their initial states. The using host will inform
the user that his request was aborted. |If any reasons for the
unsuccessful termnate (either as text or as error return
status codes) are received, these shall be conmmunicated to the
user.
3. Transacti on Sequence
3A The transacti on sequence may be defined as an instance of file
transfer, initiated by a request and ended by a term nate [13].
The exact sequence in which transacti ons occur depends on the
type of request. A transaction sequence may be aborted anytine
by either host, as explained in Section 3C
3B. Exanpl es
The identify request doesn’t require a response or term nate
and constitutes a transacti on sequence by itself.
Bhushan [Page 9]

RFC 114

3C.

A FI LE TRANSFER PROTCCOL 16 April 1971

Renane, del ete, addnane, del etenane and open requests involve
no data transfer but require term nates. The user sends the
request and the server sends a successful or an unsuccessfu
term nate dependi ng on whether or not he is successful in
conplying with the request.

Retrieve and Lookup requests involve data transfer fromthe
server to the user. The user sends the request, the server
responds with a rs, and transfers the data specified by the
request. Upon conpletion of the data transfer, the server

term nates the transaction sequence with a successful termnate
if all goes well, or with an unsuccessful termnate is errors
wer e det ect ed.

Store and Append requests involve data transfer fromthe user

to server. The user sends the request and the server responds
with a rr. The user then transfers the data. Upon receiving

the data, the server ternm nates the sequence

Execut e request involves transfer of inputs fromuser to
server, and transfer of outputs fromserver to user. The user
sends the request to which the server responds with rr. The
user then transfers the necessary inputs. The server
"executes" the program or subroutine and transfers the outputs
to the user. Upon conpletion of the output transfer, the
server term nates the transaction sequence.

Aborts

Ei ther host may abort the transaction sequence at any tinme by
sendi ng an unsuccessful term nate, or by closing the connection
(NCP to transnmit a CLS for the connection). The CLS is a nore
drastic type of abort and shall be used when there is a
catastrophic failure or when an abort is desired in the mddle
of along file transfer. The abort indicates to the receiving
host that the other host wishes to termnate the transaction
sequence and is nowin the initial state. Wen CLSis used to
abort, the using host will reopen the connection

4. Dat a Types

4A.

Bhushan

The data type code together with the extension code defines the
manner in which the data field is to be parsed and interpreted
[14]. Although a large nunber of data types are defined,
specific inplenentations may handle only a limted subset of
data types. It is recommended that all host sites accept the

[Page 10]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

"network ASCI 1" and "binary" data types. Host conputers which
do not "recogni ze" particular data types nay abort the
transaction sequence and return a data type error status code.

4B. The followi ng data types are tentatively defined. The code in

the type and extension field is represented by its ASCl I
equivalent with 8th bit as zero.

Bhushan [Page 11]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

Data Type Code
Byte Size Type Ext ensi on

ASCI | character, bit8=0 (network) 8 A NUL
ASCI | characters, bit8=1 8 A 1
ASCI | characters, bit8=even parity 8 A E
ASCI | characters, bit8=odd parity 8 A 0]
ASCI | characters, 8th bit info. 8 A 8
ASClI | characters, 7 bits 7 A 7
ASCI | characters, in 9-bit field 9 A 9
ASCI| formatted files (with SOH

STX, ETX, etc.) 8 A F
DEC- packed ASCI|I (5 7-bit char.

36th bit 1 or 0) 36 A D
EBCDI C characters 8 E NUL
SI XBI T characters 6 S NUL
Bi nary data 1 B NUL
Bi nary bytes (size is binary ext.) 1- 255 B (any)
Deci mal nunbers, net ASCl | 8 D A
Deci mal nunbers, EBCDI C 8 D E
Deci mal nunbers, sixbit 6 D S
Deci mal nunbers, BCD (binary coded) 4 D B
Cctal nunbers, net. ASCI 8 @] A
Cctal numbers, EBCDIC 8 @] E
Octal numbers, SIXBIT 6 o] S
Hexadeci mal nunbers, net. ASCl | 8 H A
Hexadeci mal nunbers, EBCDIC 8 H E
Hexadeci mal nunbers, SIXBIT 6 H S
Unsi gned integers, binary (ext.

field is byte size) 1-225 U (any)
Sign magnitude integers (field is

bi nary si ze) 1- 255 I (any)
2’ s conpl enent integers (ext.

field is byte size) 1- 255 2 (any)
1's conmpl enent integers (ext.

field is byte size) 1- 255 1 (any)
Fl oati ng poi nt (1BMG60) 32 F I
Fl oati ng poi nt (PDP-10) 36 F D
St at us codes 8 S NUL

Bhushan [Page 12]

RFC 114

4C.

