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1. Status of this Meno.

This meno describes a collection of multicast conmunication prim-
tives integrated with a nechani smfor handling process failure and
recovery. These primtives facilitate the inplenmentation of fault-
tol erant process groups, which can be used to provide distributed
services in an environnent subject to non-malicious crash failures.
Unl i ke ot her process group approaches, such as Cheriton’s "host
groups" (RFC s 966, 988, [Cheriton]), our approach provides powerful
guar ant ees about the behavi or of the conmuni cation subsystem when
process group menbership is changi ng dynam cally, for exanple due to
process or site failures, recoveries, or mgration of a process from
one site to another. CQur approach al so addresses delivery ordering
i ssues that arise when nultiple clients comrunicate with a process
group concurrently, or a single client transmts nultiple multicast
nmessages to a group without pausing to wait until each is received.
Mor eover, the cost of the approach is low. An inplenentation is be-
i ng undertaken at Cornell as part of the ISIS project.

Here, we argue that the formof "best effort" reliability provided by
host groups may not address the requirenents of those researchers who
are building fault tolerant software. Qur basic premise is that re-
liable handling of failures, recoveries, and dynam c process migra-
tion are inportant aspects of programming in distributed environ-
nments, and that communi cation support that provides unpredictable
behavior in the presence of such events places an unacceptabl e burden
of complexity on higher level application software. This conplexity
does not arise when using the fault-tol erant process group alterna-
tive.

This meno sunmmari zes our approach and briefly contrasts it with other
process group approaches. For a detailed discussion, together with
figures that clarify the details of the approach, readers are re-
ferred to the papers cited bel ow

Distribution of this menop is unlimted.
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3. Introduction

At Cornell, we recently conpleted a prototype of the ISIS system
which transforns abstract type specifications into fault-tolerant

di stributed inplenentations, while insulating users fromthe nechan-
isms by which fault-tolerance is achieved. This version of ISIS, re-
ported in [Birman-a], supports transactional resilient objects as a
basi ¢ programmi ng abstraction. Qur current work undertakes to pro-
vide a much broader range of fault-tol erant progranm ng mechani smns,
including fault-tolerant distributed bulletin boards [Birnman-c] and
fault-tolerant renpte procedure calls on process groups [Birnman-b].
The approach to communication that we report here arose as part of
this new version of the SIS system

Unreliable conmunication primtives, such as the nulticast group com
nmuni cation primtives proposed in RFC s 966 and 988 and in [Cheri -
ton], | eave sonme uncertainty in the delivery status of a nessage when
failures and other exceptional events occur during conmmunication
Instead, a formof "best effort"” delivery is provided, but with the
possibility that some menmber of a group of processes did not receive
the message if the group menbershi p was changi ng just as communi ca-
tion took place. When we tried to use this sort of primtive in our
original work on ISIS, which nust behave reliably in the presence of
such events, we had to address this aspect at an application |evel.
The resulting software was conplex, difficult to reason about, and
filled with obscure bugs, and we were eventually forced to abandon
the entire approach as infeasible.

A wi de range of reliable conmunication primtives have been proposed

inthe literature, and we becane convinced that by using them the
conplexity of our software could be greatly reduced. These range
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fromreliable and atom ¢ broadcast [Chang] [Cristian] [Schneider] to
Byzanti ne agreenent [Strong]. For several reasons, however, the ex-

i sting work does not solve the problemat hand. The npbst obvious is
that they do not provide a nechanismfor sending a nmessage to all the
menbers of a group when the nenbership is changing dynamcally (the
"group addressing" problen). In addition, one can identify delivery
ordering issues and questions regarding the detection of conmunica-
tion failures that should be handled within the broadcast mechani sm
These notivate a careful reexam nation of the entire reliable broad-
cast problem

The nulticast prinmtives we report here are designed to respect
several sorts of ordering constraints, and have cost and | atency that
vari es depending on the nature of the constraint required [Birman-b]
[Joseph-a] [Joseph-b]. Failure and recovery are integrated into the
conmuni cati on subsystem by treating these events as a special sort of
mul ticast issued on behalf of a process that has failed or recovered.
The primtives are presented in the context of fault tolerant process
groups: groups of processes that cooperate to inplenent some distri-
buted al gorithm or service, and which need to see consistent order-
ings of systemevents in order to achieve nutually consistent
behavior. Such groups are simlar to the host groups of the V system
and the ones described in RFC s 966 and 988, but provi de guarantees
of consistency in just the situations where a host group provides a
"best effort" delivery which may sonetinmes be erroneous.

