
ï»¿

Internet Engineering Task Force (IETF) C. Krasic
Request for Comments: 9204
Category: Standards Track M. Bishop
ISSN: 2070-1721 Akamai Technologies
 A. Frindell, Ed.
 Facebook
 June 2022

 QPACK: Field Compression for HTTP/3

Abstract

 This specification defines QPACK: a compression format for
 efficiently representing HTTP fields that is to be used in HTTP/3.
 This is a variation of HPACK compression that seeks to reduce head-
 of-line blocking.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9204.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 1.1. Conventions and Definitions
 1.2. Notational Conventions
 2. Compression Process Overview
 2.1. Encoder
 2.1.1. Limits on Dynamic Table Insertions
 2.1.2. Blocked Streams
 2.1.3. Avoiding Flow-Control Deadlocks
 2.1.4. Known Received Count
 2.2. Decoder
 2.2.1. Blocked Decoding
 2.2.2. State Synchronization
 2.2.3. Invalid References
 3. Reference Tables
 3.1. Static Table
 3.2. Dynamic Table
 3.2.1. Dynamic Table Size
 3.2.2. Dynamic Table Capacity and Eviction

 3.2.3. Maximum Dynamic Table Capacity
 3.2.4. Absolute Indexing
 3.2.5. Relative Indexing
 3.2.6. Post-Base Indexing
 4. Wire Format
 4.1. Primitives
 4.1.1. Prefixed Integers
 4.1.2. String Literals
 4.2. Encoder and Decoder Streams
 4.3. Encoder Instructions
 4.3.1. Set Dynamic Table Capacity
 4.3.2. Insert with Name Reference
 4.3.3. Insert with Literal Name
 4.3.4. Duplicate
 4.4. Decoder Instructions
 4.4.1. Section Acknowledgment
 4.4.2. Stream Cancellation
 4.4.3. Insert Count Increment
 4.5. Field Line Representations
 4.5.1. Encoded Field Section Prefix
 4.5.2. Indexed Field Line
 4.5.3. Indexed Field Line with Post-Base Index
 4.5.4. Literal Field Line with Name Reference
 4.5.5. Literal Field Line with Post-Base Name Reference
 4.5.6. Literal Field Line with Literal Name
 5. Configuration
 6. Error Handling
 7. Security Considerations
 7.1. Probing Dynamic Table State
 7.1.1. Applicability to QPACK and HTTP
 7.1.2. Mitigation
 7.1.3. Never-Indexed Literals
 7.2. Static Huffman Encoding
 7.3. Memory Consumption
 7.4. Implementation Limits
 8. IANA Considerations
 8.1. Settings Registration
 8.2. Stream Type Registration
 8.3. Error Code Registration
 9. References
 9.1. Normative References
 9.2. Informative References
 Appendix A. Static Table
 Appendix B. Encoding and Decoding Examples
 B.1. Literal Field Line with Name Reference
 B.2. Dynamic Table
 B.3. Speculative Insert
 B.4. Duplicate Instruction, Stream Cancellation
 B.5. Dynamic Table Insert, Eviction
 Appendix C. Sample Single-Pass Encoding Algorithm
 Acknowledgments
 Authors’ Addresses

1. Introduction

 The QUIC transport protocol ([QUIC-TRANSPORT]) is designed to support
 HTTP semantics, and its design subsumes many of the features of
 HTTP/2 ([HTTP/2]). HTTP/2 uses HPACK ([RFC7541]) for compression of
 the header and trailer sections. If HPACK were used for HTTP/3
 ([HTTP/3]), it would induce head-of-line blocking for field sections
 due to built-in assumptions of a total ordering across frames on all
 streams.

 QPACK reuses core concepts from HPACK, but is redesigned to allow
 correctness in the presence of out-of-order delivery, with
 flexibility for implementations to balance between resilience against
 head-of-line blocking and optimal compression ratio. The design
 goals are to closely approach the compression ratio of HPACK with
 substantially less head-of-line blocking under the same loss
 conditions.

1.1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are used in this document:

 HTTP fields: Metadata sent as part of an HTTP message. The term
 encompasses both header and trailer fields. Colloquially, the
 term "headers" has often been used to refer to HTTP header fields
 and trailer fields; this document uses "fields" for generality.

 HTTP field line: A name-value pair sent as part of an HTTP field
 section. See Sections 6.3 and 6.5 of [HTTP].

 HTTP field value: Data associated with a field name, composed from
 all field line values with that field name in that section,
 concatenated together with comma separators.

 Field section: An ordered collection of HTTP field lines associated
 with an HTTP message. A field section can contain multiple field
 lines with the same name. It can also contain duplicate field
 lines. An HTTP message can include both header and trailer
 sections.

 Representation: An instruction that represents a field line,
 possibly by reference to the dynamic and static tables.

 Encoder: An implementation that encodes field sections.

 Decoder: An implementation that decodes encoded field sections.

 Absolute Index: A unique index for each entry in the dynamic table.

 Base: A reference point for relative and post-Base indices.
 Representations that reference dynamic table entries are relative
 to a Base.

 Insert Count: The total number of entries inserted in the dynamic
 table.

 Note that QPACK is a name, not an abbreviation.

1.2. Notational Conventions

 Diagrams in this document use the format described in Section 3.1 of
 [RFC2360], with the following additional conventions:

 x (A) Indicates that x is A bits long.

 x (A+) Indicates that x uses the prefixed integer encoding defined
 in Section 4.1.1, beginning with an A-bit prefix.

 x ... Indicates that x is variable length and extends to the end of
 the region.

2. Compression Process Overview

 Like HPACK, QPACK uses two tables for associating field lines
 ("headers") to indices. The static table (Section 3.1) is predefined
 and contains common header field lines (some of them with an empty
 value). The dynamic table (Section 3.2) is built up over the course
 of the connection and can be used by the encoder to index both header
 and trailer field lines in the encoded field sections.

 QPACK defines unidirectional streams for sending instructions from
 encoder to decoder and vice versa.

2.1. Encoder

 An encoder converts a header or trailer section into a series of
 representations by emitting either an indexed or a literal
 representation for each field line in the list; see Section 4.5.
 Indexed representations achieve high compression by replacing the
 literal name and possibly the value with an index to either the
 static or dynamic table. References to the static table and literal
 representations do not require any dynamic state and never risk head-
 of-line blocking. References to the dynamic table risk head-of-line
 blocking if the encoder has not received an acknowledgment indicating
 the entry is available at the decoder.

 An encoder MAY insert any entry in the dynamic table it chooses; it
 is not limited to field lines it is compressing.

 QPACK preserves the ordering of field lines within each field
 section. An encoder MUST emit field representations in the order
 they appear in the input field section.

 QPACK is designed to place the burden of optional state tracking on
 the encoder, resulting in relatively simple decoders.

2.1.1. Limits on Dynamic Table Insertions

 Inserting entries into the dynamic table might not be possible if the
 table contains entries that cannot be evicted.

 A dynamic table entry cannot be evicted immediately after insertion,
 even if it has never been referenced. Once the insertion of a
 dynamic table entry has been acknowledged and there are no
 outstanding references to the entry in unacknowledged
 representations, the entry becomes evictable. Note that references
 on the encoder stream never preclude the eviction of an entry,
 because those references are guaranteed to be processed before the
 instruction evicting the entry.

 If the dynamic table does not contain enough room for a new entry
 without evicting other entries, and the entries that would be evicted
 are not evictable, the encoder MUST NOT insert that entry into the
 dynamic table (including duplicates of existing entries). In order
 to avoid this, an encoder that uses the dynamic table has to keep
 track of each dynamic table entry referenced by each field section
 until those representations are acknowledged by the decoder; see
 Section 4.4.1.

2.1.1.1. Avoiding Prohibited Insertions

 To ensure that the encoder is not prevented from adding new entries,
 the encoder can avoid referencing entries that are close to eviction.
 Rather than reference such an entry, the encoder can emit a Duplicate
 instruction (Section 4.3.4) and reference the duplicate instead.

 Determining which entries are too close to eviction to reference is
 an encoder preference. One heuristic is to target a fixed amount of
 available space in the dynamic table: either unused space or space
 that can be reclaimed by evicting non-blocking entries. To achieve
 this, the encoder can maintain a draining index, which is the
 smallest absolute index (Section 3.2.4) in the dynamic table that it
 will emit a reference for. As new entries are inserted, the encoder
 increases the draining index to maintain the section of the table
 that it will not reference. If the encoder does not create new
 references to entries with an absolute index lower than the draining
 index, the number of unacknowledged references to those entries will
 eventually become zero, allowing them to be evicted.

