
ï»¿

Independent Submission S. Santesson

Request for Comments: 9321 IDsec Solutions

Category: Informational R. Housley

ISSN: 2070-1721 Vigil Security

 October 2022

 Signature Validation Token

Abstract

 Electronic signatures have a limited lifespan with respect to the

 time period that they can be validated and determined to be

 authentic. The Signature Validation Token (SVT) defined in this

 specification provides evidence that asserts the validity of an

 electronic signature. The SVT is provided by a trusted authority,

 which asserts that a particular signature was successfully validated

 according to defined procedures at a certain time. Any future

 validation of that electronic signature can be satisfied by

 validating the SVT without any need to also validate the original

 electronic signature or the associated digital certificates. The SVT

 supports electronic signatures in Cryptographic Message Syntax (CMS),

 XML, PDF, and JSON documents.

Status of This Memo

 This document is not an Internet Standards Track specification; it is

 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other

 RFC stream. The RFC Editor has chosen to publish this document at

 its discretion and makes no statement about its value for

 implementation or deployment. Documents approved for publication by

 the RFC Editor are not candidates for any level of Internet Standard;

 see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,

 and how to provide feedback on it may be obtained at

 https://www.rfc-editor.org/info/rfc9321.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document.

Table of Contents

 1. Introduction

 2. Definitions

 3. Signature Validation Token

 3.1. Signature Validation Token Function

 3.2. Signature Validation Token Syntax

 3.2.1. Data Types

 3.2.2. Signature Validation Token JWT Claims

 3.2.3. SigValidation Object Class

 3.2.4. Signature Claims Object Class

 3.2.5. SigReference Claims Object Class

 3.2.6. SignedDataReference Claims Object Class

 3.2.7. PolicyValidation Claims Object Class

 3.2.8. TimeValidation Claims Object Class

 3.2.9. CertReference Claims Object Class

 3.2.10. SVT JOSE Header

 4. Profiles

 4.1. Defined Profiles

 5. Signature Verification with an SVT

 6. IANA Considerations

 6.1. Claim Names Registration

 6.1.1. Registry Contents

 6.2. Header Parameter Names Registration

 6.2.1. Registry Contents

 7. Security Considerations

 7.1. Level of Reliance

 7.2. Aging Algorithms

 8. References

 8.1. Normative References

 8.2. Informative References

 Appendix A. XML Signature Profile

 A.1. Notation

 A.1.1. References to XML Elements from XML Schemas

 A.2. SVT in XML Documents

 A.2.1. SignatureValidationToken Signature Property

 A.2.2. Multiple SVTs in an XML Signature

 A.3. XML Signature SVT Claims

 A.3.1. XML Profile Identifier

 A.3.2. XML Signature Reference Data

 A.3.3. XML Signed Data Reference Data

 A.3.4. XML Signer Certificate References

 A.4. JOSE Header

 A.4.1. SVT Signing Key Reference

 Appendix B. PDF Signature Profile

 B.1. SVTs in PDF Documents

 B.1.1. SVT Extension to Timestamp Tokens

 B.2. PDF Signature SVT Claims

 B.2.1. PDF Profile Identifier

 B.2.2. PDF Signature Reference Data

 B.2.3. PDF Signed Data Reference Data

 B.2.4. PDF Signer Certificate References

 B.3. JOSE Header

 B.3.1. SVT Signing Key Reference

 Appendix C. JWS Profile

 C.1. SVT in JWS

 C.1.1. "svt" Header Parameter

 C.1.2. Multiple SVTs in a JWS Signature

 C.2. JWS Signature SVT Claims

 C.2.1. JWS Profile Identifier

 C.2.2. JWS Signature Reference Data

 C.2.3. JWS Signed Data Reference Data

 C.2.4. JWS Signer Certificate References

 C.3. SVT JOSE Header

 C.3.1. SVT Signing Key Reference

 Appendix D. Schemas

 D.1. Concise Data Definition Language (CDDL)

 D.2. JSON Schema

 Appendix E. Examples

 Authors’ Addresses

1. Introduction

 Electronic signatures have a limited lifespan regarding when they can

 be validated and determined to be authentic. Many factors make it

 more difficult to validate electronic signatures over time. For

 example:

 * Trusted information about the validity of the certificate

 containing the signer’s public key is not available.

 * Trusted information about the time when the signature was actually

 created is not available.

 * Algorithms used to create the electronic signature may no longer

 be considered secure at the time of validation and may therefore

 no longer be available in software libraries.

 * Services necessary to validate the signature are no longer

 available at the time of validation.

 * Supporting evidence such as certification authority (CA)

 certificates, Online Certificate Status Protocol (OCSP) responses,

 Certificate Revocation Lists (CRLs), or timestamps is not

 available or can’t be validated.

 The challenges to validation of an electronic signature increase over

 time, and eventually it may simply be impossible to verify the

 signature with a sufficient level of assurance.

 Existing standards, such as the ETSI XAdES [XADES] profile for XML

 signatures [XMLDSIG11], ETSI PAdES [PADES] profile for PDF signatures

 [ISOPDF2], and ETSI CAdES [CADES] profile for CMS signatures

 [RFC5652], can be used to extend the time within which a signature

 can be validated at the cost of significant complexity, which

 involves storing and validating significant amounts of external

 evidence data such as revocation data, signature time stamps, and

 archival time stamps.

 The Signature Validation Token (SVT) defined in this specification

 takes a trusted signature validation process as an input and

 preserves the validation result for the associated signature and

 signed document. The SVT asserts that a particular electronic

 signature was successfully validated by a trusted authority according

 to defined procedures at a certain time. Those procedures MUST

 include checks that the signature match the signed document, checks

 that the signature can be validated by the signing certificate, and

 checks that the signing certificate pass certificate path validation

 [RFC5280]. Those procedures MAY also include checks associated with

 a particular trust policy such as that an acceptable certificate

 policy [RFC5280] [RFC3647] was used to issue the signer’s certificate

 and checks that an acceptable signature policy was used by the signer

 [RFC3125].

 Once the SVT is issued by a trusted authority, any future validation

 of that electronic signature can be satisfied by validating the SVT

 without any need to also revalidate the original electronic

 signature.

 As the SVT is used to preserve validation results obtained through

 applying existing standards for signature validation, it is

 complementary to and not a replacement for such standards, including

 the ETSI standards for long-term validation listed above. The SVT

 does, however, have the potentially positive effect that it may

 significantly reduce the need to apply complex long-term validation

 and preservation techniques for signature validation if an SVT is

 issued and applied to the signed document at an early stage where the

 signature can be validated without support of large amounts of

 external evidence. The use of SVTs may therefore drastically reduce

 the complexity of revalidation of old archived electronic signatures.

 The SVT can be signed with private keys and algorithms that provide

 confidence for a considerable time period. In fact, multiple SVTs

 can be used to offer greater assurance. For example, one SVT could

 be produced with a large RSA private key, a second one with a strong

 elliptic curve, and a third one with a quantum safe digital signature

 algorithm to protect against advances in computing power and

 cryptanalytic capabilities. Further, the trusted authority can add

 additional SVTs in the future using fresh private keys and signatures

 to extend the lifetime of the SVTs if necessary.

2. Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 This document use the following terms:

 Signed Data: The data covered by a particular electronic signature.

 This is typically equivalent to the signed content of a document,

 and it represents the data that the signer intended to sign. In

 some cases, such as in some XML signatures, the Signed Data can be

 the collection of several data fragments each referenced by the

 signature. In the case of PDF, this is the data covered by the

 "ByteRange" parameter in the signature dictionary. In JSON Web

 Signature (JWS), this is the unencoded payload data (before

 base64url encoding).