It is helpful to think of our primtives as providing a |ogical or
"virtual" formof reliability: rather than addressi ng physica
delivery issues, they ensure that a client will never observe a sys-
temstate "inconsistent" with the assunption that reliable delivery
has occurred. Readers familiar with serializability theory nay want
to think of this as a weaker analog: in serializability, one allows
i nterl eaved executions of operations provided that the resulting sys-
temstate is consistent with the assunption that execution was
sequential. Simlarly, reliable conmunication primtives pernmt de-
viations fromthe reliable delivery abstraction provided that the
resulting systemstate is indistinguishable fromone in which reli-
abl e delivery actually did occur

Using our prinmtives, the ISIS system achi eved both high | evel s of
concurrency and suprisingly good performance. Equally inportant, its
structure was nade suprisingly sinple, making it feasible to reason
about the correctness of the algorithnms that are needed to naintain
hi gh availability even when failures, recoveries, or process nigra-
tion occurs. More recently, we have applied the same approach to a
variety of other problenms in distributed conmputing, and even designed
a consistent, fault tolerant, distributed bulletin board data struc-
ture (a generalized version of the blackboards used in artificial in-
telligence prograns), with equally good results [Birman-c]. Thus, we
feel that the approach has been shown to work in a variety of set-
tings where unreliable primtives sinply could not be used.
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In the remainder of this neno we summarize the issues and alterna-
tives that the designer of a distributed systemis presented wth,
focusing on two styles of support for fault-tol erant conputing: re-
note procedure calls coupled with a transactional execution facility,
such as is used in the ARGS system [Liskov], and the fault-tolerant
process group nechani sm nmenti oned above. W argue that transactiona
interactions are too restrictive to support the sort of mechanism
needed, and then show how our primtives can be used to provide such
a nechanism W conclude by speculating on future directions in

whi ch this work might be taken.

4. |ssues in fault-tol erance

The difficulty of constructing fault-tolerant distributed software
can be traced to a nunber of interrelated issues. The list that fol-
lows is not exhaustive, but attenpts to touch on the principal con-
siderations that nust be addressed in any such system

[ 1] Synchroni zation. Distributed systenms offer the potential for

| arge anmpbunts of concurrency, and it is usually desirable to
operate at as high a |l evel of concurrency as possible. However,
when we nove from a sequential execution environnent to a con-
current one, it becones necessary to synchronize actions that nmay
conflict in their access to shared data or entail communication
wi th overl apping sets of processes. Thus, a nechanismis needed
for ordering conflicting events. Additional problens that can
arise in this context include deadl ock avoi dance or detection
livel ock avoi dance, etc.

[2] Failure detection. It is usually necessary for a fault-
tolerant application to have a consistent picture of which com
ponents fail, and in what order. Timeout, the nbost comon mechan-

ismfor detecting failure, is unsatisfactory, because there are
many situations in which a healthy conmponent can timeout with
respect to one conponent without this being detected by some
another. Failure detection under nore rigorous requirenents
requires an agreenment protocol that is related to Byzanti ne agree-
nment [Strong] [Hadzilacos]. Regardless of howthis problemis

sol ved, sone sort of reliable failure detection nmechanismwll be
needed in any fault-tolerant distributed system

[3] Consistency. Wen a group of processes cooperate in a distri-
buted system it is necessary to ensure that the operationa
processes have consistent views of the state of the group as a
whol e. For exanple, if process p believes that sone property A
hol ds, and on the basis of this interacts with process q, the
state of g should not contradict the fact that p believes A to be
true. This problemis closely related to notions of know edge and
consistency in distributed systens [Hal pern] [Lanport]. |In our
context, Awll often be the assertion that a nulticast has been
received by g, or that q saw sone sequence of events occur in the
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sanme order as did p. Thus, it is necessary to be able to specify
the precise consistency constraints on a distributed software sys-
tem and system support should be available to facilitate the
attai nment of these constraints.