 <-- Newer Entries Older Entries -->
 (Larger Indices) (Smaller Indices)
 +--------+---------------------------------+----------+
 | Unused | Referenceable | Draining |
 | Space | Entries | Entries |

 +--------+---------------------------------+----------+
 ^ ^ ^
 | | |
 Insertion Point Draining Index Dropping
 Point

 Figure 1: Draining Dynamic Table Entries

2.1.2. Blocked Streams

 Because QUIC does not guarantee order between data on different
 streams, a decoder might encounter a representation that references a
 dynamic table entry that it has not yet received.

 Each encoded field section contains a Required Insert Count
 (Section 4.5.1), the lowest possible value for the Insert Count with
 which the field section can be decoded. For a field section encoded
 using references to the dynamic table, the Required Insert Count is
 one larger than the largest absolute index of all referenced dynamic
 table entries. For a field section encoded with no references to the
 dynamic table, the Required Insert Count is zero.

 When the decoder receives an encoded field section with a Required
 Insert Count greater than its own Insert Count, the stream cannot be
 processed immediately and is considered "blocked"; see Section 2.2.1.

 The decoder specifies an upper bound on the number of streams that
 can be blocked using the SETTINGS_QPACK_BLOCKED_STREAMS setting; see
 Section 5. An encoder MUST limit the number of streams that could
 become blocked to the value of SETTINGS_QPACK_BLOCKED_STREAMS at all
 times. If a decoder encounters more blocked streams than it promised
 to support, it MUST treat this as a connection error of type
 QPACK_DECOMPRESSION_FAILED.

 Note that the decoder might not become blocked on every stream that
 risks becoming blocked.

 An encoder can decide whether to risk having a stream become blocked.
 If permitted by the value of SETTINGS_QPACK_BLOCKED_STREAMS,
 compression efficiency can often be improved by referencing dynamic
 table entries that are still in transit, but if there is loss or
 reordering, the stream can become blocked at the decoder. An encoder
 can avoid the risk of blocking by only referencing dynamic table
 entries that have been acknowledged, but this could mean using
 literals. Since literals make the encoded field section larger, this
 can result in the encoder becoming blocked on congestion or flow-
 control limits.

2.1.3. Avoiding Flow-Control Deadlocks

 Writing instructions on streams that are limited by flow control can
 produce deadlocks.

 A decoder might stop issuing flow-control credit on the stream that
 carries an encoded field section until the necessary updates are
 received on the encoder stream. If the granting of flow-control
 credit on the encoder stream (or the connection as a whole) depends
 on the consumption and release of data on the stream carrying the
 encoded field section, a deadlock might result.

 More generally, a stream containing a large instruction can become
 deadlocked if the decoder withholds flow-control credit until the
 instruction is completely received.

 To avoid these deadlocks, an encoder SHOULD NOT write an instruction
 unless sufficient stream and connection flow-control credit is
 available for the entire instruction.

2.1.4. Known Received Count

 The Known Received Count is the total number of dynamic table

 insertions and duplications acknowledged by the decoder. The encoder
 tracks the Known Received Count in order to identify which dynamic
 table entries can be referenced without potentially blocking a
 stream. The decoder tracks the Known Received Count in order to be
 able to send Insert Count Increment instructions.

 A Section Acknowledgment instruction (Section 4.4.1) implies that the
 decoder has received all dynamic table state necessary to decode the
 field section. If the Required Insert Count of the acknowledged
 field section is greater than the current Known Received Count, the
 Known Received Count is updated to that Required Insert Count value.

 An Insert Count Increment instruction (Section 4.4.3) increases the
 Known Received Count by its Increment parameter. See Section 2.2.2.3
 for guidance.

2.2. Decoder

 As in HPACK, the decoder processes a series of representations and
 emits the corresponding field sections. It also processes
 instructions received on the encoder stream that modify the dynamic
 table. Note that encoded field sections and encoder stream
 instructions arrive on separate streams. This is unlike HPACK, where
 encoded field sections (header blocks) can contain instructions that
 modify the dynamic table, and there is no dedicated stream of HPACK
 instructions.

 The decoder MUST emit field lines in the order their representations
 appear in the encoded field section.

2.2.1. Blocked Decoding

 Upon receipt of an encoded field section, the decoder examines the
 Required Insert Count. When the Required Insert Count is less than
 or equal to the decoder’s Insert Count, the field section can be
 processed immediately. Otherwise, the stream on which the field
 section was received becomes blocked.

 While blocked, encoded field section data SHOULD remain in the
 blocked stream’s flow-control window. This data is unusable until
 the stream becomes unblocked, and releasing the flow control
 prematurely makes the decoder vulnerable to memory exhaustion
 attacks. A stream becomes unblocked when the Insert Count becomes
 greater than or equal to the Required Insert Count for all encoded
 field sections the decoder has started reading from the stream.

 When processing encoded field sections, the decoder expects the
 Required Insert Count to equal the lowest possible value for the
 Insert Count with which the field section can be decoded, as
 prescribed in Section 2.1.2. If it encounters a Required Insert
 Count smaller than expected, it MUST treat this as a connection error
 of type QPACK_DECOMPRESSION_FAILED; see Section 2.2.3. If it
 encounters a Required Insert Count larger than expected, it MAY treat
 this as a connection error of type QPACK_DECOMPRESSION_FAILED.

2.2.2. State Synchronization

 The decoder signals the following events by emitting decoder
 instructions (Section 4.4) on the decoder stream.

2.2.2.1. Completed Processing of a Field Section

 After the decoder finishes decoding a field section encoded using
 representations containing dynamic table references, it MUST emit a
 Section Acknowledgment instruction (Section 4.4.1). A stream may
 carry multiple field sections in the case of intermediate responses,
 trailers, and pushed requests. The encoder interprets each
 Section Acknowledgment instruction as acknowledging the earliest
 unacknowledged field section containing dynamic table references sent
 on the given stream.

2.2.2.2. Abandonment of a Stream

 When an endpoint receives a stream reset before the end of a stream
 or before all encoded field sections are processed on that stream, or
 when it abandons reading of a stream, it generates a Stream
 Cancellation instruction; see Section 4.4.2. This signals to the
 encoder that all references to the dynamic table on that stream are
 no longer outstanding. A decoder with a maximum dynamic table
 capacity (Section 3.2.3) equal to zero MAY omit sending Stream
 Cancellations, because the encoder cannot have any dynamic table
 references. An encoder cannot infer from this instruction that any
 updates to the dynamic table have been received.

 The Section Acknowledgment and Stream Cancellation instructions
 permit the encoder to remove references to entries in the dynamic
 table. When an entry with an absolute index lower than the Known
 Received Count has zero references, then it is considered evictable;
 see Section 2.1.1.

2.2.2.3. New Table Entries

 After receiving new table entries on the encoder stream, the decoder
 chooses when to emit Insert Count Increment instructions; see
 Section 4.4.3. Emitting this instruction after adding each new
 dynamic table entry will provide the timeliest feedback to the
 encoder, but could be redundant with other decoder feedback. By
 delaying an Insert Count Increment instruction, the decoder might be
 able to coalesce multiple Insert Count Increment instructions or
 replace them entirely with Section Acknowledgments; see
 Section 4.4.1. However, delaying too long may lead to compression
 inefficiencies if the encoder waits for an entry to be acknowledged
 before using it.

2.2.3. Invalid References

 If the decoder encounters a reference in a field line representation
 to a dynamic table entry that has already been evicted or that has an
 absolute index greater than or equal to the declared Required Insert
 Count (Section 4.5.1), it MUST treat this as a connection error of
 type QPACK_DECOMPRESSION_FAILED.

 If the decoder encounters a reference in an encoder instruction to a
 dynamic table entry that has already been evicted, it MUST treat this
 as a connection error of type QPACK_ENCODER_STREAM_ERROR.

3. Reference Tables

 Unlike in HPACK, entries in the QPACK static and dynamic tables are
 addressed separately. The following sections describe how entries in
 each table are addressed.

3.1. Static Table

 The static table consists of a predefined list of field lines, each
 of which has a fixed index over time. Its entries are defined in
 Appendix A.

 All entries in the static table have a name and a value. However,
 values can be empty (that is, have a length of 0). Each entry is
 identified by a unique index.

 Note that the QPACK static table is indexed from 0, whereas the HPACK
 static table is indexed from 1.

 When the decoder encounters an invalid static table index in a field
 line representation, it MUST treat this as a connection error of type
 QPACK_DECOMPRESSION_FAILED. If this index is received on the encoder
 stream, this MUST be treated as a connection error of type
 QPACK_ENCODER_STREAM_ERROR.

3.2. Dynamic Table

 The dynamic table consists of a list of field lines maintained in
 first-in, first-out order. A QPACK encoder and decoder share a
 dynamic table that is initially empty. The encoder adds entries to
 the dynamic table and sends them to the decoder via instructions on
 the encoder stream; see Section 4.3.