A FI LE TRANSFER PROTCCOL 16 April 1971

The data type information is intended to be interpretive. If a
host accepts a data type, it can interpret it to a formsuited
to its internal representation of characters or numbers [15].
Specifically when no conversion is to be performed, the data
type used will be binary. The inplicit or explicit byte size
is useful as it facilitates storing of data. For exanple, if a
PDP- 10 recei ves data types A, Al, AE, or A7, it can store the
ASCI | characters five to a word (DEC-packed ASCI1). If the
datatype is A8 or A9, it would store the characters four to a
word. Sixbit characters would be stored six to a word. |If
conversion routines are available on a system the use of
system program coul d convert the data fromone formto anot her
(such as EBCDIC to ASCII, IBMfloating point to DEC floating
point, Decimal ASCI|I to integers, etc.).

5. Initial Connection, CLS, and ldentifying Users

S5A.

5B.

5C.

Bhushan

There will be a prearranged socket number [16] for the
cooperating process on the serving host. The connection
establishnent will be in accordance with the initial connection

protocol of RFC 66 as nodified by RFC 80. The NCP dial og woul d
be:

user to server: RTS<us><3><p>

if accepted, server to user: STR<3><us><CLS><3><us>
server to user on link p: <ss>
server to user: STR<ss+1><us>RTS<ss><us+1><q>
user to server: STR<us><ss+1>RTS<us+1><ss><r >

This sets up a full-dupl ex connection between user and server

processes, with server receiving through | ocal socket ss from
renote socket us+l via link g, and sending to renpte socket us
through | ocal socket ss+1 via link r.

The connection will be broken by trading a CLS between the
NCP'S for each of the two connections. Normally the user wll
initiate the CLS.

CLS may al so be used by either the user or the server to abort

a data transmssion in the mddle. If a CLSis received in the
m ddl e of a transacti on sequence, the whole transaction
sequence will be aborted. The using host will then reopen the

connecti on.
The first transaction fromthe user to server will be the

identify transaction. The users will be identified by the
pat hnanme in data field of the transaction which should be a

[Page 13]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

formacceptable to the server. The server is at liberty to
truncate pathnanmes for its own use. Since the identify
transacti on does not require a response or terminate, the user
can proceed directly with other requests.

V. Extensions to Protoco

The protocol specified above has been designed to be extendable. The
obvi ous extensions would be in the area of transaction types (new
types of requests), error return status words, and data types. Sone
of the non-obvi ous extensions, that | can visualize are provisions of
access control nechani sns, devel oping a uni formway of specifying
file attributes in headings of files, increasing the scope of the
execute comuand to include subroutine nediation, and the provision of
transacti on sequence identification nunbers to facilitate handling of
mul ti ple requests over the same connection pair

Users of protected file systens should be able to have a reasonabl e
degree of confidence in the ability of the serving process to

identify renpte users correctly. |In the absence of such confidence,
some users would not be willing to give access to the serving process
(especially wite access). Inclusion of access control nechanisns

such as passwords, is likely to enhance the indirect use of network
by users who are concerned about privacy and security. A sinple
extension to the protocol would be to have the serving host sent a
transaction type "password?" after it receives user name. Upon
recei pt of "password?" the using host will transmit the password,

whi ch when successful ly acknowl edged, would indicate to the user that
requests may proceed.

There are a nunber of file attributes which properly belong in the
heading of a file rather than the file itself or the data type in
descriptors of transactions. Such attributes include access contro
lists, date file was last nodified, information about the nature of
file, and description of its contents in a data description or data
reconfiguration | anguage. Sonme uniformity in the way file attributes
are specified would be useful. Until then, the interpretation of the
headi ng woul d be up to the user or the using process. For exanple,
the heading of files which are input to a data reconfiguration (form
machi ne may be the desired transformati ons expressed in the
reconfiguration | anguage.

The "execute" command which achi eves the execution of prograns
resident in renote hosts is a vital part of indirect use of renote
hosts. The present scope of the execute command, as outlined in the
specifications, is somewhat linmted. It assunes that the user or

Bhushan [Page 14]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

using process is aware of the manner in which the argunments and
results should be exchanged. One coul d broaden the scope of the
execut e conmmand by introduci ng a program nedi ati on protocol [17].

The present specification of the protocol does not allow the

si mul taneous transfer and processing of nmultiple requests over the
sanme pair of connections. |If such a capability is desired, there is
an easy way to inplenent it which only involves a mnor change. A
transacti on sequence identification nunber (TSid) could replace a NUL
field in the descriptor of transactions. The TSid would facilitate
the coordination of transactions, related to a particul ar transaction
sequence. The 256 code conbinations permtted by the TSid woul d be
used in a round-robin manner (I can’'t see nore than 256 outstandi ng
requests between two user-processes in any practical inplenmentation).
An alternate way of simultaneous processing of requests is to open

new pairs of connection. | amnot sure as to how useful sinultaneous
processi ng of requests is, and which of the two is a nore reasonabl e
appr oach.

