Net wor k Wor ki ng G oup Davi d Cheriton
Request for Comments: 1045 Stanford University
February 1988

VMIP: VERSATI LE MESSAGE TRANSACTI ON PROTOCCOL
Pr ot ocol Specification

STATUS OF TH'S MEMO

Thi s RFC describes a protocol proposed as a standard for the Internet
conmunity. Comments are encouraged. Distribution of this docunent is
unlimted.

OVERVI EW

This menpo specifies the Versatile Message Transacti on Protocol (VMIP)
[Version 0.7 of 19-Feb-88], a transport protocol specifically designed
to support the transaction nodel of communication, as exenplified by
renote procedure call (RPC). The full function of VMIP, including
support for security, real-time, asynchronous message exchanges,
stream ng, nulticast and idenmpotency, provides a rich selection to the
VMIP user level. Subsettability allows the VMIP nodul e for particular
clients and servers to be specialized and sinplified to the services
actually required. Exanples of such sinple clients and servers include
PROM net wor k boot | oad prograns, network boot servers, data sensors and
simple controllers, to mention but a few exanpl es.

RFC 1045 VMIP

Tabl e of Contents

1. Introduction
1.1. Motivation
1.1.1. Poor RPC Performance
1.1.2. Weak Narmi ng
1.1.3. Function Poor
1.2. Relation to Oher Protocols
1. 3. Document Overview
2. Protocol Overview
2.1. Entities, Processes and Principals
2.2. Entity Domai ns
2.3. Message Transactions
2. 4. Request and Response Messages
2.5. Reliability
2.5.1. Transaction ldentifiers
2.5.2. Checksum
2.5.3. Request and Response Acknowl edgnent
2.5.4. Retransm ssions
2.5.5. Tinmeouts
2.5.6. Rate Contro
2.6. Security
2.7. Multicast
2.8. Real -tinme Conmuni cation
2.9. Forwarded Message Transactions
2.10. VMIP Managenent
2.11. Streamed Message Transactions
2.12. Fault-Tol erant Applications
2.13. Packet Groups
2.14. Runs of Packet G oups
2.15. Byte Order
2.16. Mnimal VMIP | npl enmentation
2.17. Message vs. Procedural Request Handling
2.18. Bibliography
3. VMIP Packet Formats
3.1. Entity Identifier Format
3.2. Packet Fields
Cheriton

February 1988

GRrWWNDN =

o]

10
11
12
13
14
14
15
15
18
19
21
22
24
25

28
29
31
33
33
34
37

37
38

[page i]

RFC 1045 VMIP

3.3. Request Packet
3.4. Response Packet

4. dient Protocol Operation

Client State Record Fields
Client Protocol States
State Transition D agrans
User Interface
Event Processing
. Cient User-invoked Events
4.6.1. Send
4.6.2. CGetResponse
4.7. Packet Arrival
4.7.1. Response
4.8. Managenent Operations
4.8.1. Handl eNoCSR
4.9. Timeouts

PArhAADL
CUTAWNR

5. Server Protocol Operation

Remote Client State Record Fiel ds
Remote Client Protocol States
State Transition Di agrans
User Interface

Event Processing

Server User-invoked Events
5.6.1. Receive
5.6.2. Respond
5.6.3. Forward
5.6.4. Oher Functions
5.7. Request Packet Arrival
5.8. Managenent Operations

5.8. 1. Handl eRequest NoCSR

5.9. Tineouts

agooooo
cukwnNE

6. Concl udi ng Remar ks
. Standard VMIP Response Codes

Il. VMIP RPC Presentation Protoco

Cheriton

February 1988

45
47

49

49
51
51
52
53
54
54
56
56
58
61
62
64

66

66
66
67
69
70
71
71
72
73
74
74
78
79
82

84
85

87

[page ii]

RFC 1045 VMIP

I1.1. Request Code Managenent
[11. VMIP Managenent Procedures

[11.1. Entity G oup Managenent
[11.2. VMIP Managenent Digital Signatures

V. VMIP Entity ldentifier Domains

1. Domain 1

2. Domain 3

3. Ot her Domains

4. Decentralized Entity Identifier Allocation
V. Authentication Domai ns

V.1. Authentication Domain 1
V.2. Oher Authentication Donmi ns

Vi. IP Inplementation

VII. Inplenmentation Notes
VI1.1. Mapping Data Structures
VII.2. Cient Data Structures
VI1.3. Server Data Structures
VIl.4. Packet G oup transm ssion
VII.5. VMIP Managerment Modul e
VII.6. Tinmeout Handling
VII.7. Timeout Val ues
VI1.8. Packet Reception
VI1.9. Stream ng
VI1.10. Inplenentation Experience
VI1l. UNIX 4.3 BSD Kernel Interface for VMIP
I ndex
Cheriton

February 1988

87
89

100
101

102

102
104
105
105

107

107
107

108
109

109
111
111
112
113
114
114
115
116
117

118

120

[page iii]

RFC 1045 VMIP February 1988

Li st of Figures

Figure 1-1: Rel ation to Ot her Protocols 4
Figure 3-1: Request Packet For nmat 45
Fi gure 3-2: Response Packet For mat 47
Figure 4-1: Client State Transitions 52
Fi gure 5-1: Renote Client State Transitions 68
Figure I11-1: Aut hent i cat or For mat 92
Figure VII-1: Mapping Client Identifier to CSR 109
Figure VII-2: Mappi ng Server ldentifiers 110
Figure VII-3: Mappi ng Group ldentifiers 111

Cheriton [page iV]

RFC 1045 VMIP February 1988

1. Introduction

The Versatile Message Transaction Protocol (VMIP) is a transport
prot ocol designed to support renote procedure call (RPC) and genera
transaction-oriented comuni cation. By transaction-oriented
comuni cation, we mean that:

- Communi cation is request-response: A client sends a request
for a service to a server, the request is processed, and the
server responds. For example, a client nmay ask for the next
page of a file as the service. The transaction is term nated
by the server responding with the next page.

- Atransaction is initiated as part of sending a request to a
server and term nated by the server responding. There are no
separate operations for setting up or term nating associ ati ons
between clients and servers at the transport |evel.

- The server is free to discard conmuni cati on state about a
client between transactions w thout causing incorrect behavior
or failures.

The term nessage transaction (or transaction) is used in the rem nder of
this docunment for a request-response exchange in the sense described
above.

VMIP handl es the error detection, retransm ssion, duplicate suppression
and, optionally, security required for transport-Ilevel end-to-end
reliability.

The protocol is designed to provide a range of behaviors within the
transacti on nodel, including:

- Mnimal two packet exchanges for short, sinple transactions.

- Streaming of nulti-packet requests and responses for efficient
data transfer.

- Datagram and nul ti cast comruni cati on as an extension of the
transacti on nodel .

Exanmpl e Uses:
- Page-level file access - VMIP is intended as the transport
level for file access, allowing sinple, efficient operation on

a local network. In particular, VMIP is appropriate for use
by di skl ess workstati ons accessing shared network file

Cheri ton [page 1]

RFC 1045 VMIP February 1988

servers.

- Distributed progranmng - VMIP is intended to provide an
efficient transport |evel protocol for renote procedure cal
i mpl enent ati ons, distributed object-oriented systens plus
nessage- based systens that conformto the request-response
nodel .

- Multicast comunication with groups of servers to: |ocate a
specific object within the group, update a replicated object,
synchroni ze the comm tnent of a distributed transaction, etc.

- Distributed real-time control with prioritized nessage

handl i ng, including datagranms, nulticast and asynchronous

cal | s.
The protocol is designed to operate on top of a sinple unreliable
dat agram servi ce, such as is provided by IP
1.1. Modtivation
VMIP was designed to address three categories of deficiencies with
exi sting transport protocols in the Internet architecture. W use TCP
as the key current transport protocol for comparison
1.1.1. Poor RPC Performance
First, current protocols provide poor performance for renote procedure
call (RPC) and network file access. This is attributable to three key

causes:

- TCP requires excessive packets for RPC, especially for

isolated calls. In particular, connection setup and cl ear
generates extra packets over that needed for VMIP to support
RPC.

- TCPis difficult to inplenment, speaking purely fromthe
enpirical experience over the last 10 years. VMIP was
desi gned concurrently with its inplenmentation, with focus on
making it easy to inplenent and providi ng sensible subsets of
its functionality.

- TCP handl es packet | oss due to overruns poorly. W claimthat

overruns are the key source of packet loss in a
hi gh- per f ormance RPC environnment and, with the increasing

Cheriton [page 2]

RFC 1045 VMIP February 1988

per formance of networks, will continue to be the key source.
(A der nmachines and network interfaces cannot keep up with new
machi nes and network interfaces. Also, |owend network
interfaces for high-speed networks have limted receive
buffering.)

VMIP i s designed for ease of inplenentation and efficient RPC. In
addition, it provides selective retransm ssion with rate-based fl ow
control, thus addressing all of the above issues.

1.1.2. Weak Nami ng

Second, current protocols provide i nadequate nam ng of transport-I|eve
endpoi nts because the nanmes are based on | P addresses. For example, a
TCP endpoint is named by an Internet address and port identifier
Unfortunately, this nmakes the endpoint tied to a particul ar host
interface, not specifically the process-level state associated with the
transport-level endpoint. |In particular, this formof nam ng causes
probl ems for process migration, mobile hosts and nulti-honed hosts.
VMIP provi des host-address i ndependent nanes, thereby solving the above
nmenti oned probl ens.

In addition, TCP provides no security and reliability guarantees on the
dynam cally allocated names. In particular, other than well-known
ports, (host-addr, port-id)-tuples can change meani ng on reboot
following a crash. VMIP provides large identifiers with guarantee of
stability, neaning that either the identifier never changes in neaning
or else remains invalid for a significant time before becoming valid
agai n.

1.1.3. Function Poor

TCP does not support multicast, real-tinme datagrans or security. In
fact, it only supports pair-wi se, long-term streaned reliable

i nterchanges. Yet, nulticast is of growi ng inmportance and is being
devel oped for the Internet (see RFC 966 and 988). Also, a datagram
facility with the same nami ng, transm ssion and reception facilities as
the normal transport level is a powerful asset for real-tine and
paral l el applications. Finally, security is a basic requirenent in an
i ncreasi ng nunber of environnents. W note that security is natural to
i mpl enent at the transport level to provide end-to-end security (as
opposed to (inter)network | evel security). Wthout security at the
transport level, a transport |evel protocol cannot guarantee the
standard transport |evel service definition in the presence of an
intruder. In particular, the intruder can interject packets or nodify

Cheriton [page 3]

RFC 1045 VMIP February 1988

packets whil e updating the checksum maki ng nockery out of the
transport-level claimof "reliable delivery".

In contrast, VMIP provides nmulticast, real-tinme datagrans and security,
addr essi ng precisely these weaknesses.

In general, VMIP is designed with the next generation of communication
systens in mnd. These comunication systens are characterized as
follows. RPC, page-level file access and other request-response
behavi or domi nates. |In addition, the communication substrate, both

| ocal and wi de-area, provides high data rates, low error rates and
relatively low delay. Finally, intelligent, high-perfornmance network
interfaces are common and in fact required to achi eve performance that
approxi mates the network capability. However, VMIP is al so designed to
function acceptably with existing networks and network interfaces.

1.2. Relation to Gther Protocols
VMIP is a transport protocol that fits into the | ayered Internet

protocol environment. Figure 1-1 illustrates the place of VMIP in the
prot ocol hierarchy.

e I L L L E R T I I +
File Access Ti me Pr ogram Executi on Nam ng| . .. lication
g g p
TSR T + e--- - + Layer
| | | | |
S S . S S +
|
. +
| RPC Presentation Presentation
R R R L R + Layer
|
S + S +
| TCP | | VMIP | Transport
Fommmm + Fommmma + Layer
| |
o e m e e e e e e e e e e e e +
| Internet Protocol & I CWP | | nt er net wor k
R R LR LR R R + Layer
Fi gure 1-1: Rel ation to Qther Protocols

The RPC presentation level is not currently defined in the Internet
suite of protocols. Appendix Il defines a proposed RPC presentation
level for use with VMIP and assuned for the definition of the VMIP
managenment procedures. There is also a need for the definition of the

Cheriton [page 4]

RFC 1045 VMIP February 1988

Application |layer protocols listed above.

If internetwork services are not required, VMIP can be used wi thout the
I P layer, layered directly on top of the network or data link |ayers.

1. 3. Docunent Overvi ew

The next chapter gives an overview of the protocol, covering nam ng
nmessage structure, reliability, flow control, streamng, real-tineg,
security, byte-ordering and nmanagenent. Chapter 3 describes the VMIP
packet formats. Chapter 4 describes the client VMIP protocol operation
in terms of pseudo-code for event handling. Chapter 5 describes the
server VMIP protocol operation in terms of pseudo-code for event
handl i ng. Chapter 6 sunmarizes the state of the protocol, some
remai ni ng i ssues and expected directions for the future. Appendix I

lists sone standard Response codes. Appendix |l describes the RPC
presentation protocol proposed for VMIP and used with the VMIP
managenment procedures. Appendix I1l lists the VMIP nanagenent

procedures. Appendi x |V proposes initial approaches for handling entity
identification for VMIP. Appendi x V proposes initial authentication
domains for VMIP. Appendix VI provides sone details for inplenenting
VMIP on top of IP. Appendix VII provides sonme suggesti ons on host

i mpl enentati on of VMIP, focusing on data structures and support
functions. Appendix VIII describes a proposed programinterface for
UNI X 4.3 BSD and its descendants and rel ated systens.

Cheriton [page 5]

RFC 1045 VMIP February 1988

2. Protocol Overview

VMIP provides an efficient, reliable, optionally secure transport
service in the nessage transaction or request-response nodel with the
foll owi ng features:

- Host address-independent nanming with provision for nmultiple
forns of nanes for endpoints as well as associated (security)
principals. (See Sections 2.1, 2.2, 3.1 and Appendi x IV.)

- Multi-packet request and response nessages, W th a maxi mum
size of 4 nmegaoctets per nessage. (Sections 2.3 and 2.14.)

- Selective retransm ssion. (Section 2.13.) and rate-based fl ow
control to reduce overrun and the cost of overruns. (Section
2.5.6.)

- Secure nessage transactions with provision for a variety of
encryption schenes. (Section 2.6.)

- Multicast nessage transactions with nultiple response nessages
per request message. (Section 2.7.)

- Support for real-tinme conmunication with idenpotent nessage
transactions with mniml server overhead and state (Section
2.5.3), datagramrequest nessage transactions with no
response, optional header-only checksum priority processing
of transactions, conditional delivery and preenptive handling
of requests (Section 2.8)

- Forwarded nessage transactions as an optim zation for certain
forns of nested renpte procedure calls or nessage
transactions. (Section 2.9.)

- Multiple outstandi ng (asynchronous) nessage transactions per
client. (Section 2.11.)

- An integrated managenent nodul e, defined with a rempte
procedure call interface on top of VMIP providing a variety of
conmuni cati on services (Section 2.10.)

- Sinple subset inplementation for sinple clients and sinple
servers. (Section 2.16.)

Thi s chapter provides an overview of the protocol as introduction to the

basi ¢ i deas and as preparation for the subsequent chapters that describe
the packet formats and event processing procedures in detail

Cheriton [page 6]

RFC 1045 VMIP February 1988

In overview, VMIP provides transport comruni cati on between networ k-
visible entities via nessage transactions. A nessage transaction

consi sts of a request nessage sent by the client, or requestor, to a
group of server entities followed by zero or nore response nessages to
the client, at nost one fromeach server entity. A nessage is
structured as a nessage control portion and a segnment data portion. A
nessage is transnmitted as one or nore packet groups. A packet group is
one or nore packets (up to a maxi num of 32 packets) grouped by the
protocol for acknow edgnent, sequencing, selective retransm ssion and
rate control

Entities and VMIP operati ons are managed usi ng a VMIP nanagenent

mechani smthat is accessed through a procedural interface (RPC)

i mpl enented on top of VMIP. In particular, information about a renpote
entity is obtained and maintai ned using the Probe VMIP managenent
operation. Al so, acknow edgnent information and requests for

retransm ssion are sent as notify requests to the managenent nodul e.

(I'n the follow ng description, reference to an "acknow edgnent” of a
request or a response refers to a nmanagenent-1evel notify operation that
i s acknow edgi ng the request or response.)

2.1. Entities, Processes and Principals

VMIP defines and uses three main types of identifiers: entity
identifiers, process identifiers and principal identifiers, each 64-bits
in length. Comunication takes place between network-visible entities,
typically mapping to, or representing, a nmessage port or procedure

i nvocation. Thus, entities are the VMIP comuni cation endpoints. The
process associated with each entity designates the agent behind the
conmuni cation activity for purposes of resource allocation and
management. For exanple, when a lock is requested on a file, the | ock
is associated with the process, not the requesting entity, allowng a
process to use nultiple entity identifiers to perform operations w thout
| ock conflict between these entities. The principal associated with an
entity specifies the perm ssions, security and accounting designation
associated with the entity. The process and principal identifiers are
included in VMIP solely to make these val ues available to VMIP users
with the security and efficiency provided by VMIP. Only the entity
identifiers are actively used by the protocol

Entity identifiers are required to have three properti es;

Uni queness Each entity identifier is uniquely defined at any given
time. (An entity identifier nmay be reused over tine.)

Stability An entity identifier does not change between valid

Cheriton [page 7]

RFC 1045 VMIP February 1988

meani ngs w t hout suitable provision for renoving
references to the entity identifier. Certain entity
identifiers are strictly stable, (i.e. never changing
nmeani ng), typically being adm nistratively assigned
(al though they need not be bound to a valid entity at
all times), often called well-known identifiers. Al
other entity identifiers are required to be T-stable,
not change meani ng without having remained invalid for
at least a time interval T.

Host address i ndependent
An entity identifier is unique independent of the host
address of its current host. Mreover, an entity
identifier is not tied to a single Internet host
address. An entity can migrate between hosts, reside on
a nobile host that changes Internet addresses or reside
on a multi-homed host. It is up to the VMIP
i mpl ementation to determine and naintain up to date the
host addresses of entities with which it is
conmuni cat i ng.

The stability of entity identifiers guarantees that an entity identifier
represents the same | ogical comunication entity and principal (in the
security sense) over the tine that it is valid. For exanple, if an
entity identifier is authenticated as having the privileges of a given
user account, it continues to have those privileges as long as it is
continuously valid (unless some explicit notice is provided ot herw se).
Thus, a file server need not fully authenticate the entity on every file
access request. Wth T-stable identifiers, periodically checking the
validity of an entity identifier with period I ess than T seconds detects
a change in entity identifier validity.

A group of entities can forman entity group, which is a set of zero or
nore entities identified by a single entity identifier. For exanple,
one can have a single entity identifier that identifies the group of
nane servers. An entity identifier representing an entity group is
drawn fromthe sane nane space as entity identifiers. However, single
entity identifiers are flagged as such by a bit in the entity
identifier, indicating that the identifier is known to identify at nost
one entity. In addition to the group bit, each entity identifier

i ncl udes other standard type flags. One flag indicates whether the
identifier is an alias for an entity in another domain (See Section 2.2
below.). Another flag indicates, for an entity group identifier

whet her the identifier is a restricted group or not. A restricted group
is one in which an entity can be added only by another entity with group
managenent aut horization. Wth an unrestricted group, an entity is
allowed to add itself. |If an entity identifier does not represent a

Cheriton [page 8]

RFC 1045 VMIP February 1988

group, a type bit indicates whether the entity uses big-endian or
little-endian data representation (corresponding to Mdtorola 680X0 and
VAX byte orders, respectively). Further specification of the format of
entity identifiers is contained in Section 3.1 and Appendix |V.

An entity identifier identifies a Client, a Server or a group of

Servers <1>. A Cient is always identified by a T-stable identifier. A
server or group of servers may be identified by a a T-stable identifier
(group or single entity) or by strictly stable (statically assigned)
entity group identifier. The same T-stable identifier can be used to
identify a Client and Server sinultaneously as |long as both are

| ogically associated with the sane entity. The state required for
reliable, secure comunication between entities is maintained in client
state records (CSRs), which include the entity identifier of the dient,
its principal, its current or next transaction identifier and so on

2.2. Entity Domai ns

An entity domain is an administration or an admi nistration mechani sm
that guarantees the three required entity identifier properties of

uni queness, stability and host address independence for the entities it
adm nisters. That is, entity identifiers are only guaranteed to be

uni que and stable within one entity domain. For exanple, the set of al
Internet hosts may function as one donain. |ndependently, the set of
hosts | ocal to one autonomous network may function as a separate donain.
Each entity domain is identified by an entity domain identifier, Domain
Only entities within the same domai n may communi cate directly via VMIP
However, hosts and entities may participate in nultiple entity donains
si mul taneously, possibly with different entity identifiers. For
exanple, a file server may participate in multiple entity domains in
order to provide file service to each domain. Each entity domain
specifies the algorithns for allocation, interpretation and mappi ng of
entity identifiers.

Donmai ns are necessary because it does not appear feasible to specify one
uni versal VMIP entity identification administration that covers al
entities for all time. Dommins limt the nunber of entities that need
to be managed to mmintain the uniqueness and stability of the entity

<1> Terms such as Cient, Server, Request, Response, etc. are
capitalized in this document when they refer to their specific meaning
in VMIP.

Cheriton [page 9]

RFC 1045 VMIP February 1988

nane space. Domains can also serve to separate entities of different
security levels. For instance, allocation of a unclassified entity
identifier cannot conflict with secret level entity identifiers because
the former is interpreted only in the unclassified domain, which is

di sjoint fromthe secret domain.

It is intended that there be a snmall nunber of domains. |In particular
there should be one (or a few) domains per installation "type", rather
than per installation. For exanple, the Internet is expected to use one
domai n per security level, resulting in at nost 8 different domains.
Cluster-based internetwork architectures, those with a local cluster
protocol distinct fromthe w de-area protocol, nay use one donain for

| ocal use and one for w de-area use.

Addi tional details on the specification of specific domains is provided
i n Appendi x | V.

2.3. Message Transactions

The nessage transaction is the unit of interaction between a dient that
initiates the transaction and one or nore Servers. A nessage
transaction starts with a request nessage generated by a client. At
the service interface, a server becones involved with a transaction by
recei ving and accepting the request. A server ternminates its

i nvol vement with a transacti on by sending a response message. 1In a
group nmessage transaction, the server entity designated by the client
corresponds to a group of entities. |In this case, each server in the
group receives a copy of the request. 1In the client’s view, the
transaction is term nated when it receives the response nessage or, in
the case of a group nessage transaction, when it receives the |ast
response nmessage. Because it is nornmally inpractical to determ ne when
the | ast response nessage has been received. the current transaction is
term nated by VMIP when the next transaction is initiated.

Wthin an entity domain, a transaction is uniquely identified by the
tuple (dient, Transaction, ForwardCount). where Transaction is a
32-bit nunber and ForwardCount is a 4-bit value. A Cient uses
nonot oni cal |y i ncreasing Transaction identifiers for new nessage
transactions. Normally, the next higher transaction nunber, nodulo
2**32, is used for the next nessage transaction, although there are
cases in which it skips a small range of Transaction identifiers. (See
the description of the STI control flag.) The ForwardCount is used when
a nessage transaction is forwarded and is zero ot herw se.

A Cient generates a stream of nmessage transactions with increasing
transaction identifiers, directed at a diversity of Servers. W say a

Cheriton [page 10]

RFC 1045 VMIP February 1988

Client has a transaction outstanding if it has invoked a nessage
transaction, but has not received the | ast Response (or possibly any
Response). Normally, a Client has only one transaction outstanding at a
time. However, VMIP allows a Client to have nultiple nessage
transactions outstandi ng sinultaneously, supporting streaned,
asynchronous renote procedure call invocations. In addition, VMIP
supports nested calls where, for exanple, procedure A calls procedure B
whi ch calls procedure C, each on a separate host with different client
entity identifiers for each call but identified with the sane process
and princi pal .

2.4. Request and Response Messages
A nmessage transaction consists of a request nmessage and one or nore

Response nessages. A nessage is structured as nessage control bl ock
(MCB) and segnent data, passed as paraneters, as suggested bel ow.