[4] Serializability. Many distributed systens are partitioned

i nto data nanager processes, which inplenent shared variabl es, and
transacti on manager processes, which issue requests to data
managers [Bernstein]. |If transaction managers can execute con-
currently, it is desirable to ensure that transactions produce
serializable outcomes [Eswaren] [Papadimtrou]. Serializability
is increasingly viewed as an inportant property in "object-
oriented" distributed systenms that package services as abstract
objects with which clients comunicate by renpte procedure calls
(RPC). On the other hand, there are systens for which serializa-
bility is either too strong a constraint, or sinply inappropriate.
Thus, one needs a way to achieve serializability in applications
where it will be needed, w thout inposing systemw de restrictions
that woul d prevent the design of software subsystens for which
serializability is not needed.

Jointly, these problenms render the design of fault-tolerant distri-
buted software daunting in the absence of adequate support. The
correctness of any proposed design and of its inplenentation becone
serious, if not insurnountable, concerns. In Sec. 7, we will show
how the primtives of Sec. 6 provide sinple ways to overcone all of
t hese i ssues.

5. Existing alternatives

If one rules out "unreliable" comunicati on nechani snms, there are
basically two fault-tol erant alternatives that can be pursued.

The first approach is to provide mechani snms for transactiona

i nteracti ons between processes that comruni cate using renote pro-
cedure calls [Birrell]. This has lead to work on nested transactions
(due to nested RPC s) [ Moss], support for transactions at the

| anguage | evel [Liskov], transactions within an operating systens
kernel [Spector] [Allchin] [Popek] [Lazowska], and transactiona
access to higher-level replicated services, such as resilient objects
in1SIS or relations in database systenms. The primtives in a tran-
sactional system provide mechanisns for distributing the request that
initiates the transaction, accessing data (which nay be replicated),
perform ng concurrency control, and inplenmenting commt or abort.

Addi tional nechanisnms are nornally needed for orphan termnation
deadl ock detection, etc. The issue then arises of how these nechan-

i sms should thensel ves be i npl enent ed.

Qur work in ISIS |leads us to believe that whereas transactions are

easily inplenented on top of fault-tolerant process groups -- we have
done so -- the converse is much harder. Mreover, transactions
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represent a relatively heavy-wei ght solution to the problens surveyed
in the previous section, and nmight inpose an unacceptabl e overhead on
subsystenms that need to run non-transactionally, for exanple because
a pair of concurrent processes needs to interact on a frequent basis.
(W are not saying that "transactional” mechani sms such as cobegins
and toplevel actions can’'t solve this problem but just that they
yield a solution that is awkward and costly). This sort of reasoning
has | ead us to focus on non-transactional interaction mechanisns, and
to treat transactions as a special class of nmechanisns used when
processes that have been designed to enploy a transactional protocol

i nteract.

The second approach involves the provision of a communi cation prim -
tive, such as atom c broadcast, which can be used as the framework on
whi ch hi gher level algorithns are designed. Such a prinmitive seeks
to deliver nessages reliably to sone set of destinations, despite the
possibility that failures m ght occur during the execution of the
protocol. Above, we termed this the fault tol erant process group
approach, since it lends itself to the organi zati on of cooperating
processes into groups, as described in the introduction. Process
groups are an extrenely flexible abstraction, and have been enpl oyed
in the V Kernel [Cheriton] and in UNI X, and nore recently in the ISIS
system A proposal to provide Internet support for host groups was
raised in RFC s 966 and 988. However, the idea of adapting the pro-
cess group approach to work reliably in an environment subject to the
sorts of exception events and concurrency cited in the previous sec-
tion seens to be new.

As noted earlier, existing reliable communication protocols do not
address the requirements of fault-tolerant process groups. For exam
ple, in [Schneider], an inplenentation of a reliable nmulticast prim-
tive is described. Such a primtive ensures that a designated nes-
sage will be transmitted fromone site to all other operational sites
in a system if a failure occurs but any site has received the mes-
sage, all will eventually do so. [Chang] and [Cristian] describe

i npl enentations for atom c broadcast, which is a reliable broadcast
(sent to all sites in a system) with the additional property that
nmessages are delivered in the sane order at all overl apping destina-
tions, and this order preserves the transmi ssion order if nessages
originate in a single site.