 Signed Bytes: These are the actual bytes of data that were hashed

 and signed by the digital signature algorithm. In most cases,

 this is not the actual Signed Data but a collection of signature

 metadata that includes references (hash) of the Signed Data as

 well as information about algorithms and other data bound to a

 signature. In XML, this is the canonicalized SignedInfo element.

 In CMS and PDF signatures, this is the DER-encoded

 SignedAttributes structure. In JWS, this is the protected header

 and payload data formatted according to [RFC7515].

 When these terms are used as defined in this section, they appear

 with a capitalized first letter.

3. Signature Validation Token

3.1. Signature Validation Token Function

 The Signature Validation Token (SVT) is created by a trusted service

 to assert evidence of successful electronic signature validation

 using a well-defined and trustworthy signature validation process.

 The SVT binds the validation result to the validated signature, the

 document signed by the signature, and the certificate of the signer.

 This allows a relying party to verify the validity of a signed

 document without having to revalidate the original signature or to

 reuse any of its associated cryptographic algorithms for as long as

 the SVT itself can be validated. The SVT achieves this by binding

 the following information to a specific electronic signature:

 * A unique identification of the electronic signature.

 * The data and metadata signed by the electronic signature.

 * The signer’s certificate that was validated as part of electronic

 signature verification.

 * The certification path that was used to validate the signer’s

 certificate.

 * An assertion providing evidence of signature verification, the

 time the verification was performed, the procedures used to verify

 the electronic signature, and the outcome of the verification.

 * An assertion providing evidence of the time at which the signature

 is known to have existed, the procedures used to validate the time

 of existence, and the outcome of the validation.

 The SVT aims to support long-term validation that can be further

 extended into the future by applying the following strategies:

 * by using secure algorithms with long life expectancy when signing

 the SVT

 * by reissuing the SVT before it becomes insecure or is considered

 expired

 * optionally, by issuing multiple SVTs with different algorithms to

 provide redundancy in case one algorithm is broken

3.2. Signature Validation Token Syntax

 The SVT is carried in a JSON Web Token (JWT) as defined in [RFC7519].

3.2.1. Data Types

 The contents of claims in an SVT are specified using the following

 data types:

 String: JSON Data Type of string that contains an arbitrary case-

 sensitive string value.

 Base64Binary: JSON Data Type of string that contains a

 Base64-encoded byte array of binary data.

 StringOrURI: JSON Data Type of string that contains an arbitrary

 string or a URI as defined in [RFC7519]. It is REQUIRED to

 contain the colon character (":") to be a URI.

 URI: JSON Data Type of string that contains a URI as defined in

 [RFC7519].

 Integer: JSON Data Type of number that contains a 32-bit signed

 integer value (from -2^31 to 2^31-1).

 Long: JSON Data Type of number that contains a 64-bit signed integer

 value (from -2^63 to 2^63-1).

 NumericDate: JSON Data Type of number that contains data as defined

 in [RFC7519], which is the number of seconds from

 1970-01-01T00:00:00Z UTC until the specified UTC date/time,

 ignoring leap seconds.

 Boolean: JSON Data Type of boolean that contains the explicit value

 of true or false.

 Object<Class>: A JSON object holding a claims object of a class

 defined in this specification (see Section 3.2.2).

 Map<Type>: A JSON object with name-value pairs where the value is an

 object of the specified Type in the notation. For example,

 Map<String> is a JSON object with name-value pairs where all

 values are of type String.

 Array: A JSON array of a specific data type as defined in this

 section. An array is expressed in this specification by square

 brackets. For example, [String] indicates an array of String

 values, and [Object<DocHash>] indicates an array of DocHash

 objects.

 Null: A JSON null that represents an absent value. A claim with a

 null value is equivalent with an absent claim.

3.2.2. Signature Validation Token JWT Claims

 The SVT MUST contain only JWT claims in the following list:

 "jti": A String data type that is a "JWT ID" registered claim

 according to [RFC7519]. It is RECOMMENDED that the identifier

 holds a hexadecimal string representation of a 128-bit unsigned

 integer. An SVT MUST contain one "JWT ID" claim.

 "iss": A StringOrURI data type that is an "Issuer" registered claim

 according to [RFC7519], which is an arbitrary unique identifier of

 the SVT issuer. This value SHOULD have the value of a URI based

 on a domain owned by the issuer. An SVT MUST contain one "Issuer"

 claim.

 "iat": A NumericDate data type that is an "Issued At" registered

 claim according to [RFC7519], which expresses the time when this

 SVT was issued. An SVT MUST contain one "Issued At" claim.

 "aud": A [StringOrURI] data type or a StringOrURI data type that is

 an "Audience" registered claim according to [RFC7519]. The

 audience claim is an array of one or more identifiers, identifying

 intended recipients of the SVT. Each identifier MAY identify a

 single entity, a group of entities, or a common policy adopted by

 a group of entities. If only one value is provided, it MAY be

 provided as a single StringOrURI data type value instead of as an

 array of values. Inclusion of the "Audience" claim in an SVT is

 OPTIONAL.

 "exp": A NumericDate data type that is an "Expiration Time"

 registered claim according to [RFC7519], which expresses the time

 when services and responsibilities related to this SVT are no

 longer provided by the SVT issuer. The precise meaning of the

 expiration time claim is defined by local policies. See

 implementation note below. Inclusion of the "Expiration Time"

 claim in an SVT is OPTIONAL.

 "sig_val_claims": An Object<SigValidation> data type that contains

 signature validation claims for this SVT extending the standard

 registered JWT claims above. An SVT MUST contain one

 sig_val_claims claim.

 Note: An SVT asserts that a particular validation process was

 undertaken at a stated time. This fact never changes and never

 expires. However, some other aspects of the SVT such as liability

 for false claims or service provision related to a specific SVT may

 expire after a certain period of time, such as a service where an old

 SVT can be upgraded to a new SVT signed with fresh keys and

 algorithms.

3.2.3. SigValidation Object Class

 The sig_val_claims JWT claim uses the SigValidation object class. A

 SigValidation object holds all custom claims, and a SigValidation

 object contains the following parameters:

 "ver": A String data type representing the version. This parameter

 MUST be present and the version in this specification indicated by

 the value "1.0".

 "profile": A StringOrURI data type representing the name of a

 profile that defines conventions followed for specific claims and

 any extension points used by the SVT issuer. This parameter MUST

 be present.

 "hash_algo": A URI data type that identifies the hash algorithm used

 to compute the hash values within the SVT. The URI identifier

 MUST be one defined in [RFC9231] or in the IANA registry defined

 by this specification. This parameter MUST be present.

 "sig": An [Object<Signature>] data type that gives information about

 validated electronic signatures as an array of Signature objects.

 If the SVT contains signature validation evidence for more than

 one signature, then each signature is represented by a separate

 Signature object. At least one Signature object MUST be present.

 "ext": A Map<String> data type that provides additional claims

 related to the SVT. Extension claims are added at the discretion

 of the SVT issuer; however, extension claims MUST follow any

 conventions defined in a profile of this specification (see

 Section 4). Inclusion of this parameter is OPTIONAL.

3.2.4. Signature Claims Object Class

 The sig parameter in the SigValidation object class uses the

 Signature object class. The Signature object contains claims related

 to signature validation evidence for one signature, and it contains

 the following parameters:

 "sig_ref": An Object<SigReference> data type that contains reference

 information identifying the target signature. This parameter MUST

 be present.

 "sig_data_ref": An [Object<SignedDataReference>] data type that

 contains an array of references to Signed Data that was signed by

 the target electronic signature. At least one SignedDataReference

 object MUST be present.

 "signer_cert_ref": An Object<CertReference> data type that

 references the signer’s certificate and optionally references a

 supporting certification path that was used to verify the target

 electronic signature. This parameter MUST be present.