T +
| Message Control Bl ock

o e e e e e +

o e m e e e e e e e e e e e e ao oo +
| segnent data |
e +

In the request message, the MCB specifies control information about the
request plus an optional data segnent. The MCB has the foll ow ng
format:

0 1 2 3
01234567890123456789012345678901
T T R i e e e e o S e SRR R
+ ServerEntityld (8 octets) +
B s i S i I i S S S i i

| Fl ags Request Code
i i S S i e e et S e R SR
CoresidentEntity (8 octets) +
B S o e e s s S e S e S ok
User Data (12 octets) <
i o i T S i I S S s ol ST SN S
MsgDel i very |
i T S s i i T T S e e S NN S
Segnent Si ze |
B S T e e R t s s e T e e i o NN N S

+— +— 4+ V + +

The ServerEntityld is the entity to which the Request MCB is to be sent
(or was sent, in the case of reception). The Flags indicate various
options in the request and response handling as well as whether the

Cheriton [page 11]

RFC 1045 VMIP February 1988

CoresidentEntity, MsgDelivery and SegnmentSize fields are in use. The
Request Code field specifies the type of Request. It is analogous to a
packet type field of the Ethernet, acting as a switch for higher-Ieve
protocols. The CoresidentEntity field, if used, designates a subgroup
of the ServerEntityld group to which the Request should be routed,
nanely those nenbers that are co-resident with the specified entity (or
entity group). The primary intended use is to specify the nanager for a
particul ar service that is co-resident with a particular entity, using
the well-known entity group identifier for the service nmanager in the
ServerEntityld field and the identifier for the entity in the
CoresidentEntity field. The next 12 octets are user- or
application-specifi ed.

The MsgDelivery field is optionally used by the RPC or user level to
specify the portions of the segnment data to transmit and on reception
the portions received. 1t provides the client and server wth
(optional) access to, and responsibility for, a sinple selective
transm ssion and reception facility. For exanple, a client may request
retransm ssion of just those portions of the segnent that it failed to
receive as part of the original Response. The primary intended use is
to support highly efficient multi-packet reading froma file server.
Expl oiting user-level selective retransm ssion using the MgDelivery
field, the file server VMIP nodul e need not save multi-packet Responses
for retransmnission. Retransm ssions, when needed, are instead handl ed
directly fromthe file server buffers.

The Segment Si ze field indicates the size of the data segnent, if
present. The CoresidentEntity, MsgDelivery and SegnentSize fields are
usabl e as additional user data if they are not otherw se used.

The Flags field provides a sinple nechanismfor the user level to
conmuni cate its use of VMIP options with the VMIP nodul e as well as for
VMIP nodul es to comruni cate this use anong thensel ves. The use of these
options is generally fixed for each renote procedure so that an RPC
nmechani sm usi ng VMIP can treat the Flags as an integral part of the
Request Code field for the purpose of denultiplexing to the correct stub.

A Response nessage control block follows the sane format except the
Response is sent fromthe Server to the Client and there is no
Coresident Entity field (and thus 20 octets of user data).

2.5. Reliability

VMIP provides reliable, sequenced transfer of request and response

nmessages as well as several variants, such as unreliable datagram
requests. The reliability nmechanisns include: transaction identifiers,

Cheriton [page 12]

RFC 1045 VMIP February 1988

checksuns, positive acknow edgnent of nessages and timeout and
retransm ssi on of |ost packets.

2.5.1. Transaction ldentifiers

Each message transaction is uniquely identified by the pair (dient,
Transaction). (W defer discussion of the ForwardCount field to Section
2.9.) The 32-bit transaction identifier is initialized to a random

val ue when the Cient entity is created or allocated its entity
identifier. The transaction identifier is increnented at the end of
each message transaction. All Responses with the sanme specified
(dient, Transaction) pair are associated with this Request.

The transaction identifier is used for duplicate suppression at the
Server. A Server maintains a state record for each Cient for which it
is processing a Request, identified by (dient, Transaction). A Request
with the sane (Cient, Transaction) pair is discarded as a duplicate.
(The ForwardCount field rmust also be equal.) Nornmally, this record is
retained for sone period after the Response is sent, allow ng the Server
to filter out subsequent duplicates of this Request. When a Request
arrives and the Server does not have a state record for the sending
Client, the Server takes one of three actions:

1. The Server may send a Probe request, a sinple query
operation, to the VMIP managenment mnodul e associated with the
requesting Client to determine the Client’s current
Transaction identifier (and other information), initialize a
new state record fromthis information, and then process the
Request as above.

2. The Server may reason that the Request must be a new request
because it does not have a state record for this dient if it
keeps these state records for the maxi mum packet |ifetime of
packets in the network (plus the maxi mum VMIP retransni ssion
time) and it has not been rebooted within this tinme period.
That is, if the Request is not new either the Request would
have exceeded the nmaxi mum packet lifetine or el se the Server
woul d have a state record for the dient.

3. The Server may know that the Request is idenpotent or can be
safely redone so it need not care whether the Request is a
duplicate or not. For exanple, a request for the current
time can be responded to with the current time w thout being
concerned whether the Request is a duplicate. The Response
is discarded at the Cient if it is no |longer of interest.

Cheriton [page 13]

RFC 1045 VMIP February 1988

2.5.2. Checksum

Each VMIP packet contains a checksumto allow the receiver to detect
corrupted packets independent of |ower |evel checks. The checksumfield
is 32 bits, providing greater protection than the standard 16-bit IP
checksum (in conbination with an inproved checksum al gorithn). The

| arge packets, high packet rates and general network characteristics
expected in the future warrant a stronger checksum nmechani sm

The checksum normal |y covers both the VMIP header and the segnent data.
Optionally (for real-tine applications), the checksumnay apply only to
the packet header, as indicated by the HCO control bit being set in the
header. The checksumfield is placed at the end of the packet to allow
it to be calculated as part of a software copy or as part of a hardware
transm ssion or reception packet processing pipeline, as expected in the
next generation of network interfaces. Note that the nunber of header
and data octets is an integral nultiple of 8 because VMIP requires that
the segnment data be padded to be a multiple of 64 bits. The checksum
field is appended after the padding, if any. The actual algorithmis
described in Section 3.2.

A zero checksumfield indicates that no checksumwas transmtted with
the packet. VMIP may be used wi thout a checksumonly when there is a
host-to-host error detection mechanismand the VMIP security facility is
not being used. For exanple, one could rely on the Ethernet CRC if
comunication is restricted to hosts on the sanme Ethernet and the
network interfaces are considered sufficiently reliable.

2.5.3. Request and Response Acknow edgnent

VMIP assumes an unreliabl e datagram network and i nternetwork interface.
To guarantee delivery of Requests and Response, VMIP uses positive
acknow edgnents, retransm ssions and ti neouts.

A Request is nornally acknow edged by recei pt of a Response associ at ed
with the Request, i.e. with the sane (Cient, Transaction). Wth
streamed nessage transactions, it may al so be acknow edged by a
subsequent Response that acknow edges previ ous Requests in addition to
the transaction it explicitly identifies. A Response may be explicitly
acknow edged by a NotifyVntpServer operation requested of the manager
for the Server. |In the case of streaming, this is a cunulative

acknow edgnent, acknow edging all Responses with a [ower transaction
identifier as well.) |In addition, with non-streaned comruni cati on, a
subsequent Request fromthe sane Cient acknow edges Responses to al
previ ous nessage transactions (at least in the sense that either the
client received a Response or is no longer interested in Responses to

Cheriton [page 14]

RFC 1045 VMIP February 1988

those earlier nmessage transactions). Finally, a client response timeout
(at the server) acknow edges a Response at |east in the sense that the
server need not be prepared to retransnmt the Response subsequently.
Note that there is no end-to-end guarantee of the Response being
received by the client at the application |evel.

2.5.4. Retransni ssions

In general, a Request or Response is retransmitted periodically unti
acknow edged as above, up to sonme nmaxi mum nunber of retransni ssions.
VMIP uses paraneters RequestRetries(Server) and ResponseRetries(dient)
that indicate the nunber of retransm ssions for the server and client
respectively before giving up. W suggest the value 5 be used for both
par anet ers based on our experience with VMIP and Internet packet | oss.
Smal | er val ues (such as 3) could be used in |owloss environnments in
whi ch fast detection of failed hosts or communi cation channels is
required. Larger values should be used in high | oss environnents where
transport-level persistence is inportant.

In a low | oss environnent, a retransm ssion only includes the MCB and
not the segnment data of the Request or Response, resulting in a single
(short) packet on retransm ssion. The intended recipient of the
retransm ssion can request selective retransm ssion of all or part of
the segment data as necessary. The selective retransm ssion nmechani sm
is described in Section 2.13.

If a Response is specified as idenpotent, the Response is neither
retransmtted nor stored for retransm ssion. |Instead, the dient nust
retransmt the Request to effectively get the Response retransmtted.
The server VMIP nodul e responds to retransm ssions of the Request by
passi ng the Request on to the server again to have it regenerate the
Response (by redoing the operation), rather than saving a copy of the
Response. Only Request packets for the last transaction fromthis
client are passed on in this fashion; ol der Request packets fromthis
client are discarded as del ayed duplicates. |f a Response is not

i dempotent, the VMIP nodul e nust ensure it has a copy of the Response
for retransmi ssion either by naking a copy of the Response (either
physically or copy-on-wite) or by preventing the Server from continuing
until the Response is acknow edged.

2.5.5. Tinmeouts
There is one client tinmer for each Client with an outstanding

transaction. Simlarly, there is one server tiner for each dient
transaction that is "active" at the server, i.e. there is a transaction

Cheriton [page 15]

RFC 1045 VMIP February 1988

record for a Request fromthe Cient.

VWen the client transmts a new Request (w thout stream ng), the client
timer is set to roughly the tine expected for the Response to be
returned. On tinmeout, the Request is retransmtted with the APG
(Acknow edge Packet Group) bit set. The tineout is reset to the
expected roundtrip time to the Server because an acknow edgnent shoul d
be returned i nmedi ately unl ess a Response has been sent. The Request
may al so be retransmitted in response to receipt of a VMIP managenent
operation indicating that selected portions of the Request nessage
segnent need to be retransmitted. Wth stream ng, the tineout applies
to the ol dest outstandi ng nessage transaction in the run of outstanding
nmessage transactions. Wthout stream ng, there is one nessage
transaction in the run, reducing to the previous situation. After the
first packet of a Response is received, the Cient resets the timeout to
be the tinme expected before the next packet in the Response packet group
is received, assuming it is a multi-packet Response. |[|f not, the tiner
is stopped. Finally, the client tinmer is used to tineout waiting for
second and subsequent Responses to a nulticast Request.

The client timer is set at different tines to four different val ues:

TCLl(Server) The expected tinme required to receive a Response from
the Server. Set on initial Request transm ssion plus
after its managenment nodul e receives a NotifyVm pCdient
operation, acknow edgi ng the Request.

TC2(Server) The estimated round trip delay between the client and
the server. Set when retransmtting after receiving no
Response for TCl(Server) time and retransmtting the
Request with the APG bit set.

TC3(Server) The estimated nmaxi mum expected interpacket tine for
nmul ti-packet Responses fromthe Server. Set when
wai ting for subsequent Response packets within a packet
group before tining out.

TC4 The tine to wait for additional Responses to a group
Request after the first Response is received. This is
specified by the user |evel.

These val ues are selected as follows. TCl can be set to TC2 plus a
constant, reflecting the tine within which nost servers respond to nost
requests. For exanple, various measurenents of VMIP usage at Stanford

i ndicate that 90 percent of the servers respond in |less than 200
mlliseconds. Setting TCl to TC2 + 200 neans that npbst Requests receive
a Response before timng out and al so that overhead for retransm ssion

Cheriton [page 16]

RFC 1045 VMIP February 1988

for long running transactions is insignificant. A sophisticated
i mpl enentati on may make the estimation of TCL further specific to the
Server.

TC2 may be estimated by neasuring the tine fromwhen a Probe request is
sent to the Server to when a response is received. TC2 can also be
neasured as the tinme between the transnission of a Request with the APG
bit set to receipt of a managenment operati on acknow edgi ng receipt of
the Request.

When the Server is an entity group, TCl and TC2 should be the |argest of
the values for the nenbers of the group that are expected to respond.
This informati on nay be determ ned by probing the group on first use
(and using the values for the | ast responses to arrive). Alternatively,
one can resort to default val ues.

TC3 is set initially to 10 tinmes the transmission tinme for the maxi mum
transm ssion unit (MIU) to be used for the Response. A sophisticated

i mpl ementation may record TC3 per Server and refine the estimte based
on nmeasurenents of actual interpacket gaps. However, a tighter estimate
of TC3 only inmproves the reaction time when a packet is lost in a packet
group, at sone cost in unnecessary retransm ssions when the estinmate
beconmes overly tight.

The server timer, one per active Client, takes on the foll ow ng val ues:

TS1(Cient) The estimated nmaxi mum expected interpacket tine. Set
when waiting for subsequent Request packets within a
packet group before tinming out.

TS2(dient) The tine to wait to hear froma client before
term nating the server processing of a Request. This
l[imts the tine spent processing orphan calls, as well
as limting how out of date the server’s record of the
Client state can be. In particular, TS2 should be
significantly less than the mininumtinme within which it
is reasonable to reuse a transaction identifier

TS3(C i ent) Estimated roundtrip time to the dient,

TS4(d i ent) The tine to wait after sending a Response (or | ast
hearing froma client) before discarding the state
associ ated with the Request which allows it to filter
dupl i cat e Request packets and regenerate the Response.

TS5(C i ent) The tine to wait for an acknow edgrment after sending a
Response before retransmtting the Response, or giving

Cheriton [page 17]

RFC 1045 VMIP February 1988

up (after some nunmber of retransm ssions).
TS1 is set the sane as TC3.

The suggested value for TS2 is TCL + 3*TC2 for this server, giving the
Client tine to tineout waiting for a Response and retransnit 3 Request
packets, asking for acknow edgnents.

TS3 is estimted the same as TCl except that refinenments to the estimte
use neasurenents of the Response-to-acknow edgrment tines.

In the general case, TS4 is set large enough so that a Cient issuing a
series of closely-spaced Requests to the sane Server reuses the sane
state record at the Server end and thus does not incur the overhead of
recreating this state. (The Server can recreate the state for a Cient
by performng a Probe on the Client to get the needed information.) It
shoul d al so be set | ow enough so that the transaction identifier cannot
wap around and so that the Server does not run out of CSR's. W
suggest a value in the range of 500 milliseconds. However, if the
Server accepts non-idenpotent Requests fromthis Cient w thout doing a
Probe on the Client, the TS4 value for this CSRis set to at |least 4
times the maxi mum packet |ifetine.

TS5 is TS3 plus the expected tinme for transnission and reception of the
Response. W suggest that the latter be calculated as 3 tines the
transm ssion time for the Response data, allowing time for reception
processi ng and transm ssion of an acknow edgnent at the Client end. A
sophi sticated inplenentation may refine this estimate further over tine
by tim ng acknow edgnents to Responses.

2.5.6. Rate Contro

VMIP is designed to deal with the present and future probl em of packet
overruns. W expect overruns to be the mmjor cause of dropped packets
inthe future. Aclient is expected to estinmate and adjust the

i nterpacket gap tinmes so as to not overrun a server or internediate
nodes. The selective retransm ssion mechanismallows the server to
indicate that it is being overrun (or some intermediate point is being
overrun). For exanple, if the server requests retransm ssion of every
Kth block, the client should assurme overrun is taking place and increase
the interpacket gap times. The client passes the server an indication
of the interpacket gap desired for a response. The client nay have to

i ncrease the interval because packets are being dropped by an

i nternedi ate gateway or bridge, even though it can handl e a higher rate.
A conservative policy is to increase the interpacket gap whenever a
packet is lost as part of a nulti-packet packet group

Cheriton [page 18]

RFC 1045 VMIP February 1988

The provision of selective retransm ssion allows the rate of the client
and the server to "push up" against the maxi mumrate (and thus | ose
packets) w thout significant penalty. That is, every tinme that packet
transm ssi on exceeds the rate of the channel or receiver, the recovery
cost to retransnit the dropped packets is generally far |less than
retransmitting fromthe first dropped packet.

The interpacket gap is expressed in 1/32nd’s of the MIU packet

transm ssion time. The mnimuminterpacket gap is 0 and the maxi num gap
that can be described in the protocol is 8 packet tinmes. This places a
l[imt on the slowest receivers that can be efficiently used on a
network, at |east those handling multi-packet Requests and Responses.
This schene also limts the granularity of adjustment. However, the
granularity is relative to the speed of the network, as opposed to an
absolute time. For entities on different networks of significantly

di fferent speed, we assune the interconnecting gateways can buffer
packets to conpensate<2>. Wth different network speeds and internediary
nodes subject to packet |oss, a node must adjust the interpacket gap
based on packet |oss. The interpacket gap paraneter may be of limted
use.

2.6. Security

VMIP provi des an (optional) secure node that protects agai nst the usua
security threats of peeking, inpostoring, message tanpering and repl ays.
Secure VMIP nust be used to guarantee any of the transport-|eve
reliability properties unless it is guaranteed that there are no

i ntruders or agents that can nodi fy packets and update the packet
checksuns. That is, non-secure VMIP provides no guarantees in the
presence of an intelligent intruder

The design closely follows that described by Birrell [1]. Authenticated
i nformati on about a renote entity, including an encryption/decryption
key, is obtained and naintai ned using a VMIP nmanagenent operation, the
aut henti cated Probe operation, which is executed as a non-secure VMIP
nmessage transaction. |f a server receives a secure Request for which
the server has no entity state, it sends a Probe request to the VMIP

<2> Gat eways nust al so enpl oy techniques to preserve or intelligently
nodi fy (if appropriate) the interpacket gaps. |In particular, they nust
be sure not to arbitrarily renove interpacket gaps as a result of their
forwardi ng of packets.

Cheriton [page 19]

RFC 1045 VMIP February 1988

managenent nodul e of the client, "challenging” it to provide an

aut henticator that both authenticates the client as being associated
with a particular principal as well as providing a key for
encryption/decryption. The principal can include a real and effective
principal, as used in UNIX <3>. Nanely, the real principal is the
princi pal on whose behal f the Request is being perfornmed whereas the
effective principal is the principal of the npbdul e invoking the request
or remote procedure call

Peeking is prevented by encrypting every Request and Response packet
with a working Key that is shared between Cient and Server.

| mpostoring and replays are detected by conparing the Transaction
identifier with that stored in the corresponding entity state record
(which is created and updated by VMIP as needed). Message tanpering is
detected by encryption of the packet including the Checksumfield. An
i ntruder cannot update the checksum after nodifying the packet w thout
knowi ng the Key. The cost of fully encrypting a packet is close to the
cost of generating a cryptographic checksum (and of course, encryption
is needed in the general case), so there is no explicit provision for
crypt ographi c checksum wi t hout packet encryption

A Client determ nes the Principal of the Server and acquires an

aut henticator for this Server and Principal using a higher |eve
protocol. The Server cannot decrypt the authenticator or the Request
packets unless it is in fact the Principal expected by the dient.

An encrypted VMIP packet is flagged by the EPG bit in the VMIP packet
header. Thus, encrypted packets are easily detected and demul ti pl exed
fromunencrypted packets. An encrypted VMIP packet is entirely
encrypted except for the Cient, Version, Domain, Length and Packet

Fl ags fields at the beginning of the packet. Cdient identifiers can be
assi gned, changed and used to have no real neaning to an intruder or to
only conmuni cate public information (such as the host Internet address).
They are otherw se just a random neans of identification and
denul ti pl exi ng and do not therefore divul ge any sensitive information.
Further secure nmeasures nust be taken at the network or data link |evels
if this information or traffic behavior is considered sensitive.

VMIP provides multiple authentication domains as well as an encryption
qualifier to accommpdate different encryption algorithns and their

<3> Princi pal group nmenbership nmust be obtained, if needed, by a
hi gher | evel protocol

Cheriton [page 20]

RFC 1045 VMIP February 1988

correspondi ng security/performance trade-offs. (See Appendix V.) A
separate key distribution and authentication protocol is required to

handl e generation and distribution of authenticators and keys. This

protocol can be inmplenented on top of VMIP and can closely follow the
Birrell design as well.

Security is optional in the sense that nmessages may be secure or

non- secure, even between consecutive nmessage transactions fromthe same
client. It is also optional in that VMIP clients and servers are not
required to inplement secure VMIP (although they are required to respond
intelligently to attenpts to use secure VMIP). At worst, a Cient my
fail to comunicate with a Server if the Server insists on secure
comuni cation and the Cient does not inplenent security or vice versa.
However, a failure to comrunicate in this case is necessary froma
security standpoint.

2.7. Multicast

The Server entity identifier in a message transaction can identify an
entity group, in which case the Request is nmulticast to every Entity in
this group (on a best-efforts basis). The Request is retransmtted
until at |least one Response is received (or an error tineout occurs)
unless it is a datagram Request. The Cient can receive nmultiple
Responses to the Request.

The VMIP service interface does not directly provide reliable multicast
because it is expensive to provide, rarely needed by applications, and
can be inplenented by applications using the multiple Response feature.
However, the protocol itself is adequate for reliable nmulticast using
positive acknow edgments. |n particular, a sophisticated dient

i mpl enentation could maintain a list of nmenbers for each entity group of
interest and retransmt the Request until acknow edged by all nenbers.
No nodifications are required to the Server inplenentations.

VMIP supports a sinmple form of subgroup addressing. |If the CRE bit is
set in a Request, the Request is delivered to the subgroup of entities
in the Server group that are co-resident with one or nmore entities in
the group (or individual entity) identified by the CoresidentEntity
field of the Request. This is commonly used to send to the nmanager
entity for a particular entity, where Server specifies the group of such
managers. Co-resident nmeans "using the same VMIP nodul e, and logically
on the sane network host. In particular, a Probe request can be sent to
the particul ar VMIP managenent nmodule for an entity by specifying the
VMIP managenent group as the Server and the entity in question as the
CoResi dentEntity.

Cheriton [page 21]

RFC 1045 VMIP February 1988

As an experinmental aspect of the protocol, VMIP supports the Server
sendi ng a group Response which is sent to the Client as well as nenbers
of the destination group of Servers to which the original Request was
sent. The MDG bit indicates whether the dient is a nenber of this
group, allowi ng the Server nodule to determ ne whether separately
addressed packet groups are required to send the Response to both the
Client and the Server group. Nornally, a Server accepts a group
Response only if it has received the Request and not yet responded to
the Cient. A so, the Server nmust explicitly indicate it wants to
accept group Responses. Logically, this facility is anal ogous to
responding to a mail nmessage sent to a distribution Iist by sending a
copy of the Response to the distribution |ist.

2.8. Real-time Comruni cation

VMIP provides three forms of support for real-tinme conmunication, in
addition to its standard facilities, which nake it applicable to a w de
range of real-tinme applications. First, a priority is transmtted in
each Request and Response which governs the priority of its handling.
The priority levels are intended to correspond roughly to:

- urgent/energency.
- inportant

- nor mal

- background.

with additional gradations for each level. The interpretation and
i mpl enentati on of these priority levels is otherw se host-specific, e.g.
the assignment to host processing priorities.

Second, datagram Requests allow the Client to send a datagramto another
entity or entity group using the VMIP nami ng, transm ssion and delivery
mechani sm but wi thout bl ocking, retransm ssions or acknow edgnent.

(The client can still request acknow edgment using the APG bit although
the Server does not expect mssing portions of a multi-packet datagram
Request to be retransnitted even if some are not received.) A datagram
Request in non-streaned node supersedes all previous Requests fromthe
same Client. A datagram Request in streamnode is queued (if necessary)
after previous datagram Requests on the same stream (See Section
2.11.)

Finally, VMIP provides several control bit flags to nodify the handling
of Requests and Responses for real-tinme requirenments. First, the

Cheriton [page 22]

RFC 1045 VMIP February 1988

conditional nessage delivery (CVD) flag causes a Request to be di scarded
if the recipient is not waiting for it when it arrives, simlarly for
the Response. This option allows a client to send a Request that is
contingent on the server being able to process it inmmediately. The
header checksumonly (HCO flag indicates that the checksum has been
cal cul ated only on the VMIP header and not on the data segnent.
Applications such as voice and video can avoid the overhead of

cal cul ati ng the checksum on data whose utility is insensitive to typica
bit errors without |osing protection on the header information

Finally, the No Retransm ssion (NRT) flag indicates that the recipient
of a message should not ask for retransmission if part of the nessage is
m ssing but rather either use what was received or discard it.