Atom ¢ broadcast is a powerful abstraction, and essentially the sane
behavior is provided by one of the nulticast primtives we discuss in
the next section. However, it has several drawbacks which nmade us
hesitant to adopt it as the only primtive in the system Mst seri-
ous is the latency that is incurred in order to satisfy the delivery
ordering property. Wthout delving deeply into the inplenmentations,
whi ch are based on a token schenme in [Chang] and an acknow edgenent
protocol in [Schneider], we observe that the delaying of certain nes-
sages is fundanental to the establishnent of a unique global delivery
ordering; indeed, it is easy to prove on know edge theoretic grounds
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that this nmust always be the case. In [Chang] a primary goal is to
m ni m ze the nunber of nessages sent, and the protocol given perforns
extremely well in this regard. However, a delay occurs while waiting

for tokens to arrive and the delivery latency that results may be
high. [Cristian] assunmes that clocks are closely synchronized and
that nessage transit times are bounded by well-known constants, and
uses this to derive atom c broadcast protocols tolerant of increas-
ingly severe classes of failures. The protocols explicitly del ay
delivery to achieve the desired global ordering on nulticasts. For
reasons di scussed below, this tends to result in high latency in typ-
ical local networking environments. An additional drawback of the
atom c broadcast protocols is that no nechanismis provided for
ensuring that all processes observe the sane sequence of failures and
recoveries, or for ensuring that failures and recoveries are ordered
relative to ongoing nulticasts. Since this problemarises in any
setting where one process nonitors another, we felt it should be
addressed at the same |evel as the comunication protocol. Finally,
one wants a group oriented nulticast protocol, not a site oriented
broadcast, and this issue nust be resolved too.

6. Qur nulticast primtives

We now describe three multicast protocols - GBCAST, ABCAST, and
CBCAST - for transmtting a nessage reliably froma sender process to
sone set of destination processes. Details of the protocols and
their correctness proofs can be found in [Birman-b]. The protocols
ensure "all or nothing" behavior: if any destination receives a mes-
sage, then unless it fails, all destinations will receive it. Goup
addressing is discussed in Sec. 6.5.

The failure nodel that one adopts has a considerabl e inpact on the
structure of the resulting system W adopted the nodel of fail-stop
processors [Schneider]: when failures occur, a processor sinply stops
(crashes), as do all the processes executing on it. W also assume
that individual processes can crash, and that this is detected when
it occurs by a nonitoring nechani smpresent at each site. Further
assunptions are sonetines nmade about the availability of synchronized
realtime clocks. Here, we adopt the position that although reason-
ably accurate el apsed-tinme clocks may be avail able, closely synchron-
i zed cl ocks probably will not be. For exanple, the 60Hz "Iline"

cl ocks comonly used on current workstations are only accurate to
16ns. On the other hand, 4-8ns inter-site nmessage transit tines are
conmon and 1-2nms are reported increasingly often. Thus, it is inpos-
si bl e to synchronize clocks to better than 32-48ms, enough tine for a
pair of sites to exchange between 4 and 50 nessages. Even with
advanci ng technol ogy, it seens safe to assune that clock skew wil|
remain "l arge" when conpared to inter-site nmessage transm ssion
speed. In particular, this argues against tine-based protocols such
as the one used in [Cristian]
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6.1 The GBCAST primtive

GBCAST (group multicast) is the nost constrained, and costly, of
the three primtives. It is used to transmt information about
failures and recoveries to menbers of a process group. A recov-
ering menber uses GBCAST to informthe operational ones that it
has becone available. Additionally, when a nenber fails, the
system arranges for a GBCAST to be issued to group nenbers on its
behal f, informng themof its failure. Argunents to GBCAST are a
nmessage and a process group identifier, which is translated into
a set of destinations as described bel ow (Sec. 6.5).

Qur GBCAST protocol ensures that if any process receives a nulti-
cast B before receiving a GBCAST G then all overlappi ng desti na-
tions will receive B before G <1> This is true regardless of the
type of nulticast involved. Mreover, when a failure occurs, the
correspondi ng GBCAST nmessage is delivered after any other multi-
casts fromthe failed process. Each nenber can therefore main-
tain a VIEWIisting the nenbership of the process group, updating
it when a GBCAST is received. Although VIEWs are not updated
simul taneously in real tinme, all nmenbers observe the same
sequence of VIEWchanges. Since, GBCAST's are ordered relative
to all other nulticasts, all nenbers receiving a given nulticast
wi Il have the sane val ue of VIEWwhen they receive it.