 The dynamic table can contain duplicate entries (i.e., entries with
 the same name and same value). Therefore, duplicate entries MUST NOT
 be treated as an error by the decoder.

 Dynamic table entries can have empty values.

3.2.1. Dynamic Table Size

 The size of the dynamic table is the sum of the size of its entries.

 The size of an entry is the sum of its name’s length in bytes, its
 value’s length in bytes, and 32 additional bytes. The size of an
 entry is calculated using the length of its name and value without
 Huffman encoding applied.

3.2.2. Dynamic Table Capacity and Eviction

 The encoder sets the capacity of the dynamic table, which serves as
 the upper limit on its size. The initial capacity of the dynamic
 table is zero. The encoder sends a Set Dynamic Table Capacity
 instruction (Section 4.3.1) with a non-zero capacity to begin using
 the dynamic table.

 Before a new entry is added to the dynamic table, entries are evicted
 from the end of the dynamic table until the size of the dynamic table
 is less than or equal to (table capacity - size of new entry). The
 encoder MUST NOT cause a dynamic table entry to be evicted unless
 that entry is evictable; see Section 2.1.1. The new entry is then
 added to the table. It is an error if the encoder attempts to add an
 entry that is larger than the dynamic table capacity; the decoder
 MUST treat this as a connection error of type
 QPACK_ENCODER_STREAM_ERROR.

 A new entry can reference an entry in the dynamic table that will be
 evicted when adding this new entry into the dynamic table.
 Implementations are cautioned to avoid deleting the referenced name
 or value if the referenced entry is evicted from the dynamic table
 prior to inserting the new entry.

 Whenever the dynamic table capacity is reduced by the encoder
 (Section 4.3.1), entries are evicted from the end of the dynamic
 table until the size of the dynamic table is less than or equal to
 the new table capacity. This mechanism can be used to completely
 clear entries from the dynamic table by setting a capacity of 0,
 which can subsequently be restored.

3.2.3. Maximum Dynamic Table Capacity

 To bound the memory requirements of the decoder, the decoder limits
 the maximum value the encoder is permitted to set for the dynamic
 table capacity. In HTTP/3, this limit is determined by the value of
 SETTINGS_QPACK_MAX_TABLE_CAPACITY sent by the decoder; see Section 5.
 The encoder MUST NOT set a dynamic table capacity that exceeds this
 maximum, but it can choose to use a lower dynamic table capacity; see
 Section 4.3.1.

 For clients using 0-RTT data in HTTP/3, the server’s maximum table
 capacity is the remembered value of the setting or zero if the value
 was not previously sent. When the client’s 0-RTT value of the
 SETTING is zero, the server MAY set it to a non-zero value in its
 SETTINGS frame. If the remembered value is non-zero, the server MUST
 send the same non-zero value in its SETTINGS frame. If it specifies
 any other value, or omits SETTINGS_QPACK_MAX_TABLE_CAPACITY from
 SETTINGS, the encoder must treat this as a connection error of type

 QPACK_DECODER_STREAM_ERROR.

 For clients not using 0-RTT data (whether 0-RTT is not attempted or
 is rejected) and for all HTTP/3 servers, the maximum table capacity
 is 0 until the encoder processes a SETTINGS frame with a non-zero
 value of SETTINGS_QPACK_MAX_TABLE_CAPACITY.

 When the maximum table capacity is zero, the encoder MUST NOT insert
 entries into the dynamic table and MUST NOT send any encoder
 instructions on the encoder stream.

3.2.4. Absolute Indexing

 Each entry possesses an absolute index that is fixed for the lifetime
 of that entry. The first entry inserted has an absolute index of 0;
 indices increase by one with each insertion.

3.2.5. Relative Indexing

 Relative indices begin at zero and increase in the opposite direction
 from the absolute index. Determining which entry has a relative
 index of 0 depends on the context of the reference.

 In encoder instructions (Section 4.3), a relative index of 0 refers
 to the most recently inserted value in the dynamic table. Note that
 this means the entry referenced by a given relative index will change
 while interpreting instructions on the encoder stream.

 +-----+---------------+-------+
 | n-1 | ... | d | Absolute Index
 + - - +---------------+ - - - +
 | 0 | ... | n-d-1 | Relative Index
 +-----+---------------+-------+
 ^ |
 | V
 Insertion Point Dropping Point

 n = count of entries inserted
 d = count of entries dropped

 Figure 2: Example Dynamic Table Indexing - Encoder Stream

 Unlike in encoder instructions, relative indices in field line
 representations are relative to the Base at the beginning of the
 encoded field section; see Section 4.5.1. This ensures that
 references are stable even if encoded field sections and dynamic
 table updates are processed out of order.

 In a field line representation, a relative index of 0 refers to the
 entry with absolute index equal to Base - 1.

 Base
 |
 V
 +-----+-----+-----+-----+-------+
 | n-1 | n-2 | n-3 | ... | d | Absolute Index
 +-----+-----+ - +-----+ - +
 | 0 | ... | n-d-3 | Relative Index
 +-----+-----+-------+

 n = count of entries inserted
 d = count of entries dropped
 In this example, Base = n - 2

 Figure 3: Example Dynamic Table Indexing - Relative Index in
 Representation

3.2.6. Post-Base Indexing

 Post-Base indices are used in field line representations for entries
 with absolute indices greater than or equal to Base, starting at 0

 for the entry with absolute index equal to Base and increasing in the
 same direction as the absolute index.

 Post-Base indices allow an encoder to process a field section in a
 single pass and include references to entries added while processing
 this (or other) field sections.

 Base
 |
 V
 +-----+-----+-----+-----+-----+
 | n-1 | n-2 | n-3 | ... | d | Absolute Index
 +-----+-----+-----+-----+-----+
 | 1 | 0 | Post-Base Index
 +-----+-----+

 n = count of entries inserted
 d = count of entries dropped
 In this example, Base = n - 2

 Figure 4: Example Dynamic Table Indexing - Post-Base Index in
 Representation

4. Wire Format

4.1. Primitives

4.1.1. Prefixed Integers

 The prefixed integer from Section 5.1 of [RFC7541] is used heavily
 throughout this document. The format from [RFC7541] is used
 unmodified. Note, however, that QPACK uses some prefix sizes not
 actually used in HPACK.

 QPACK implementations MUST be able to decode integers up to and
 including 62 bits long.

4.1.2. String Literals

 The string literal defined by Section 5.2 of [RFC7541] is also used
 throughout. This string format includes optional Huffman encoding.

 HPACK defines string literals to begin on a byte boundary. They
 begin with a single bit flag, denoted as ’H’ in this document
 (indicating whether the string is Huffman encoded), followed by the
 string length encoded as a 7-bit prefix integer, and finally the
 indicated number of bytes of data. When Huffman encoding is enabled,
 the Huffman table from Appendix B of [RFC7541] is used without
 modification and the indicated length is the size of the string after
 encoding.

 This document expands the definition of string literals by permitting
 them to begin other than on a byte boundary. An "N-bit prefix string
 literal" begins mid-byte, with the first (8-N) bits allocated to a
 previous field. The string uses one bit for the Huffman flag,
 followed by the length of the encoded string as a (N-1)-bit prefix
 integer. The prefix size, N, can have a value between 2 and 8,
 inclusive. The remainder of the string literal is unmodified.

 A string literal without a prefix length noted is an 8-bit prefix
 string literal and follows the definitions in [RFC7541] without
 modification.

4.2. Encoder and Decoder Streams

 QPACK defines two unidirectional stream types:

 * An encoder stream is a unidirectional stream of type 0x02. It
 carries an unframed sequence of encoder instructions from encoder
 to decoder.

 * A decoder stream is a unidirectional stream of type 0x03. It
 carries an unframed sequence of decoder instructions from decoder
 to encoder.

 HTTP/3 endpoints contain a QPACK encoder and decoder. Each endpoint
 MUST initiate, at most, one encoder stream and, at most, one decoder
 stream. Receipt of a second instance of either stream type MUST be
 treated as a connection error of type H3_STREAM_CREATION_ERROR.

 The sender MUST NOT close either of these streams, and the receiver
 MUST NOT request that the sender close either of these streams.
 Closure of either unidirectional stream type MUST be treated as a
 connection error of type H3_CLOSED_CRITICAL_STREAM.

 An endpoint MAY avoid creating an encoder stream if it will not be
 used (for example, if its encoder does not wish to use the dynamic
 table or if the maximum size of the dynamic table permitted by the
 peer is zero).

 An endpoint MAY avoid creating a decoder stream if its decoder sets
 the maximum capacity of the dynamic table to zero.

 An endpoint MUST allow its peer to create an encoder stream and a
 decoder stream even if the connection’s settings prevent their use.