None of these facilities introduce new protocol states. |In fact, the
total processing overhead in the normal case is a bit flag test for CMD
HCO or NRT plus assignment of priority on packet transm ssion and
reception. (In fact, CVD and NRT are not tested in the normal case.)
The additional code conplexity is mininmal. W feel that the overhead
for providing these real-tinme facilities is mninmal and that these
facilities are both inportant and adequate for a wide class of real-tine
applications.

Several of the normal facilities of VMIP appear useful for real-tine
applications. First, nmulticast is useful for distributed, replicated
(fault-tolerant) real-time applications, allowing efficient state query
and update for (for exanple) sensors and control state. Second, the DGM
or idenpotent flag for Responses has some real-tinme benefits, nanely: a
Request is redone to get the | atest val ues when the Response is |ost,
rather than just returning the old values. The desirability of this
behavior is illustrated by considering a request for the current tine of
day. An idenpotent handling of this request gives better accuracy in
returning the current time in the case that a retransmission is
necessary. Finally, the request-response semantics (in the absence of
stream ng) of each new Request froma Client term nating the previous
nessage transactions fromthat Cient, if any, provides the "npbst recent
is nmost inmportant” handling of processing that nost real-tine
applications require.

In general, a key design goal of VMIP was provide an efficient
gener al - pur pose transport protocol with the features required for

real -time comuni cation. Further experience is required to determ ne
whet her this goal has been achi eved.

Cheriton [page 23]

RFC 1045 VMIP February 1988

2.9. Forwarded Message Transactions

A Server mmy invoke another Server to handle a Request. It is fairly
comon for the invocation of the second Server to be the |last action
perfornmed by the first Server as part of handling the Request. For
exanpl e, the original Server may function primarily to sel ect a process
to handl e the Request. Also, the Server may sinply check the

aut horization on the Request. Describing this situation in the context
of RPC, a nested renote procedure call may be the last action in the
renote procedure and the return paraneters are exactly those of the
nested call. (This situation is analogous to tail recursion.)

As an optimzation to support this case, VMIP provides a Forward
operation that allows the server to send the nested Request to the other
server and have this other server respond directly to the dient.

I f the nmessage transaction being forwarded was not nulticast, not secure
or the two Servers are the sane principal and the ForwardCount of the
Request is |less than the maxi mum forward count of 15, the Forward
operation is inplemented by the Server sending a Request onto the next
Server with the forwarded Request identified by the sane Cient and
Transaction as the original Request and a ForwardCount one greater than
the Request received fromthe Cient. |In this case, the new Server
responds directly to the dient. A forwarded Request is illustrated in
the follow ng figure.

R + Request R +
| dient +---------------- >| Server 1
. + R +
~ |
| | forwarded Request
| \
| Response L +
A LR | Server 2
R +

If the nmessage transaction does not neet the above requirenents, the
Server’s VMIP nodul e i ssues a nested call and sinply maps the returned
Response to a Response to original Request w thout further Server-I|eve
processing. In this case, the only optimzation over a user-|eve

nested call is one fewer VMIP service operation; the VMIP nodul e handl es
the return to the invoking call directly. The Server may al so use this
form of forwardi ng when the Request is part of a stream of nessage
transactions. Oherwise, it nust wait until the forwarded nessage
transaction conpl etes before proceeding with the subsequent nessage
transactions in the stream

Cheriton [page 24]

RFC 1045 VMIP February 1988

| npl enentation of the user-level Forward operation is optional

dependi ng on whether the server nodules require this facility. Handling
an incom ng forwarded Request is a mnor nodification of handling a
normal incom ng Request. In particular, it is only necessary to exam ne
the ForwardCount field when the Transaction of the Request natches that
of the | ast nessage transaction received fromthe Cient. Thus, the
additional conplexity in the VMIP nodul e for the required forwarding
support is mnimal; the conplexity is concentrated in providing a highly
optim zed user-level Forward primtive, and that is optional

2.10. VMIP Management

VMIP managenent includes operations for creating, deleting, nodifying
and querying VMIP entities and entity groups. VMIP managenent is
logically inplenented by a VMIP nanagenent server nodule that is invoked
usi ng a nessage transaction addressed to the Server, VMIP_MANAGER GROUP
a well-known group entity identifier, in conjunction with Coresident
Entity mechanismintroduced in Section 2.7. A particular Request may
address the | ocal module, the nodul e managing a particular entity, the
set of modul es managi ng those entities contained in a specific group or
al | managenent nodul es, as appropriate.

The VMIP nanagenent procedures are specified in Appendix II1.

2.11. Streamed Message Transactions

Streanmed nessage transactions refer to two or nore nessage transactions
initiated by a Cient before it receives the response to the first
nmessage transaction, with each transaction bei ng processed and responded
to in order but asynchronous relative to the initiation of the
transactions. A Cient streans nessages transactions, and thereby has
nmul ti pl e message transacti ons outstanding, by sending themas part of a
single run of nessage transactions. A run of nessage transactions is a
sequence of message transactions with the same Cient and Server and
consecutive Transaction identifiers, with all but the first and |ast
Requests and Responses flagged with the NSR (Not Start Run) and NER
(Not End Run) control bits. (Conversely, the first Request and
Response does not have the NSR set and the | ast Request and Response
does not have the NER bit set.) The nessage transactions in a run use

Cheriton [page 25]

RFC 1045 VMIP February 1988

consecutive transaction identifiers (except if the STI bit <4> is used
in one, in which case the transaction identifier for the next nessage
transaction is 256 greater, rather than 1).

The Client retains a record for each outstanding transaction until it
gets a Response or is tinmed out in error. The record provides the
information required to retransnit the Request. On retransm ssion
timeout, the client retransmts the |last Request for which it has not
recei ved a Response the sane as is done with non-streaned conmuni cation
(I.e. there need be only one tinmeout for all the outstandi ng nessage
transactions associated with a single client.)

The consecutive transaction identifiers within a run of nessage
transactions are used as sequence nunbers for error control. The Server
handl es each nessage transaction in the sequence specified by its
transaction identifier. Wen it receives a nessage transaction that is
not marked as the beginning of a run, it checks that it previously

recei ved a nmessage transaction with the predecessor transaction
identifier, either 1 less than the current one or 256 less if the
previous one had the STI bit set. |If not, the Server sends a

Noti fyVm pClient operation to the Client’s manager indicating either

(1) the first nessage transaction was not fully received, or else (2) it
has no record of the | ast one received. |If the NRT control flag is set,
it does not await nor expect retransm ssion but proceeds with handling
this Request. This flag is used primarily when datagram Requests are
used as part of a stream of nessage transactions. |f NRT was not
specified, the Cient nust retransmt fromthe first nessage transaction
not fully received (either at all or in part) before the Server can
proceed with handling this run of Requests or else restart the run of
nmessage transactions.

The Client expects to receive the Responses in a consecutive sequence,
using the Transaction identifier to detect m ssing Responses. Thus, the
Server nust return Responses in sequence except possibly for sone gaps,
as follows. The Server can specify in the PGount field in a Response,
the nunber of consecutively previous Responses that this Response

<4> The STl bit is used by the Cient to effectively allocate 255
transaction identifiers for use by the Server in returning a | arge
Response or stream of Responses.

Cheriton [page 26]

RFC 1045 VMIP February 1988

corresponds to, up to a maxi num of 255 previ ous Responses <5>. Thus,
for exanple, a Response with Transaction identifier 46 and PCGcount 3
represents Responses 43, 44, 45 and 46. This facility allows the Server
to elimnate sending Responses to Requests that require no Response,

ef fectively batching the Responses into one. It also allows the Server
to effectively maintain strictly consecutive sequenci ng when the Cient
has ski pped 256 Transaction identifiers using the STI bit and the Server
does not have that many Responses to return.

If the Cient receives a Response that is not consecutive, it
retransmts the Request(s) for which the Response(s) is/are nissing
(unl ess, of course, the correspondi ng Requests were sent as datagrans).
The Cient should wait at the end of a run of message transactions for
the last one to conplete.

When a Server receives a Request with the NSR bit clear and a higher
transaction identifier than it currently has for the Client, it

term nates all processing and di scards Responses associated with the
previ ous Requests. Thus, a stream of nmessage transactions is
effectively aborted by starting a new run, even if the Server was in the
m ddl e of handling the previous run.

Using a m xture of datagram and nornmal Requests as part of a stream of
nessage transactions, particularly with the use of the NRT bit, can | ead
to conpl ex behavi or under packet loss. It is reconmended that a run of
nmessage transactions be all of one type to avoid problens, i.e. al

normal or all datagranms. Finally, when a Server forwards a Request that
is part of a run, it nmust suspend further processing of the subsequent
Requests until the forwarded Request has been handl ed, to preserve order
of processing. The sinplest handling of this situation is to use a rea
nested call when forwarding with streamed nessage transactions.

Fl ow control of streanmed nmessage transactions relies on rate control at
the dient plus receipt (or non-receipt) of managenent notify operations
i ndi cating the presence of overrunning. A Cient nust reduce the nunber
of outstandi ng nessage transactions at the Server when it receives a
Noti fyVmt pServer operation with the MSGTRANS OVERFLOW ResponseCode. The
transact paraneter indicates the |ast packet group that was accepted.

<5> PCcount actually corresponds to packet groups which are described
in Section 2.13. This (sinplified) description is accurate when there
is one Request or Response per packet group

Cheriton [page 27]

RFC 1045 VMIP February 1988

The inpl enentati on of nultiple outstandi ng nessage transactions requires
the ability to record, timeout and buffer nultiple outstandi ng nessage
transactions at the Client end as well as the Server end. However, this
facility is optional for both the ient and the Server. dCient systens
wi th heavy-wei ght processes and hi gh network access cost are nost |ikely
to benefit fromthis facility. Servers that serve a wide variety of
client nmachi nes should inplenent stream ng to accommpdate these types of
clients.

2.12. Fault-Tol erant Applications

One approach to fault-tolerant systens is to maintain a | og of al
messages sent at each node and replay the nessages at a node when the
node fails, after restarting it fromthe |ast checkpoint <6> As an
experimental facility, VMIP provides a Receive Sequence Nunber field in
the NotifyvntpCient and NotifyVntpServer operations as well as the Next
Recei ve Sequence (NRS) flag in the Response packet to allow a sender to
| og a receive sequence nunber with each nessage sent, allow ng the
packets to be replayed at a recovering node in the same sequence as they
were originally received, thereby recovering to the sane state as

bef ore.

Basi cal |y, each sendi ng node maintains a receive sequence nunber for
each receiving node. On sending a Request to a node, it presune that
the receive sequence nunmber is one greater than the one it has recorded
for that node. |If not, the receiving node sends a notify operation

i ndi cating the receive sequence nunber assigned the Request. The NRS in
the Response confirns that the Request nessage was the next receive
sequence nunber, so the sender can detect if it failed to receive the
notify operation in the previous case. Wth Responses, the packets are
ordered by the Transaction identifier except for nulticast nessage
transactions, in which there may be multiple Responses with the sane
identification. |In this case, NotifyVm pServer operations are used to
provi de recei ve sequence nunbers.

Thi s experinental extension of the protocol is focused on support for
fault-tolerant real-time distributed systens required in various
critical applications. It may be renpbved or extended, dependi ng on
further investigations.

<6> The sender-based |logging is being investigated by WIly Zwaenepoe
of Rice University.

Cheriton [page 28]

RFC 1045 VMIP February 1988

2.13. Packet Groups

A message (whether Request or Response) is sent as one or nore packet
groups. A packet group is one or nore packets, each containing the sane
transaction identification and nessage control bl ock. Each packet is
formatted as bel ow with the nessage control block |ogically enbedded in
the VMIP header.

o e m e e e e e e e e e e e e e e e S TS +
| VMIP Header | |
e R R T || segnent data

| VMTP Control | Message Control Block || |
T o e e e e o e +

The sone fields of the VMIP control portion of the packet and data
segnent portion can differ between packets within the sane packet group

The segnment data portion of a packet group represents up to 16

kil ooctets of the segnent specified in the message control block. The
portion contained in each packet is indicated by the PacketDelivery
field contained in the VMIP header. The PacketDelivery field as a bit
mask has a simlar interpretation to the MsgDelivery field in that each
bit corresponds to a segnent data block of 512 octets. The

Packet Delivery field imts a packet group to 16 kilooctets and a

maxi mum of 32 VMIP packets (with a mininumof 1 packet). Data can be
sent in fewer packets by sending multiple data bl ocks per packet. W
require that the underlying datagram service support delivery of (at

m ni mum the basic 580 octet VMIP packet <7>. To illustrate the use of
the PacketDelivery field, consider for exanple the Ethernet which has a
MIU of 1536 octets. so one would send 2 512-octet segnent data bl ocks
per packet. (In fact, if a third block is last in the segment and | ess
than 512 octets and fits in the packet without making it too big, an

Et her net packet could contain three data bl ocks. Thus, an Ethernet
packet group for a segnment of size 0x1D00 octets (14.5 bl ocks) and
MsgDel i very 0x000074FF consists of 6 packets indicated as foll ows <8>.

<7> Note that with a 20 octet |IP header, a VMIP packet is 600
octets. W propose the convention that any host inplenenting VMIP
inmplicitly agrees to accept |P/VMIP packets of at |east 600 octets.

<8> We use the C notation OxHHHH to represent a hexadeci mal nunber.

Cheriton [page 29]

RFC 1045 VMIP February 1988

Packet
Delivery 11 11 11 11 00 10 10 10 0O0O0O0O0.
0000 0400 0800 0CO0O 1000 1400 1800 1C00

T T S L e
Segnent ||.. ... oo e]
e
: : : : : Y :
% % % % % vV Vv /] %
B LTI g +o---4+ +---+
Packets | 1| 2| 3| 4| | 5] | 6
e Fo-oo -4
Each '.’ is 256 octets of data. The PacketDelivery nasks for the 6

packets are: 0x00000003, 0x0000000C, 0x00000030, 0x000000C0, 0x00001400
and 0x00006000, indicating the segment bl ocks contained in each of the
packets. (Note that the delivery bits are in little endian order.)

A packet group is sent as a single "blast" of packets with no explicit
flow control. However, the sender should estimate and transnit at a
rate of packet transm ssion to avoid congesting the network or
overwhel m ng the receiver, as described in Section 2.5.6. Packets in a
packet group can be sent in any order with no change in semantics.

When the first packet of a packet group is received (assum ng the Server
does not decide to discard the packet group), the Server saves a copy of
the VMIP packet header, indicates it is currently receiving a packet
group, initializes a "current delivery mask” (indicating the data in the
segnent received so far) to 0, accepts this packet (updating the current
delivery mask) and sets the tiner for the packet group. Subsequent
packets in the packet group update the current delivery mask.

Reception of a packet group is term nated when either the current
delivery mask indicates that all the packets in the packet group have
been received or the packet group reception timer expires (set to TC3 or

TS1). |If the packet group reception tinmer expires, if the NRT bit is
set in the Control flags then the packet group is discarded if not
conpl ete unless MDMis set. |In this case, the MsgDelivery field in the

message control block is set to indicate the segment data bl ocks
actually received and the nmessage control block and segnent data
received is delivered to application |evel.

If NRT is not set and not all data bl ocks have been received, a

Noti fyVmpCient (if a Request) or NotifyVnmtpServer (if a Response) is
sent back with a PacketDelivery field indicating the bl ocks received.
The source of the packet group is then expected to retransmt the

m ssing blocks. [If not all blocks of a Request are received after
Request AckRetries(Cient) retransm ssions, the Request is discarded and

Cheriton [page 30]

RFC 1045 VMIP February 1988

a NotifyVm pCient operation with an error response code is sent to the
client’s manager unless MDMis set. Wth a Response, there are
ResponseAckRetri es(Server) retransm ssions and then, if MDMis not set,
the requesting entity is returned the nessage control block with an

i ndi cation of the anmpunt of segnent data received extending contiguously
fromthe start of the segnent. E.g. if the sender sent 6 512-octet

bl ocks and only the first two and the last two arrived, the receiver
woul d be told that 1024 octets were received. The ResponseCode field is
set to BAD REPLY_SEGQVENT. (Note that VMIP is only able to indicate the
specific segment bl ocks received if MDMis set.)

The paraneters Request AckRetries(Client) and ResponseAckRetries(Server)
could be set on a per-client and per-server basis in a sophisticated
i mpl enent ati on based on know edge of packet | oss.

If the APGflag is set, a NotifyVmpCient or NotifyVntpServer
operation is sent back at the end of the packet group reception
dependi ng on whether it is a Request or a Response.

At mnimum a Server should check that each packet in the packet group
contains the sane Client, Server, Transaction identifier and SegnentSi ze
fields. It is a protocol error for any field other than the Checksum
packet group control flags, Length and PacketDelivery in the VMIP header
to differ between any two packets in one packet group. A packet group
containing a protocol error of this nature should be discarded.

Notify operations should be sent (or invoked) in the manager whenever
there is a problemw th a unicast packet. i.e. negative acknow edgnents
are always sent in this case. 1In the case of problens with multicast
packets, the default is to send nothing in response to an error
condition unless there is sone clear reason why no other node can
respond positively. For exanple, the packet m ght be a Probe for an
entity that is known to have been recently existing on the receiving
host but now invalid and could not have migrated. |In this case, the
recei ving host responds to the Probe indicating the entity is

nonexi stent, knowi ng that no other host can respond to the Probe. For
packets and packet groups that are received and processed w t hout
problems, a Notify operation is invoked only if the APG bit is set.

2.14. Runs of Packet Groups

A run of packet groups is a sequence of packet groups, all Request
packets or all Response packets, with the sane Cient and consecutive
transaction identifiers, all but the first and | ast packets flagged with
the NSR (Not Start Run) and NER (Not End Run) control bits. Wen each
packet group in the run corresponds to a single Request or Response, it

Cheriton [page 31]

RFC 1045 VMIP February 1988

is identical to a run of message transactions. (See Section 2.11)
However, a Request nmessage or a Response nmessage may consists of up to
256 packet groups within a run, for a maxi mum of 4 negaoctets of segnent
data. A nessage that is continued in the next packet group in the run
is flagged in the current packet group by the CM5 flag. O herwi se, the
next packet group in the run (if any) is treated as a separate Request
or Response.

Normal |y, each Request and Response nessage is sent as a single packet
group and each run consists of a single packet group. |In this case
neither NSR or NER are set. For multi-packet group nessages, the

Packet Delivery mask in the i-th packet group of a nessage corresponds to
the portion of the segment offset by i-1 tinmes 16 kil ooctets,
designating the the first packet group to have i = 1.

2.15. Byte Order

For purposes of transnission and reception, the MCB is treated as
consisting of 8 32-bit fields and the segnent is a sequence of bytes.
VMIP transmits the MCB in big-endian order, perform ng byte-swapping, if
necessary, before transmssion. A little-endian host nmust byte-swap the
MCB on reception. (The data segnent is transmitted as a sequence of
bytes with no reordering.) The byte order of the sender of a nessage is
indicated by the LEE bit in the entity identifier for the sender, the
Client field if a Request and the Server field if a Response. The
sender and receiver of a nessage are required to agree in some higher

| evel protocol (such as an RPC presentation protocol) on who does
further swapping of the MCB and data segnment if required by the types of
the data actually being transmtted. For exanple, the segnent data nay
contain a record with 8-bit, 16-bit and 32-bit fields, so additiona
transformation is required to nmove the segnent froma host of one byte
order to another.

VMIP to date has used a hi gher-level presentation protocol in which
segment data is sent in the native order of the sending host and

byt e- swapped as necessary by the receiving host. This approach

m ni m zes the byte-swappi ng overhead between machi nes of comon byte
order (including when the conmunication is transparently | ocal to one
host), avoids a strong bias in the protocol to one byte-order, and
allows for the sending entity to be sending to a group of hosts with
different byte orders. (Note that the byte-swap overhead for the MCB is
mnimal.) The presentation-level overhead is mininmal because nost
conmon operations, such as file access operations, have paraneters that
fit the MCB and data segnent data types exactly.

Cheriton [page 32]

RFC 1045 VMIP February 1988

2.16. Mnimal VMIP | npl enmentation

A mnimal VMIP client needs to be able to send a Request packet group
and recei ve a Response packet group as well as accept and respond to
Requests sent to its managenent nodul e, including Probe and Notifydient
operations. It may also require the ability to invoke Probe and Notify
operations to locate a Server and acknow edge responses. (the latter
only if it is involved in transactions that are not idenmpotent or

dat agr am nessage transactions. However, a sinple sensor, for exanple,
can transmt VMIP dat agram Requests indicating its current state with
even | ess nechanism) The minimal client thus requires very little code
and is suitable as a basis for (e.g.) a network boot | oader

A mnimal VMIP server inplenents idenpotent, non-encrypted nessage
transactions, possibly with no segnent data support. It should use an
entity state record for each Request but need only retain it while
processi ng the Request. Wthout segnent data | arger than a packet,
there is no need for any tiners, buffering (outside of imredi ate request
processing) or queuing. |In particular, it needs only as nany records as
nmessage transactions it handl es sinultaneously (e.g. 1). The entity
state record is required to recogni ze and respond to Request
retransm ssi ons during request processing.

The mini mal server need only receive Requests and and be able to send
Response packets. It need have only a mininmal nmanagenment nodul e
supporting Probe operations. (Support for the NotifyVnt pdient
operation is only required if it does not respond inmrediately to a
Request.) Thus the VMIP support for say a time server, sensor, or
actuator can be extrenely sinple. Note that the server need never issue
a Probe operation if it uses the host address of the Request for the
Response and does not require the Client information returned by the
Probe operation. The mininmal server should al so support reception of

f orwar ded Requests.

2.17. Message vs. Procedural Request Handling

A request-response protocol can be used to inplement two forns of
semantics on reception. Wth procedural handling of a Request, a
Request is handl ed by a process associated with the Server that
effectively takes on the identity of the calling process, treating the
Request nessage as invoking a procedure, and relinquishing its
association to the calling process on return. VMIP supports nultiple
nested calls spanning multiple nmachines. 1In this case, the distributed
call stack that results is associated with a single process fromthe

st andpoi nt of authentication and resource managenent, using the
Processld field supported by VMIP. The entity identifiers effectively

Cheriton [page 33]

RFC 1045 VMIP February 1988

link these call frames together. That is, the Client field in a Request
is effectively the return link to the previous call frane.

Wth nessage handling of a Request, a Request nessage is queued for a
server process. The server process dequeues, reads, processes and
responds to the Request nessage, executing as a separate process.
Subsequent Requests to the same server are queued until the server asks
to receive the next Request.

Procedural senantics have the advantage of all ow ng each Request (up to
the resource limts of the Server) to execute concurrently at the
Server, with Request-specific synchronization. Mssage semantics have
the advantage that Requests are serialized at the Server and that the
request processing logically executes with the priority, protection and
i ndependent execution of a separate process. Note that procedural and
nmessage handling of a request appear no differently to the client

i nvoki ng the nessage transaction, except possibly for differences in
per f or mance.

We view the two Request handling approaches as appropriate under
di fferent circunstances. VMIP supports both nodels.

2.18. Bibliography

The basic protocol is simlar to that used in the original formof the V
kernel [3, 4] as well as the transport protocol of Birrell and

Nel son’s [2] renote procedure call nmechanism An earlier version of the
protocol was described in SIGCOVW 86 [6]. The rate-based flow contro

is simlar to the techniques of Netblt [9]. The support for idenpotency
draws, in part, on the favorable experience with idenmpotency in the V
distributed system |Its use was originally inspired by the Wodstock
File Server [11]. The nulticast support draws on the multicast
facilities in V[5] and is designed to work with, and is now i npl enent ed
using, the multicast extensions to the Internet [8] described in RFC 966
and 988. The secure version of the protocol is simlar to that
described by Birrell [1] for secure RPC. The use of runs of packet
groups is simlar to Fletcher and Watson’s delta-T protocol [10]. The
use of "managenent" operations inplenented using VMIP in place of
speci al i zed packet types is viewed as part of a general strategy of
using recursion to sinplify protocol architectures [7].

Finally, this protocol was designed, in part, to respond to the

requirenents identified by Braden in RFC 955. W believe that VMIP
satisfies the requirenments stated in RFC 955.

Cheriton [page 34]

RFC 1045 VMIP February 1988

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

A.D. Birrell, "Secure Conmunication using Renote Procedure
Calls", ACM Trans. on Conputer Systens 3(1), February, 1985.