 "sig_val": An [Object<PolicyValidation>] data type that contains an

 array of results of signature verification according to defined

 procedures. At least one PolicyValidation object MUST be present.

 "time_val": An [Object<TimeValidation>] data type that contains an

 array of time verification results showing that the target

 signature has existed at a specific time in the past. Inclusion

 of this parameter is OPTIONAL.

 "ext": A MAP<String> data type that provides additional claims

 related to the target signature. Extension claims are added at

 the discretion of the SVT issuer; however, extension claims MUST

 follow any conventions defined in a profile of this specification

 (see Section 4). Inclusion of this parameter is OPTIONAL.

3.2.5. SigReference Claims Object Class

 The sig_ref parameter in the Signature object class uses the

 SigReference object class. The SigReference object provides

 information used to match the Signature claims object to a specific

 target electronic signature and to verify the integrity of the target

 signature value and Signed Bytes, and it contains the following

 parameters:

 "id": A String data type that contains an identifier assigned to the

 target signature. Inclusion of this parameter is OPTIONAL.

 "sig_hash": A Base64Binary data type that contains a hash value of

 the target electronic signature value. This parameter MUST be

 present.

 "sb_hash": A Base64Binary data type that contains a hash value of

 the Signed Bytes of the target electronic signature. This

 parameter MUST be present.

3.2.6. SignedDataReference Claims Object Class

 The sig_data_ref parameter in the Signature object class uses the

 SignedDataReference object class. The SignedDataReference object

 provides information used to verify the target electronic signature

 references to Signed Data as well as to verify the integrity of all

 data that is signed by the target signature, and it contains the

 following parameters:

 "ref": A String data type that contains a reference identifier for

 the data or data fragment covered by the target electronic

 signature. This parameter MUST be present.

 "hash": A Base64Binary data type that contains the hash value for

 the data covered by the target electronic signature. This

 parameter MUST be present.

3.2.7. PolicyValidation Claims Object Class

 The sig_val parameter in the Signature object class uses the

 PolicyValidation object class. The PolicyValidation object provides

 information about the result of a validation process according to a

 specific policy, and it contains the following parameters:

 "pol": A StringOrURI data type that contains the identifier of the

 policy governing the electronic signature verification process.

 This parameter MUST be present.

 "res": A String data type that contains the result of the electronic

 signature verification process. The value MUST be one of

 "PASSED", "FAILED", or "INDETERMINATE" as defined by

 [ETSI319102-1]. This parameter MUST be present.

 "msg": A String data type that contains a message describing the

 result. Inclusion of this parameter is OPTIONAL.

 "ext": A MAP<String> data type that provides additional claims

 related to the target signature. Extension claims are added at

 the discretion of the SVT issuer; however, extension claims MUST

 follow any conventions defined in a profile of this specification

 (see Section 4). Inclusion of this parameter is OPTIONAL.

3.2.8. TimeValidation Claims Object Class

 The time_val parameter in the Signature object class uses the

 TimeValidation object class. The TimeValidation claims object

 provides information about the result of validating evidence of time

 asserting that the target signature existed at a particular time in

 the past. Evidence of time is typically a timestamp according to

 [RFC3161], but other types of evidence may be used such as a

 previously issued SVT for this signature. The TimeValidation claims

 object contains the following parameters:

 "time": A NumericDate data type that contains the verified time.

 This parameter MUST be present.

 "type": A StringOrURI data type that contains an identifier of the

 type of evidence of time. This parameter MUST be present.

 "iss": A StringOrURI data type that contains an identifier of the

 entity that issued the evidence of time. This parameter MUST be

 present.

 "id": A String data type that contains an unique identifier assigned

 to the evidence of time. Inclusion of this parameter is OPTIONAL.

 "hash": A Base64Binary data type that contains the hash value of the

 validated evidence of time. Inclusion of this parameter is

 OPTIONAL.

 "val": An [Object<PolicyValidation>] data type that contains an

 array of results of the time evidence validation according to

 defined validation procedures. Inclusion of this parameter is

 OPTIONAL.

 "ext": A MAP<String> data type that provides additional claims

 related to the target signature. Extension claims are added at

 the discretion of the SVT issuer; however, extension claims MUST

 follow any conventions defined in a profile of this specification

 (see Section 4). Inclusion of this parameter is OPTIONAL.

3.2.9. CertReference Claims Object Class

 The signer_cert_ref parameter in the Signature object class uses the

 CertReference object class. The CertReference object references a

 single X.509 certificate or a X.509 certification path either by

 providing the certificate data or by providing hash references for

 certificates that can be located in the target electronic signature,

 and it contains the following parameters:

 "type": A StringOrURI data type that contains an identifier of the

 type of reference. The type identifier MUST be one of the

 identifiers defined below, an identifier specified by the selected

 profile, or a URI identifier. This parameter MUST be present.

 "ref": A [String] data type that contains an array of string

 parameters according to conventions defined by the type

 identifier. At least one parameter MUST be present.

 The following type identifiers are defined:

 "chain": The ref contains an array of Base64-encoded X.509

 certificates [RFC5280]. The certificates MUST be provided in the

 order starting with the end entity certificate. Any following

 certificate must be able to validate the signature on the previous

 certificate in the array.

 "chain_hash": The ref contains an array of one or more

 Base64-encoded hash values where each hash value is a hash over a

 X.509 certificate [RFC5280] used to validate the signature. The

 certificates MUST be provided in the order starting with the end

 entity certificate. Any following certificate must be able to

 validate the signature on the previous certificate in the array.

 This option MUST NOT be used unless all hashed certificates are

 present in the target electronic signature.

 Note: All certificates referenced using the identifiers above are

 X.509 certificates. Profiles of this specification MAY define

 alternative types of public key containers; however, a major function

 of these referenced certificates is not just to reference the public

 key but also to provide the subject name of the signer. It is

 therefore important for the full function of an SVT that the

 referenced public key container also provides the means to identify

 the signer.

3.2.10. SVT JOSE Header

 The SVT JWT MUST contain the following JSON Object Signing and

 Encryption (JOSE) header parameters in accordance with Section 5 of

 [RFC7519]:

 "typ": This parameter MUST have the string value "JWT" (upper case).

 "alg": This parameter identifies the algorithm used to sign the SVT

 JWT. The algorithm identifier MUST be specified in [RFC7518] or

 the IANA "JSON Web Signature and Encryption Algorithms" registry

 [IANA-JOSE-REG]. The specified signature hash algorithm MUST be

 identical to the hash algorithm specified in the hash_algo

 parameter of the SigValidation object within the sig_val_claims

 claim.

 The SVT header MUST contain a public key or a reference to a public

 key used to verify the signature on the SVT in accordance with

 [RFC7515]. Each profile, as discussed in Section 4, MUST define the

 requirements for how the key or key reference is included in the

 header.

4. Profiles

 Each signed document and signature type will have to define the

 precise content and use of several claims in the SVT.

 At a minimum, each profile MUST define:

 * The identifier of the profile

 * How to reference the Signed Data content of the signed document

 * How to reference the target electronic signature and the Signed

 Bytes of the signature

 * How to reference certificates supporting each electronic signature

 * How to include public keys or references to public keys in the SVT

 * Whether each electronic signature is supported by a single SVT, or

 one SVT may support multiple electronic signatures of the same

 document

 A profile MAY also define:

 * Explicit information on how to perform signature validation based

 on an SVT

 * How to attach an SVT to an electronic signature or signed document

4.1. Defined Profiles

 The following profiles are defined in appendixes of this document:

 Appendix A: XML Signature Profile

 Appendix B: PDF Signature Profile

 Appendix C: JWS Profile

 Other documents MAY define other profiles that MAY complement, amend,

 or supersede these profiles.