4.3. Encoder Instructions

 An encoder sends encoder instructions on the encoder stream to set
 the capacity of the dynamic table and add dynamic table entries.
 Instructions adding table entries can use existing entries to avoid
 transmitting redundant information. The name can be transmitted as a
 reference to an existing entry in the static or the dynamic table or
 as a string literal. For entries that already exist in the dynamic
 table, the full entry can also be used by reference, creating a
 duplicate entry.

4.3.1. Set Dynamic Table Capacity

 An encoder informs the decoder of a change to the dynamic table
 capacity using an instruction that starts with the ’001’ 3-bit
 pattern. This is followed by the new dynamic table capacity
 represented as an integer with a 5-bit prefix; see Section 4.1.1.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | Capacity (5+) |
 +---+---+---+-------------------+

 Figure 5: Set Dynamic Table Capacity

 The new capacity MUST be lower than or equal to the limit described
 in Section 3.2.3. In HTTP/3, this limit is the value of the
 SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter (Section 5) received from
 the decoder. The decoder MUST treat a new dynamic table capacity
 value that exceeds this limit as a connection error of type
 QPACK_ENCODER_STREAM_ERROR.

 Reducing the dynamic table capacity can cause entries to be evicted;
 see Section 3.2.2. This MUST NOT cause the eviction of entries that
 are not evictable; see Section 2.1.1. Changing the capacity of the
 dynamic table is not acknowledged as this instruction does not insert
 an entry.

4.3.2. Insert with Name Reference

 An encoder adds an entry to the dynamic table where the field name
 matches the field name of an entry stored in the static or the
 dynamic table using an instruction that starts with the ’1’ 1-bit
 pattern. The second (’T’) bit indicates whether the reference is to
 the static or dynamic table. The 6-bit prefix integer
 (Section 4.1.1) that follows is used to locate the table entry for

 the field name. When T=1, the number represents the static table
 index; when T=0, the number is the relative index of the entry in the
 dynamic table.

 The field name reference is followed by the field value represented
 as a string literal; see Section 4.1.2.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | T | Name Index (6+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Figure 6: Insert Field Line -- Indexed Name

4.3.3. Insert with Literal Name

 An encoder adds an entry to the dynamic table where both the field
 name and the field value are represented as string literals using an
 instruction that starts with the ’01’ 2-bit pattern.

 This is followed by the name represented as a 6-bit prefix string
 literal and the value represented as an 8-bit prefix string literal;
 see Section 4.1.2.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | H | Name Length (5+) |
 +---+---+---+-------------------+
 | Name String (Length bytes) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Figure 7: Insert Field Line -- New Name

4.3.4. Duplicate

 An encoder duplicates an existing entry in the dynamic table using an
 instruction that starts with the ’000’ 3-bit pattern. This is
 followed by the relative index of the existing entry represented as
 an integer with a 5-bit prefix; see Section 4.1.1.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | Index (5+) |
 +---+---+---+-------------------+

 Figure 8: Duplicate

 The existing entry is reinserted into the dynamic table without
 resending either the name or the value. This is useful to avoid
 adding a reference to an older entry, which might block inserting new
 entries.

4.4. Decoder Instructions

 A decoder sends decoder instructions on the decoder stream to inform
 the encoder about the processing of field sections and table updates
 to ensure consistency of the dynamic table.

4.4.1. Section Acknowledgment

 After processing an encoded field section whose declared Required
 Insert Count is not zero, the decoder emits a Section Acknowledgment
 instruction. The instruction starts with the ’1’ 1-bit pattern,

 followed by the field section’s associated stream ID encoded as a
 7-bit prefix integer; see Section 4.1.1.

 This instruction is used as described in Sections 2.1.4 and 2.2.2.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Stream ID (7+) |
 +---+---------------------------+

 Figure 9: Section Acknowledgment

 If an encoder receives a Section Acknowledgment instruction referring
 to a stream on which every encoded field section with a non-zero
 Required Insert Count has already been acknowledged, this MUST be
 treated as a connection error of type QPACK_DECODER_STREAM_ERROR.

 The Section Acknowledgment instruction might increase the Known
 Received Count; see Section 2.1.4.

4.4.2. Stream Cancellation

 When a stream is reset or reading is abandoned, the decoder emits a
 Stream Cancellation instruction. The instruction starts with the
 ’01’ 2-bit pattern, followed by the stream ID of the affected stream
 encoded as a 6-bit prefix integer.

 This instruction is used as described in Section 2.2.2.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | Stream ID (6+) |
 +---+---+-----------------------+

 Figure 10: Stream Cancellation

4.4.3. Insert Count Increment

 The Insert Count Increment instruction starts with the ’00’ 2-bit
 pattern, followed by the Increment encoded as a 6-bit prefix integer.
 This instruction increases the Known Received Count (Section 2.1.4)
 by the value of the Increment parameter. The decoder should send an
 Increment value that increases the Known Received Count to the total
 number of dynamic table insertions and duplications processed so far.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | Increment (6+) |
 +---+---+-----------------------+

 Figure 11: Insert Count Increment

 An encoder that receives an Increment field equal to zero, or one
 that increases the Known Received Count beyond what the encoder has
 sent, MUST treat this as a connection error of type
 QPACK_DECODER_STREAM_ERROR.

4.5. Field Line Representations

 An encoded field section consists of a prefix and a possibly empty
 sequence of representations defined in this section. Each
 representation corresponds to a single field line. These
 representations reference the static table or the dynamic table in a
 particular state, but they do not modify that state.

 Encoded field sections are carried in frames on streams defined by
 the enclosing protocol.

4.5.1. Encoded Field Section Prefix

 Each encoded field section is prefixed with two integers. The

 Required Insert Count is encoded as an integer with an 8-bit prefix
 using the encoding described in Section 4.5.1.1. The Base is encoded
 as a Sign bit (’S’) and a Delta Base value with a 7-bit prefix; see
 Section 4.5.1.2.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Required Insert Count (8+) |
 +---+---------------------------+
 | S | Delta Base (7+) |
 +---+---------------------------+
 | Encoded Field Lines ...
 +-------------------------------+

 Figure 12: Encoded Field Section

4.5.1.1. Required Insert Count

 Required Insert Count identifies the state of the dynamic table
 needed to process the encoded field section. Blocking decoders use
 the Required Insert Count to determine when it is safe to process the
 rest of the field section.

 The encoder transforms the Required Insert Count as follows before
 encoding:

 if ReqInsertCount == 0:
 EncInsertCount = 0
 else:
 EncInsertCount = (ReqInsertCount mod (2 * MaxEntries)) + 1

 Here MaxEntries is the maximum number of entries that the dynamic
 table can have. The smallest entry has empty name and value strings
 and has the size of 32. Hence, MaxEntries is calculated as:

 MaxEntries = floor(MaxTableCapacity / 32)

 MaxTableCapacity is the maximum capacity of the dynamic table as
 specified by the decoder; see Section 3.2.3.

 This encoding limits the length of the prefix on long-lived
 connections.

 The decoder can reconstruct the Required Insert Count using an
 algorithm such as the following. If the decoder encounters a value
 of EncodedInsertCount that could not have been produced by a
 conformant encoder, it MUST treat this as a connection error of type
 QPACK_DECOMPRESSION_FAILED.

 TotalNumberOfInserts is the total number of inserts into the
 decoder’s dynamic table.

 FullRange = 2 * MaxEntries
 if EncodedInsertCount == 0:
 ReqInsertCount = 0
 else:
 if EncodedInsertCount > FullRange:
 Error
 MaxValue = TotalNumberOfInserts + MaxEntries

 # MaxWrapped is the largest possible value of
 # ReqInsertCount that is 0 mod 2 * MaxEntries
 MaxWrapped = floor(MaxValue / FullRange) * FullRange
 ReqInsertCount = MaxWrapped + EncodedInsertCount - 1

 # If ReqInsertCount exceeds MaxValue, the Encoder’s value
 # must have wrapped one fewer time
 if ReqInsertCount > MaxValue:
 if ReqInsertCount <= FullRange:
 Error
 ReqInsertCount -= FullRange

 # Value of 0 must be encoded as 0.
 if ReqInsertCount == 0:
 Error

 For example, if the dynamic table is 100 bytes, then the Required
 Insert Count will be encoded modulo 6. If a decoder has received 10
 inserts, then an encoded value of 4 indicates that the Required
 Insert Count is 9 for the field section.

4.5.1.2. Base

 The Base is used to resolve references in the dynamic table as
 described in Section 3.2.5.