A. Birrell and B. Nelson, "lInmplenenting Renbte Procedure Calls",
ACM Trans. on Conputer Systens 2(1), February, 1984.

D.R Cheriton and W Zwaenepoel, "The Distributed V Kernel and its
Performance for Diskless Wrkstations", In Proceedings of the 9th
Synposi um on Qperating System Principles, ACM 1983.

D.R Cheriton, "The V Kernel: A Software Base for Distributed
Systens", |EEE Software 1(2), April, 1984.

D.R Cheriton and W Zwaenepoel, "Distributed Process Goups in
the V Kernel", ACM Trans. on Computer Systemnms 3(2), My, 1985.

D.R Cheriton, "VMIP: A Transport Protocol for the Next
Generation of Communi cati on Systens", In Proceedi ngs of
S| GCOW 86, ACM Aug 5-7, 1986.

D.R Cheriton, "Exploiting Recursion to Sinplify an RPC
Conmuni cati on Architecture”, in preparation, 1988.

D.R Cheriton and S.E. Deering, "Host Goups: A Milticast
Ext ensi on for Datagram Internetworks”, In 9th Data Communi cation
Synposi um | EEE Conput er Soci ety and ACM SI GCOVW Sept enber, 1985.

D.D. dark and M Lanbert and L. Zhang, "NETBLT: A Bul k Data
Transfer Protocol", Technical Report RFC 969, Defense Advanced
Research Projects Agency, 1985.

J.G Fletcher and R W Wtson, "Mechanismfor a Reliable Tinmner-
based Protocol", Computer Networks 2:271-290, 1978.

Cheriton [page 35]

RFC 1045 VMIP February 1988

[11] D. Swinehart and G MDaniel and D. Boggs, "WS: A Sinple File
System for a Distributed Environment", In Proc. 7th Synp.
Qperating Systens Principles, 1979.

Cheriton [page 36]

RFC 1045 VMIP February 1988

3. VMIP Packet Formats

VMIP uses 2 basic packet formats correspondi ng to Request packets and
Response packets. These packet formats are identical in nost of the
fields to sinplify the inplenmentation

We first describe the entity identifier format and the packet fields
that are used in general, followed by a detailed description of each of
the packet formats. These fields are described belowin detail. The

i ndi vidual packet formats are described in the foll owi ng subsections.
The reader and VMIP inpl ementor nay wish to refer to Chapters 4 and 5
for a description of VMIP event handling and only refer to this detailed
descripti on as needed.

3.1. Entity Identifier Format
The 64-bit non-group entity identifiers have the follow ng substructure.
1 2 3

1234567890123456789012345678901

B I e e i i I o e R T i ol S S S S S e S S s o i

| Domai n- speci fic structure

|
i I i T S S S i St S S R e L o
Domai n-specific structure
B T s i I S e i S i i S S e S

The field neanings are as follows:

RAE Renote Alias Entity - the entity identifier identifies
an entity that is acting as an alias for sone entity
outside this entity domain. This bit is used by
hi gher-1evel protocols. For instance, servers nay take
extra security and protection neasures with aliases.

GRP Goup - 0, for non-group entity identifiers.

LEE Little-Endian Entity - the entity transmts data in
little-endian (VAX) order.

RES Reserved - must be O.

The 64-bit entity group identifiers have the follow ng substructure.

Cheriton [page 37]

RFC 1045 VMIP February 1988

0 1 2 3

01234567890123456789012345678901

T S S e e I i S i S S S S S A o o o
|

UR

g E| Domai n-specific structure

P| S

B T i I S T i s i S S S
Domai n-specific structure

I S T i S S T S S S S T Sl S S S S i

The field neanings are as follows:

RAE Renote Alias Entity - same as for non-group entity
identifier.

GRP Goup - 1, for entity group identifiers.

uGP Unrestricted Group - no restrictions are placed on
joining this group. |.e. any entity can join linmted

only by inplementation resources.
RES Reserved - must be 0.

The all-zero entity identifier is reserved and guaranteed to be
unal l ocated in all domains. |In addition, a domain nmay reserve part of
the entity identifier space for statically allocated identifiers.
However, this is domain-specific.

Description of currently defined entity identifier domains is provided
in Appendix |IV.

3.2. Packet Fields

dient 64-bit identifier for the client entity associated with
this packet. The structure, allocation and binding of
this identifier is specific to the specified Domain. An
entity identifier always includes 4 types bits as
specified in Section 3.1.

Ver si on The 3-bit identifier specifying the version of the
protocol. Current version is version O.

Domai n The 13-bit identifier specifying the nam ng and
adm ni stration domain for the client and server named in
the packet.

Cheriton [page 38]

RFC 1045

Packet Fl ags:

HCO

EPG

VPG

Lengt h

Control Fl ags:

NRS

APG

NSR

NER

NRT

Cheriton

VMIP February 1988

3 bits. (The normal case has none of the flags set.)

Header checksumonly - checksum has only been cal cul at ed
on the header. This is used in sone real-tinme
applications where the strict correctness of the data is
not needed.

Encrypted packet group - part of a secure nessage
transaction.

Mul ticast packet group - packet was nulticast on
transm ssi on.

A 13-bit field that specifies the number of 32-bit words
in the segnent data portion of the packet (if any),
excluding the checksumfield. (Every VMIP packet is
required to be a multiple of 64 bits, possibly by
paddi ng out the segnment data.) The mnimmlegal Length
is 0, the maximumlength is 4096 and it mnmust be an even
nunber .

9 bits. (The normal case has none of the flags set.)

Next Receive Sequence - the associ ated Request nessage
(in a Response) or previous Response (if a Request) was
recei ved consecutive with the last Request fromthis
entity. That is, there was no interfering nessages
received.

Acknowl edge Packet Group - Acknow edge packet group on
receipt. |If a Request, send back a Request to the
client’s manager providing an update on the state of the
transaction as soon as the request packet group is

recei ved, independent of the response bei ng avail abl e.

I f a Response, send an update to the server’'s manager as
soon as possible after response packet group is received
providi ng an update on the state of the transaction at
the client

Not Start Run - 1 if this packet is not part of the
first packet group of a run of packet groups.

Not End Run - 1 if this packet is not part of the |ast
packet group of a run of packet groups.

No Retransmi ssion - do not ask for retransm ssions of
this packet group if not all received within tineout

[page 39]

RFC 1045

STI

Ret ransm t Count :

For war dCount :

I nt er packet Gap:

Cheriton

VMIP February 1988

period, just deliver or discard.

Menber of Destination Group - this packet is sent to a
group and the client is a nmenber of this group

Continued Message - the nessage (Request or Response) is
continued in the next packet group. The next packet
group has to be part of the sane run of packet groups.

Skip Transaction Identifiers - the next transaction
identifier that the Cient plans to use is the current
transaction plus 256, if part of the sanme run and at
least this big if not. 1In a Request, this authorizes
the Server to send back up to 256 packet groups
cont ai ni ng the Response.

Del ay Response Transm ssion - set by request sender if
nmul tiple responses are expected (as indicated by the MRD
flag in the RequestCode) and it may be overrun by

mul tipl e responses. The responder(s) should then

i ntroduce a short random delay in sending the Response
to mnimze the danger of overrunning the Cient. This
is normally only used for responding to multicast
Requests where the Client nay be receiving a | arge
nunber of Responses, as indicated by the MRD flag in the
Request flags. O herw se, the Response is sent

i medi atel y.

3 bits - the ordinal number of transmi ssions of this
packet group prior to this one, nodulo 8. This field is
used in estimation of roundtrip tines. This count may
wrap around during a nessage transaction. However, it
shoul d be sufficient to match acknow edgnents and
responses with a particular transm ssion

4 bits indicating the nunber of tines this Request has
been forwarded. The original Request is always sent
with a ForwardCount of O.

8 bits.

I ndi cates the recommended tinme to use between subsequent
packet transm ssions within a multi-packet packet group
transm ssion. The Interpacket Gap tine is in 1/32nd of
a network packet transm ssion time for a packet of size
MIU for the node. (Thus, the maxinumgap tine is 8
packet tines.)

[page 40]

RFC 1045

PGcount: 8 bhits

Priority

Functi on Code:

Transaction: 32

Packet Del i very:

Server: 64 bits

Cheriton

VMIP February 1988

The nunber of packet groups that this packet group
represents in addition to that specified by the
Transaction field. This is used in acknow edgi ng
nmul ti pl e packet groups in streaned comruni cation

4-bit identifier for priority for the processing of this
request both on transm ssion and reception. The
interpretation is:

1100 ur gent/ ener gency
1000 i mport ant

0000 nor mal

0100 backgr ound

Vi ewi ng the higher-order bit as a sign bit (with 1
nmeani ng negative), |ow values are high priority and high
values are low priority. The loworder 2 bits indicate
addi tional (lower) gradations for each |evel.

1 bit - types of VMIP packets. |If the |ow order bit of

the function code is 0, the packet is sent to the
Server, else it is sent to the dient.

0 Request
1 Response
bits:

Identifier for this nmessage transaction

32 bits:

Delivery indicates the segment bl ocks contained in this
packet. Each bit corresponds to one 512-octet bl ock of
segnent data. A 1 bit inthe i-th bit position
(counting the LSB as 0) indicates the presence of the

i -th segment bl ock.

Entity identifier for the server or server group
associated with this transaction. This is the receiver
when a Request packet and the sender when a Response
packet .

[page 41]

RFC 1045

Code:

SDA

PI C

RES

CoResi dentEntity

32 bhits

Cheriton

VMIP February 1988

The Request Code and Response Code, set either at the
user |level or VMIP | evel depending on use and packet
type. Both the Request and Response codes include 8

hi gh-order bits fromthe follow ng set of control bits:

Condi tional Message Delivery - only deliver the request
or response if the receiving entity is waiting for it at
the tinme of delivery, otherw se drop the message.

Dat aGram Message - indicates that the nmessage is being
sent as a datagram |If a Request nessage, do not wait
for reply, or retransmt. |If a Response nessage, treat

this nessage transaction as idenpotent.

Message Delivery Mask - indicates that the MsgDelivery
field is being used. Oherw se, the MsgDelivery field
is available for general use.

Segnment Data Appended - segnent data is appended to the
nmessage control block, with the total size of the
segnent specified by the SegmentSize field. O herw se,
the segnent data is null and the SegnentSize field is
not used by VMIP and avail able for user- or RPC-leve
uses.

CoResi dent Entity - indicates that the CoResidentEntity
field in the nessage should be interpreted by VMIP

Q herwise, this field is available for additional user
dat a.

Miul tipl e Responses Desired - multiple Responses are
desired to to this Request if it is nulticast.

O herwi se, the VMIP nodul e can di scard subsequent
Responses after the first Response.

Public Interface Code - Values for Code with this bit
set are reserved for definition by the VMIP

speci fication and other standard protocols defined on
top of VMIP

Reserved for future use. Miust be O.
64-bit ldentifier for an entity or group of entities
with which the Server entity or entities nmust be

co-resident, i.e. route only to entities (identified by
Server) on the sane host(s) as that specified by

[page 42]

RFC 1045

User Data

MsgDel i very: 32

Segnent Si ze: 32

Segnent Data: O-

Checksum 32 bit

VMIP February 1988

CoResi dentEntity, Only neaningful if CREis set in the
Code field.

12 octets Space in the header for the VMIP user to
speci fy user-specific control and data.

bits

The segment bl ocks being transmitted (in total) in this
packet group followi ng the conventions for the

Packet Delivery field. This field is ignored by the
protocol and treated as an additional user data field if
MOMis 0. On transmssion, the user |evel sets the
MsgDel i very to indicate those portions of the segnent to
be transnmitted. On receipt, the MsgDelivery field is
nodi fied by the VMIP nodul e to indicate the segnent data
bl ocks that were actually received before the nessage
control block is passed to the user or RPC level. In
particul ar, the kernel does not discard the packet group
if segnent data bl ocks are missing. A Server or Cient
entity receiving a message with a MsgDelivery in use
must check the field to ensure adequate delivery and
retry the operation if necessary.

bits

Size of segment in octets, up to a maxi mum of 16
kil ooctets without stream ng and 4 megaoctets with
streaming, if SDAis set. Oherwise, this fieldis
i gnored by the protocol and treated as an additiona
user data field.

16 kil ooctets

0 octets if SDAis 0, else the portion of the segnent
corresponding to the Delivery Mask, limted by the
Segnent Si ze and the MIU, padded out to a nultiple of 64
bits.

S.
The 32-bit checksum for the header and segment dat a.

The VMIP checksum al gorithm <9> devel ops a 32-bit checksum by conputi ng

<9> This algorithm and description are largely due to Steve Deering of
Stanford University.

Cheriton

[page 43]

RFC 1045 VMIP February 1988

two 16-bit, ones-conplenment sunms (like IP), each covering different
parts of the packet. The packet is divided into clusters of 16 16-bit
words. The first, third, fifth,... clusters are added to the first sum
and the second, fourth, sixth,... clusters are added to the second sum
Addition stops at the end of the packet; there is no need to pad out to
a cluster boundary (although it is necessary that the packet be an
integral multiple of 64 bits; padding octets may have any val ue and are
included in the checksumand in the transmtted packet). |If either of
the resulting suns is zero, it is changed to OxFFFF. The two suns are
appended to the transmtted packet, with the first sumbeing transmtted
first. Four bytes of zero in place of the checksum may be used to

i ndi cate that no checksum was conput ed.

The 16-bit, ones-conplenment addition in this algorithmis the sane as
used in IP and, therefore, subject to the sane optim zations. In
particular, the words may be added up 32-bits at a tinme as long as the
carry-out of each addition is added to the sumon the follow ng
addition, using an "add-with-carry" type of instruction. (64-bit or
128-bit additions would al so work on machi nes that have regi sters that

bi g.)

A particul ar weakness of this algorithm (shared by IP) is that it does
not detect the erroneous swapping of 16-bit words, which nay easily
occur due to software errors. A future version of VMIP is expected to
i nclude a nore secure algorithm but such an al gorithm appears to
requi re hardware support for efficient execution

Not all of these fields are used in every packet. The specific packet
formats are described below. If a field is not nentioned in the
description of a packet type, its use is assunmed to be clear fromthe
above description.

Cheriton [page 44]

RFC 1045 VMIP February 1988

3.3. Request Packet

The Request packet (or packet group) is sent fromthe client to the
server or group of servers to solicit processing plus the return of zero
or nore responses. A Request packet is identified by a 0 in the LSB of
the fourth 32-bit word in the packet.

0 1 2 3
012345678901234567890123456789¢01
B T s i I S e i S i i S S e S
+ Client (8 octets) +
T S T sl T S e i it N i

_ | H E|M
Domai n | Q P P Length
NORERE
Rk o S S e s o S NI R R TR TR R i ol
| Ret r a| For war d| Inter- |

- +- +- 4= +-
| D . . |
| Rl nsmt| Count | Packet | Prior |

| T |
- +- +-

mmR
E| E| E| 0
SSS

| Count | | Gap | -ity
B il (s s T S S I S S
Transaction

B T i S ks a ai E
Packet Del i very |
B N e i i T R et o s S
Server (8 octets) +
i o I i o i i S S S S T i i
Pl
1
a

+

+- +-

I
I
I
+
I
I
I
-+
I

- 4-

+

zox!
>00
om=D
tmxo
HCEES

|
Request Code |
|

to=zo!
L1200,

+
+
+

R i T R R e e oI R S R R
ity (8 octets) +
I I g ST S S I S S i

e T
CoResi dent Ent
+- - - -+ +
(12 octets) <
+
\Y;
+

+

En

B I I - +-

User Data

i i S i S I o s it S S e e S S S el sl it S SRS SRR EE S 5

MsgDel i very |

B e T e S e e s ol e T S S S S e S S T i St SR NI S

Segnent Si ze |

B i S S T A S S S S i e

segnent data, if any <

i I e e e ol ol T I S e e it I o R e e S o ol 2
Checksum

s S S i I S R R e h T Tk e S S S o T S

Fi gure 3-1: Request Packet For nat

The fields of the Request packet are set according to the semantics
described in Section 3.2 with the follow ng qualifications.

Cheriton [page 45]

RFC 1045

I nt er Packet Gap

Transacti on

Server

Request Code

Cheriton

VMIP February 1988

The estimated interpacket gap tine the client would like
for the Response packet group to be sent by the Server
in responding to this Request.

Identifier for transaction, at |east one greater than
the previously issued Request fromthis Cient.

Server to which this Request is destined.

Request code for this request, indicating the operation
to perform

[page 46]

RFC 1045 VMIP February 1988

3. 4. Response Packet

The Response packet is sent fromthe Server to the Client in response to
a Request, identified by a 1 in the LSB of the fourth 32-bit word in the
packet .

0 1 2 3
01234567890123456789012345678901
I S T i S S S T S S S S D i S S S i

+ Client (8 octets) +
s S S o T i i S S i (i
| ver | | HE| M |
| sion | Dormrai n | C Pl P| Lengt h |
| | |1add |
B s i S i I i S S S i i
| NNAIN N N R C S| R Retra| Forwar d| | |R| R R| | | |
|RIP|S|E|REf]MT|E nsmt| Count | PCGcount | Prior |E| E E 1|
|ISSIGRRT|IS G I]S| Count| | | -ity ISISISI |
R i e e i it R i e o TIE S R TR S R P S T -+
| Transaction |
B s i S i I i S S S i i
| Packet Del i very |
s S S o T i i S S i (i
+ Server (8 octets) +
T e i i e et ik T R R R R R T NI T e R T e e T e e A
| DMS RRRR |
| M G D| D] E| E| E| E| ResponseCode |
IDMMA S| S| S S| |
e i T e e i I R o S e O e i T I R S e e R T o ok o
> UserData (20 octets) <
R Rt i i i i e T I I S S S R i e S R e e i s o
| MsgDel i very |
B s i S i I i S S S i i
| Segnent Size |
s S S o T i i S S i (i
> segment data, if any <
R Rt i i i i e T I I S S S R i e S R e e i s o
Checksum

B s i S i I i S S S i i
Fi gure 3-2: Response Packet For mat

The fields of the Response packet are set according to the senantics
described in Section 3.2 with the follow ng qualifications.

Client, Version, Domain, Transaction
Mat ch those in the Request packet group to which this is

Cheriton [page 47]

RFC 1045

STI

Ret r ansmi t Count

For war dCount

PCGcount

Server

VMIP February 1988

a response.

1if this Response is using one or nore of the
transaction identifiers skipped by the Cient after the
Request to which this is a Response. STl in the Request
essentially allocates up to 256 transaction identifiers
for the Server to use in a run of Response packet

gr oups.

The retransmt count fromthe | ast Request packet
received to which this is a response.

The nunber of times the correspondi ng Request was
forwarded before this Response was generat ed.

The nunber of consecutively previous packet groups that
this response is acknow edging in addition to the one
identified by the Transaction identifier

Server sending this response. This may differ fromthat
originally specified in the Request packet if the
original Server was a server group, or the request was

f orwar ded.

The next two chapters describes the protocol operation using these

packet formats,
separatel y.

Cheriton

with the the dient and the Server portions described

[page 48]

RFC 1045 VMIP February 1988

4. dient Protocol Operation

Thi s chapter describes the operation of the client portion of VMIP in
terns of the procedures for handling VMIP user events, packet reception
events, managenent operations and tineout events. Note that the client
portion of VMIP is separable fromthe server portion. It is feasible to
have a node that only inplements the client end of VMIP

To sinplify the description, we define a client state record (CSR) plus
sone standard utility routines.

4.1. Client State Record Fields

In the follow ng protocol description, there is one client state record
(CSR) per (client,transaction) outstandi ng nessage transaction. Here is
a suggested set of fields.

Li nk Li nk to next CSR when queued in one of the transm ssion
ti meout or nessage queues.

QueuePtr Pointer to queue head in which this CSR is contained or
NULL i f none. Queue could be one of transni ssion queue,
ti meout queue, server queue Or response queue.

Processldentification
The process identification and address space.

Priority Priority for processing, network service, etc.
State One of the client states described bel ow
Fi ni shupFunc Procedure to be executed on the CSR when it is conpletes

its processing in transm ssion or tineout queues.
Ti meout Count Time to remain in timeout queue.

Ti meout Li m t User-specified time after which the nessage transaction
is aborted. The tinmeout is infinite if set to zero.

Ret r ansCount Nunber of retransm ssions since |last hearing fromthe
Server.

Last Transmi t Ti me
The tine at which the | ast packet was sent. This field
is used to calculate roundtrip tines, using the
Retransm t Count to nmatch the respondi ng packet to a

Cheriton [page 49]

RFC 1045 VMIP February 1988

particul ar transm ssion. |.e. Response or managemnent
Noti fyVm pClient operation to Request and a nanagenent
Noti f yVm pServer operation to a Response.

Ti met oLi ve Time to live to be used on transm ssion of |IP packets.

Transm ssi onMask
Bit mask indicating the portions of the segnment to
transmt. Set before entering the transm ssion queue
and cleared increnentally as the 512-byte segnent bl ocks
of the segnent are transmitted.

Local dientLink Link to next CSR hashing to same hash index in the
d i ent Map

Local i ent Entity identifier for client when this CSRis used to
send a Request packet.

Local Transacti on
Transaction identifier for current nessage transaction
the local client has outstanding.

Local Principal Account identification, possibly including key and key
ti meout .

Local Del i very Bit mask of segnent bl ocks that have not been
acknow edged i n the Request or have been received in the
Response, depending on the state.

ResponseQueue Queue of CSR s representing the queued Responses for
this entity.

VMIP Header Prot ot ype VMIP header, used to generate and store the
header portion of a Request for transm ssion and
retransm ssion on tineout.

Segment Desc Description of the segnent data associated with the CSR
either the area storing the original Request data, the
area for receiving Request data, or the area storing the
Response data that is returned

Host Addr The network or internetwork host address to which the
Client last transmtted. This field also indicates the
type of the address, e.g. |IP, Ethernet, etc.

Note: the CSR can be conbined with a |ight-wei ght process descriptor

wi th considerable benefit if the process is designed to block when it

Cheriton [page 50]

RFC 1045 VMIP February 1988

i ssues a message transaction. In particular, by conbining the two
descriptors, the inplenentation saves tinme because it only needs to

| ocate and queue one descriptor with various operations (rather than
having to | ocate two descriptors). It also saves space, given that the
VMIP header prototype provides space such as the user data field which
nmay serve to store processor state for when the process is preenpted.
Non- preenpti ve bl ocki ng can use the process stack to store the processor
state so only a program counter and stack pointer may be required in the
process descriptor beyond what we have described. (This is the approach
used in the V kernel.)

4.2. Client Protocol States

A Cient State Record records the state of message transaction generated
by this host, identified by the (dient, Transaction) values in the CSR
As a client originating a transaction, it is in one of the follow ng
states.

Awai t i ngResponse
Waiting for a Response packet group to arrive with the
same (Cient, Transaction) identification

Recei vi ngResponse
Waiting for additional packets in the Response packet
group it is currently receiving.

" her" Not waiting for a response, which can be Processing or
sonme ot her operating systemstate, or one of the Server
states if it also acts as a server.

This covers all the states for a client.

4.3. State Transition D agrans

The client state transitions are illustrated in Figure 4-1. The client
goes into the state AwaitingResponse on sending a request unless it is a
dat agram request. In the AwaitingResponse state, it can tineout and

retry and eventually give up and return to the processing state unl ess
it receives a Response. (A NotifyVnmtpCient operation resets the

ti meout but does not change the state.) On receipt of a single packet
response, it returns to the processing state. OQherwise, it goes to
Recei vi ngResponse state. After tineout or final response packet is
received, the client returns to the processing state. The processing
state al so includes any other state besides those associated with

i ssuing a nessage transaction

Cheriton [page 51]

RFC 1045 VMIP February 1988

T +
| Processing |<--------------------
| | <--------o---- | |
| | < |
+Ho------ N--N-+ Single Last
Transmt | | Packet Response
| || Response Packet
| || | | |
+- DGV >+ Ti meout | | Fi nal timeout
| | | | |
Y R + | R +
| Awaiting |----+ | Receiving |->Response-+
| Response |->Response->| Response | |
| | (multi- | | <---------- +
- N-+ packet) +---------- Nt
v | | |
+- Ti meout + +>Ti meout +

Fi gure 4-1: Client State Transitions

4.4. User Interface

The RPC or user interface to VMIP is inplenentation-dependent and nay
use systens calls, functions or sone other mechanism The l|ist of
requests that followis intended to suggest the basic functionality that
shoul d be avail abl e.