Noti ce that GBCAST al so provides a conveni ent way to change ot her
gl obal properties of a group "atomcally". 1In our work, we have
used GBCAST to dynamically change a ranking on the nmenbers of a
group, to request that group nembers establish checkpoints for
use if recovery is needed after all failure, and to inplenent
process migration. |In each case, the ordering of GBCAST relative
to other events that nakes it possible to performthe desired
action without running any additional protocol. Oher uses for
GBCAST will no doubt energe as our research continues.

Menbers of a process group can al so use the value of VIEWto pick
a strategy for processing an inconing request, or to react to
failure or recovery without having to run any special protoco
first. Since the GBCAST ordering is the same everywhere, their
actions will all be consistent. Notice that when all the menbers
of a process group may have fail ed, GBCAST al so provides an inex-
pensive way to determine the last site that failed: process group
nmenbers sinply | og each value of VIEWthat becones defined on
stabl e storage before using it; a sinplified version of the al go-
rithmin [ Skeen-a] can then be executed when recovering from
failure.
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6.2 The ABCAST primtive

The GBCAST primtive is too costly to be used for general comun-
i cation between process group nmenmbers. This notivates the intro-
duction of weaker (less ordered) primtives, which m ght be used
in situations where a total order on nulticast nessages i s not
necessary. Qur second prinmitive, ABCAST (atomic nulticast),
satisfies such a weaker constraint. Specifically, it is often
desired that if two nmulticasts are received in sonme order at a
common destination site, they be received in that order at al

ot her common destinations, even if this order was not predeter-
m ned. For exanple, if a process group is being used to naintain
a replicated queue and ABCAST is used to transnmt queue opera-
tions to all copies, the operations will be done in the same
order everywhere, hence the copies of the queue will remain mutu-
ally consistent. The primtive ABCAST(nmsg, |abel, dests) pro-
vides this behavior. Two ABCAST' s having the same | abel are
delivered in the sane order at all common destinations.

6.3 The CBCAST primtive

Qur third primtive, CBCAST (causal nulticast), is weakest in the
sense that it involves |ess distributed synchronization then
GBCAST or ABCAST. CBCAST(nsg, dests) atomically delivers nmsg to
each operational dest. The CBCAST protocol ensures that if two
nmulticasts are potentially causally dependent on another, then
the former is delivered after the latter at all overl appi ng des-
tinations. A multicast B is potentially causally dependent on a
multicast Bif both nmulticasts originate fromthe sane process,
and B is sent after B, or if there exists a chain of nessage
transm ssions and receptions or |ocal events by which know edge
coul d have been transferred fromthe process that issued B to the
process that issued B [Lanport]. For causally independent nul -
ticasts, the delivery ordering is not constrained.

CBCAST is valuable in systenms like ISIS, where concurrency con-
trol algorithns are used to synchroni ze concurrent conputations.
In these systens, if two processes conmuni cate concurrently with
the sane process the nessages are al nost al ways i ndependent ones
that can be processed in any order: otherw se, concurrency con-
trol would have caused one to pause until the other was finished.
On the other hand, order is clearly inportant within a causally
linked series of multicasts, and it is precisely this sort of
order that CBCAST respects.

6.4 Other nulticast primtives
A weaker multicast primtive is reliable nmulticast, which pro-
vides all-or-nothing delivery, but no ordering properties. The

formul ati on of CBCAST in [Birman-b] actually includes a nmechani sm
for performng nulticasts of this sort, hence no specia
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primtive is needed for the purpose. Additionally, there may be
situations in which ABCAST protocols that also satisfy a CBCAST
ordering property would be valuable. Qur ABCAST prinitive could
be changed to respect such a rule, and we made use of a multicast
primtive that is sinmultaneously causal and atom c in our work on
consi stent shared bulletin boards ([Birman-c]). For sinplicity,
the presentation here assunes that ABCAST is conpletely orthogo-
nal to CBCAST, but a sinple way to build an efficient "causa

atom c" multicast is described in our full-length paper. The
cost of this protocol is only slightly higher than that of
ABCAST.