 To save space, the Base is encoded relative to the Required Insert
 Count using a one-bit Sign (’S’ in Figure 12) and the Delta Base
 value. A Sign bit of 0 indicates that the Base is greater than or
 equal to the value of the Required Insert Count; the decoder adds the
 value of Delta Base to the Required Insert Count to determine the
 value of the Base. A Sign bit of 1 indicates that the Base is less
 than the Required Insert Count; the decoder subtracts the value of
 Delta Base from the Required Insert Count and also subtracts one to
 determine the value of the Base. That is:

 if Sign == 0:
 Base = ReqInsertCount + DeltaBase
 else:
 Base = ReqInsertCount - DeltaBase - 1

 A single-pass encoder determines the Base before encoding a field
 section. If the encoder inserted entries in the dynamic table while
 encoding the field section and is referencing them, Required Insert
 Count will be greater than the Base, so the encoded difference is
 negative and the Sign bit is set to 1. If the field section was not
 encoded using representations that reference the most recent entry in
 the table and did not insert any new entries, the Base will be
 greater than the Required Insert Count, so the encoded difference
 will be positive and the Sign bit is set to 0.

 The value of Base MUST NOT be negative. Though the protocol might
 operate correctly with a negative Base using post-Base indexing, it
 is unnecessary and inefficient. An endpoint MUST treat a field block
 with a Sign bit of 1 as invalid if the value of Required Insert Count
 is less than or equal to the value of Delta Base.

 An encoder that produces table updates before encoding a field
 section might set Base to the value of Required Insert Count. In
 such a case, both the Sign bit and the Delta Base will be set to
 zero.

 A field section that was encoded without references to the dynamic
 table can use any value for the Base; setting Delta Base to zero is
 one of the most efficient encodings.

 For example, with a Required Insert Count of 9, a decoder receives a
 Sign bit of 1 and a Delta Base of 2. This sets the Base to 6 and
 enables post-Base indexing for three entries. In this example, a
 relative index of 1 refers to the fifth entry that was added to the
 table; a post-Base index of 1 refers to the eighth entry.

4.5.2. Indexed Field Line

 An indexed field line representation identifies an entry in the
 static table or an entry in the dynamic table with an absolute index
 less than the value of the Base.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | T | Index (6+) |
 +---+---+-----------------------+

 Figure 13: Indexed Field Line

 This representation starts with the ’1’ 1-bit pattern, followed by
 the ’T’ bit, indicating whether the reference is into the static or
 dynamic table. The 6-bit prefix integer (Section 4.1.1) that follows
 is used to locate the table entry for the field line. When T=1, the
 number represents the static table index; when T=0, the number is the
 relative index of the entry in the dynamic table.

4.5.3. Indexed Field Line with Post-Base Index

 An indexed field line with post-Base index representation identifies
 an entry in the dynamic table with an absolute index greater than or
 equal to the value of the Base.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 1 | Index (4+) |
 +---+---+---+---+---------------+

 Figure 14: Indexed Field Line with Post-Base Index

 This representation starts with the ’0001’ 4-bit pattern. This is
 followed by the post-Base index (Section 3.2.6) of the matching field
 line, represented as an integer with a 4-bit prefix; see
 Section 4.1.1.

4.5.4. Literal Field Line with Name Reference

 A literal field line with name reference representation encodes a
 field line where the field name matches the field name of an entry in
 the static table or the field name of an entry in the dynamic table
 with an absolute index less than the value of the Base.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | N | T |Name Index (4+)|
 +---+---+---+---+---------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Figure 15: Literal Field Line with Name Reference

 This representation starts with the ’01’ 2-bit pattern. The
 following bit, ’N’, indicates whether an intermediary is permitted to
 add this field line to the dynamic table on subsequent hops. When
 the ’N’ bit is set, the encoded field line MUST always be encoded
 with a literal representation. In particular, when a peer sends a
 field line that it received represented as a literal field line with
 the ’N’ bit set, it MUST use a literal representation to forward this
 field line. This bit is intended for protecting field values that
 are not to be put at risk by compressing them; see Section 7.1 for
 more details.

 The fourth (’T’) bit indicates whether the reference is to the static
 or dynamic table. The 4-bit prefix integer (Section 4.1.1) that
 follows is used to locate the table entry for the field name. When
 T=1, the number represents the static table index; when T=0, the
 number is the relative index of the entry in the dynamic table.

 Only the field name is taken from the dynamic table entry; the field
 value is encoded as an 8-bit prefix string literal; see
 Section 4.1.2.

4.5.5. Literal Field Line with Post-Base Name Reference

 A literal field line with post-Base name reference representation
 encodes a field line where the field name matches the field name of a

 dynamic table entry with an absolute index greater than or equal to
 the value of the Base.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 | N |NameIdx(3+)|
 +---+---+---+---+---+-----------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Figure 16: Literal Field Line with Post-Base Name Reference

 This representation starts with the ’0000’ 4-bit pattern. The fifth
 bit is the ’N’ bit as described in Section 4.5.4. This is followed
 by a post-Base index of the dynamic table entry (Section 3.2.6)
 encoded as an integer with a 3-bit prefix; see Section 4.1.1.

 Only the field name is taken from the dynamic table entry; the field
 value is encoded as an 8-bit prefix string literal; see
 Section 4.1.2.

4.5.6. Literal Field Line with Literal Name

 The literal field line with literal name representation encodes a
 field name and a field value as string literals.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | N | H |NameLen(3+)|
 +---+---+---+---+---+-----------+
 | Name String (Length bytes) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length bytes) |
 +-------------------------------+

 Figure 17: Literal Field Line with Literal Name

 This representation starts with the ’001’ 3-bit pattern. The fourth
 bit is the ’N’ bit as described in Section 4.5.4. The name follows,
 represented as a 4-bit prefix string literal, then the value,
 represented as an 8-bit prefix string literal; see Section 4.1.2.

5. Configuration

 QPACK defines two settings for the HTTP/3 SETTINGS frame:

 SETTINGS_QPACK_MAX_TABLE_CAPACITY (0x01): The default value is zero.
 See Section 3.2 for usage. This is the equivalent of the
 SETTINGS_HEADER_TABLE_SIZE from HTTP/2.

 SETTINGS_QPACK_BLOCKED_STREAMS (0x07): The default value is zero.
 See Section 2.1.2.

6. Error Handling

 The following error codes are defined for HTTP/3 to indicate failures
 of QPACK that prevent the stream or connection from continuing:

 QPACK_DECOMPRESSION_FAILED (0x0200): The decoder failed to interpret
 an encoded field section and is not able to continue decoding that
 field section.

 QPACK_ENCODER_STREAM_ERROR (0x0201): The decoder failed to interpret
 an encoder instruction received on the encoder stream.

 QPACK_DECODER_STREAM_ERROR (0x0202): The encoder failed to interpret
 a decoder instruction received on the decoder stream.

7. Security Considerations

 This section describes potential areas of security concern with
 QPACK:

 * Use of compression as a length-based oracle for verifying guesses
 about secrets that are compressed into a shared compression
 context.

 * Denial of service resulting from exhausting processing or memory
 capacity at a decoder.

7.1. Probing Dynamic Table State

 QPACK reduces the encoded size of field sections by exploiting the
 redundancy inherent in protocols like HTTP. The ultimate goal of
 this is to reduce the amount of data that is required to send HTTP
 requests or responses.

 The compression context used to encode header and trailer fields can
 be probed by an attacker who can both define fields to be encoded and
 transmitted and observe the length of those fields once they are
 encoded. When an attacker can do both, they can adaptively modify
 requests in order to confirm guesses about the dynamic table state.
 If a guess is compressed into a shorter length, the attacker can
 observe the encoded length and infer that the guess was correct.

 This is possible even over the Transport Layer Security Protocol
 ([TLS]) and the QUIC Transport Protocol ([QUIC-TRANSPORT]), because
 while TLS and QUIC provide confidentiality protection for content,
 they only provide a limited amount of protection for the length of
 that content.

 | Note: Padding schemes only provide limited protection against
 | an attacker with these capabilities, potentially only forcing
 | an increased number of guesses to learn the length associated
 | with a given guess. Padding schemes also work directly against
 | compression by increasing the number of bits that are
 | transmitted.

 Attacks like CRIME ([CRIME]) demonstrated the existence of these
 general attacker capabilities. The specific attack exploited the
 fact that DEFLATE ([RFC1951]) removes redundancy based on prefix
 matching. This permitted the attacker to confirm guesses a character
 at a time, reducing an exponential-time attack into a linear-time
 attack.

7.1.1. Applicability to QPACK and HTTP

 QPACK mitigates, but does not completely prevent, attacks modeled on
 CRIME ([CRIME]) by forcing a guess to match an entire field line
 rather than individual characters. An attacker can only learn
 whether a guess is correct or not, so the attacker is reduced to a
 brute-force guess for the field values associated with a given field
 name.