Send(nth, timeout, segptr, segsize)
Initiate a nessage transaction to the server and request
nmessage specified by ncb and return a response in nth,
if it is received within the specified tineout period
(or else return USER TIMEQUT in the Code field). The
segptr paraneter specifies the |location fromwhich the
segnent data is sent and the location into which the
response data is to be delivered. The segsize field
i ndi cates the maxi numlength of this area.

Get Response(responsenthb, tineout, segptr, segsize)
Get the next response sent to this client as part of the
current nessage transaction, returning the segnent data,
if any, into the nmenory specified by segptr and segsi ze.

This interface assunes that there is a client entity associated with the

i nvoki ng process that is to be used with these operations. Qherw se,
the client entity nust be specified as an additional paraneter.

Cheriton [page 52]

RFC 1045 VMIP February 1988

4.5. Event Processing
The foll owing events may occur in the VMIP client:
- User Requests
* Send
* Cet Response
- Packet Arrival
* Response Packet
* Request
The minimal Cient inplenentation handl es Request packets for
its VMIP managenent (server) nodul e and sends NotifyVnt pdient
requests in response to others, indicating the specified
server does not exist.
- Managenent Qperation - NotifyVm pdient
- Timeouts

* Cient Retransm ssion Tineout

The handling of these events is described in detail in the follow ng
subsecti ons.

We first describe some conventions and procedures used in the
description. A field of the received packet is indicated as (for

exanpl e) p.Transaction, for the Transaction field. Optional portions of
the code, such as the streaning handling code are prefixed with a "|" in
the first colum.

MapClient(client)
Return pointer to CSR for client with the specified
clientld, else NULL.

SendPacket Group(csr)
Send the packet group (Request, Response) according to
that specified by the CSR

NotifyClient(csr, p, code)

I nvoke the NotifyVm pCient operation with the
paranmeters csr.RempteCient, p.control,

Cheriton [page 53]

RFC 1045

VMIP February 1988

csr. Recei veSegNunber, csr. RenoteTransacti on and

csr. RenoteDel i very, and code. If csr is NULL, use
p.dient, p.Transaction and p.PacketDelivery instead and
the gl obal Recei veSequenceNunber, if supported. This
function sinplifies the description over calling

Noti fyVm pCient directly in the procedura

specification below (See Appendix II11.)

NotifyServer(csr, p, code)

DGvset (p)

Ti meout (csr, ti

I nvoke the NotifyVnt pServer operation with the
paranmeters p. Server, csr.Local dient,

csr. Local Transaction, csr.Local Delivery and code. Use
p.Cient, P.Transaction and O for the clientld, transact
and delivery paraneters if csr is NULL. This function
simplifies the description over calling NotifyVm pServer
directly in the procedural specification below. (See

Appendix 111.)

True if DGM bit set in packet (or csr) else False.
(Simlar functions are used for other bits.)

nmeperiod, func)
Set or reset tiner on csr record for tinmeperiod |ater
and invoke func if the tineout expires.

4.6. Client User-invoked Events

A user event occurs when a VMIP user application invokes one of the VMIP
i nterface procedures.

4.6.1. Send

Send(nth, timeout, segptr, segsize)

map to main

CSR for this client.

i ncrement csr. Local Transacti on

Init csr and check paraneters and segnent if any.

Set SDA if sending appended dat a.

Fl ush queued replies from previous transaction, if any.
if local non-group server then

del i ver

| ocal |y

awai t response

return

if Goupld(server) then
Check for and deliver to |ocal nenbers.
if CRE request and non-group local CR entity then

Cheriton

[page 54]

RFC 1045 VMIP February 1988

awai t response
return
endi f
set MDG if nenber of this group.
endi f
cl ear csr. RetransCount
set csr. Transm ssi onMask
set csr.TineLimt to timeout
set csr.Host Addr for csr. Server
SendPacket Group(csr)
if DGAvset(csr) then
return
endi f
set csr.State to AwaitingResponse
Ti meout (rootcsr, TCl(csr. Server), Local dientTineout)
return
end Send

Not es:

1. Normally, the HostAddr is extracted fromthe ServerHost
cache, which maps server entity identifiers to host
addresses. However, on cache mss, the client first queries
the network using the ProbeEntity operation, as specified in
Appendix 111, deternining the host address fromthe Response.
The ProbeEntity operation is handl ed as a separate nessage
transaction by the Cient.

The streaminterface incorporates a paraneter to pass a responseHandl er
procedure that is invoked when the nessage transaction conpl etes.

StreanBend(nthb, timeout, segptr, segsize, responseHandl er)
map to main CSR for this client.
| Al'l ocate a new csr if root in use.
| lastcsr := First csr for last request.
| if STlset(lastcsr)
|
|
|

csr. Local Transaction := lastcsr. Local Transacti on + 256
el se

csr. Local Transaction := | astcsr. Local Transaction + 1
Init csr and check paraneters and segnent if any.

(rest is the sane as for the nornmal Send)
Not es:
1. Each outstandi ng nessage transaction is represented by a CSR

queued on the root CSR for this client entity. The root CSR
is used to handle tineouts, etc. On tineout, the | ast packet

Cheriton [page 55]

RFC 1045 VMIP February 1988

fromthe | ast packet group is retransmtted (with or w thout
the segnment data).

4.6.2. CetResponse

Get Response(req, tineout, segptr, segsize)
csr := Current CSR
if responses queued then return next response
(in req, segptr to max of segsize)
if tineout is zero then return KERNEL TI MEQUT error
set state to AWAI TI NG_RESPONSE
Ti meout (csr, timeout, ReturnKernel Ti meout);
end Get Response

Not es:

1. GetResponse is only used with rmulticast Requests, which is
the only case in which multiple (different) Responses should
be received.

2. A response nust renmmi n queued until the next nessage
transaction is invoked to filter out duplicates of this
response.

3. If the response is incomplete (only relevant if a
mul ti-packet response), then the client may wait for the
response to be fully received, including issuing requests for
retransm ssion (using NotifyVntpServer operations) before
returning the response.

4. As an optimzation, a response may be stored in the CSR of
the client. In this case, the response nust be transferred
to a separate buffer (for duplicate suppression) before
wai ting for another response. Using this optinization, a
response buffer is not allocated in the conmon case of the
client receiving only one response.

4.7. Packet Arrival

In general, on packet reception, a packet is nmapped to the client state
record, decrypted if necessary using the key in the CSR It then has
its checksumverified and then is transfornmed to the right byte order
The packet is then processed fully relative to its packet function code.
It is discarded imediately if it is addressed to a different domain
than the donain(s) in which the receiving host participates.

Cheriton [page 56]

RFC 1045 VMIP February 1988

For each of the 2 packet types, we assune a procedure called with a
pointer p to the VMIP packet and psize, the size of the packet in
octets. Thus, generic packet reception is:

if not Local Donmai n(p. Domain) then return
csr := MapCient(p.Cient)

if csr is NULL then
Handl eNoCsr (p, psize)
return

i f Secure(p) then
i f SecureVMIP not supported then
{ Assune a Request. }
if not Multicast(p) then
Notifyd ient (NULL, p, SECURI TY_NOT_SUPPORTED)
return
endi f
| Decrypt(csr.Key, p, psize)

i f p.Checksum not null then
if not VerifyChecksum(p, psize) then return

i f OppositeByteOrder(p) then ByteSwap(p, psize)

i f psize not equal sizeof(VntpHeader) + 4*p.Length then
Notifyd ient(NULL, p, VMIP_ERRCR)
return

I nvoke Procedure[p. FuncCode] (csr, p, psize)

Di scard packet and return

Not es:

1. The Procedure[p. FuncCode] refers to one of the 2 procedures
corresponding to the two different packet types of VMIP
Requests and Responses.

2. In all the follow ng descriptions, a packet is discarded on
"return" unless otherw se stated.

3. The procedure Handl eNoCSR i s a nmanagenent routine that
allocates and initializes a CSR and processes the packet or
el se sends an error indication to the sender of the packet.
This procedure is described in greater detail in Section
4.8.1.

Cheriton [page 57]

RFC 1045 VMIP February 1988

4.7.1. Response
Thi s procedure handl es i ncom ng Response packets.

Handl eResponse(csr, p, psize)
if not LocalClient(csr) then
if Multicast then return
| if Mgrated(p.dient) then
| Noti fyServer(csr, p ENTITY_M GRATED)
| el se
Noti fyServer(csr, p, ENTITY_NOTI_HERE)
return
endi f

if NSRset(p) then

if Stream ng not supported then
Noti fyServer(csr, p, STREAM NG NOT_SUPPORTED)
return STREAMED RESPONSE

Find csr corresponding to p. Transaction

i f none found then
Noti fyServer(csr, p, BAD TRANSACTION ID)
return

el se
i f csr.Local Transacti on not equal p.Transaction then
Noti fyServer(csr, p, BAD TRANSACTION_ID)
return
endi f
Locate reply buffer rb for this p. Server
if found then
if rb.State is not Receivi ngResponse then
{ Duplicate }
if APGset (p) or NERset(p) then
{ Send Response to stop response packets. }
Noti fyServer(csr, p, RESPONSE DI SCARDED)
endi f
return
endi f
{ rb.State is Receivi ngRequest}
if new segnent data then retain in CSR segment area.
i f packetgroup not conplete then
Ti meout (rb, TC3(p. Server), Local CientTinmeout)
return;
endi f
got o EndPacket G oup
endi f
{ Otherwi se, a new response nessage. }

Cheriton [page 58]

RFC 1045 VMIP February 1988

if (NSRset(p) or NERset(p)) and NoStream ng then
Noti fyServer(csr, p, VMIP_ERROR)
return
if NSRset(p) then
{ Check consecutive with previous packet group }
Find | ast packet group CSR from p. Server.
if p.Transaction not
| ast csr. Renot eTransacti on+l nod 2**32 t hen
{ Qut of order packet group }
Noti fyServer(csr, p, BAD TRANSACTI ON I D)
return
endi f
if lastcsr not conpl eted then
NotifyServer(lastcsr, p, RETRY)
endi f
if CMElastcsr) then
Add segnent data to | astcsr Response
Notify lastcsr with new packet group.
Clear lastcsr. Verifylnterval
el se
if lastcsr avail able then
use it for this packet group
el se allocate and initialize new CSR
Save nmessage and segnent data in new CSR area.
endi f
el se { First packet group }
Allocate and init reply buffer rb for this response.
if allocation fails then
Noti fyServer(csr, p, BUSY)
return
Set rb.State to Recei vi ngResponse
Copy message and segnent data to rb’s segnent area
and set rb.PacketDelivery to that delivered.
Save p. Server host address in ServerHost cache.
endi f
i f packetgroup not conplete then
Timeout (rb, TS1(p.Cdient), Local dientTinmeout)
return;
endi f
endPacket Gr oup:
{ W have received | ast packet in packet group. }
if APGset(p) then NotifyServer(csr, p, OK)
| if NERset(p) and CMGset(p) then
| Queue waiting for continuation packet group.
| Ti meout (rb, TC2(rb. Server), Local dientTimeout)
|
|

return
endi f

Cheriton [page 59]

RFC 1045 VMIP February 1988

{ Deliver response nessage. }
Del i ver response to Cient, or queue as appropriate.
end Handl eResponse

Not es:

1. The nechanismfor handling streaming is optional and can be
replaced with the tests for use of streaming. Note that the
server should never streamat the Cient unless the dient
has streamed at the Server or has used the STl control bit.
Q herwi se, streaned Responses are a protocol error

2. As an optinization, a Response can be stored into the CSR for
the dient rather than allocating a separate CSR for a
response buffer. However, if multiple responses are handl ed,
the code nust be careful to performduplicate detection on
the Response stored there as well as those queued. In
addi ti on, Get Response nust create a queued version of this
Response before allowing it to be overwitten.

3. The handling of Group Responses has been omtted for brevity.
Basically, a Response is accepted if there has been a Request
received locally fromthe sane Cient and sane Transaction
that has not been responded to. |In this case, the Response
is delivered to the Server or queued.

Cheriton [page 60]

RFC 1045 VMIP February 1988

4.8. Managenent Operations

VMIP uses managenent operations (invoked as rempte procedure calls) to
ef fectively acknow edge packet groups and request retransm ssions. The
following routine is invoked by the Cient’s nanagenent nodul e on
request fromthe Server.

Noti fyVmpCient(clientld,ctrl,receiveSeqNunber,transact, delivery, code)
Get csr for clientld
if none then return
if RenbteCient(csr) and not NotifyVm pRenpteC ient then
return
| el se (for stream ng)
| Find csr with same Local Transacti on as transact
| if csr is NULL then return
if csr.State not AwaitingResponse then return
if ctrl.PCGcount then ack previous packet groups.
sel ect on code
case XK
Notify ack’ ed segment bl ocks from delivery
Cl ear csr.RetransCount;
Ti meout (csr, TCl(csr.Server), Local dientTineout)
return
case RETRY:
Set csr. Transni ssionMask to mi ssing segnent bl ocks,
as specified by delivery
SendPacket G oup(csr)
Ti meout (csr, TCl(csr.Server), Local dientTinmeout)
case RETRY_ALL
Set csr.Transni ssionMask to retransmt all bl ocks.
SendPacket Group(csr)
Ti meout (csr, TCl(csr.Server), Local dientTimeout)
| if stream ng then
| Restart transm ssion of packet groups,
| starting fromtransact+1
return
case BUSY:
if csr.TimeLimt exceeded then
Set csr. Code to USER TI MEQUT
return Response to application
return;
Set csr. Transni ssionMask for full retransm ssion
Cl ear csr. RetransCount
Ti meout (csr, TCl(csr.Server), Local dientTimeout)
return
case ENTI TY_M GRATED
Get new host address for entity

Cheriton [page 61]

RFC 1045 VMIP February 1988

Set csr. Transm ssionMask for full retransni ssion

Cl ear csr.RetransCount

SendPacket G oup(csr)

Ti meout (csr, TCl(csr.Server), Local dientTinmeout)
return

case STREAM NG_NOT_SUPPORTED:
Record that server does not support stream ng
if CM3csr) then forget this packet group
el se resend Request as separate packet group
return

defaul t:
Set csr.Code to code
return Response to application
return;

endsel ect
end NotifyVm pdient

Not es:

1. The delivery paraneter indicates the segnment bl ocks received
by the Server. That is, a 1 bit inthe i-th position
indicates that the i-th segnent block in the segnent data of
the Request was received. Al subsequent NotifyVntpdient
operations for this transaction should be set to acknow edge
a superset of the segment blocks in this packet. In
particular, the Cient need not be prepared to retransmt the
segnent data once it has been acknow edged by a Notify
operation.

4.8.1. Handl eNoCSR

Handl eNoCSR i s cal | ed when a packet arrives for which there is no CSR
matching the client field of the packet.

Handl eNoCSR(p, psize)
i f Secure(p) then
i f SecureVMIP not supported then
{ Assune a Request }
if not Multicast(p) then
Noti fyd i ent (NULL, p, SECURI TY_NOT SUPPORTED)
return
endi f
Handl eRequest NoCSR(p, psize)
return
endi f

Cheriton [page 62]

RFC

1045 VMIP February 1988

i f p.Checksumnot null then
if not VerifyChecksum(p, psize) then return;

i f OppositeByteOrder(p) then ByteSwap(p, psize)

i f psize not equal sizeof(VntpHeader) + 4*p.Length then
Notifydient(NULL, p, VMIP_ERRCR)
return

i f p.FuncCode i s Response then
if Mgrated(p.dient) then
Noti fyServer(csr, p ENTITY_M GRATED)
el se
Noti fyServer(csr, p, NONEXI STENT_ENTITY)
return
endi f

i f p.FuncCode is Request then
Handl eRequest NoCSR(p, psize)

return
end Handl eNoCSR
Not es:
1. The node need only check to see if the client entity has
mgrated if in fact it supports migration of entities.
2. The procedure Handl eRequest NoCSR i s specified in Section
5.8.1. In the mnimal client version, it need only handl e
Probe requests and can do so directly without allocating a
new CSR
Cheriton [page 63]

RFC 1045 VMIP

4.9. Tinmeouts

February 1988

A client with a nessage transaction in progress has a single tiner

corresponding to the first unacknow edged request nessage.

(I'n the

absence of streaming, this request is also the |last request sent.) This

timeout is handl ed as foll ows:

Local dient Ti neout (csr)
sel ect on csr. State
case Awaiti ngResponse:
i f csr.RetransCount > MaxRetrans(csr. Server) then

terminate Cient’s nessage transactions up to
and including the current nmessage transaction

set return code to KERNEL_TI MEQUT
return
i ncrement csr. RetransCount
Resend current packet group with APG set.
Ti meout (csr, TC2(csr.Server), Local dientTinmeout)
return
case Recei vi ngResponse:
if DGAvset(csr) or csr.RetransCount > Max then
if MDMset(csr) then
Set MCB. MsgDel i veryMask to bl ocks received.
el se
Set csr.Code to BAD REPLY_SEGVENT
return to user Cient
endi f
i ncrement csr. RetransCount
Noti fyServer with RETRY
Ti meout (csr, TC3(csr.Server), Local dientTinmeout)
return
end sel ect
end Local dient Ti neout

Not es:

1. Adient can only request retransm ssion of a Response if the

Response is not idenmpotent. |If idenpotent, it mnust

retransmt the Request. The Server should generally support
the MsgDeliveryMask for Requests that it treats as idenpotent

and that require nulti-packet Responses. O herw se,
no selective retransm ssion for idenpotent nessage
transacti ons.

2. The current packet group is the last one transnitted.

with stream ng, there may be several packet groups
out standi ng that precede the current packet group

Cheriton

there is

Thus,

[page 64]

RFC 1045 VMIP February 1988

3. The Request packet group should be retransmitted wthout the
segnent data, resulting in a single short packet in the
retransm ssion. The Server nust then send a
Noti fyVmpCient with a RETRY or RETRY_ALL code to get the
segnent data transmitted as needed. This strategy mnim zes
the overhead on the network and the server(s) for
retransm ssions.

Cheriton [page 65]

RFC 1045 VMIP February 1988

5. Server Protocol Operation

This section describes the operation of the server portion of the
protocol in terns of the procedures for handling VMIP user events,
packet reception events and tinmeout events. Each server is assuned to
i mpl enent the client procedures described in the previous chapter.
(This is not strictly necessary but it sinplifies the exposition.)

5.1. Renpte Client State Record Fields

The CSR for a server is extended with the following fields, in addition
to the ones listed for the client version

Renot ed i ent Identifier for remote client that sent the Request that
this CSR is handling.

Renot ed i ent Li nk
Link to next CSR hashing to same hash index in the
d i ent Map

Renot eTr ansacti on
Transaction identifier for Request fromrenote client.

Renot eDel i very The segnent bl ocks received so far as part of a Request
or yet to be acknow edged as part of a Response.

Verifylnterval Tinme interval since there was confirmation that the
renote Client was still valid.

Renot ePri nci pal Account identification, possibly including key and key
timeout for secure comrunication

5.2. Renpte Client Protocol States

A CSR in the server end is in one of the follow ng states.

Awai ti ngRequest Waiting for a Request packet group. It may be narked as
waiting on a specific Client, or on any Client.

Recei vi ngRequest
Waiting to receive additional Request packets in a
mul ti-packet group Request.

Responded The Response has been sent and the CSRis timng out,
provi di ng duplicate suppression and retransm ssion (if

Cheriton [page 66]

RFC 1045 VMIP February 1988

the Response was not idenpotent).

ResponseDi scar ded
Response has been acknow edged or has tinmed out so
cannot be retransmtted. However, duplicates are stil
filtered and CSR can be reused for new nessage
transacti on.

Processi ng Executing on behalf of the Cient.

For war ded The nessage transacti on has been forwarded to another
Server that is to respond directly to the dient.

5.3. State Transition Di agrans

The CSR state transitions in the server are illustrated in Figure 5-1
The CSR generally starts in the AwaitingRequest state. On receipt of a
Request, the Server either has an up-to-date CSR for the Cient or else
it sends a Probe request (as a separate VMIP nessage transaction) to the
VMIP managenent nodul e associated with the Client. In the latter case,
the processing of the Request is delayed until a Response to the Probe
request is received. At that time, the CSR information is brought up to
date and the Request is processed. |If the Request is a single-packet
request, the CSRis then set in the Processing state to handle the
request. O herwise (a nulti-packet Request), the CSRis put into the
Recei vi ngResponse state, waiting to receive subsequent Request packets
that constitute the Request nessage. It exits the Receivi ngRequest
state on tineout or on receiving the | ast Request packet. 1In the forner
case, the request is delivered with an indication of the portion

recei ved, using the MsgDelivery field if MDMis set. After request
processing is conplete, either the Response is sent and the CSR enters
the Responded state or the message transaction is forwarded and the CSR
enters the Forwarded state.

In the Responded state, if the Response is not narked as idenpotent, the
Response is retransnmitted on recei pt of a retransm ssion of the
correspondi ng Request, on receipt of a NotifyVntpServer operation
requesting retransm ssion or on tineout at which time APGis set,
requesting an acknow edgnment fromthe Cient. The Response is
retransmtted some nmaxi mum nunber of tines at which tine the Response is
di scarded and the CSR is nmarked accordingly. If a Request or a

Noti f yVimt pServer operation is received expecting retransm ssion of the
Response after the CSR has entered the ResponseDi scarded state, a

Noti fyVm pClient operation is sent back (or invoked in the dient
managenent nodul e) indicating that the response was di scarded unl ess the
Request was multicast, in which case no action is taken. After a

Cheriton [page 67]

RFC 1045

(Retransmt Forwarded Request and NotifyVntpdient)

Request/
Ack/
+Ti meout +
v |
Ll R N+
+-Tinme-| Forwarded |<------------- +
| out +----------- + |
| |
| (Retransnmit Response)
| Request |
\% Ack |
| +-Ti nmeout - + |
| v |
R + Ack/ +|--------- N
+- Ti me- | Response | <-Ti neout--| Responded |
| out | Discarded| R +
R +		
+		
		- >- Send Response- +
		->-forward Request-------- +
+->	Processing	<---------------------- +
S RRPSEEEEEEEEEEE o		
	<---1	
R SR Last		
Receive		Request
	Ti meout Si ngl e Packet	
		Packet
		Request n n
	» +	--- -
+-V--am----	- +	
+->] Awaiting	->--+->Request->	Request
Request		(multi- +--------- +
SRR [----- + N packet)		
Request		
Response		
Send Probe to		
Pr obe		
+---V---- 4		
Awai ti ng	A	
Response	-->--+	
to Probe		
Fommmaa - +
Fi gure 5-1: Renote Client State Transitions

VMIP

February 1988

timeout corresponding to the tine required to filter out duplicates, the

Cheriton

[page 68]

RFC 1045 VMIP February 1988

CSR returns either to the AwaitingRequest state or to the Processing
state. Note that "Ack" refers to acknow edgnment by a Notify operation

A Request that is forwarded | eaves the CSR in the Forwarded state. In
the Forwarded state, the forwarded Request is retransnmitted
peri odi cally, expecting NotifyRenoteC ient operations back fromthe
Server to which the Request was forwarded, anal ogous to the dient
behavior in the AwaitingResponse state. In this state, a

Noti fyRenmpteC ient fromthis Server acknow edges the Request or asks
that it be retransmitted or reports an error. A retransm ssion of the
Request fromthe Cient causes a NotifyVnmpCient to be returned to the
Client if APGis set. The CSR | eaves the Forwarded state after timng
out in the absence of NotifyRenpteC ient operations fromthe forward
Server or on receipt of a NotifyRenmpteC ient operation indicating the
forward Server has sent a Response and received an acknow edgenent. It
then enters the ResponseDi scarded state.

Recei pt of a new Request fromthe sane Client aborts the current
transaction, independent of its state, and initiates a new transaction
unl ess the new Request is part of a run of message transactions. |If it
is part of a run of nmessage transactions, the handling follows the state
di agram except the new Request is not Processed until there has been a
response sent to the previous transaction

5.4. User Interface

The RPC or user interface to VMIP is inplenentation-dependent and nay
use systens calls, functions or sone other mechanism The |ist of
requests that followis intended to suggest the basic functionality that
shoul d be avail abl e.