5. Signature Verification with an SVT

 Signature verification based on an SVT MUST follow these steps:

 1. Locate all available SVTs available for the signed document that

 are relevant for the target electronic signature.

 2. Select the most recent SVT that can be successfully validated and

 meets the requirement of the relying party.

 3. Verify the integrity of the signature and the Signed Bytes of the

 target electronic signature using the sig_ref claim.

 4. Verify that the Signed Data reference in the original electronic

 signature matches the reference values in the sig_data_ref claim.

 5. Verify the integrity of referenced Signed Data using provided

 hash values in the sig_data_ref claim.

 6. Obtain the verified certificates supporting the asserted

 electronic signature verification through the signer_cert_ref

 claim.

 7. Verify that signature validation policy results satisfy the

 requirements of the relying party.

 8. Verify that verified time results satisfy the context for the use

 of the signed document.

 After successfully performing these steps, signature validity is

 established as well as the trusted signer certificate binding the

 identity of the signer to the electronic signature.

6. IANA Considerations

6.1. Claim Names Registration

 IANA has registered the "sig_val_claims" claim name in the "JSON Web

 Token Claims" registry established by Section 10.1 of [RFC7519].

6.1.1. Registry Contents

 Claim Name: sig_val_claims

 Claim Description: Signature Validation Token

 Change Controller: IESG

 Specification Document(s): Section 3.2.3 of RFC 9321

6.2. Header Parameter Names Registration

 IANA has registered the "svt" Header Parameter in the "JSON Web

 Signature and Encryption Header Parameters" registry established by

 [RFC7515].

6.2.1. Registry Contents

 Header Parameter Name: svt

 Header Parameter Description: Signature Validation Token

 Header Parameter Usage Location(s): JWS

 Change Controller: IESG

 Specification Document(s): Appendix C.1.1 of RFC 9321

7. Security Considerations

7.1. Level of Reliance

 An SVT allows a signature verifier to still validate the original

 signature using the original signature data and to use the

 information in the SVT selectively to confirm the validity and

 integrity of the original data, such as confirming the integrity of

 Signed Data or the validity of the signer’s certificate, etc.

 Another way to use an SVT is to completely rely on the validation

 conclusion provided by the SVT and to omit revalidation of the

 original signature value and original certificate status checking

 data.

 This choice is a decision made by the verifier according to its own

 policy and risk assessment.

 However, even when relying on the SVT validation conclusion of an

 SVT, it is vital to still verify that the present SVT is correctly

 associated with the document and signature that is being validated by

 validating the hashed reference data in the SVT of the signature,

 signing certificate chain, Signed Data, and the Signed Bytes.

7.2. Aging Algorithms

 Even if the SVT provides protection against algorithms becoming

 weakened or broken over time, this protection is only valid for as

 long as the algorithms used to sign the SVT are still considered

 secure. It is advisable to reissue SVTs in cases where an algorithm

 protecting the SVT is getting close to its end of life.

 One way to increase the resistance of algorithms becoming insecure,

 is to issue multiple SVTs for the same signature with different

 algorithms and key lengths where one algorithm could still be secure

 even if the corresponding algorithm used in the alternative SVT is

 broken.

8. References

8.1. Normative References

 [CADES] ETSI, "Electronic Signatures and Infrastructures (ESI);

 CAdES digital signatures; Part 1: Building blocks and

 CAdES baseline signatures", v1.1.1, ETSI EN 319 122-1,

 April 2016.

 [ETSI319102-1]

 ETSI, "Electronic Signatures and Infrastructures (ESI);

 Procedures for Creation and Validation of AdES Digital

 Signatures; Part 1: Creation and Validation", v1.1.1, ETSI

 EN 319 102-1, May 2016.

 [IANA-JOSE-REG]

 IANA, "JSON Object Signing and Encryption (JOSE)",

 <https://www.iana.org/assignments/jose/>.

 [ISOPDF2] ISO, "Document management -- Portable document format --

 Part 2: PDF 2.0", ISO 32000-2:2020, December 2020.

 [PADES] ETSI, "Electronic Signatures and Infrastructures (ESI);

 PAdES digital signatures; Part 1: Building blocks and

 PAdES baseline signatures", v1.1.1, ETSI EN 319 142-1,

 April 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3125] Ross, J., Pinkas, D., and N. Pope, "Electronic Signature

 Policies", RFC 3125, DOI 10.17487/RFC3125, September 2001,

 <https://www.rfc-editor.org/info/rfc3125>.

 [RFC3161] Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,

 "Internet X.509 Public Key Infrastructure Time-Stamp

 Protocol (TSP)", RFC 3161, DOI 10.17487/RFC3161, August

 2001, <https://www.rfc-editor.org/info/rfc3161>.

 [RFC3647] Chokhani, S., Ford, W., Sabett, R., Merrill, C., and S.

 Wu, "Internet X.509 Public Key Infrastructure Certificate

 Policy and Certification Practices Framework", RFC 3647,

 DOI 10.17487/RFC3647, November 2003,

 <https://www.rfc-editor.org/info/rfc3647>.

 [RFC5035] Schaad, J., "Enhanced Security Services (ESS) Update:

 Adding CertID Algorithm Agility", RFC 5035,

 DOI 10.17487/RFC5035, August 2007,

 <https://www.rfc-editor.org/info/rfc5035>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

 Housley, R., and W. Polk, "Internet X.509 Public Key

 Infrastructure Certificate and Certificate Revocation List

 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,

 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,

 RFC 5652, DOI 10.17487/RFC5652, September 2009,

 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web

 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,

 DOI 10.17487/RFC7518, May 2015,

 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC9231] Eastlake 3rd, D., "Additional XML Security Uniform

 Resource Identifiers (URIs)", RFC 9231,

 DOI 10.17487/RFC9231, July 2022,

 <https://www.rfc-editor.org/info/rfc9231>.

 [XADES] ETSI, "Electronic Signatures and Infrastructures (ESI);

 XAdES digital signatures; Part 1: Building blocks and

 XAdES baseline signatures", v1.1.1, ETSI EN 319 132-1,

 April 2016.

 [XMLDSIG11]

 Eastlake 3rd, D., Reagle, J., Solo, D., Hirsch, F.,

 Nystrom, M., Roessler, T., and K. Yiu, "XML Signature

 Syntax and Processing Version 1.1", W3C Proposed

 Recommendation, April 2013. Latest version available at

 https://www.w3.org/TR/xmldsig- core1/.

8.2. Informative References

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

 Definition Language (CDDL): A Notational Convention to

 Express Concise Binary Object Representation (CBOR) and

 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Appendix A. XML Signature Profile

 This appendix defines a profile for implementing SVTs with a signed

 XML document and defines the following aspects of SVT usage:

 * How to include reference data related to XML signatures and XML

 documents in an SVT

 * How to add an SVT token to an XML signature

 XML documents can have any number of signature elements, signing an

 arbitrary number of fragments of XML documents. The actual signature

 element may be included in the signed XML document (enveloped),

 include the Signed Data (enveloping), or may be separate from the

 signed content (detached).

 To provide a generic solution for any type of XML signature, an SVT

 is added to each XML signature element within the XML signature

 <ds:Object> element.

A.1. Notation

A.1.1. References to XML Elements from XML Schemas

 When referring to elements from the W3C XML Signature namespace

 (https://www.w3.org/2000/09/xmldsig#), the following syntax is used:

 * <ds:Signature>

 When referring to elements from the ETSI XAdES XML Signature

 namespace (https://uri.etsi.org/01903/v1.3.2#), the following syntax

 is used:

 * <xades:CertDigest>

 When referring to elements defined in this specification

 (http://id.swedenconnect.se/svt/1.0/sig-prop/ns), the following

 syntax is used:

 * <svt:Element>

A.2. SVT in XML Documents

 When SVTs are provided for XML signatures, then one SVT MUST be

 provided for each XML signature.