 Therefore, the viability of recovering specific field values depends
 on the entropy of values. As a result, values with high entropy are
 unlikely to be recovered successfully. However, values with low
 entropy remain vulnerable.

 Attacks of this nature are possible any time that two mutually
 distrustful entities control requests or responses that are placed
 onto a single HTTP/3 connection. If the shared QPACK compressor
 permits one entity to add entries to the dynamic table, and the other
 to refer to those entries while encoding chosen field lines, then the
 attacker (the second entity) can learn the state of the table by
 observing the length of the encoded output.

 For example, requests or responses from mutually distrustful entities

 can occur when an intermediary either:

 * sends requests from multiple clients on a single connection toward
 an origin server, or

 * takes responses from multiple origin servers and places them on a
 shared connection toward a client.

 Web browsers also need to assume that requests made on the same
 connection by different web origins ([RFC6454]) are made by mutually
 distrustful entities. Other scenarios involving mutually distrustful
 entities are also possible.

7.1.2. Mitigation

 Users of HTTP that require confidentiality for header or trailer
 fields can use values with entropy sufficient to make guessing
 infeasible. However, this is impractical as a general solution
 because it forces all users of HTTP to take steps to mitigate
 attacks. It would impose new constraints on how HTTP is used.

 Rather than impose constraints on users of HTTP, an implementation of
 QPACK can instead constrain how compression is applied in order to
 limit the potential for dynamic table probing.

 An ideal solution segregates access to the dynamic table based on the
 entity that is constructing the message. Field values that are added
 to the table are attributed to an entity, and only the entity that
 created a particular value can extract that value.

 To improve compression performance of this option, certain entries
 might be tagged as being public. For example, a web browser might
 make the values of the Accept-Encoding header field available in all
 requests.

 An encoder without good knowledge of the provenance of field values
 might instead introduce a penalty for many field lines with the same
 field name and different values. This penalty could cause a large
 number of attempts to guess a field value to result in the field not
 being compared to the dynamic table entries in future messages,
 effectively preventing further guesses.

 This response might be made inversely proportional to the length of
 the field value. Disabling access to the dynamic table for a given
 field name might occur for shorter values more quickly or with higher
 probability than for longer values.

 This mitigation is most effective between two endpoints. If messages
 are re-encoded by an intermediary without knowledge of which entity
 constructed a given message, the intermediary could inadvertently
 merge compression contexts that the original encoder had specifically
 kept separate.

 | Note: Simply removing entries corresponding to the field from
 | the dynamic table can be ineffectual if the attacker has a
 | reliable way of causing values to be reinstalled. For example,
 | a request to load an image in a web browser typically includes
 | the Cookie header field (a potentially highly valued target for
 | this sort of attack), and websites can easily force an image to
 | be loaded, thereby refreshing the entry in the dynamic table.

7.1.3. Never-Indexed Literals

 Implementations can also choose to protect sensitive fields by not
 compressing them and instead encoding their value as literals.

 Refusing to insert a field line into the dynamic table is only
 effective if doing so is avoided on all hops. The never-indexed
 literal bit (see Section 4.5.4) can be used to signal to
 intermediaries that a particular value was intentionally sent as a
 literal.

 An intermediary MUST NOT re-encode a value that uses a literal
 representation with the ’N’ bit set with another representation that
 would index it. If QPACK is used for re-encoding, a literal
 representation with the ’N’ bit set MUST be used. If HPACK is used
 for re-encoding, the never-indexed literal representation (see
 Section 6.2.3 of [RFC7541]) MUST be used.

 The choice to mark that a field value should never be indexed depends
 on several factors. Since QPACK does not protect against guessing an
 entire field value, short or low-entropy values are more readily
 recovered by an adversary. Therefore, an encoder might choose not to
 index values with low entropy.

 An encoder might also choose not to index values for fields that are
 considered to be highly valuable or sensitive to recovery, such as
 the Cookie or Authorization header fields.

 On the contrary, an encoder might prefer indexing values for fields
 that have little or no value if they were exposed. For instance, a
 User-Agent header field does not commonly vary between requests and
 is sent to any server. In that case, confirmation that a particular
 User-Agent value has been used provides little value.

 Note that these criteria for deciding to use a never-indexed literal
 representation will evolve over time as new attacks are discovered.

7.2. Static Huffman Encoding

 There is no currently known attack against a static Huffman encoding.
 A study has shown that using a static Huffman encoding table created
 an information leakage; however, this same study concluded that an
 attacker could not take advantage of this information leakage to
 recover any meaningful amount of information (see [PETAL]).

7.3. Memory Consumption

 An attacker can try to cause an endpoint to exhaust its memory.
 QPACK is designed to limit both the peak and stable amounts of memory
 allocated by an endpoint.

 QPACK uses the definition of the maximum size of the dynamic table
 and the maximum number of blocking streams to limit the amount of
 memory the encoder can cause the decoder to consume. In HTTP/3,
 these values are controlled by the decoder through the settings
 parameters SETTINGS_QPACK_MAX_TABLE_CAPACITY and
 SETTINGS_QPACK_BLOCKED_STREAMS, respectively (see Section 3.2.3 and
 Section 2.1.2). The limit on the size of the dynamic table takes
 into account the size of the data stored in the dynamic table, plus a
 small allowance for overhead. The limit on the number of blocked
 streams is only a proxy for the maximum amount of memory required by
 the decoder. The actual maximum amount of memory will depend on how
 much memory the decoder uses to track each blocked stream.

 A decoder can limit the amount of state memory used for the dynamic
 table by setting an appropriate value for the maximum size of the
 dynamic table. In HTTP/3, this is realized by setting an appropriate
 value for the SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter. An
 encoder can limit the amount of state memory it uses by choosing a
 smaller dynamic table size than the decoder allows and signaling this
 to the decoder (see Section 4.3.1).

 A decoder can limit the amount of state memory used for blocked
 streams by setting an appropriate value for the maximum number of
 blocked streams. In HTTP/3, this is realized by setting an
 appropriate value for the SETTINGS_QPACK_BLOCKED_STREAMS parameter.
 Streams that risk becoming blocked consume no additional state memory
 on the encoder.

 An encoder allocates memory to track all dynamic table references in
 unacknowledged field sections. An implementation can directly limit

 the amount of state memory by only using as many references to the
 dynamic table as it wishes to track; no signaling to the decoder is
 required. However, limiting references to the dynamic table will
 reduce compression effectiveness.

 The amount of temporary memory consumed by an encoder or decoder can
 be limited by processing field lines sequentially. A decoder
 implementation does not need to retain a complete list of field lines
 while decoding a field section. An encoder implementation does not
 need to retain a complete list of field lines while encoding a field
 section if it is using a single-pass algorithm. Note that it might
 be necessary for an application to retain a complete list of field
 lines for other reasons; even if QPACK does not force this to occur,
 application constraints might make this necessary.

 While the negotiated limit on the dynamic table size accounts for
 much of the memory that can be consumed by a QPACK implementation,
 data that cannot be immediately sent due to flow control is not
 affected by this limit. Implementations should limit the size of
 unsent data, especially on the decoder stream where flexibility to
 choose what to send is limited. Possible responses to an excess of
 unsent data might include limiting the ability of the peer to open
 new streams, reading only from the encoder stream, or closing the
 connection.

7.4. Implementation Limits

 An implementation of QPACK needs to ensure that large values for
 integers, long encoding for integers, or long string literals do not
 create security weaknesses.

 An implementation has to set a limit for the values it accepts for
 integers, as well as for the encoded length; see Section 4.1.1. In
 the same way, it has to set a limit to the length it accepts for
 string literals; see Section 4.1.2. These limits SHOULD be large
 enough to process the largest individual field the HTTP
 implementation can be configured to accept.

 If an implementation encounters a value larger than it is able to
 decode, this MUST be treated as a stream error of type
 QPACK_DECOMPRESSION_FAILED if on a request stream or a connection
 error of the appropriate type if on the encoder or decoder stream.

8. IANA Considerations

 This document makes multiple registrations in the registries defined
 by [HTTP/3]. The allocations created by this document are all
 assigned permanent status and list a change controller of the IETF
 and a contact of the HTTP working group (ietf-http-wg@w3.org).

8.1. Settings Registration

 This document specifies two settings. The entries in the following
 table are registered in the "HTTP/3 Settings" registry established in
 [HTTP/3].

 +==========================+======+===============+=========+
 | Setting Name | Code | Specification | Default |
 +==========================+======+===============+=========+
 | QPACK_MAX_TABLE_CAPACITY | 0x01 | Section 5 | 0 |
 +--------------------------+------+---------------+---------+
 | QPACK_BLOCKED_STREAMS | 0x07 | Section 5 | 0 |
 +--------------------------+------+---------------+---------+

 Table 1: Additions to the HTTP/3 Settings Registry

 For formatting reasons, the setting names here are abbreviated by
 removing the ’SETTINGS_’ prefix.