Accept Message(regnth, segptr, segsize, client, transid, timeout)
Accept a new Request nessage in the specified regnth
area, placing the segnent data, if any, in the area
descri bed by segptr and segsize. This returns the
Server in the entityld field of the regnth and actua
segnent size in the segsize paraneters. It also returns
the Cient and Transaction for this nmessage transaction
in the correspondi ng paraneters. This procedure
supports nessage semantics for request processing. Wen
a server process executes this call, it blocks until a
Request nessage has been queued for the server.

Accept Message returns after the specified tineout period
if a nessage has not been received by that tinme.

RespondMessage(responsenthb, client, transid, segptr)

Cheriton [page 69]

RFC 1045 VMIP February 1988

Respond to the client with the specified response
nmessage and segnent, again with message semantics.

RespondCal | (responsenth, segptr)
Respond to the client with the specified response
nessage and segnent, with renote procedure cal
semantics. This procedure does not return. The
I i ght wei ght process that executes this procedure is
mat ched to a stack, program counter, segment area and
priority fromthe information provided in a
Modi fyService call, as specified in Appendix II1.

For war dMessage(requestnthb, transid, segptr, segsize, forwardserver)
Forward the client to the specified forwardserver wth
the request specified in nth.

ForwardCal | (requestnth, segptr, segsize, forwardserver)
Forward the client transaction to the specified
forwardserver with the request specified by requestnth.
Thi s procedure does not return.

Get Renoted ientld()
Return the entityld for the renote client on whose
behave the process is executing. This is only
applicable in the procedure call nodel of request
handl i ng.

Get Forwarder(client)
Return the entity that forwarded this Request, if any.

Get Process(client)
Return an identifier for the process associated with
this client entity-id.

GetPrincipal (client)
Return the principal associated with this client
entity-id.

5.5. Event Processing

The foll owing events may occur in VMIP servers.

- User Requests

* Recei ve

Cheriton [page 70]

RFC 1045 VMIP February 1988

* Respond
* Forward
* Get For war der
* Get Process
* GetPrincipa
- Packet Arrival
* Request Packet
- Management Operations
* NotifyVnt pServer
- Tineouts
* Client State Record Ti neout
The handling of these events is described in detail in the follow ng
subsections. The conventions of the previous chapter are foll owed,
i ncludi ng the use of the various subroutines in the description
5.6. Server User-invoked Events
A user event occurs when a VMIP server invokes one of the VMIP interface
procedures.
5.6.1. Receive
Accept Message(reqncth, segptr, segsize, client, transid, tineout)
Locate server’'s request queue.
if request is queued then
Renenber CSR associated with this Request.
return Request in reqnchb, segptr and segsize
and client and transaction id.
Wait on server’s request queue for next request
up tine tineout seconds.

end Recei veCal

Not es:

Cheriton [page 71]

RFC 1045 VMIP February 1988

1. If a multi-packet Request is partially received at the tine
of the Accept Message, the process waits until it conpletes.
2. The behavior of a process accepting a Request as a
Iightweight thread is simlar except that the process
executes using the Request data logically as part of the
requesting Cient process.
5.6.2. Respond
RespondCal | is described as one case of the Respond transm ssion

procedure; RespondMessage is simlar

RespondCal | (responsenth, responsesegptr)
Locate csr for this client.
Check segnent data accessible, if any

if local client then
Handl e | ocal |y
return
endi f
i f responsenth. Code i s RESPONSE DI SCARDED t hen

Mar k as RESPONSE_ DI SCARDED
return

SendPacket Group(csr)
set csr.State to Responded.
if DMreply then { Idenpotent }

e

rel ease segnent data
Ti meout (csr, TS4(csr.Cient), FreeCsr);

se { Await acknow edgenent or new Request else ask for ack. }
Ti meout (csr, TS5(csr.Cient), RenotedientTi meout)

end RespondCal

Not es:

1

RespondMessage is simlar except the Server process nust be
synchroni zed with the rel ease of the segnent data (if any).

2. The non-idenpotent Response with segment data is sent first
wi t hout a request for an acknow edgenment. The Response is
retransmtted after time TS5(client) if no acknow edgnent or
new Request is received fromthe client in the neantine. At
this point, the APG bit is sent.

3. The MCB of the Response is buffered in the client CSR, which
remains for TS4 seconds, sufficient to filter old duplicates.
The segnment data (if any) must be retained intact until: (1)

Cheriton

[page 72]

RFC 1045 VMIP February 1988

after transmission if idenpotent or (2) after acknow edged or
timeout has occurred if not idenmpotent. Techniques such as
copy-on-wite mght be used to keep a copy of the Response
segnent data without incurring the cost of a copy.

5.6.3. Forward

Forwarding is logically initiating a new nmessage transacti on between the
Server (now acting as a Cient) and the server to which the Request is
forwarded. Wien the second server returns a Response, the sanme Response
is immediately returned to the Client. The forwarding support in VMIP
preserves these senmantics while providing sone performance optimn zations
in sone cases.

ForwardCal | (req, segptr, segsize, forwardserver)
Locate csr for this client.
Check segnent data accessible, if any

if local client or Request was nulticast or secure

or csr. ForwardCount == 15 t hen
Handl e as a new Send operation
return

if forwardserver is local then
Handl e | ocal |y
return
Set csr.funccode to Request
I ncrenent csr. Forwar dCount
Set csr.State to Responded
SendPacket Group(csr) { To ForwardServer }
Ti meout (csr, TS4(csr.Cient), FreeAlien)
end Forwar dCal

Not es:

1. A Forward is logically a new call or nessage transaction. It
nmust be really inplenented as a new nessage transaction if
the original Request was multicast or secure (with the
optional further refinement that it can be used with a secure
nessage transacti on when the Server and ForwardServer are the
sanme principal and the Request was not multicast).

2. A Forward operation is never handl ed as an idenpotent
operation because it requires know edge that the
ForwardServer will treat the forwarded operation as
i dempotent as well. Thus, a Forward operation that includes
a segnment should set APG on the first transm ssion of the

Cheriton [page 73]

RFC 1045 VMIP February 1988

f orwarded Request to get an acknow edgenent for this data.
Once the acknow edgenent is received, the forwarding Server
can discard the segnent data, |eaving only the basic CSR to
handl e retransm ssions fromthe dient.

5.6.4. Oher Functions

GetRemoteCient is a sinple local query of the CSR CGetProcess and

Get Principal also extract this information fromthe CSR A server
nodul e may defer the Probe callback to the Cient to get that
information until it is requested by the Server (assunming it is not
usi ng secure conmmuni cation and duplicate suppression is adequate wi thout
cal | back.) GetForwarder is inplenented as a callback to the dient,
usi ng a Get Request Forwarder VMIP managenent operation. Additiona
managenent procedures for VMIP are described in Appendix I11.

5.7. Request Packet Arrival

The basic packet reception follows that described for the dient
routines. A Request packet is handled by the procedure Handl eRequest.

Handl eRequest (csr, p, psize)

if LocalClient(csr) then
{ Forwarded Request on local dient }
if csr.Local Transaction != p. Transaction then return
if csr.State != AwaitingResponse then return
i f p.ForwardCount < csr. ForwardCount then
Di scard Request and return
Find a CSR for Cient as a remote Cient.
if not found then
i f packet group conplete then
handl e as a | ocal nessage transaction
return
Al'l ocate and init CSR
got o newTransacti on
{ Oherw se part of current transaction }
{ Handle directly below. }n
if csr.RenpteTransaction = p. Transacti on then
{ Matches current transaction }
i f O dForward(p. ForwardCount, csr. ForwardCount) then
return
i f p. ForwardCount > csr. ForwardCount then
{ New forwarded transaction }
got o newTransacti on

Cheriton [page 74]

RFC 1045 VMIP February 1988

{ Otherwi se part of current transaction }
if csr.State = Recei vi ngRequest then
if new segnent data then retain in CSR segment area.
i f Request not conplete then
Ti meout (csr, TS1(p.Cient), RenotedientTi neout)
return;
endi f
got o endPacket G oup
endi f
if csr.State is Responded then
{ Duplicate }
if csr.Code is RESPONSE DI SCARDED
and Multicast(p) then
return
endi f
if not DG csr) then { Not idenpotent }
i f SegnentData(csr) then set APG
{ Resend Response or Request, if Forwarded }
SendPacket Group(csr)
timeout =i f Segment Data(csr) then TS5(csr.dient)
el se TS4(csr.dient)
Ti meout (csr, tinmeout, RenotedientTinmeout)
return
{ Else idempotent - fall thru to newlransaction }
else { Presume it is a retransmnission }
NotifyCdient(csr, p, OK)
return
el se if A dTransaction(csr. RenpteTransact, p. Transacti on) then
return
{ Otherwi se, a new nessage transaction. }
newTr ansact i on:
Abort handling of previous transactions for this Cient.

if (NSRset(p) or NERset(p)) and NoStream ng then
Notifydient(csr, p, STREAM NG NOT_ SUPPORTED)
return
if NSRset(p) then { Streaming }
{ Check that consecutive with previous packet group }
Find | ast packet group CSR fromthis client.
if p.Transaction not |astcsr.RenoteTransacti on+l nod 2**32
and not STlset(lastcsr) or
p. Transacti on not | astcsr. RenoteTransacti on+256 nod **32
t hen
{ Qut of order packet group }
Noti fyClient(csr, p, BAD TRANSACTION ID)
return
endi f

Cheriton [page 75]

RFC 1045 VMIP February 1988

if lastcsr not conpleted then
NotifyCient(lastcsr, p, RETRY)
endi f
if lastcsr available then use it for this packet group
el se allocate and initialize new CSR
if CM3|astcsr) then
Add segrment data to | astcsr Request
Keep csr as record of this packet group.
Clear lastcsr. Verifylnterval
endi f
el se { First packet group }
if MultipleRenoteC ients(csr) then ScavengeCsrs(p.dient)
Set csr. RenoteTransaction, csr.Priority
Copy nessage and segnment data to csr’s segment area
and set csr. PacketDelivery to that delivered.
Cl ear csr.PacketDelivery
Clear csr. Verifylnterval
SaveNet wor kAddress(csr, p)
endi f
i f packetgroup not conplete then
Ti meout (csr, TS3(p.Cient), RenotedientTi neout)
return;
endi f
endPacket G oup:
{ W have received conpl ete packet group. }
if APGEp) then NotifyCient(csr, p, OK)
endi f
if NERset(p) and CM3 p) then
Queue waiting for continuation packet group.
Ti meout (csr, TS3(csr.Cdient), RenotedientTi nmeout)
return
endi f
{ Deliver request nessage. }
if Goupld(csr.Server) then
For each server identified by csr. Server
Replicate csr and associ ated data segnent.
if CvDset(csr) and Server busy then
Di scard csr and data
el se
Deliver or invoke csr for each Server.
if not DGAvset (csr) then queue for Response
el se Tineout(csr, TS4(csr.Cient), FreeCsr)
endf or
el se
if CvDset(csr) and Server busy then
Di scard csr and data
el se

Cheriton [page 76]

RFC 1045 VMIP February 1988

Deliver or invoke csr for this server.
if not DGWset (csr) then queue for Response
el se Tineout(csr, TS4(csr.dient), FreeCsr)
endi f
end Handl eRequest

Not es:

1. A Request received that specifies a Cient that is a |loca

entity should be a Request forwarded by a renpote server to a
| ocal Server.

2. An alternative structure for handling a Request sent to a
group when there are multiple |ocal group nmembers is to
create a renote CSR for each group nenber on reception of the
first packet and deliver a copy of each packet to each such
renote CSR as each packet arrives.

Cheriton [page 77]

RFC 1045 VMIP February 1988

5.8. Managenent Operations

VMIP uses managenent operations (invoked as rempte procedure calls) to
ef fectively acknow edge packet groups and request retransm ssions. The
following routine is invoked by the Server’s nanagenent nodul e on
request fromthe dient.

Noti f yVm pServer (server,clientld,transact, delivery, code)
Find csr with same RenoteTransacti on and RenoteC i ent
as clientld and transact.
if not found or csr.State not Responded then return
if DGAvset(csr) then
if transm ssion of Response in progress then
Abort transm ssion
if code is mgrated then
restart transm ssion with new host addr.
if Retry then Report protocol error
return
endi f
sel ect on code
case RETRY:
if csr.RetransCount > MaxRetrans(clientld) then
if response data segnment then
Di scard data and mark as RESPONSE_DI SCARDED
i f NERset(csr) and subsequent csr then
Deal | ocate csr and use later csr for
future duplicate suppression
endi f
return
endi f
i ncrenent csr. RetransCount
Set csr. Transm ssi onMask to mi ssing segment bl ocks,
as specified by delivery
SendPacket Group(csr)
Ti meout (csr, TS3(csr.Cient), RenotedientTinmeout)
case BUSY:
if csr.TimeLinmt exceeded then
if response data segment then
Di scard data and nmark as RESPONSE DI SCARDED
if NERset(csr) and subsequent csr then
Deal | ocate csr and use later csr for
future duplicate suppression
endi f
endi f
endi f
Set csr. Transmi ssionMask for full retransm ssion
Cl ear csr. RetransCount

Cheriton [page 78]

RFC 1045 VMIP February 1988

Ti meout (csr, TS3(csr.Server), RenotedientTi meout)
return

case ENTI TY_M GRATED
Get new host address for entity
Set csr. Transm ssionMask for full retransni ssion
Cl ear csr. RetransCount
SendPacket G oup(csr)
Ti meout (csr, TS3(csr.Server), Renpted ientTi meout)
return

case default:
Abort transni ssion of Response if in progress.
if response data segment then
Di scard data and nmark as RESPONSE DI SCARDED
if NERset(csr) and subsequent csr then
Deal | ocate csr and use |later csr for
future duplicate suppression
endi f
return
endsel ect
end NotifyVntpServer

Not es:

1. A NotifyVm pServer operation requesting retransm ssion of
the Response is acceptable only if the Response was not
i dempotent. When the Response is idenpotent, the Cient nust
be prepared to retransmit the Request to effectively request
retransm ssion of the Response.

2. A NotifyVntpServer operation may be received while the
Response is being transmtted. |If an error return, as an
efficiency, the transm ssion should be aborted, as suggested
when the Response is a datagram

3. A NotifyVntpServer operation indicating OK or an error
allows the Server to discard segnent data and not provide for
subsequent retransm ssion of the Response.

5.8. 1. Handl eRequest NoCSR

When a Request is received froma Cient for which the node has no CSR
the node allocates and initializes a CSR for this Cient and does a
call back to the dient’s VMIP managenent nodule to get the Principal
Process and other infornmation associated with this Cient. It also

Cheriton [page 79]

RFC 1045 VMIP February 1988

checks that the Transactionld is correct in order to filter out
dupl i cat es.

Handl eRequest NoCSR(p, psize)
| if Secure(p) then
| Al'l ocate and init CSR
| SaveSour ceHost Addr (csr, p)
| ProbeRemoteC i ent(csr, p, AUTH_PROBE)
| if no response or error then
| del ete CSR
| return
| Decrypt(csr.Key, p, psize)
| i f p.Checksumnot null then
| if not VerifyChecksum(p, psize) then return;
| i f OppositeByteOrder(p) then ByteSwap(p, psize)
| i f psize not equal sizeof(VntpHeader) + 4*p.Length then
| Notifydient(NULL, p, VMIP_ERRCR)
| return
| Handl eRequest (csr, p, psize)
| return
if Server does not exist then

NotifyClient(csr, p, NONEXI STENT _ENTITY)

return
endi f
if security required by server then

Notifydient(csr, p, SECURI TY_REQUI RED)

return
endi f
Al'l ocate and init CSR
SaveSour ceHost Addr (csr, p);
if server requires Authentication then

ProbeRemoteC i ent(csr, p, AUTH_PROBE)

if no response or error then

del ete CSR
return

endi f
{ Setup imredi ately as a new nessage transaction }
set csr.Server to p. Server
set csr.RenoteTransaction to p. Transaction-1

Handl eRequest (csr, p, psize)
endi f

Not es:

1. A Probe request is always handl ed as a Request not requiring
aut hentication so it never generates a call back Probe to the

Cheriton [page 80]

RFC 1045 VMIP February 1988

dient.

2. If the Server host retains renote client CSR s for |onger
than the maxi mum packet lifetinme and the Request
retransm ssion tinme, and the host has been running for at
| east that long, then it is not necessary to do a Probe
cal I back unl ess the Request is secure. A Probe callback can
take place when the Server asks for the Process or
Principalld associated with the dient.

Cheriton [page 81]

RFC 1045 VMIP February 1988

5.9. Tineouts

The server nust inplenment a tineout for renote client CSRs. There is a
tinmeout for each CSR in the server.

Renot ed i ent Ti meout (csr)
select on csr. State
case Responded:
i f RESPONSE_DI SCARDED t hen
mark as timed out
Make a candi date for reuse.
return
if csr.RetransCount > MaxRetrans(Cient) then
di scard Response
mark CSR as RESPONSE_DI SCARDED
Ti meout (csr, TS4(Cdient), RenotedientTi neout)
return
i ncrement csr. RetransCount
{ Retransmit Response or forwarded Request }
Set APG to get acknow edgement.
SendPacket G oup(csr)
Ti meout (csr, TS3(Cdient), RenoteCientTinmeout)
return
case Receivi ngRequest:
if csr.RetransCount > MaxRetrans(csr.dient)
or DGVset (csr) or NRTset(csr) then
Modi fy csr.segment Si ze and csr. MsgDel i very
to indicate packets received.
if MDMset(csr) then
| nvoke processing on Request
return
el se
di scard Request and reuse CSR
(Note: Need not remenber Request discarded.)
return
i ncrement csr. RetransCount
Noti fyCdient(csr, p, RETRY)
Ti meout (csr, TS3(Cient), RenotedientTi meout)
return
def aul t:
Report error - invalid state for Renoted ientTi neout
endsel ect
end Renoted i ent Ti meout

Not es:

1. When a CSR in the Responded state tines out after discarding

Cheriton [page 82]

RFC 1045 VMIP February 1988

the Response, it can be nade available for reuse, either by

the sane Client or a different one. The CSR should be kept

avail able for reuse by the Client for as |long as possible to
avoi d unnecessary cal | back Probes.

Cheriton [page 83]

RFC 1045 VMIP February 1988

6. Concl udi ng Remar ks

Thi s docunent represents a description of the current state of the VMIP
design. W are currently engaged in several experinenta

i npl enentations to explore and refine all aspects of the protocol

Prelim nary inplenmentations are running in the UNI X 4. 3BSD kernel and in
the V kernel

Several issues are still being discussed and explored with this
protocol. First, the size of the checksumfield and the algorithmto
use for its calculation are undergoi ng sone di scussion. The author
beli eves that the conventional 16-bit checksumused with TCP and IP is
too weak for future high-speed networks, arguing for at |east a 32-bit
checksum Unfortunately, there appears to be limted theory covering
checksum al gorithns that are suitable for calculation in software.

| mpl enentation of the streamng facilities of VMIP is still in progress.

This facility is expected to be inportant for w de-area, |ong del ay
conmuni cati on.

Cheriton [page 84]

RFC 1045 VMIP February 1988

|. Standard VMIP Response Codes

The followi ng are the nuneric values of the response codes used in VMIP.

0 oK

1 RETRY

2 RETRY_ALL

3 BUSY

4 NONEXI STENT_ENTI TY
5 ENTI TY_M GRATED

6 NO_PERM SSI ON

7 NOT_AWAI TI NG_MSG

8 VMIP_ERRCR

9 MBGTRANS OVERFLOW
10 BAD_TRANSACTI ON_| D
11 STREAM NG_NOT_SUPPORTED
12 NO RUN_RECORD

13 RETRANS_TI MEOUT

14 USER_TI MEQUT

15 RESPONSE_DI SCARDED
16 SECURI TY_NOT_SUPPORTED
17 BAD REPLY SEGVENT
18 SECURI TY_REQUI RED
19 STREAMVED_RESPONSE
20 TOO MANY_RETRI ES
21 NO_PRI NCI PAL

Cheriton [page 85]

VMIP February 1988

NO_KEY
ENCRYPTI ON_NOT_SUPPORTED
NO_AUTHENTI CATOR

Reserved for future VMIP assignnment.

O her values of the codes are avail able for use by higher |eve

RFC 1045
22

23

24

25-63

pr ot ocol s.
val ues.

Separate protocol docunents will specify further standard

Applications are free to use values starting at 0x00800000 (hex) for
application-specific return val ues.

Cheriton

[page 86]

RFC 1045 VMIP February 1988

Il. VMIP RPC Presentati on Protoco

For compl ete generality, the mapping of the procedures and the
paranmeters onto VMIP nessages shoul d be defined by a RPC presentation
protocol. |In the absence of an accepted standard protocol, we define an
RPC presentation protocol for VMIP as foll ows.

Each procedure is assigned an identifying Request Code. The Request
code serves effectively the sane as a tag field of variant record,
identifying the format of the Request and associ ated Response as a
variant of the possible nessage formats.

The format of the Request for a procedure is its Request Code foll owed
by its parameters sequentially in the message control block until it is
full.

The remai ni ng paraneters are sent as part of the nessage segnent data
formatted according to the XDR protocol (RFC ??). 1In this case, the
size of the segment is specified in the Segnent Size field.

The Response for a procedure consists of a ResponseCode field followed
by the return paraneters sequentially in the nmessage control bl ock
except if there is a paraneter returned that nmust be transmitted as
segnent data, its size is specified in the SegnentSize field and the
paranmeter is stored in the SegnentData field.

Attributes associated with procedure definitions should indicate the
Flags to be used in the Request Code. Request Codes are assigned as
descri bed bel ow.

I1.1. Request Code Managenent

Request codes are divided into Public Interface Codes and
application-specific, according to whether the PIC value is set. An
interface is a set of request codes representing one service or nodul e
function. A public interface is one that is to be used in nmultiple

i ndependent|y devel oped nmodules. In VMIP, public interface codes are
allocated in units of 256 structured as

An interface is free to allocate the 8 bits for version and procedure as
desired. For exanple, all 8 bits can be used for procedures. A nodule
requiring nore than 256 Version/Procedure val ues can be all ocated

Cheriton [page 87]

RFC 1045 VMIP February 1988

multiple Interface values. They need not be consecutive Interface
val ues.

Cheriton [page 88]

RFC 1045 VMIP February 1988

[11. VMIP Managenent Procedures

St andard procedures are defined for VMIP nanagenent, including creation
del etion and query of entities and entity groups, probing to get

i nformati on about entities, and updati ng nessage transaction infornmation
at the client or the server.

The procedures are inplenented by the VMIP nanager that constitutes a
portion of every conplete VMIP nodul e. Each procedure is invoked by
sendi ng a Request to the VMIP nanager that handles the entity specified
in the operation or the | ocal manager. The Request sent using the
normal Send operation with the Server specified as the well-known entity
group VMIP_NMANGER _GROUP, using the CoResident Entity mechanismto direct
the request to the specific manager that should handl e the Request.

(The ProbeEntity operation is nulticast to the VMIP_MANAGER GROUP if the
host address for the entity is not known locally and the host address is
determ ned as the host address of the responder. For all other
operations, a ProbeEntity operation is used to determnine the host
address if it is not known.) Specifying co-resident entity O is
interpreted as the co-resident with the invoking process. The
co-resident entity identifier may al so specify a group in which case,
the Request is sent to all managers with nenbers in this group

The standard procedures with their Request Code and paraneters are |isted
below with their semantics. (The Request Code range 0xVV000100 to
OXWVWO0O0O1FF is reserved for use by the VMIP managenment routines, where W
is any choice of control flags with the PIC bit set. The flags are set
bel ow as required for each procedure.)

0x05000101 - ProbeEntity(CREntity, entityld, authDonain) -> (code,
<staterec>)
Request and return information on the specified entity
in the specified authDomain, sending the Request to the
VMIP managenent nodul e coresident with CREntity. An
error return is given if the requested information
cannot be provided in the specified authDomain. The
<staterec> returned is structured as the foll ow ng
fields.

Transaction identifier
The current or next transaction
identifier being used by the probed
entity.

Processld: 64 bits

Identifier for client process. The
nmeani ng of this is specified as part of

Cheriton [page 89]

RFC 1045 VMIP February 1988

the Donmmin definition.

Principalld The identifier for the principal or
account associated with the process
specified by Processld. The neani ng of
this field is specified as part of the
Domai n definition.