 An SVT embedded within the XML signature element MUST be placed in a

 <svt:SignatureValidationToken> element as defined in Appendix A.2.1.

A.2.1. SignatureValidationToken Signature Property

 The <svt:SignatureValidationToken> element MUST be placed in a

 <ds:SignatureProperty> element in accordance with [XMLDSIG11]. The

 <ds:SignatureProperty> element MUST be placed inside a

 <ds:SignatureProperties> element inside a <ds:Object> element inside

 a <ds:Signature> element.

 Note: [XMLDSIG11] requires the Target attribute to be present in

 <ds:SignatureProperty>, referencing the signature targeted by this

 signature property. If an SVT is added to a signature that does not

 have an Id attribute, implementations SHOULD add an Id attribute to

 the <ds:Signature> element and reference that Id in the Target

 attribute. This Id attribute and Target attribute value matching is

 required by the [XMLDSIG11] standard, but it is redundant in the

 context of SVT validation as the SVT already contains information

 that uniquely identifies the target signature. Validation

 applications SHOULD NOT reject an SVT token because of Id and Target

 attribute mismatch and MUST rely on matching against a signature

 using signed information in the SVT itself.

 The <svt:SignatureValidationToken> element is defined by the

 following XML Schema:

 <?xml version="1.0" encoding="UTF-8"?>

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 targetNamespace="http://id.swedenconnect.se/svt/1.0/sig-prop/ns"

 xmlns:svt="http://id.swedenconnect.se/svt/1.0/sig-prop/ns">

 <xs:element name="SignatureValidationToken"

 type="svt:SignatureValidationTokenType" />

 <xs:complexType name="SignatureValidationTokenType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:schema>

 The SVT token MUST be included as a string representation of the SVT

 JWT. Note that this is the string representation of the JWT without

 further encoding. The SVT MUST NOT be represented by the

 Base64-encoded bytes of the JWT string.

 Example:

 <ds:Signature Id="MySignatureId">

 ...

 <ds:Object>

 <ds:SignatureProperties>

 <ds:SignatureProperty Target="#MySignatureId">

 <svt:SignatureValidationToken>

 eyJ0eXAiOiJKV1QiLCJhb...2aNZ

 </svt:SignatureValidationToken>

 </ds:SignatureProperty>

 </ds:SignatureProperties>

 </ds:Object>

 </ds:Signature>

A.2.2. Multiple SVTs in an XML Signature

 If a new SVT is stored in a signature that already contains a

 previously issued SVT, implementations can choose either to replace

 the existing SVT or to store the new SVT in addition to the existing

 SVT.

 If the new SVT is stored in addition to the old SVT, it SHOULD be

 stored in a new <ds:SignatureProperty> element inside the existing

 <ds:SignatureProperties> element where the old SVT is located.

 For interoperability robustness, signature validation applications

 MUST be able to handle signatures where the new SVT is located in a

 new <ds:Object> element.

A.3. XML Signature SVT Claims

A.3.1. XML Profile Identifier

 When this profile is used, the SigValidation object MUST contain a

 "profile" claim with the value "XML".

A.3.2. XML Signature Reference Data

 The SVT Signature object MUST contain a "sig_ref" claim (SigReference

 object) with the following elements:

 "id": The Id-attribute of the XML signature, if present.

 "sig_hash": The hash over the signature value bytes.

 "sb_hash": The hash over the canonicalized <ds:SignedInfo> element

 (the bytes the XML signature algorithm has signed to generate the

 signature value).

A.3.3. XML Signed Data Reference Data

 The SVT Signature object MUST contain one instance of the "sig_data"

 claim (SignedData object) for each <ds:Reference> element in the

 <ds:SignedInfo> element. The "sig_data" claim MUST contain the

 following elements:

 "ref": The value of the URI attribute of the corresponding

 <ds:Reference> element.

 "hash": The hash of all bytes that were identified by the

 corresponding <ds:Reference> element after applying all identified

 canonicalization and transformation algorithms. These are the

 same bytes that are hashed by the hash value in the

 <ds:DigestValue> element inside the <ds:Reference> element.

A.3.4. XML Signer Certificate References

 The SVT Signature object MUST contain a "signer_cert_ref" claim

 (CertReference object). The "type" parameter of the

 "signer_cert_ref" claim MUST be either "chain" or "chain_hash".

 * The "chain" type MUST be used when signature validation was

 performed using one or more certificates where some or all of the

 certificates in the chain are not present in the target signature.

 * The "chain_hash" type MUST be used when signature validation was

 performed using one or more certificates where all of the

 certificates are present in the target signature.

A.4. JOSE Header

A.4.1. SVT Signing Key Reference

 The SVT JOSE header for XML signatures must contain one of the

 following header parameters in accordance with [RFC7515] for storing

 a reference to the public key used to verify the signature on the

 SVT:

 "x5c": Holds an X.509 certificate [RFC5280] or a chain of

 certificates. The certificate holding the public key that

 verifies the signature on the SVT MUST be the first certificate in

 the chain.

 "kid": A key identifier holding the Base64-encoded hash value of the

 certificate that can verify the signature on the SVT. The hash

 algorithm MUST be the same hash algorithm used when signing the

 SVT as specified by the "alg" Header Parameter.

Appendix B. PDF Signature Profile

 This appendix defines a profile for implementing SVTs with a signed

 PDF document, and it defines the following aspects of SVT usage:

 * How to include reference data related to PDF signatures and PDF

 documents in an SVT.

 * How to add an SVT token to a PDF document.

 PDF document signatures are added as incremental updates to the

 signed PDF document and signs all data of the PDF document up until

 the current signature. When more than one signature is added to a

 PDF document the previous signature is signed by the next signature

 and can not be updated with additional data after this event.

 To minimize the impact on PDF documents with multiple signatures and

 to stay backwards compatible with PDF software that does not

 understand SVTs, PDF documents add one SVT token for all signatures

 of the PDF as an extension to a document timestamp added to the

 signed PDF as an incremental update. This SVT covers all signatures

 of the signed PDF.

B.1. SVTs in PDF Documents

 The SVT for a signed PDF document MAY provide signature validation

 information about any of the present signatures in the PDF. The SVT

 MUST contain a separate "sig" claim (Signature object) for each

 signature on the PDF that is covered by the SVT.

 An SVT added to a signed PDF document MUST be added to a document

 timestamp in accordance with ISO 32000-2:2020 [ISOPDF2].

 The document timestamp contains an [RFC3161] timestamp token

 (TSTInfo) in EncapsulatedContentInfo of the CMS signature. The SVT

 MUST be added to the timestamp token (TSTInfo) as an Extension object

 as defined in Appendix B.1.1.

B.1.1. SVT Extension to Timestamp Tokens

 The SVT extension is an Extension suitable to be included in TSTInfo

 as defined by [RFC3161].

 The SVT extension is identified by the Object Identifier (OID)

 1.2.752.201.5.2.

 This extension data (OCTET STRING) holds the bytes of SVT JWT,

 represented as a UTF-8-encoded string.

 This extension MUST NOT be marked critical.

 Note: Extensions in timestamp tokens according to [RFC3161] are

 imported from the definition of the X.509 certificate extensions

 defined in [RFC5280].

B.2. PDF Signature SVT Claims

B.2.1. PDF Profile Identifier

 When this profile is used, the SigValidation object MUST contain a

 "profile" claim with the value "PDF".