8.2. Stream Type Registration

 This document specifies two stream types. The entries in the
 following table are registered in the "HTTP/3 Stream Types" registry
 established in [HTTP/3].

 +======================+======+===============+========+
 | Stream Type | Code | Specification | Sender |
 +======================+======+===============+========+
 | QPACK Encoder Stream | 0x02 | Section 4.2 | Both |
 +----------------------+------+---------------+--------+
 | QPACK Decoder Stream | 0x03 | Section 4.2 | Both |
 +----------------------+------+---------------+--------+

 Table 2: Additions to the HTTP/3 Stream Types Registry

8.3. Error Code Registration

 This document specifies three error codes. The entries in the
 following table are registered in the "HTTP/3 Error Codes" registry
 established in [HTTP/3].

 +============================+========+=============+===============+
 | Name | Code |Description | Specification |
 +============================+========+=============+===============+
QPACK_DECOMPRESSION_FAILED	0x0200	Decoding of a	Section 6
		field section	
		failed	
+----------------------------+--------+-------------+---------------+			
QPACK_ENCODER_STREAM_ERROR	0x0201	Error on the	Section 6
		encoder	
		stream	
+----------------------------+--------+-------------+---------------+			
QPACK_DECODER_STREAM_ERROR	0x0202	Error on the	Section 6
		decoder	
		stream	
 +----------------------------+--------+-------------+---------------+

 Table 3: Additions to the HTTP/3 Error Codes Registry

9. References

9.1. Normative References

 [HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/info/rfc9110>.

 [HTTP/3] Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114,
 June 2022, <https://www.rfc-editor.org/info/rfc9114>.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2360] Scott, G., "Guide for Internet Standards Writers", BCP 22,
 RFC 2360, DOI 10.17487/RFC2360, June 1998,
 <https://www.rfc-editor.org/info/rfc2360>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [CRIME] Wikipedia, "CRIME", May 2015, <http://en.wikipedia.org/w/
 index.php?title=CRIME&oldid=660948120>.

 [HTTP/2] Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC 9113,
 DOI 10.17487/RFC9113, June 2022,
 <https://www.rfc-editor.org/info/rfc9113>.

 [PETAL] Tan, J. and J. Nahata, "PETAL: Preset Encoding
 Table Information Leakage", April 2013,
 <http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-
 13-106.pdf>.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, DOI 10.17487/RFC1951, May 1996,
 <https://www.rfc-editor.org/info/rfc1951>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [TLS] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Static Table

 This table was generated by analyzing actual Internet traffic in 2018
 and including the most common header fields, after filtering out some
 unsupported and non-standard values. Due to this methodology, some
 of the entries may be inconsistent or appear multiple times with
 similar but not identical values. The order of the entries is
 optimized to encode the most common header fields with the smallest
 number of bytes.

 +=======+==================================+=======================+
 | Index | Name | Value |
 +=======+==================================+=======================+
 | 0 | :authority | |
 +-------+----------------------------------+-----------------------+
 | 1 | :path | / |
 +-------+----------------------------------+-----------------------+
 | 2 | age | 0 |
 +-------+----------------------------------+-----------------------+
 | 3 | content-disposition | |
 +-------+----------------------------------+-----------------------+
 | 4 | content-length | 0 |
 +-------+----------------------------------+-----------------------+
 | 5 | cookie | |
 +-------+----------------------------------+-----------------------+
 | 6 | date | |
 +-------+----------------------------------+-----------------------+
 | 7 | etag | |
 +-------+----------------------------------+-----------------------+
 | 8 | if-modified-since | |
 +-------+----------------------------------+-----------------------+
 | 9 | if-none-match | |
 +-------+----------------------------------+-----------------------+
 | 10 | last-modified | |
 +-------+----------------------------------+-----------------------+
 | 11 | link | |
 +-------+----------------------------------+-----------------------+
 | 12 | location | |
 +-------+----------------------------------+-----------------------+
 | 13 | referer | |
 +-------+----------------------------------+-----------------------+
 | 14 | set-cookie | |
 +-------+----------------------------------+-----------------------+

 | 15 | :method | CONNECT |
 +-------+----------------------------------+-----------------------+
 | 16 | :method | DELETE |
 +-------+----------------------------------+-----------------------+
 | 17 | :method | GET |
 +-------+----------------------------------+-----------------------+
 | 18 | :method | HEAD |
 +-------+----------------------------------+-----------------------+
 | 19 | :method | OPTIONS |
 +-------+----------------------------------+-----------------------+
 | 20 | :method | POST |
 +-------+----------------------------------+-----------------------+
 | 21 | :method | PUT |
 +-------+----------------------------------+-----------------------+
 | 22 | :scheme | http |
 +-------+----------------------------------+-----------------------+
 | 23 | :scheme | https |
 +-------+----------------------------------+-----------------------+
 | 24 | :status | 103 |
 +-------+----------------------------------+-----------------------+
 | 25 | :status | 200 |
 +-------+----------------------------------+-----------------------+
 | 26 | :status | 304 |
 +-------+----------------------------------+-----------------------+
 | 27 | :status | 404 |
 +-------+----------------------------------+-----------------------+
 | 28 | :status | 503 |
 +-------+----------------------------------+-----------------------+
 | 29 | accept | */* |
 +-------+----------------------------------+-----------------------+
 | 30 | accept | application/dns- |
 | | | message |
 +-------+----------------------------------+-----------------------+
 | 31 | accept-encoding | gzip, deflate, br |
 +-------+----------------------------------+-----------------------+
 | 32 | accept-ranges | bytes |
 +-------+----------------------------------+-----------------------+
 | 33 | access-control-allow-headers | cache-control |
 +-------+----------------------------------+-----------------------+
 | 34 | access-control-allow-headers | content-type |
 +-------+----------------------------------+-----------------------+
 | 35 | access-control-allow-origin | * |
 +-------+----------------------------------+-----------------------+
 | 36 | cache-control | max-age=0 |
 +-------+----------------------------------+-----------------------+
 | 37 | cache-control | max-age=2592000 |
 +-------+----------------------------------+-----------------------+
 | 38 | cache-control | max-age=604800 |
 +-------+----------------------------------+-----------------------+
 | 39 | cache-control | no-cache |
 +-------+----------------------------------+-----------------------+
 | 40 | cache-control | no-store |
 +-------+----------------------------------+-----------------------+
 | 41 | cache-control | public, max- |
 | | | age=31536000 |
 +-------+----------------------------------+-----------------------+
 | 42 | content-encoding | br |
 +-------+----------------------------------+-----------------------+
 | 43 | content-encoding | gzip |
 +-------+----------------------------------+-----------------------+
 | 44 | content-type | application/dns- |
 | | | message |
 +-------+----------------------------------+-----------------------+
 | 45 | content-type | application/ |
 | | | javascript |
 +-------+----------------------------------+-----------------------+
 | 46 | content-type | application/json |
 +-------+----------------------------------+-----------------------+
 | 47 | content-type | application/x-www- |
 | | | form-urlencoded |
 +-------+----------------------------------+-----------------------+

 | 48 | content-type | image/gif |
 +-------+----------------------------------+-----------------------+
 | 49 | content-type | image/jpeg |
 +-------+----------------------------------+-----------------------+
 | 50 | content-type | image/png |
 +-------+----------------------------------+-----------------------+
 | 51 | content-type | text/css |
 +-------+----------------------------------+-----------------------+
 | 52 | content-type | text/html; |
 | | | charset=utf-8 |
 +-------+----------------------------------+-----------------------+
 | 53 | content-type | text/plain |
 +-------+----------------------------------+-----------------------+
 | 54 | content-type | text/ |
 | | | plain;charset=utf-8 |
 +-------+----------------------------------+-----------------------+
 | 55 | range | bytes=0- |
 +-------+----------------------------------+-----------------------+
 | 56 | strict-transport-security | max-age=31536000 |
 +-------+----------------------------------+-----------------------+
 | 57 | strict-transport-security | max-age=31536000; |
 | | | includesubdomains |
 +-------+----------------------------------+-----------------------+
58	strict-transport-security	max-age=31536000;
		includesubdomains;
		preload
+-------+----------------------------------+-----------------------+		
59	vary	accept-encoding
+-------+----------------------------------+-----------------------+		
60	vary	origin
+-------+----------------------------------+-----------------------+		
61	x-content-type-options	nosniff
+-------+----------------------------------+-----------------------+		
62	x-xss-protection	1; mode=block
+-------+----------------------------------+-----------------------+		
63	:status	100
+-------+----------------------------------+-----------------------+		
64	:status	204
+-------+----------------------------------+-----------------------+		
65	:status	206
+-------+----------------------------------+-----------------------+		
66	:status	302
+-------+----------------------------------+-----------------------+		
67	:status	400
+-------+----------------------------------+-----------------------+		
68	:status	403
+-------+----------------------------------+-----------------------+		
69	:status	421
+-------+----------------------------------+-----------------------+		
70	:status	425
+-------+----------------------------------+-----------------------+		
71	:status	500
+-------+----------------------------------+-----------------------+		
72	accept-language	
+-------+----------------------------------+-----------------------+		
73	access-control-allow-credentials	FALSE
+-------+----------------------------------+-----------------------+		
74	access-control-allow-credentials	TRUE
+-------+----------------------------------+-----------------------+		
75	access-control-allow-headers	*
+-------+----------------------------------+-----------------------+		
76	access-control-allow-methods	get
+-------+----------------------------------+-----------------------+		
77	access-control-allow-methods	get, post, options
+-------+----------------------------------+-----------------------+		
78	access-control-allow-methods	options
+-------+----------------------------------+-----------------------+		
79	access-control-expose-headers	content-length
+-------+----------------------------------+-----------------------+		
80	access-control-request-headers	content-type
 +-------+----------------------------------+-----------------------+