Ef fectivePrincipalld
The identifier for the principal or
account associated with the Cient port,
whi ch may be different fromthe
Principalld especially if this is an
nested call. The neaning of this field
is specified as part of the Domain
definition.

The code field indicates whether this is an error
response or not. The codes and their interpretation
are:

(014
No error. Probe was conpleted K

NONEXI STENT_ENTI TY
Specified entity does not exist.

ENTI TY_M GRATED
The entity has migrated and is no longer at the host to
whi ch the request was sent.

NO_PERM SSI ON
Entity has refused to provide ProbeResponse.

VMIP_ERRCR
The Request packet group was in error relative to the
VMIP protocol specification.

"defaul t"
Sone type of error - discard ProbeResponse.

0x0D000102 - Aut hProbeEntity(CREntity, entityld, aut hDomain, random d) ->
(code, ProbeAut henti cat or, Encrypt Type, Enti t yAut henti cat or)

Request authentication of the entity specified by

entityld fromthe VMIP manager coresident with CREntity
i n aut hDormai n aut hentication donmain, returning the

Cheriton [page 90]

RFC 1045

Cheriton

VMIP February 1988

i nformati on contained in the return paranmeters. The
fields are set the sane as that specified for the basic
Pr obeResponse except as noted bel ow.

Pr obeAut hent i cat or

Encrypt Type

20 bytes consisting of the Entityld, the
random d and the probed Entity’s current
Transaction value plus a 32-bit checksum
for these two fields (checksunmed using

the standard packet Checksum al gorithnj,
all encrypted with the Key supplied in

t he Aut henti cator.

An identifier that identifies the
variant of encryption method being used
by the probed Entity for packets it
transmts and packets it is able to
receive. (See Appendix V.) The

hi gh-order 8 bits of the EncryptType
contain the XOR of the 8 octets of the
Principalld associated with private key
used to encrypt the EntityAuthenticator.
This value is used by the requestor or
Client as an aid in locating the key to
decrypt the authenticator.

Entit yAut henti cat or

Key: 64 bits

(returned as segnent data) The
Processld, Principalld,

Ef fectivePrinci pal associated with the
ProbedEntity plus the private
encryption/decryption key and its
lifetime limt to be used for

conmuni cation with the Entity. The
authenticator is encrypted with a
private key associated with the Cient
entity such that it can be neither read
nor forged by a party not trusted by the
Client Entity. The format of the

Aut henticator in the nessage segnent is
shown in detail in Figure Il11-1

Encryption key to be used for encrypting
and decrypting packets sent to and
received fromthe probed Entity. This
is the "working" key for packet

transm ssions. VMIP only uses private

[page 91]

RFC 1045

Cheriton

VMIP February 1988

o m oo eeeeaao--- +

| Processld (8 octets)

o e m e e e e e e e e e e e e e e e e e e m e mm e ee— o +

| Principalld (8 octets)

e +

| Ef fectivePrincipalld (8 octets) |

o m o e eeaao- - +

| Key (8 octets)

o e m e e e e e e e e e e e e e e e e e e m e mm e ee— o +

| KeyTi meLi m t

e +

| Aut hDomai n

o m o e eeeea—o--- +

| Aut hChecksum

o e m e e e e e e e e e e e e e e e e e e m e mm e ee— o +
Figure I'11-1: Aut hent i cat or For mat

key encryption for data transni ssion

KeyTinmeLimt: 32 bits
The tinme in seconds since Dec. 31st,
1969 GMI at whi ch one should cease to
use the Key.

Aut hDonmai n: 32 bhits
The aut hentication domain in which to
interpret the principal identifiers.
This may be different fromthe
aut hDormai n specified in the call if the
Server cannot provide the authentication
information in the request domain.

Aut hChecksum 32 bits
Contai ns the checksum (using the sane
Checksum al gorithm as for packet) of
KeyTi meLimit, Key, Principalld and
Ef fectivePrinci pal | d.

Not es:

1. A authentication Probe Request and Response
are sent unencrypted in general because it is
used prior to there being a secure channel
Therefore, specific fields or groups of
fields checksumred and encrypted to prevent
unaut hori zed nodification or forgery. In

[page 92]

RFC 1045

0x05000103 -

0x05000104 -

Cheriton

VMIP February 1988

particul ar, the ProbeAuthenticator is
checksunmed and encrypted with the Key.

2. The ProbeAut henticator authenticates the
Response as respondi ng to the Request when
its Entityld, random d and Transaction val ues
match those in the Probe request. The
ProbeAutenticator is bound to the
EntityAutenticator by being encrypted by the
private Key contained in that authenticator.

3. The authenticator is encrypted such that it
can be decrypted by a private key, known to
the dient. This authenticator is presumably
obtained froma key distribution center that
the dient trusts. The Aut hChecksum prevents
undet ected nodifications to the
aut henti cat or.

ProbeEntityBl ock(entityld) -> (code, entityld)

Check whether the block of 256 entity identifiers
associated with this entityld are in use. The entityld
returned should match that being queried or else the
return val ue should be ignored and the operation redone.

Quer yVMIPNode(entityld) -> (code, MU, flags, authdonain

domai ns, aut hdomai ns, domainlist)

Query the VMIP managenent nodule for entityld to get
various nodul e- or node-w de paraneters, including: (1)
MIU - Maxi mum transmni ssion unit or packet size handl ed
by this node. (2) flags- zero or nore of the follow ng
bit fields:

1 Handl es streaned Requests.

2 Can issue streaned nmessage transactions
for clients.

4 Handl es secure Requests.

8 Can issue secure message transactions.
The aut hdomain indicates the primary authentication
domai n supported. The donmai ns and aut hdomai ns
paraneters indicate the nunber of entity domai ns and

aut henti cati on domai ns supported by this node, which are
listed in the data segnent paraneter domainlist if

[page 93]

RFC 1045 VMIP February 1988

ei ther paranmeter is non-zero. (Al the entity domains
precede the authentication domains in the data segnent.)

0x05000105 - Get Request Forwarder(CREntity, entityldl) -> (code,
entityld2, principal, authDonain)
Return the forwarding server’'s entity identifer and
principal for the forwarder of entityldl. CREntity
shoul d be zero to get the local VMIP nanagenent nodul e.

0x05000106 - CreateEntity(entityldl) -> (code, entityld2)
Create a new entity and return its entity identifier in
entityld2. The entity is created local to the entity
specified in entityldl and |local to the requestor if
entityldl is O.

0x05000107 - DeleteEntity(entityld) -> (code)
Delete the entity specified by entityld, which nay be a
group. |If a group, the deletion is only on a best
efforts basis. The client nust take additional measures
to ensure conplete deletion if required.

0x0D000108 - QueryEntity(entityld) -> (code, descriptor)
Return a descriptor of entityld in arg of a nmaxi mum of
segment Si ze bytes.

0x05000109 - SignalEntity(entityld, arg)->(code)
Send the signal specified by arg to the entity specified
by entityld. (arg is 32 bits.)

Ox0500010A - CreateG oup(CREntity,entityG oupld,entityld, perns)->(code)

Request that the VMIP manager local to CREntity create
an new entity group, using the specified entityGoupld
with entityld as the first menber and perm ssions
"perns", a 32-bit field described |later. The invoker is
regi stered as a nmanager of the new group, giving it the
perm ssions to add or renmpve nenbers. (Normally
CREntity is 0, indicating the VMIP nanager local to the
requestor.)

0x0500010B - AddToG oup(CREntity, entityGoupld, entityld
per ns) - >(code)
Request that the VMIP manager local to CREntity add the
specified entityld to the entityGoupld with the
specified permissions. |If entityGoupld specifies a
restricted group, the invoker nmust have permission to
add nenbers to the group, either because the invoker is

Cheriton [page 94]

RFC 1045

0x0500010C -

0x0500010D -

0x0500010E -

Cheriton

VMIP February 1988

a manager of the group or because it was added to the
group with the required permssions. |If CREntity is O,
then the | ocal VMIP manager checks perm ssions and
forwards the request with CREntity set to entityld and
the entityld field set to a digital signature (see

bel ow) of the Request by the VMIP manager, certifying
that the dient has the pernissions required by the
Request. (If entityGoupld specifies an unrestricted
group, the Request can be sent directly to the handling
VMIP manager by setting CREntity to entityld.)

RenoveFronGr oup(CREntity, entityGoupld, entityld)->(code)

Request that the VMIP manager local to CREntity renpve
the specified entityld fromthe group specified by
entityGoupld. Normally CREntity is O, indicating the
VMIP manager |local to the requestor. |If CREntity is O,
then the | ocal VMIP manager checks perni ssions and
forwards the request with CREntity set to entityld and
the entityld field a digital signature of the Request by
the VMIP manager, certifying that the dient has the
perm ssi ons required by the Request.

QueryGroup(entityld)->(code, record)...

Return information on the specified entity. The
Response from each respondi ng VMIP manager is (code,
record). The format of the record is (nenmberCount,
menber1, nmenber2, ...). The Responses are returned on a
best efforts basis; there is no guarantee that responses
fromall managers with nmenbers in the specified group
will be received

Modi fyServi ce(entityld, flags, count, pc,threadlist)->(code,

count)

Modi fy the service associated with the entity specified
by entityld. The flags may indicate a nessage service
nodel , in which case the call "count" paraneter

i ndi cates the maxi mum nunber of queued nessages desired,;
the return "count" parameter indicates the nunber of
gueued nessage allowed. Alternatively, the "fl ags"
paraneters indicates the RPC thread service nodel, in
whi ch case "count" threads are requested, each with an
inital program counter as specified and stack, priority
and nessage receive area indicated by the threadlist.

In particular, "threadlist" consists of "count" records
of the form

(priority, stack, stacksi ze, segnent, segnent si ze), each one
assigned to one of the threads. Flags defined for the

[page 95]

RFC 1045 VMIP February 1988

"flags" paraneter are:

1 THREAD SERVI CE - ot herw se the nessage
nodel .
2 AUTHENTI CATI ON_REQUI RED - Sent a Probe

request to determ ne principa
associated with the Cient, if not
known.

4 SECURI TY_REQUI RED - Request nust be
encrypted or el se reject.

8 | NCREMENTAL - treat the count val ue as
an increment (or decrenent) relative to
the current value rather than an
absol ute val ue for the maxi mum nunber of
gueued nessages or threads.

In the thread nodel, the count rmust be a positive
increnent or else 0, which disables the service. Only a
count of O terminates currently queued requests or

i n-progress request handling.

0x4500010F -
Noti fyVm pCient(client,cntrl,recSeq,transact, delivery, code)->()

Update the state associated with the transaction
specified by client and transact, an entity identifier
and transaction identifier, respectively. This
operation is normally used only by another VMIP
management nmodule. (Note that it is a datagram
operation.) The other paraneters are as foll ows:

ctrl A 32-bit value corresponding to 4th
32-bit word of the VMIP header of a
Response packet that would be sent in
response to the Request that this is
responding to. That is, the contro
flags, ForwardCount, RetransmtCount and
Priority fields match those of the
Request. (The NRS flag is set if the
recei veSegNunber field is used.) The
PGCount subfield indicates the nunber of
previ ous Request packet groups being
acknow edged by this Notify operation
(The bit fields that are reserved in

Cheriton [page 96]

RFC 1045

Cheriton

recSeq

del i very

code

VMIP February 1988

this word in the header are al so
reserved here and nust be zero.)

Sequence numnber of reception at the
Server if the NRS flag is set in the
ctrl paraneter, otherw se reserved and
zero. (This is used for sender-based
| oggi ng of message activity for replay
in case of failure - an optiona
facility.)

I ndi cates the segnment bl ocks of the
packet group have been received at the
Server.

i ndi cates the action the client should
t ake, as descri bed bel ow.

The VMIP managenent nodul e shoul d take action on this
operation according to the code, as specified bel ow.

XK

RETRY

RETRY_ALL

BUSY

Do nothing at this time, continue
waiting for the response with a reset
timer.

Retransmt the request packet group

i Mmediately with at | east the segnent
bl ocks that the Server failed to
recei ve, the conpl enent of those

i ndi cated by the delivery paraneter.

Retransmt the request packet group

i Mmediately with at | east the segnent

bl ocks that the Server failed to
receive, as indicated by the delivery
field plus all subsequently transmitted
packets that are part of this packet
run. (The latter is applicable only for
streamed nessage transactions.)

The server was unable to accept the
Request at this tinme. Retry later if
desired to continue with the nessage
transacti on.

NONEXI STENT_ENTI TY

Specified Server entity does not exist.

[page 97]

RFC 1045

Cheriton

VMIP February 1988

ENTI TY_M GRATED The server entity has migrated and is no

NO_PERM SSI ON

| onger at the host to which the request
was sent. The Server should attenpt to
determ ne the new host address of the
Client using the VMIP nanagenent
ProbeEntity operation (described
earlier).

Server has not authorized reception of
nessages fromthis client.

NOT_AWAI TI NG_MSG

VMIP_ERROR

The conditional nessage delivery bit was
set for the Request packet group and the
Server was not waiting for it so the
Request packet group was discarded.

The Request packet group was in error
relative to the VMIP protoco
speci fication.

BAD_TRANSACTI ON_| D

Transaction identifier is old relative
to the transaction identifier held for
the dient by the Server.

STREAM NG_NOT_SUPPORTED

Server does not support mnultiple

out st andi ng nessage transactions from
the sane Client, i.e. streamed nessage
transacti ons.

SECURI TY_NOT_SUPPORTED

The Request was secure and this Server
does not support security.

SECURI TY_REQUI RED

NO_RUN_RECORD

The Server is refusing the Request
because it was not encrypted.

Server has no record of previous packets
in this run of packet groups. This can
occur if the first packet group is |ost
or if the current packet group is sent
significantly later than the | ast one
and the Server has discarded its client
state record

[page 98]

RFC 1045 VMIP February 1988

0x45000110 - Noti fyVnt pServer (server,client,transact, delivery, code)->()
Update the server state associated with the transaction
specified by client and transact, an entity identifier
and transaction identifier, respectively. This
operation is nornmally used only by anot her VMIP
managenent nmodule. (Note that it is a datagram
operation.) The other paraneters are as foll ows:

delivery I ndi cates the segment bl ocks of the
Response packet group that have been
received at the dient.

code i ndi cates the action the Server should
take, as listed bel ow

The VMIP nanagenent nodul e shoul d take action on this
operation according to the code, as specified bel ow.

(0 ¢ Client is satisfied with Response data.
The Server can discard the response
data, if any.

RETRY Retransmt the Response packet group
i medi ately with at |east the segment
bl ocks that the Cient failed to
receive, as indicated by the delivery
paranmeter. (The delivery paraneter
i ndi cates those segnent bl ocks received
by the dient).

RETRY_ALL Retransmit the Response packet group
i Mmediately with at | east the segnent
bl ocks that the Client failed to
receive, as indicated by the (conpl enent
of) the delivery paraneter. Al so,
retransmt all Response packet groups
send subsequent to the specified packet

gr oup.

NONEXI STENT_ENTI TY
Specified Client entity does not exist.

ENTI TY_M GRATED The Cient entity has migrated and is no
| onger at the host to which the response
was sent.

RESPONSE_DI SCARDED

Cheriton [page 99]

RFC 1045 VMIP February 1988

The Response was di scarded and no | onger
of interest to the Cient. This nmay
occur if the conditional nessage
delivery bit was set for the Response
packet group and the Cient was not
waiting for it so the Response packet
group was di scarded.

VMIP_ERROR The Response packet group was in error
relative to the VMIP protoco
speci fication.

0x41000111 -
Noti fyRenmpteVnt pClient(client,ctrl,recSeq,transact, delivery, code->()

The sane as NotifyVntpClient except the co-resident
addressing is not used. This operation is used to
update client state that is renote when a Request is
f or war ded.

Note the use of the CRE bit in the RequestCodes to route the request to
the correct VMIP nmanagenent nodul e(s) to handl e the request.

[11.1. Entity G oup Managenent

An entity in a group has a set of perm ssions associated with its

menber ship, controling whether it can add or renobve others, whether it
can renove itself, and whether others can renove it fromthe group. The
perm ssions for entity groups are as follows:

VMIP_GRP_MANAGER 0x00000001 { Manager of group. }

VMIP_REM BY_ SELF 0x00000002 { Can be renoved self. }

VMIP_REM BY_PRI N 0x00000004 { Can be renied by sane principal}
VMIP_REM BY_OTHE 0x00000008 { Can be renobved any others. }
VMIP_ADD PRI N 0x00000010 { Can add by sane principal. }
VMIP_ADD OTHE 0x00000020 { Can add any others. }

VMIP_REM PRI N 0x00000040 { Can renove sane principal. }
VMIP_REM OTHE 0x00000080 { Can renove any others. }

To renove an entity froma restricted group, the invoker nust have
perm ssion to renpove that entity and the entity nmust have perm ssions
that allowit to be renmoved by that entity. Wth an unrestricted group
only the latter condition applies.

Wth a restricted group, a menber can only be added by another entity

with the perm ssions to add other entities. The creator of a group is
given full permi ssions on a group. A entity adding another entity to a

Cheriton [page 100]

RFC 1045 VMIP February 1988

group can only give the entity it adds a subset of its perm ssions.
Wth unrestricted groups, any entity can add itself to the group. It
can al so add other entities to the group providing the entity is not
mar ked as immune to such requests. (This is an inplenentation
restriction that individual entities can inpose.)

[11.2. VMIP Managenent Digital Signatures

As nentioned above, the entityld field of the AddToG oup and
RenoveFromGroup is used to transmt a digital signature indicating the
perm ssion for the operation has been checked by the sending kernel.
The digital signature procedures have not yet been defined. This field
should be set to O for nowto indicate no signature after the CREntity
paranmeter is set to the entity on which the operation is to be

per f or med.

Cheriton [page 101]

RFC 1045 VMIP February 1988

V. VMIP Entity ldentifier Domains

VMIP al l ows for several disjoint nam ng domains for its endpoints. The
64-bit entity identifier is only unique and nmeaningful within its
donmain. Each donmmin can define its own algorithmor mechanismfor
assignment of entity identifiers, although each donmai n mechani sm nust
ensure uni queness, stability of identifiers and host independence.

IV.1. Domain 1

For initial use of VMIP, we define the donmain with Domain identifier 1
as foll ows:

The Internet address is the Internet address of the host on which this
entity-id is originally allocated. The Discrimnator is an arbitrary
value that is unique relative to this Internet host address. In

addi tion, the host must guarantee that this identifier does not get
reused for a long period of time after it beconmes invalid. ("Invalid"
nmeans that no VMIP nodul e considers in bound to an entity.) One
technique is to use the lower order bits of a 1 second clock. The clock
need not represent real-tine but nmust never be set back after a crash.
In a sinple inplenmentation, using the | ow order bits of a clock as the
time stanp, the generation of unique identifiers is overall linmted to
no nore than 1 per second on average. The type flags were described in
Section 3.1.

An entity may migrate between hosts. Thus, an inplenentation can
heuristically use the enbedded Internet address to locate an entity but
shoul d be prepared to naintain a cache of redirects for nigrated
entities, plus accept Notify operations indicating that migration has
occurred.

Entity group identifiers in Domain 1 are structured in one of two forms,
dependi ng on whether they are well-known or dynamically all ocated
identifiers. A well-known entity identifier is structured as:

4 bits 28 bits 32 hits

Cheriton [page 102]

RFC 1045 VMIP February 1988

with the second high-order bit (GRP) set to 1. This formof entity
identifier is mapped to the Internet host group address specified in the
| ow-order 32 bits. The Discrimnator distinguishes group identifiers
using the sanme Internet host group. Well-known entity group identifiers
shoul d be allocated to correspond to the basic services provided by
hosts that are nenmbers of the group, not specifically because that
service is provided by VMIP. For exanple, the well-known entity group
identifier for the domain nane service should contain as its enbedded

I nternet host group address the host group for Domain Name servers.

A dynamically allocated entity identifier is structured as:

4 bits 28 bits 32 hits

with the second high-order bit (GRP) set to 1. The Internet address in
the loworder 32 bits is a Internet address assigned to the host that
dynam cally allocates this entity group identifier. A dynanically

all ocated entity group identifier is mapped to Internet host group
address 232. X. X. X where X. X. X are the |oworder 24 bits of the

Di scrimnator subfield of the entity group identifier

We use the following notation for Domain 1 entity identifiers <10> and
propose it use as a standard conventi on.

<fl ags>-<di scri m nat or >-<I nternet address>
where <flags> are [X]{BE, LE, RG UG [A

X = reserved

BE = big-endian entity

LE = little-endian entity
RG = restricted group

UG = unrestricted group
A = alias

and <discrimnator> is a decimal integer and <Internet address> is in
standard dotted decinal |P address notation

Exanpl es:

<10> This notation was devel oped by Steve Deeri ng.

Cheriton [page 103]

RFC 1045 VMIP February 1988

BE- 25593-36.8.0.49 is big-endian entity #25593 created on host
36. 8. 0. 49.

RG 1-224.0.1.0 is the well-known restricted VMIP nmanagers group

UG 565338-36.8.0.77 is unrestricted entity group #565338 created on host
36.8.0.77.

LEA-7823-36.8.0.77 is a little-endian alias entity #7823 created on host
36.8.0.77.

This notation nakes it easy to comruni cate and understand entity
identifiers for Domain 1.

The wel | -known entity identifiers specified to date are:

VMIP_MANAGER GROUP RG 1-224.0.1.0
Managers for VMIP operations.

VMIP_DEFAULT_BECLI ENT BE-1-224.0.1.0
Client entity identifier to use when a (big-endian) host
has not deternmi ned or been allocated any client entity
identifiers.

VMIP_DEFAULT_LECLI ENT LE-1-224.0.1.0
Client entity identifier to use when a (little-endian)
host has not determ ned or been allocated any client
entity identifiers.

Note that 224.0.1.0 is the host group address assigned to VMIP and to
whi ch all VMIP hosts bel ong.

O her well-known entity group identifiers will be specified in
subsequent extensions to VMIP and in higher-1level protocols that use
VMTP.

IV.2. Domain 3

Domain 3 is reserved for enbedded systens that are restricted to a
single network and are i ndependent of IP. Entity identifiers are

al |l ocated using the decentralized approach described below. The mappi ng
of entity group identifiers is specific to the type of network being
used and not defined here. In general, there should be a sinple
algorithmc mapping fromentity group identifier to multicast address,
simlar to that described for Domain 1. Sinilarly, the values for
default client identifier are specific to the type of network and not

Cheriton [page 104]

RFC 1045 VMIP February 1988

defi ned here.

IV.3. G her Donmmins

Definition of additional VMIP domains is planned for the future.
Requests for allocation of VMIP Domains should be addressed to the
I nternet protocol admnistrator.

IV.4. Decentralized Entity ldentifier Allocation

The ProbeEntityBl ock operation may be used to deternine whether a bl ock
of entity identifiers is in use. ("In use" means valid or reserved by a
host for allocation.) This nmechanismis used to detect collisions in

al l ocation of blocks of entity identifiers as part of the inplenentation
of decentralized allocation of entity identifiers. (Decentralized
allocation is used in |ocal domain use of VMIP such as in enbedded
systens- see Dommin 3.)

Basically, a group of hosts can forma Domain or sub-Domain, a group of
hosts managi ng their own entity identifier space or subspace,
respectively. As an exanple of a sub-Donain, a group of hosts in Domain
1 all identified with a particular host group address can nmanage the
sub- Domai n corresponding to all entity identifiers that contain that
host group address. The ProbeEntityBl ock operation is used to allocate
the random bits of these identifiers as foll ows.

When a host requires a new block of entity identifiers, it selects a new
bl ock (randomy or by some choice algorithn) and then nulticasts a
ProbeEntityBl ock request to the menbers of the (sub-)Domain sone R
times. If no response is received after R (re)transm ssions, the host
concludes that it is free to use this block of identifiers. O herw se,
it picks another block and tries again

Not es:

1. A block of 256 identifiers is specified by an entity
identifier with the loworder 8 bits all zero.

2. Wien a host allocates an initial block of entity identifiers
(and therefore does not yet have a specified entity
identifier to use) it uses VMIP_DEFAULT_BECLI ENT (if
bi g- endi an, el se VMIP_DEFAULT LECLIENT if little-endian) as
its client identifier in the ProbeEntityBl ock Request and a
transaction identifier of 0. As soon as it has allocated a
bl ock of entity identifiers, it should use these identifiers

Cheriton [page 105]

RFC 1045 VMIP February 1988

for all subsequent conmunication. The default client
identifier values are defined for each Donain.