B.2.2. PDF Signature Reference Data

 The SVT Signature object MUST contain a "sig_ref" claim (SigReference

 object) with the following elements:

 "id": Absent or a Null value.

 "sig_hash": The hash over the signature value bytes.

 "sb_hash": The hash over the DER-encoded SignedAttributes in

 SignerInfo.

B.2.3. PDF Signed Data Reference Data

 The SVT Signature object MUST contain one instance of the "sig_data"

 claim (SignedData object) with the following elements:

 "ref": The string representation of the ByteRange value of the PDF

 signature dictionary of the target signature. This is a sequence

 of integers separated by space where each integer pair specifies

 the start index and length of a byte range.

 "hash": The hash of all bytes identified by the ByteRange value.

 This is the concatenation of all byte ranges identified by the

 ByteRange value.

B.2.4. PDF Signer Certificate References

 The SVT Signature object MUST contain a "signer_cert_ref" claim

 (CertReference object). The "type" parameter of the

 "signer_cert_ref" claim MUST be either "chain" or "chain_hash".

 * The "chain" type MUST be used when signature validation was

 performed using one or more certificates where some or all of the

 certificates in the chain are not present in the target signature.

 * The "chain_hash" type MUST be used when signature validation was

 performed using one or more certificates where all of the

 certificates are present in the target signature.

 Note: The referenced signer certificate MUST match any certificates

 referenced using ESSCertID or ESSCertIDv2 from [RFC5035].

B.3. JOSE Header

B.3.1. SVT Signing Key Reference

 The SVT JOSE header must contain one of the following header

 parameters in accordance with [RFC7515] for storing a reference to

 the public key used to verify the signature on the SVT:

 "x5c": Holds an X.509 certificate [RFC5280] or a chain of

 certificates. The certificate holding the public key that

 verifies the signature on the SVT MUST be the first certificate in

 the chain.

 "kid": A key identifier holding the Base64-encoded hash value of the

 certificate that can verify the signature on the SVT. The hash

 algorithm MUST be the same hash algorithm used when signing the

 SVT as specified by the "alg" Header Parameter. The referenced

 certificate SHOULD be the same certificate that was used to sign

 the document timestamp that contains the SVT.

Appendix C. JWS Profile

 This appendix defines a profile for implementing SVTs with a JWS

 signed payload according to [RFC7515], and it defines the following

 aspects of SVT usage:

 * How to include reference data related to JWS signatures in an SVT.

 * How to add an SVT token to JWS signatures.

 A JWS may have one or more signatures, depending on its serialization

 format, signing the same payload data. A JWS either contains the

 data to be signed (enveloping) or may sign any externally associated

 payload data (detached).

 To provide a generic solution for JWS, an SVT is added to each

 present signature as a JWS Unprotected Header. If a JWS includes

 multiple signatures, then each signature includes its own SVT.

C.1. SVT in JWS

 An SVT token MAY be added to any signature of a JWS to support

 validation of that signature. If more than one signature is present,

 then each present SVT MUST provide information exclusively related to

 one associated signature and MUST NOT include information about any

 other signature in the JWS.

 Each SVT is stored in its associated signature’s "svt" header as

 defined in Appendix C.1.1.

C.1.1. "svt" Header Parameter

 The "svt" (Signature Validation Token) Header Parameter is used to

 contain an array of SVT tokens to support validation of the

 associated signature. Each SVT token in the array has the format of

 a JWT as defined in [RFC7519] and is stored using its natural string

 representation without further wrapping or encoding.

 The "svt" Header Parameter, when used, MUST be included as a JWS

 Unprotected Header.

 Note: A JWS Unprotected Header is not supported with JWS Compact

 Serialization. A consequence of adding an SVT token to a JWS is

 therefore that JWS JSON Serialization MUST be used either in the form

 of general JWS JSON Serialization (for one or more signatures) or in

 the form of flattened JWS JSON Serialization (optionally used when

 only one signature is present in the JWS).

C.1.2. Multiple SVTs in a JWS Signature

 If a new SVT is stored in a signature that already contains a

 previously issued SVT, implementations can choose either to replace

 the existing SVT or to store the new SVT in addition to the existing

 SVT.

 If a JWS signature already contains an array of SVTs and a new SVT is

 to be added, then the new SVT MUST be added to the array of SVT

 tokens in the existing "svt" Header Parameter.

C.2. JWS Signature SVT Claims

C.2.1. JWS Profile Identifier

 When this profile is used, the SigValidation object MUST contain a

 "profile" claim with the value "JWS".

C.2.2. JWS Signature Reference Data

 The SVT Signature object MUST contain a "sig_ref" claim (SigReference

 object) with the following elements:

 "sig_hash": The hash over the associated signature value (the bytes

 of the base64url-decoded signature parameter).

 "sb_hash": The hash over all bytes signed by the associated

 signature (the JWS Signing Input according to [RFC7515]).

C.2.3. JWS Signed Data Reference Data

 The SVT Signature object MUST contain one instance of the "sig_data"

 claim (SignedData object) with the following elements:

 "ref": This parameter MUST hold one of the following three possible

 values:

 1. The explicit string value "payload" if the signed JWS Payload

 is embedded in a "payload" member of the JWS.

 2. The explicit string value "detached" if the JWS signs detached

 payload data without explicit reference.

 3. A URI that can be used to identify or fetch the detached

 Signed Data. The means to determine the URI for the detached

 Signed Data is outside the scope of this specification.

 "hash": The hash over the JWS Payload data bytes (not its base64url-

 encoded string representation).

C.2.4. JWS Signer Certificate References

 The SVT Signature object MUST contain a "signer_cert_ref" claim

 (CertReference object). The "type" parameter of the

 "signer_cert_ref" claim MUST be either "chain" or "chain_hash".

 * The "chain" type MUST be used when signature validation was

 performed using one or more certificates where some or all of the

 certificates in the chain are not present in the target signature.

 * The "chain_hash" type MUST be used when signature validation was

 performed using one or more certificates where all of the

 certificates are present in the target signature JOSE header using

 the "x5c" Header Parameter.

C.3. SVT JOSE Header

C.3.1. SVT Signing Key Reference

 The SVT JOSE header must contain one of the following header

 parameters in accordance with [RFC7515] for storing a reference to

 the public key used to verify the signature on the SVT:

 "x5c": Holds an X.509 certificate [RFC5280] or a chain of

 certificates. The certificate holding the public key that

 verifies the signature on the SVT MUST be the first certificate in

 the chain.

 "kid": A key identifier holding the Base64-encoded hash value of the

 certificate that can verify the signature on the SVT. The hash

 algorithm MUST be the same hash algorithm used when signing the

 SVT as specified by the "alg" Header Parameter.

Appendix D. Schemas

D.1. Concise Data Definition Language (CDDL)

 The following informative CDDL [RFC8610] expresses the structure of

 an SVT token:

 svt = {

 jti: text

 iss: text

 iat: uint

 ? aud: text / [* text]

 ? exp: uint

 sig_val_claims: SigValClaims

 }

 SigValClaims = {

 ver: text

 profile: text

 hash_algo: text

 sig: [+ Signature]

 ? ext: Extension

 }

 Signature = {

 sig_ref: SigReference

 sig_data_ref: [+ SignedDataReference]

 signer_cert_ref: CertReference

 sig_val: [+ PolicyValidation]

 ? time_val: [* TimeValidation]

 ? ext: Extension

 }

 SigReference = {

 ? id: text / null

 sig_hash: binary-value

 sb_hash: binary-value

 }

 SignedDataReference = {

 ref: text

 hash: binary-value

 }

 CertReference = {

 type: "chain" / "chain_hash"

 ref: [+ text]

 }

 PolicyValidation = {

 pol: text

 res: "PASSED" / "FAILED" / "INDETERMINATE"

 ? msg: text / null

 ? ext: Extension

 }

 TimeValidation = {

 "time": uint

 type: text

 iss: text

 ? id: text / null

 ? hash: binary-value / null

 ? val: [* PolicyValidation]

 ? ext: Extension

 }

 Extension = {

 + text => text

 } / null

 binary-value = text ; base64 classic with padding

D.2. JSON Schema

 The following informative JSON schema describes the syntax of the SVT

 token payload.