6.5 G oup addressing protoco

Si nce group nenbership can change dynamcally, it may be diffi-
cult for a process to conpute a list of destinations to which a
message shoul d be sent, for exanple, as is needed to performa
GBCAST. In [Birman-b] we report on a protocol for ensuring that
a given nulticast will be delivered to all nenbers of a process
group in the sane view. This viewis either the view that was
operative when the nmessage transm ssion was initiated, or a view
that was defined subsequently. The algorithmis a sinple itera-
tive one that costs nothing unless the group nenbership changes,
and pernits the caching of possibly inaccurate nmenbership infor-
mati on near processes that might want to comunicate with a
group. Using the protocol, a flexible nmessage addressing schene
can readily be supported.

Iterative addressing is only required when the process transmt-
ting a nmessage has an inaccurate copy of the process group view.
In the inplenentation we are now building, this would rarely be
the case, and iteration is never needed if the viewis known to
be accurate. Thus, iterated delivery should be very infrequent.

6.6 Synchronous versus asynchronous multicast abstractions

Many systens enploy RPC internally, as a |lowest level primtive
for interaction between processes. It should be evident that al
of our nulticast primtives can be used to inplenment replicated
renote procedure calls [Cooper]: the caller would sinply pause
until replies have been received fromall the participants
(observation of a failure constitutes a reply in this case). W
termsuch a use of the primtives synchronous, to distinguish it
fromfroman asynchronous nulticast in which no replies, or just
one reply, suffices.

In our work on ISI'S, GBCAST and ABCAST are normally invoked syn-
chronously, to inplenent a renpte procedure call by one nenber of
an object on all the nenbers of its process group. However,
CBCAST, which is the nost frequently used overall, is al nost
never invoked synchronously. Asynchronous CBCAST' s are the

Bi rman & Joseph [ Page 10]



RFC 992

7. Usin
The
sol u

Bi r man

Novenmber 1986

primary source of concurrency in ISIS: although the delivery ord-
ering is assured, transnission can be del ayed to enable a nessage
to be piggybacked on another, or to schedule 1O wthin the system
as a whole. Wiile the system cannot defer an asynchronous nmulti -
cast indefinitely, the ability to defer it a little, wthout

del ayi ng sonme conputation by doing so, pernits |oad to be

snoot hed. Since CBCAST respects the delivery orderings on which
a conputation mght depend, and is ordered with respect to
failures, the concurrency introduced does not conplicate higher

| evel algorithms. Moreover, the protocol itself is extrenely
cheap.

A problemis introduced by our decision to allow asynchronous

nmul ticasts: the atomic reception property nust now be extended to
address causally rel ated sequences of asynchronous nessages. |f
a failure were to result in sone nulticasts being delivered to
all their destinations but others that precede them not being
del i vered anywhere, inconsistency mght result even if the desti-
nati ons do not overlap. W therefore extend the atomcity pro-
perty as follows. |f process t receives a nmessage mfrom process
s, and s subsequently fails, then unless t fails as well, al
messages m that s received prior to its failure nust be
delivered to their remmining operational destinations. This is
because the state of t nmay now depend on the contents of any such
m, hence the systemstate could becone inconsistent if the
delivery of mi were not conpleted. The costs of the protocols
are not affected by this change.

A second probl em ari ses when the user-level inplications of this
atomcity rule are considered. |In the event of a failure, any
suffix of a sequence of aysnchronous nmulticasts could be | ost and
the systemstate would still be internally consistent. A process
that is about to take sone action that may | eave an externally
visible side-effect will need a way to pause until it is
guaranteed that such multicasts have actually been delivered.