V. Concl usi ons

| tried to present a user-level protocol that will permt users and
using progranms to nake indirect use of renote host conputers. The
protocol facilitates not only file system operations but al so program
execution in renote hosts. This is achieved by defining requests

whi ch are handl ed by cooperating processes. The transaction sequence
orientation provides greater assurance and would facilitate error
control. The notion of data types is introduced to facilitate the
interpretation, reconfiguration and storage of sinple and linted
forns of data at individual host sites. The protocol is readily

ext endi bl e.

Endnot es

[1] The interimversion of the protocol, limted to transfer of ASCI
files, was devel oped by Chander Ranthandani and Howard Brodi e of
Project MAC. The ideas of transactions, descriptors, error recovery,
aborts, file headings and attributes, execution of progranms, and use
of data types, pathnanmes, and default nechani sns are new here.

Howard Brodi e and Neal Ryan have coded the interimprotocol in the
PDP- 10 and the 645, respectively.

[2] The network system survey was conducted |ast fall by Howard
Brodie of Project MAC, prinmarily by tel ephone

[3] PDP-10 Reference Handbook, page 306.

Bhushan [Page 15]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

[4] W considered using two full-duplex |links, one for contro

i nformation, the other for data. The use of a separate control |ink
bet ween t he cooperating processes would sinplify aborts, error
recoveri es and synchroni zation. The synchronization function nmay
alternatively be performed by cl osing the connection (in the mddle
of a transaction sequence) and reopening it with an abort nessage.
(The use of INR and INS transmtted via the NCP control |ink has
probl enms as nmentioned by Kalin in RFC 103.) W prefer the latter
appr oach.

[5] ldentifying users through use of socket nunmbers is not practical
as uni que user identification nunbers have not been inpl enmented, and
file systenms identify users by nanme, not nunber.

[6] This subject is considered in detail by Bob Metcalfe in a
forthcom ng paper.

[7] Filler bits may be necessary as particul ar inplenentations of
NCP's may not allow the free communi cation of bits. Instead the
NCP's may only accept bytes, as suggested in RFC 102. The filler
count is needed to determine the boundary between transactions.

[8] 72-bits in descriptor field are convenient as 72 is the |east
common nultiple of 6, 8 9, 18, 24 and 30, the commonly encountered
byte sizes on the ARPA network host conputers.

[9] The execute request is intended to facilitate the indirect
execution of programs and subroutines. However, this request inits
present formmy have only limted use. A subroutine or program
nmedi ati on protocol would be required for broader use of the execute
feature. Metcalfe considers this problemin a forthcom ng paper

[10] The pathnane idea used in Miltics is sinmlar to that of |abels
in RFC 76 by Boukni ght, Madden and Grossman

[11] W, however, urge the use of standard network ASCII

[12] The exact manner in which the input and output are transnitted
woul d depend on specific mediation conventions. Names of input and
output files may be transmtted instead of data itself.

[13] The transactions (including term nate) are not "echoed", as
echoi ng does not solve any "hung" conditions. Instead tine-out
mechani sns are recommended for avoi di ng hang-ups.

[14] The data type mechani sm suggested here does not replace data

reconfiguration service suggested by Harsl em and Heafner in RFC 83
and NI C5772. In fact, it conplenments the reconfiguration. For

Bhushan [Page 16]

RFC 114 A FI LE TRANSFER PROTCCOL 16 April 1971

exanpl e, data reconfiguration | anguage can be expressed in EBCDI C,
Network ASCI| or any other code that form machine may "recogni ze".
Subsequent data may be transnitted binary, and the form machi ne woul d
reconfigure it to the required form | have included in data types,
a | arge nunmber suggested by Harslem and Heafner, as | do not wish to
preclude interpretation, reconfiguration and storage of sinple forns
of data at individual host sites.

[15] The internal character representation in the hosts nay be
different even in ASCII. For exanple PDP-10 stores 7-bit characters,
five per word with 36th bit as don’t care, while Miltics stores them
four per word, right-justified in 9-bit fields.

[16] It seens that socket 1 has been assigned to | ogger and socket 5
to NETRJS. Socket 3 seens a reasonable choice for the file transfer
process.

[17] The term program nedi ati on was suggested by Bob Metcalfe who is
intending to wite a paper on this subject.

is was put into machine readable formfor entry
This RFC [hi dabl e f f
[into the online RFC archives by Ryan Kato 6/01]

Bhushan [Page 17]