3. The set of hosts using this decentralized allocation rmust not
be subject to network partitioning. That is, the R
transm ssi ons nmust be sufficient to ensure that every host
sees the ProbeEntityBl ock request and (reliably) sends a
response. (A host that detects a collision can retransmt
the response nultiple tines until it sees a new
Pr obeEntityBl ock operation fromthe same host/Client up to a
maxi mum nunber of tines.) For instance, a set of nmmachines
connected by a single local network may able to use this type
of allocation.

4. To guarantee T-stability, a host nust prevent reuse of a
bl ock of identifiers if any of the identifiers in the bl ock
are currently valid or have been valid | ess than T seconds
previously. To this end, a host nust renmenber recently used
identifiers and object to their reuse in response to a
Pr obeEntityBl ock operati on.

5. Care is required in a VMIP inplenentation to ensure that
Probe operations cannot be di scarded due to | ack of buffer
space or queued or delayed so that a response is not
generated quickly. This is required not only to detect
collisions but also to provide accurate roundtrip estimates
as part of ProbeEntity operations.

Cheriton [page 106]

RFC 1045 VMIP February 1988

V. Aut henticati on Domai ns

A VMIP aut hentication domain defines the format and interpretation for
principal identifiers and encryption keys. In particular, an

aut henti cation donmai n nust specify a nmeans by which principa
identifiers are allocated and guaranteed uni que and stable. The
currently defined authentication donains are as follows (0 is reserved).

Ideally, all entities within one entity domain are al so associated with
one aut hentication donain. However, authentication donmins are
orthogonal to entity donains. Entities within one domain nmay have
different authentication domains. (ln this case, it is generally
necessary to have sone correspondence between principals in the
different domains.) Also, one entity identifier nay be associated with
mul ti pl e authentication domains. Finally, one authentication domain may
be used across nmultiple entity domains.

V.1l. Authentication Domain 1

A principal identifier is structured as foll ows.

The Internet Address may specify an individual host (such as a UN X
machi ne) or may specify a host group address corresponding to a cluster
of machi nes operating under a single adm nstration. |In both cases,
there is assuned to be an adminstrati on associated with the enbedded

I nternet address that guarantees the uni queness and stability of the
User ldentifier relative to the Internet address. In particular, that
admnistration is the only one authorized to allocate principa
identifiers with that Internet address prefix, and it may allocate any
of these identifiers.

In authentication domain 1, the standard EncryptionQualifiers are:
0 Clear text - no encryption

1 use 64-bit CBC DES for encryption and decryption

V.2. Oher Authentication Donai ns

O her authentication domains will be defined in the future as needed.

Cheriton [page 107]

RFC 1045 VMIP February 1988

VI. IP Inplenmentation

VMIP is designed to be inplenmented on the DoD | P I nternet Datagram
Protocol (although it may al so be inplenented as a | ocal network
protocol directly in "raw' network packets.)

VMIP i s assigned the protocol nunber 81.

Wth a 20 octet |IP header and one segnent bl ock, a VMIP packet is 600
octets. By convention, any host inplenenting VMIP inplicitly agrees to
accept VMIP/I P packets of at |east 600 octets.

VMIP multicast facilities are designed to work with, and have been
i mpl enented using, the nulticast extensions to the Internet [8]
described in RFC 966 and 988. The wi de-scale use of full VMIP/IP
depends on the availability of IP nulticast in this form

Cheriton [page 108]

RFC 1045 VMIP February 1988

VI1. Inmplementati on Notes

The performance and reliability of a protocol in operation is highly
dependent on the quality of its inplenentation, in addition to the
"intrinsic" quality of the protocol design. One of the design goals of
the VMIP effort was to produce an efficiently inplenentable protocol
The foll owi ng notes and suggestions are based on experience with

i mpl enenting VMIP in the V distributed systemand the UNI X 4.3 BSD
kernel. The following is described for a client and server handling
only one domain. A nulti-donmain client or server would replicate these
structures for each donain, although buffer space may be shared.

VIi1.1. Mapping Data Structures
The ClientMap procedure is inplenented using a hash table that maps to

the dient State Record whether this entity is local or renote, as shown
in Figure VII-1.

L +
d i ent Map | | x| |
R Ty +
| S + S +
+-->| LocalCient |--->| LocalCient |
. + . +
| Rermoted ient | | RermpteClient |->
oo + oo +
| | | |
| | | |
. + . +

Figure VII-1: Mapping Client Identifier to CSR

Local clients are |inked through the LocalCientLink, simlarly for the
RenoteC ientLink. Once a CSRwith the specified Entity Id is found,
sonme field or flag indicates whether it is identifying a local or renote
Entity. Hash collisions are handled with the overfl ow pointers

Local dientlLink and RenoteC ientLink (not shown) in the CSR for the
Local Cient and RenpteCient fields, respectively. Note that a CSR
representing an RPC request has both a |ocal and renote entity
identifier mapping to the sane CSR

The Server specified in a Request is mapped to a server descriptor using
the ServerMap (with collisions handled by the overflow pointer.). The
server descriptor is the root of a queue of CSR s for handling requests
plus flags that nodify the handling of the Request. Flags include:

Cheriton [page 109]

RFC 1045 VMIP February 1988

Server Map | x

Figure VII-2: Mappi ng Server ldentifiers

THREAD QUEUE Request is to be invoked directly as a renote procedure
i nvocation, rather than by a server process in the
nmessage nodel

AUTHENTI CATI ON_REQUI RED
Sent a Probe request to determine principal associated
with the dient, if not known.

SECURI TY_REQUI RED
Request nust be encrypted or el se reject.

REQUESTS QUEUED Queue contains waiting requests, rather than free CSR s.
Queue this request as well.

SERVER WAI TING The server is waiting and avail able to handl e i ncom ng
Request i mmedi ately, as required by CMD

Al ternatively, the Server identifiers can be napped to a CSR using the
MapTod i ent mechanismwith a pointer in the CSR refering to the server
descriptor, if any. This schene is attractive if there are client CSR s
associated with a service to allow it to communicate as a client using
VMIP wi th ot her services.

Finally, a simlar structure is used to expand entity group identifiers
to the local nenbership, as shown in Figure VII-3. A group identifier
is hashed to an index in the GoupMap. The list of group descriptors
rooted at that index in the G oupMap contains a group descriptor for
each | ocal nmenmber of the group. The flags are the group perm ssions
defined in Appendix I11.

Cheriton [page 110]

RFC 1045 VMIP February 1988

S oo o m e +
G oupMap | x|

E Rl I e +

| R +

| | OverflowLink |

| e +

+-->| EntityGoupld |

Fomm oo o - +

| Fl ags |

R +

| Menmber Entity]|

e +

Figure VII-3: Mappi ng Group ldentifiers

Note that the same pool of descriptors could be used for the server and
group descriptors given that they are simlar in size.

VII.2. Cient Data Structures

Each client entity is represented as a client state record. The CSR
contains a VMIP header as well as other bookkeeping fields, including
ti meout count, retransm ssion count, as described in Section 4.1. In
addition, there is a tinmeout queue, transnission queue and reception
gqueue. Finally, there is a ServerHost cache that maps from server
entity-id records to host address, estimated round trip tine,

i nterpacket gap, MIU size and (optinmally) estimted processing tine for
this server entity.

VI1.3. Server Data Structures

The server maintains a heap of client state records (CSR), one for each
(dient, Transaction). (If streans are not supported, there is, at
worst, a CSR per Client with which the server has comuni cated with
recently.) The CSR contains a VMIP header as well as various
bookkeepi ng fields including tineout count, retransm ssion count. The
server maintains a hash table mapping of Client to CSR as well as the
transm ssion, tineout and reception queues. In a VMIP nodul e

i mpl enenting both the client and server functions, the sane tineout
gueue and transni ssion queue are used for both.

Cheriton [page 111]

RFC 1045 VMIP February 1988

VIl.4. Packet G oup transm ssion

The procedure SendPacket G oup(csr) transmits the packet group
specified by the record CSR It perfornms:

1. Fragnentation of the segnent data, if any, into packets.
(Note, segnent data flagged by SDA bit.)

2. Modifies the VMIP header for each packet as required e.g.
changi ng the delivery mask as appropriate.

3. Conputes the VMIP checksum
4. Encrypts the appropriate portion of the packet, if required.
5. Prepends and appends network-|evel header and trailer using

net wor k address from ServerHost cache, or fromthe responding
CSR

6. Transmits the packet with the interpacket gap specified in
the cache. This may involve round-robin scheduling between
hosts as well as delaying transm ssions slightly.

7. Invokes the finish-up procedure specified by the CSR record,

conpl eting the processing. Generally, this finish-up

procedure adds the record to the timeout queue with the

appropriate timeout queue.
The CSR includes a 32-bit transmi ssion nmask that indicates the portions
of the segnent to transmit. The SendPacket G oup procedure is assunmed to
handl e queui ng at the network transmi ssion queue, queuing in priority
order according to the priority field specified in the CSR record.

(This priority may be reflected in network transm ssi on behavior for
net wor ks that support priority.)

The SendPacket Group procedure only | ooks at the following fields of a
CSR

- Transm ssion mask
- FuncCode

- SDA

- Cient

- Server

Cheriton [page 112]

RFC 1045 VMIP February 1988

- CoResidentEntity
- Key
It nodifies the followi ng fields
- Length
- Delivery
- Checksum

In the case of encrypted transmission, it encrypts the entire packet,
not including the Cient field and the followi ng 32-bits.

If the packet group is a Response, (i.e. lower-order bit of function
code is 1) the destination network address is determ ned fromthe
Client, otherwi se the Server. The HostAddr field is set either fromthe
Server Host cache (if a Request) or fromthe original Request if a
Response, before SendPacket Group is call ed.

The CSR includes a timeout and TTL fields indicating the maximumtinme to
conpl ete the processing and the tinme-to-live for the packets to be
transmtted.

SendPacket G oup is viewed as the right functionality to inplenent for
transm ssion in an "intelligent” network interface.

Finally, it appears preferable to be able to assune that all portions of
the segnment remmin nenory-resident (no page faults) during transmni ssion
In a demand- paged systemnms, sone formof locking is required to keep the
segnent data in nenory.

VII.5. VMIP Managerment Modul e

The i npl enentati on should inplement the nanagenment operations as a
separate nodule that is invoked fromw thin the VMIP nodule. Wen a
Request is received, either fromthe | ocal user |level or the network,
for the VMIP managenent nodul e, the managenent nodule is invoked as a
renote or |ocal procedure call to handle this request and return a
response (if not a datagramrequest). By registering as a |ocal server,
the managenent nodul e should minimze the special -case code required for
its invocation. The management module is basically a case statenent
that selects the operation based on the Request Code and then invokes the
speci fi ed managenent operation. The procedure inplenmenting the
nmanagenent operation, especially operations |ike NotifyVntpCdient and

Cheriton [page 113]

RFC 1045 VMIP February 1988

Noti fyVm pServer, are logically part of the VMIP nodul e because they
require full access to the basic data structures of the VMIP
i mpl enent ati on.

The managenent nodul e should be i nplenented so that it can respond
quickly to all requests, particularly since the timng of managenent
interactions is used to estimate round trip tine. To date, al

i mpl enent ati ons of the nanagenent nodul e have been done at the kerne
| evel, along with VMIP proper

VI1.6. Tinmeout Handling

The tinmeout queue is a queue of CSR records, ordered by tineout count,
as specified in the CSRrecord. On entry into the tinmeout queue, the
CSR record has the tinmeout field set to the tine (preferable in
mlliseconds or simlar unit) to remain in the queue plus the finishup
field set to the procedure to execute on renmpval on tinmeout fromthe
gueue. The tinmeout field for a CSRin the queue is the tinme relative to
the record preceding it in the queue (if any) at which it is to be
renoved. Some system specific nmechani smdecrenents the time for the
record at the front of the queue, invoking the finishup procedure when
the count goes to zero.

Using this schenme, a special CSRis used to tinmeout and scan CSR s for
non-recently pinged CSR's. That is, this CSR times out and invokes a
finishup procedure that scans for non-recently pinged CSR that are

"Awai ti ngResponse" and signals the request processing entity and del etes
the CSR It then returns to the tinmeout queue.

The tineout mechanismtends to be specific to an operating system The
schene described may have to be adapted to the operating systemin which
VMIP is to be inpl enented.

Thi s mechani sm handl es client request tineout and client response
timeout. It is not intended to handl e interpacket gaps given that these
times are expected to be under 1 mllisecond in general and possibly
only a few m croseconds.

VI1.7. Tinmeout Val ues

Roundtrip timeout values are estimted by matchi ng Responses or

Noti fyVm pCient Requests to Request transnission, relying on the
retransmtCount to identify the particular transm ssion of the Request
that generated the response. A simlar technique can be used with
Responses and Noti fyVnt pServer Requests. The retransnitCount is

Cheriton [page 114]

RFC 1045 VMIP February 1988

i ncrenented each tinme the Response is sent, whether the retransni ssion
was caused by tineout or retransmi ssion of the Request.

The ProbeEntity request is recommended as a basic way of getting
up-to-date informati on about a Cient as well as predictable host
nmachi ne turnaround in processing a request. (VMIP assunes and requires
an efficient, bounded response tine inplenentation of the ProbeEntity
operation.)

Using this nmechanismfor nmeasuring RTT, it is recommended that the
various estinmation and snoothing techni ques devel oped for TCP RTT
estimation be adapted and used.

VI1.8. Packet Reception
Logically a network packet containing a VMIP packet is 5 portions:
- network header, possibly including | ower-1level headers
- VMIP header
- data segnent
- VMIP checksum
- network trailer, etc.

It may be advantageous to receive a packet fragnented into these
portions, if supported by the network nodule. In this case, ideally the
VMIP header may be received directly into a CSR, the data segnent into a
page that can be mapped, rather than copied, to its final destination
with VMIP checksum and network header in a separate area (used to
extract the network address corresponding to the sender).

Packet reception is described in detail by the pseudo-code in Section
4.7.

Wth a response, normally the CSR has an associ ated segnent area

i medi ately avail abl e so delivery of segnent data is i mediate.
Simlarly, server entities should be "armed" with CSR s with segnent
areas that provide for imediate delivery of requests. It is reasonable
to discard segment data that cannot be inmmediately delivered in this
way, providing that clients and servers are able to preallocate CSR s
with segnent areas for requests and responses. |In particular, a client
shoul d be able to provide sonme nunber of additional CSR s for receiving
nmul tiple responses to a multicast request.

Cheriton [page 115]

RFC 1045 VMIP February 1988

The CSR data structure is intended to be the interface data structure
for an intelligent network interface. For reception, the interface is
"armed" with CSR s that may point to segnent areas in main nenory, into
which it can deliver a packet group. ldeally, the interface handl es al
the processing of all packets, interacting with the host after receiving
a conpl ete Request or Response packet group. An inplenentation should
use an interface based on SendPacket G oup(CSR) and

Recei vePacket G oup(CSR) to facilitate the introduction of an intelligent
network interface.

Recei vePacket Group(csr) provides the interface with a CSR descriptor and
zero or nore bytes of nain nenory to receive segnent data. The CSR
describes whether it is to receive responses (and if so, for which
client) or requests (and if so for which server).

The procedure Recl ai MCSR(CSR) reclains the specified record fromthe
interface before it has been returned after receiving the specified
packet group.

A finishup procedure is set in the CSR to be invoked when the CSR is
returned to the host by the normal processing sequence in the interface.
Simlarly, the tineout paraneter is set to indicate the maxi mumtinme the
host is providing for the routine to performthe specified function

The CSR and associ ated segnment nmenory is returned to the host after the
timeout period with an indication of progress after the tineout period.
It is not returned earlier.

VI1.9. Stream ng

The inplenentation of streanming is optional in both VMIP clients and
servers. ldeally, all performance-critical servers should inplenent
streaming. In addition, clients that have high context switch overhead,
networ k access overhead or expect to be conmunicating over |ong del ay

i nks shoul d al so inplenent stream ng

A client streamis inplenented by allocating a CSR for each outstanding
nmessage transaction. A stream of transactions is handled sinmlarly to
mul ti pl e outstanding transactions fromseparate clients except for the
interaction between consecutive nunbered transactions in a stream

For the server VMIP nodul e, streaned nessage transactions to a server
are queued (if accepted) subordinate to the first unprocessed CSR
corresponding to this dient. Thus, streamed transactions froma given
Client are always perfornmed in the order specified by the transaction
identifiers.

Cheriton [page 116]

RFC 1045 VMIP February 1988

If a server does not inplenent streaming, it nust refuse streamned
nmessage transactions using the NotifyVmpdient operation. Also, al
client VMIP's that support stream ng nust support the streaned interface
to a server that does not support streaming. That is, it nust perform
the nessage transactions one at a tinme. Consequently, a programthat
uses the streanming interface to a non-stream ng server experiences
degraded perfornmance, but not failure.

VI1.10. Inplenentation Experience

The i npl enentati on experience to date includes a partial inplenmentation
(mnus the streaming and full security) in the V kernel plus a sinmlar

prelimnary inplementation in the 4.3 BSD Unix kernel. 1In the V kerne

i mpl enentation, the CSR s are part of the (lightweight) process

descri ptor.

The V kernel inplenentation is able to performa VMIP nessage
transaction with no data segment between two Sun-3/75 s connected by 10

Mo Ethernet in 2.25 mlliseconds. It is also able to transfer data at
4.7 nmegabits per second using 16 kil obyte Requests (but null checksuns.)
The UNI X kernel inplenmentation running on Mcrovax Il’s achieves a basic

nessage transaction tinme of 9 mlliseconds and data rate of 1.9 nmegabits
per second using 16 kil obyte Responses. This inplenentation is using
the standard VMIP checksum

We hope to report nore extensive inplementation experience in future
revi sions of this docunent.

Cheriton [page 117]

RFC 1045 VMIP February 1988

VIIl. UNIX 4.3 BSD Kernel Interface for VMIP

UNI X 4.3 BSD includes a socket-based design for programinterfaces to a
variety of protocol famlies and types of protocols (streans,

datagrans). |In this appendi x, we sketch an extension to this design to
support a transaction-style protocol. (Sonme famliarity with UNIX 4.2/3
|PC is assuned.) Several extensions are required to the system
interface, rather than just adding a protocol, because no provision was
made for supporting transaction protocols in the original design. These
extensions include a new "transacti on" type of socket plus new system
calls invoke, getreply, probeentity, recreq, sendreply and forward.

A socket of type transaction bound to the VMIP protocol type
| PPROTO VMIP is created by the cal

s = socket (AF_I NET, SOCK_TRANSACT, VMIP);
This socket is bound to an entity identifier by
bi nd(s, &entityid, sizeof(entityid));

The first address/port bound to a socket is considered its prinmary nane
and is the one used on packet transm ssion. A nessage transaction is
i nvoked between the socket named by s and the Server specified by ntb by

i nvoke(s, nthb, segptr, seglen, tinmeout);

The ntb is a nmessage control block whose format was described in Section
2.4. The nmessage control block specifies the request to send plus the
destination Server. The response nessage control block returned by the
server is stored in ncb when invoke returns. The invoking process is

bl ocked until a response is received or the nessage transaction times
out unless the request is a datagram request. (Non-blocking versions
with signals on conpletion could also be provided, especially with a
stream ng inplenentation.)

For nulticast nessage transactions (sent to an entity group), the next
response to the current message transaction (if it arrives in less than
timeout mlliseconds) is returned by

getreply(s, nth, segptr, nmaxseglen, tineout);

The i nvoke operation sent to an entity group conpletes as soon as the
first response is received. A request is retransmitted until the first
reply is received (assum ng the request is not a datagram). Thus, the
system does not retransmt while getreply is timng out even if no
replies are avail abl e.

Cheriton [page 118]

RFC 1045 VMIP February 1988

The state of an entity associated with entityld is probed using
probeentity(entityld, state);

A UNI X process acting as a VMIP server accepts a Request by the
operation

recvreq(s, nctb, segptr, maxseglen);

The request nmessage for the next queued transaction request is returned
in ncb, plus the segnent data of maxi mum | ength maxsegl en, starting at
segptr in the address space. On return, the nessage control bl ock
contains the values as set in invoke except: (1) the Cient field
indicates the Cient that sent the received Request nessage. (2) the
Code field indicates the type of request. (3) the MsgDelivery field

i ndi cates the portions of the segnent actually received within the
specified segment size, if MDMis 1 in the Code field. A segnent bl ock
is marked as nissing (i.e. the corresponding bit in the MgDelivery
field is 0) unless it is received inits entirety or it is all of the
data in |last segment contained in the segnent.

To conplete a transaction, the reply specified by nch is sent to the
client specified by the MCB using

sendrepl y(s, ntb, segptr);
The Client field of the MCB indicates the client to respond to.

Finally, a nmessage transaction specified by ntb is forwarded to
newserver as though it were sent there by its original invoker using

forward(s, ncthb, segptr, tinmeout);

Cheriton [page 119]

RFC 1045

| ndex

Cheriton

VMIP

Acknow edgmrent 14
APG 16, 31, 39
Aut henti cati on donmin 20

Bi g- endi an 9

Checksum 14, 43
Checksum not set 44
dient 7, 10, 38

Client tinmer 16

CVMD 42, 110

CMG 32, 40

Co-resident entity 25
Code 42

CoResi dentEntity 42, 43
CRE 21, 42

DGM 42

Digital signature, VMIP managenent
Di skl ess workstations 2

Donai n 9, 38

Domain 1 102

Domain 3 104

Entity 7

Entity domain 9

Entity group 8

Entity identifier 37

Entity identifier allocation 105
Entity identifier, all-zero 38
EPG 20, 39

Feat ures 6

For war dCount 24
For war di ng 24
Functi onCode 41

G oup 8

Group nmessage transaction 10
Group tinmeouts 16

GRP 37

Handl eNoCSR 62
Handl eRequest NoCSR 79
HCO 14, 23, 39

95, 101

February 1988

[page 120]

RFC 1045

Cheriton

VMIP

Host i ndependence 8

| denpot ent 15
I nt er packet gap 18, 40
IP 108

Key 91

LEE 32, 37
Littl e-endi an 9
MCB 118

MDG 22, 40

MDM 30, 42

Message control bl ock 118
Message size 6

Message transaction 7, 10
MPG 39

MsgDel i very 43
MSGTRANS_OVERFLOW 27

Mul ti cast 4, 21, 120

Mul ticast, reliable 21

Nam ng 6

Negat i ve acknow edgnent 31
NER 25, 31, 39

NRT 26, 30, 39

NSR 25, 27, 31, 39

oj ect-oriented 2
Overrun 18

Packet group 7, 29, 39
Packet group run 31
Packet Del i very 29, 31, 41
PCGcount 26, 41

PIC 42

Pri nci pal 11

Priority 41

Process 11

Processld 89

Prot ocol nunber,IP 108

RAE 37

Rat e control 18
Real -ti ne 2, 4
Real ti ne 22

February 1988

[page 121]

RFC 1045

Cheriton

VMIP

Reliability 12
Request nessage 10
Request AckRetri es 30
Request Retri es 15
Response nessage 10
ResponseAckRetri es 31
ResponseRetri es 15
Restricted group 8
Ret ransm ssi on 15

Ret ransmi t Count 17
Roundtrip tine 17
RPC 2

Run 31, 39

Run, message transactions

SDA 42

Security 4, 19
Segrent bl ock 41
Segnment data 43
Segnent Si ze 42, 43
Sel ective retransm ssion
Server 7, 10, 41
Server group 8
Sockets, VMIP 118
STI 26, 40

St ream ng 25, 55
Strictly stable 8
Subgr oups 21

T-stabl e 8

TCL(Server) 16
TC2(Server) 16
TC3(Server) 16

TA 16

TCP 2

Ti meout s 15
Transaction 10, 41
Transaction identification
TS1(dient) 17
TS2(d i ent) 17
TS3(d i ent) 17
TS4(dient) 17
TS5(d i ent) 17
Type fl ags 8

UNI X i nterface 118
Unrestricted group 8, 38

25

18

10

February 1988

[page 122]

RFC 1045 VMIP February 1988

Noti fyVm pd i ent 7, 26, 27, 30
Not i f yVmt pSer ver 7, 14, 30
User Data 43

Ver si on 38
VMIP Managenent digital signature 95, 101

Cheriton [page 123]