For this purpose, a flush primtive is provided. Occasiona

calls to flush do not elimnate the benefit of using CBCAST asyn-
chronously. Unless the systemhas built up a considerabl e back-

| og of undelivered nmulticast messages, which should be rare,
flush will only pause while transm ssion of the last few nulti-
casts conpl ete.

g the primtives

reliabl e comruni cation prinmtives described above Iead to sinple
tions for the problens cited in Sec. 4:

[1] Synchronization. Many synchronization problens are subsuned
into the primtives thenselves. For exanple, consider the use of
GBCAST to inplenent recovery. A recovering process would issue a
GBCAST to the process group nenbers, requesting that state
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infornmation be transferred to it. |In addition to sending the
current state of the group to the recovering process, group
menbers update the process group view at this time. Subsequent

nmessages to the group will be delivered to the recovered process,
with all necessary synchroni zati on being provided by the ordering
properties of GBCAST. |In situations where other forns of syn-

chroni zati on are needed, ABCAST provides a sinple way to ensure
that several processes take actions in the sane order, and this
formof |owlevel synchronization sinplifies a nunber of higher-

| evel synchronization problenms. For example, if ABCAST is used
to do P() and V() operations on a distributed semaphore, the
order of operations on the semaphore is set by the ABCAST, hence
all the nmanagers of the semaphore see these operations in a fixed
or der.

[2] Failure detection. Consistent failure (and recovery) detec-
tion are trivial using our primtives: a process sinply waits for
the appropriate process group viewto change. This facilitates
the inplenmentation of algorithnms in which one processes nonitors
the status of another process. A process that acts on the basis
of a process group view change does so with the assurance that

ot her group nenmbers will (eventually) observe the sane event and
wi || take consistent actions.

[3] Consistency. W believe that consistency is generally
expressible as a set of atomicity and ordering constraints on
nmessage delivery, particularly causal ones of the sort provided
by CBCAST. CQur primtives permt a process to specify the com
muni cati on properties needed to achieve a desired form of con-

sistency. Continued research will be needed to understand pre-
cisely how to pick the weakest primtive in a designated situa-
tion.

[4] Serializability. To achieve serializability, one inplenents
a concurrency control algorithmand then forces conputations to
respect the serialization order that this algorithmchoses. The
ABCAST primtive, as observed above, is a powerful tool for
establishing an order between concurrent events, e.g. by |ock
acqui sition. Having established such an order, CBCAST can be
used to distribute informati on about the conmputation and also its
term nation (commt or abort). Any process that observes the
conmit or abort of a conputation will only be able to interact

wi th data managers that have received nessages preceding the com
mt or abort, hence a highly asynchronous transacti onal execution
results. |If a process running a conputation fails, this is
detected when a failure GBCAST is received instead of the commt.
Thus, executions are sinple and quite determnistic.

If coomt is conditional, CBCAST would be used to first interro-

gate participants to learn if they are prepared to comit, and
then to transmt the comit or abort decision (the usual two-
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8.

phase comrit). On the other hand, conditional conmits can often
be avoi ded using our approach. A nethod for building transac-
tions that will roll-forward after failure after failure is dis-
cussed in nore detail in [Birman-a] [Joseph-a] [Joseph-b]. O her
fornms of concurrency control, such as timestanp generation, can
simlarly be inplenented using ABCAST and CBCAST. W view tran-
sactional data storage as an application-level concern, which can
be handl ed using a version stack approach or a nulti-version
store, or any other appropriate nechanism

| mpl ement ati on

The communi cation primtives can be built in layers, starting with a
bare network providing unreliable Internet datagranms. The software
structure is, however, less mature and nore conplex than the one sug-
gested in RFC s 966 and 988. For exanple, at this stage of our
research we do not understand how to optim ze our protocols to the
sanme extent as for the unreliable host multicast approach described
in those RFC's. Thus, the inplenentation we describe here should be
understood to be a prototype. A particularly intriguing question
which we are investigating actively, concerns the use of a "best
effort" ethernet or Internet nmulticast as a tool to optimze the

i mpl enent ati on of our protocols.

Qur basic approach is to view |arge area networks as a set of clus-
ters of sites interconnected by high speed LAN devices and i ntercon-

nected by slower |ong-haul links. W first provide protocols for use
within clusters, and then extend themto run between clusters too.
Network partitioning can be tolerated at all |evels of the hierarchy

in the sense that no incorrect actions can result after network par-
titioning, although our approach will sonetinmes block until the par-
tition is repaired. Qur protocols also tend to block within a clus-
ter while the list of operational sites for that cluster is being
changed. In normal LAN s, this happens infrequently (during site
failure or recovery), and would not pose a problem (In failure

i ntensive applications, alternative protocols mght be needed to
address this issue).