 {

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "title": "Signature Validation Token JSON Schema",

 "description": "Schema defining the payload format for SVTs",

 "type": "object",

 "required": [

 "jti",

 "iss",

 "iat",

 "sig_val_claims"

],

 "properties": {

 "jti": {

 "description": "JWT ID",

 "type": "string"

 },

 "iss": {

 "description": "Issuer",

 "type": "string"

 },

 "iat": {

 "description": "Issued At",

 "type": "integer"

 },

 "aud": {

 "description": "Audience",

 "type": [

 "string",

 "array"

],

 "items": {"type": "string"}

 },

 "exp": {

 "description": "Expiration time (seconds since epoch)",

 "type": "integer"

 },

 "sig_val_claims": {

 "description": "Signature validation claims",

 "type": "object",

 "required": [

 "ver",

 "profile",

 "hash_algo",

 "sig"

],

 "properties": {

 "ver": {

 "description": "Version",

 "type": "string"

 },

 "profile": {

 "description": "Implementation profile",

 "type": "string"

 },

 "hash_algo": {

 "description": "Hash algorithm URI",

 "type": "string"

 },

 "sig": {

 "description": "Validated signatures",

 "type": "array",

 "items": {

 "$ref": "#/$def/Signature"

 },

 "minItems": 1

 },

 "ext": {

 "description": "Extension map",

 "$ref": "#/$def/Extension"

 }

 },

 "additionalProperties": false

 }

 },

 "additionalProperties": false,

 "$def": {

 "Signature":{

 "type": "object",

 "required": [

 "sig_ref",

 "sig_data_ref",

 "signer_cert_ref",

 "sig_val"

],

 "properties": {

 "sig_ref": {

 "description": "Signature Reference",

 "$ref": "#/$def/SigReference"

 },

 "sig_data_ref": {

 "description": "Signed data array",

 "type": "array",

 "items": {

 "$ref" : "#/$def/SignedDataReference"

 },

 "minItems": 1

 },

 "signer_cert_ref": {

 "description": "Signer certificate reference",

 "$ref": "#/$def/CertReference"

 },

 "sig_val": {

 "description": "Signature validation results",

 "type": "array",

 "items": {

 "$ref": "#/$def/PolicyValidation"

 },

 "minItems": 1

 },

 "time_val": {

 "description": "Time validations",

 "type": "array",

 "items": {

 "$ref": "#/$def/TimeValidation"

 }

 },

 "ext": {

 "description": "Extension map",

 "$ref": "#/$def/Extension"

 }

 },

 "additionalProperties": false

 },

 "SigReference":{

 "type": "object",

 "required": [

 "sig_hash",

 "sb_hash"

],

 "properties": {

 "sig_hash": {

 "description": "Hash of the signature value",

 "type": "string",

 "format": "base64"

 },

 "sb_hash": {

 "description": "Hash of the Signed Bytes",

 "type": "string",

 "format": "base64"

 },

 "id": {

 "description": "Signature ID reference",

 "type": ["string","null"]

 }

 },

 "additionalProperties": false

 },

 "SignedDataReference": {

 "type": "object",

 "required": [

 "ref",

 "hash"

],

 "properties": {

 "ref": {

 "description": "Reference to the signed data",

 "type": "string"

 },

 "hash": {

 "description": "Signed data hash",

 "type": "string",

 "format": "base64"

 }

 },

 "additionalProperties": false

 },

 "CertReference":{

 "type": "object",

 "required": [

 "type",

 "ref"

],

 "properties": {

 "type": {

 "description": "Type of certificate reference",

 "type": "string",

 "enum": ["chain","chain_hash"]

 },

 "ref": {

 "description": "Certificate reference data",

 "type": "array",

 "items": {

 "type": "string",

 "format": "base64"

 },

 "minItems": 1

 }

 },

 "additionalProperties": false

 },

 "PolicyValidation":{

 "type": "object",

 "required": [

 "pol",

 "res"

],

 "properties": {

 "pol": {

 "description": "Policy identifier",

 "type": "string"

 },

 "res": {

 "description": "Signature validation result",

 "type": "string",

 "enum": ["PASSED","FAILED","INDETERMINATE"]

 },

 "msg": {

 "description": "Message",

 "type": ["string","null"]

 },

 "ext": {

 "description": "Extension map",

 "$ref": "#/$def/Extension"

 }

 },

 "additionalProperties": false

 },

 "TimeValidation":{

 "type": "object",

 "required": [

 "time",

 "type",

 "iss"

],

 "properties": {

 "time": {

 "description": "Verified time",

 "type": "integer"

 },

 "type": {

 "description": "Type of time validation proof",

 "type": "string"

 },

 "iss": {

 "description": "Issuer of the time proof",

 "type": "string"

 },

 "id": {

 "description": "Time evidence identifier",

 "type": ["string","null"]

 },

 "hash": {

 "description": "Hash of time evidence",

 "type": ["string","null"],

 "format": "base64"

 },

 "val": {

 "description": "Validation result",

 "type": "array",

 "items": {

 "$ref": "#/$def/PolicyValidation"

 }

 },

 "ext": {

 "description": "Extension map",

 "$ref": "#/$def/Extension"

 }

 },

 "additionalProperties": false

 },

 "Extension": {

 "description": "Extension map",

 "type": ["object","null"],

 "required": [],

 "additionalProperties": {

 "type": "string"

 }

 }

 }

 }

Appendix E. Examples

 The following example illustrates a basic SVT according to this

 specification issued for a signed PDF document.

 Note: Line breaks in the decoded example are inserted for

 readability. Line breaks are not allowed in valid JSON data.

 Signature validation token JWT:

 eyJraWQiOiJPZW5JKzQzNEpoYnZmRG50ZlZcLzhyT3hHN0ZrdnlqYUtWSmFWcUlG

 QlhvaFZoQWU1Zks4YW5vdjFTNjg4cjdLYmFsK2Z2cGFIMWo4aWJnNTJRQnkxUFE9

 PSIsInR5cCI6IkpXVCIsImFsZyI6IlJTNTEyIn0.eyJhdWQiOiJodHRwOlwvXC9l

 eGFtcGxlLmNvbVwvYXVkaWVuY2UxIiwiaXNzIjoiaHR0cHM6XC9cL3N3ZWRlbmNv

 bm5lY3Quc2VcL3ZhbGlkYXRvciIsImlhdCI6MTYwMzQ1ODQyMSwianRpIjoiNGQx

 Mzk2ZjFmZjcyOGY0MGQ1MjQwM2I2MWM1NzQ0ODYiLCJzaWdfdmFsX2NsYWltcyI6

 eyJzaWciOlt7ImV4dCI6bnVsbCwic2lnX3ZhbCI6W3sibXNnIjoiT0siLCJleHQi

 Om51bGwsInJlcyI6IlBBU1NFRCIsInBvbCI6Imh0dHA6XC9cL2lkLnN3ZWRlbmNv

 bm5lY3Quc2VcL3N2dFwvc2lndmFsLXBvbGljeVwvdHMtcGtpeFwvMDEifV0sInNp

 Z19yZWYiOnsic2lnX2hhc2giOiJ5Y2VQVkxJemRjcEs5N0lZT2hGSWYxbnk3OUht

 SUNiU1Z6SWVaTmJpem83ckdJd0hOTjB6WElTeUtHakN2bm9uT2FRR2ZMXC9QM3ZE

 dEI4OHlLU1dlWGc9PSIsImlkIjoiaWQtNzM5ODljNmZjMDYzNjM2YWI1ZTc1M2Yx

 MGY3NTc0NjciLCJzYl9oYXNoIjoiQm9QVjRXQ0E5c0FJYWhqSzFIYWpmRnhpK0F6

 QzRKR1R1ZjM5VzNaV2pjekRDVVJ4ZGM5WWV0ZUh0Y3hHVmVnZ3B4SEo3NVwvY1E3

 SE4xZERkbGl5SXdnPT0ifSwic2lnbmVyX2NlcnRfcmVmIjp7InJlZiI6WyIxK2Fh

 SmV0ZzdyZWxFUmxVRFlFaVU0WklaaFQ0UlV2aUlRWnVLN28xR0ZLYVRQUTZ5K2t4

 XC9QTnREcnB1cVE2WGZya0g5d1lESzRleTB5NFdyTkVybnc9PSIsImg0UER4YjVa

 S214MWVUU3F2VnZZRzhnMzNzMDVKendCK05nRUhGVTRnYzl0cUcwa2dIa2Y2VzNv

 THprVHd3dXJJaDZZOUFhZlpZcWMyelAycEUycDRRPT0iLCJEZDJDNXNCMElPUWVN

 Vm5FQmtNNVE5Vzk2bUJITnd3YTJ0elhNcytMd3VZY09VdlBrcnlHUjBhUEc4Tzlu

 SVAzbGJ3NktqUTFoRG1SazZ6Qzh4MmpkZz09Il0sInR5cGUiOiJjaGFpbl9oYXNo

 In0sInNpZ19kYXRhX3JlZiI6W3sicmVmIjoiIiwiaGFzaCI6IkZjR3BPT2Y4aWxj

 UHQyMUdEZDJjR25MR0R4UlM1ajdzdk00YXBwMkg0MWRERUxtMkN6Y2VUWTAybmRl

 SmZXamludG1RMzc2SWxYVE9BcjMxeXpZenNnPT0ifSx7InJlZiI6IiN4YWRlcy0x

 MWExNTVkOTJiZjU1Nzc0NjEzYmI3YjY2MTQ3N2NmZCIsImhhc2giOiJLUmtnYlo2

 UFwvbmhVNjNJTWswR2lVZlVcL0RUd3ZlWWl0ZVFrd0dlSnFDNUJ6VE5WOGJRYnBl

 ZFRUdVdKUHhxdkowUlk4NGh3bTdlWVwvZzBIckFPZWdLdz09In1dLCJ0aW1lX3Zh

 bCI6W119XSwiZXh0IjpudWxsLCJ2ZXIiOiIxLjAiLCJwcm9maWxlIjoiWE1MIiwi

 aGFzaF9hbGdvIjoiaHR0cDpcL1wvd3d3LnczLm9yZ1wvMjAwMVwvMDRcL3htbGVu

 YyNzaGE1MTIifX0.TdHCoIUSZj2zMINKg7E44-8VE_mJq6TG1OoPwnYSs_hyUbuX

 mrLJpuk8GR5YrndeOucPUYAwPxHt_f68JIQyFTi0agO9VJjn1R7Pj3Jt6WG9pYVN

 n5LH-D1maxD11ZxxbcYeHbsstd2Sy2uMa3BdpsstGdPymSmc6GxY5uJoL0-5vwo_

 3l-4Bb3LCTiuxYPcmztKIbDy2hEgJ3Hx1K4HF0SHgn3InpqBev3hm2SLw3hH5BCM

 rywBAhHYE6OGE0aOJ6ktA5UP0jIIHfaw9i1wIiJtHTaGuvtyWSLk5cshmun9Hkdk

 kRTA75bzuq0Iyd0qh070rA8Gje-s4Tw4xzttgKx1KSkvy8n5FqvzWdsZvclCG2mY

 Y9rMxh_7607NXcxajAP4yDOoKNs5nm937ULe0vCN8a7WTrFuiaGjry7HhzRM4C5A

 qxbDOBXPLyoMr4qn4LRJCHxOeLZ6o3ugvDOOWsyjk3eliyBwDu8qJH7UmyicLxDc

 Cr0hUK_kvREqjD2Z

 Decoded JWT Header:

 {

 "kid":"OenI+434JhbvfDntfV\/8rOxG7FkvyjaKVJaVqIFBXohVhAe5fK8anov

 1S688r7Kbal+fvpaH1j8ibg52QBy1PQ==",

 "typ":"JWT",

 "alg":"RS512"

 }

 Decoded JWT Claims:

 {

 "aud" : "http://example.com/audience1",

 "iss" : "https://swedenconnect.se/validator",

 "iat" : 1603458421,

 "jti" : "4d1396f1ff728f40d52403b61c574486",

 "sig_val_claims" : {

 "sig" : [{

 "ext" : null,

 "sig_val" : [{

 "msg" : "OK",

 "ext" : null,

 "res" : "PASSED",

 "pol" : "http://id.swedenconnect.se/svt/sigval-policy/

 ts-pkix/01"

 }],

 "sig_ref" : {

 "sig_hash" : "ycePVLIzdcpK97IYOhFIf1ny79HmICbSVzIeZNbizo7rGIw

 HNN0zXISyKGjCvnonOaQGfL/P3vDtB88yKSWeXg==",

 "id" : "id-73989c6fc063636ab5e753f10f757467",

 "sb_hash" : "BoPV4WCA9sAIahjK1HajfFxi+AzC4JGTuf39W3ZWjczDCURx

 dc9YeteHtcxGVeggpxHJ75/cQ7HN1dDdliyIwg=="

 },

 "signer_cert_ref" : {

 "ref" : ["1+aaJetg7relERlUDYEiU4ZIZhT4RUviIQZuK7o1GFKaTPQ6y+

 kx/PNtDrpuqQ6XfrkH9wYDK4ey0y4WrNErnw==",

 "h4PDxb5ZKmx1eTSqvVvYG8g33s05JzwB+NgEHFU4gc9tqG0kgH

 kf6W3oLzkTwwurIh6Y9AafZYqc2zP2pE2p4Q==",

 "Dd2C5sB0IOQeMVnEBkM5Q9W96mBHNwwa2tzXMs+LwuYcOUvPkr

 yGR0aPG8O9nIP3lbw6KjQ1hDmRk6zC8x2jdg=="],

 "type" : "chain_hash"

 },

 "sig_data_ref" : [{

 "ref" : "",

 "hash" : "FcGpOOf8ilcPt21GDd2cGnLGDxRS5j7svM4app2H41dDELm2Czc

 eTY02ndeJfWjintmQ376IlXTOAr31yzYzsg=="

 }, {

 "ref" : "#xades-11a155d92bf55774613bb7b661477cfd",

 "hash" : "KRkgbZ6P/nhU63IMk0GiUfU/DTwveYiteQkwGeJqC5BzTNV8bQb

 pedTTuWJPxqvJ0RY84hwm7eY/g0HrAOegKw=="

 }],

 "time_val" : []

 }],

 "ext" : null,

 "ver" : "1.0",

 "profile" : "XML",

 "hash_algo" : "http://www.w3.org/2001/04/xmlenc#sha512"

 }

 }

Authors’ Addresses

 Stefan Santesson

 IDsec Solutions AB

 Forskningsbyn Ideon

 SE-223 70 Lund

 Sweden

 Email: sts@aaa-sec.com

 Russ Housley

 Vigil Security, LLC

 516 Dranesville Road

 Herndon, VA 20170

 United States of America

 Email: housley@vigilsec.com