The | owest |evel of our software uses a site-to-site acknow edgenent
protocol to convert the unreliable packet transport this into a
sequenced, error-free nessage abstraction, using timeouts to detect
apparent failures. TCP can also be used for this purpose, provided
that a "filter" is placed on the i ncom ng nessage stream and certain
types of nmessages are handl ed specially. An agreenent protocol is
then used to order the site-failures and recoveries consistently. |If
timeouts cause a failure to be detected erroneously, the protoco
forces the affected site to undergo recovery.

Built on this is a |layer that supports the primtives thensel ves.
CBCAST has a very light-weight inplenmentation, based on the idea of
flooding the systemw th copies of a nessage: Each process buffers
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copi es of any nessages needed to ensure the consistency of its view
of the system |If nmessage mis delivered to process p, and mis
potentially causally dependent on a nessage mprine, then a copy of m
prime is sent to p as well (duplicates are discarded). A garbage
col l ector del etes superfluous copies after a nmessage has reached al
its destinations. By using extensive piggybacking and a sinple
scheduling algorithmto control nessage transm ssion, the cost of a
CBCAST is kept low -- often, |ess than one packet per destination
ABCAST enpl oys a two-phase protocol based on one suggested to us by
Skeen [ Skeen-b]. This protocol has higher |atency than CBCAST
because delivery can only occur during the second phase; ABCAST is

thus inherently synchronous. 1In ISIS however, ABCAST is used
rarely; we believe that this would be the case in other systens as
well. GBCAST is inplenmented using a two-phase protocol sinilar to

the one for ABCAST, but with an additional mechanismthat flushes
nmessages froma failed process before delivering the GBCAST announc-
ing the failure. Although GBCAST is slower than ABCAST or CBCAST, it
is used rarely enough so that performance is probably |ess of an

i ssue here -- and in any case, even GBCAST could be tuned to give
very high throughput. Prelimnary performance figures appear in

[ Bi rman-b] .

Al t hough satisfactory performance shoul d be possi bl e using an inple-
nentation that sits on top of a conventional Internet nechanism it
shoul d be noted that to achieve really high rates of comunication
the layers of software described above nust reside in the kernel
because they run on behalf of |arge nunbers of clients, run fre-
guently, and tend to execute for very brief periods before doing I/0O
and pausing. A non-kernel inplenmentation will thus incur high
schedul i ng and context switching overhead. Additionally, it is not
at all clear how to use ethernet style broadcast nechanisns to optim
ize the performance of this sort of protocol, although it should be
possible. W viewthis as an interesting area for research

A forthcom ng paper will describe higher |evel software that we are
buil ding on top of the basic fault-tol erant process group nmechani sm
descri bed above.

9. Concl usi ons

The experience of inplementing a substantial fault-tolerant system
left us with insights into the properties to be desired froma com
nmuni cati on subsystem In particular, we became convinced that to
build a reliable distributed system one nust start with a reliable
conmuni cati on subsystem The nulticast primtives described in this
meno present a sinple interface, achieve a high |level of concurrency,
can be used in both local and wi de area networks, and are applicable
to software ranging fromdistributed database systens to the fault-
tol erant objects and bulletin boards provided by ISIS. Because they
are integrated with failure handling mechani sms and respect desired
event orderings, they introduce a desirable formof determnisminto
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di stributed conmputation w thout conprom sing efficiency. A conse-
qguence is that high-level algorithns are greatly sinplified, reducing
the probability of error. W believe that this is a very pronising
and practical approach to building large fault-tol erant distributed
systens, and it is the only one we know of that |eads to a rigorous
form of confidence in the resulting software.

NOTES:

<1> A problemarises if a process p fails w thout receiving sone mes-
sage after that nessage has already been delivered to sone other pro-
cess g: g's VIEWwhen it received the nessage would show p to be
operational; hence, g will assume that p received the nessage,

al though p is physically incapable of doing so. However, the state
of the systemis now equivalent to one in which p did receive the
nmessage, but failed before acting on it. |In effect, there exists an
interpretation of the actual systemstate that is consistent with gq's
assunption. Thus, GBCAST satisfies the sort of |ogical delivery pro-
perty cited in the introduction.
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