 | 81 | access-control-request-method | get |
 +-------+----------------------------------+-----------------------+
 | 82 | access-control-request-method | post |
 +-------+----------------------------------+-----------------------+
 | 83 | alt-svc | clear |
 +-------+----------------------------------+-----------------------+
 | 84 | authorization | |
 +-------+----------------------------------+-----------------------+
85	content-security-policy	script-src ’none’;
		object-src ’none’;
		base-uri ’none’
+-------+----------------------------------+-----------------------+		
86	early-data	1
+-------+----------------------------------+-----------------------+		
87	expect-ct	
+-------+----------------------------------+-----------------------+		
88	forwarded	
+-------+----------------------------------+-----------------------+		
89	if-range	
+-------+----------------------------------+-----------------------+		
90	origin	
+-------+----------------------------------+-----------------------+		
91	purpose	prefetch
+-------+----------------------------------+-----------------------+		
92	server	
+-------+----------------------------------+-----------------------+		
93	timing-allow-origin	*
+-------+----------------------------------+-----------------------+		
94	upgrade-insecure-requests	1
+-------+----------------------------------+-----------------------+		
95	user-agent	
+-------+----------------------------------+-----------------------+		
96	x-forwarded-for	
+-------+----------------------------------+-----------------------+		
97	x-frame-options	deny
+-------+----------------------------------+-----------------------+		
98	x-frame-options	sameorigin
 +-------+----------------------------------+-----------------------+

 Table 4: Static Table

 Any line breaks that appear within field names or values are due to
 formatting.

Appendix B. Encoding and Decoding Examples

 The following examples represent a series of exchanges between an
 encoder and a decoder. The exchanges are designed to exercise most
 QPACK instructions and highlight potentially common patterns and
 their impact on dynamic table state. The encoder sends three encoded
 field sections containing one field line each, as well as two
 speculative inserts that are not referenced.

 The state of the encoder’s dynamic table is shown, along with its
 current size. Each entry is shown with the Absolute Index of the
 entry (Abs), the current number of outstanding encoded field sections
 with references to that entry (Ref), along with the name and value.
 Entries above the ’acknowledged’ line have been acknowledged by the
 decoder.

B.1. Literal Field Line with Name Reference

 The encoder sends an encoded field section containing a literal
 representation of a field with a static name reference.

 Data | Interpretation
 | Encoder’s Dynamic Table

 Stream: 0
 0000 | Required Insert Count = 0, Base = 0
 510b 2f69 6e64 6578 | Literal Field Line with Name Reference

 2e68 746d 6c | Static Table, Index=1
 | (:path=/index.html)

 Abs Ref Name Value
 ^-- acknowledged --^
 Size=0

B.2. Dynamic Table

 The encoder sets the dynamic table capacity, inserts a header with a
 dynamic name reference, then sends a potentially blocking, encoded
 field section referencing this new entry. The decoder acknowledges
 processing the encoded field section, which implicitly acknowledges
 all dynamic table insertions up to the Required Insert Count.

 Stream: Encoder
 3fbd01 | Set Dynamic Table Capacity=220
 c00f 7777 772e 6578 | Insert With Name Reference
 616d 706c 652e 636f | Static Table, Index=0
 6d | (:authority=www.example.com)
 c10c 2f73 616d 706c | Insert With Name Reference
 652f 7061 7468 | Static Table, Index=1
 | (:path=/sample/path)

 Abs Ref Name Value
 ^-- acknowledged --^
 0 0 :authority www.example.com
 1 0 :path /sample/path
 Size=106

 Stream: 4
 0381 | Required Insert Count = 2, Base = 0
 10 | Indexed Field Line With Post-Base Index
 | Absolute Index = Base(0) + Index(0) = 0
 | (:authority=www.example.com)
 11 | Indexed Field Line With Post-Base Index
 | Absolute Index = Base(0) + Index(1) = 1
 | (:path=/sample/path)

 Abs Ref Name Value
 ^-- acknowledged --^
 0 1 :authority www.example.com
 1 1 :path /sample/path
 Size=106

 Stream: Decoder
 84 | Section Acknowledgment (stream=4)

 Abs Ref Name Value
 0 0 :authority www.example.com
 1 0 :path /sample/path
 ^-- acknowledged --^
 Size=106

B.3. Speculative Insert

 The encoder inserts a header into the dynamic table with a literal
 name. The decoder acknowledges receipt of the entry. The encoder
 does not send any encoded field sections.

 Stream: Encoder
 4a63 7573 746f 6d2d | Insert With Literal Name
 6b65 790c 6375 7374 | (custom-key=custom-value)
 6f6d 2d76 616c 7565 |

 Abs Ref Name Value
 0 0 :authority www.example.com
 1 0 :path /sample/path
 ^-- acknowledged --^
 2 0 custom-key custom-value
 Size=160

 Stream: Decoder
 01 | Insert Count Increment (1)

 Abs Ref Name Value
 0 0 :authority www.example.com
 1 0 :path /sample/path
 2 0 custom-key custom-value
 ^-- acknowledged --^
 Size=160

B.4. Duplicate Instruction, Stream Cancellation

 The encoder duplicates an existing entry in the dynamic table, then
 sends an encoded field section referencing the dynamic table entries
 including the duplicated entry. The packet containing the encoder
 stream data is delayed. Before the packet arrives, the decoder
 cancels the stream and notifies the encoder that the encoded field
 section was not processed.

 Stream: Encoder
 02 | Duplicate (Relative Index = 2)
 | Absolute Index =
 | Insert Count(3) - Index(2) - 1 = 0

 Abs Ref Name Value
 0 0 :authority www.example.com
 1 0 :path /sample/path
 2 0 custom-key custom-value
 ^-- acknowledged --^
 3 0 :authority www.example.com
 Size=217

 Stream: 8
 0500 | Required Insert Count = 4, Base = 4
 80 | Indexed Field Line, Dynamic Table
 | Absolute Index = Base(4) - Index(0) - 1 = 3
 | (:authority=www.example.com)
 c1 | Indexed Field Line, Static Table Index = 1
 | (:path=/)
 81 | Indexed Field Line, Dynamic Table
 | Absolute Index = Base(4) - Index(1) - 1 = 2
 | (custom-key=custom-value)

 Abs Ref Name Value
 0 0 :authority www.example.com
 1 0 :path /sample/path
 2 1 custom-key custom-value
 ^-- acknowledged --^
 3 1 :authority www.example.com
 Size=217

 Stream: Decoder
 48 | Stream Cancellation (Stream=8)

 Abs Ref Name Value
 0 0 :authority www.example.com
 1 0 :path /sample/path
 2 0 custom-key custom-value
 ^-- acknowledged --^
 3 0 :authority www.example.com
 Size=217

B.5. Dynamic Table Insert, Eviction

 The encoder inserts another header into the dynamic table, which
 evicts the oldest entry. The encoder does not send any encoded field
 sections.

 Stream: Encoder
 810d 6375 7374 6f6d | Insert With Name Reference

 2d76 616c 7565 32 | Dynamic Table, Relative Index = 1
 | Absolute Index =
 | Insert Count(4) - Index(1) - 1 = 2
 | (custom-key=custom-value2)

 Abs Ref Name Value
 1 0 :path /sample/path
 2 0 custom-key custom-value
 ^-- acknowledged --^
 3 0 :authority www.example.com
 4 0 custom-key custom-value2
 Size=215

Appendix C. Sample Single-Pass Encoding Algorithm

 Pseudocode for single-pass encoding, excluding handling of
 duplicates, non-blocking mode, available encoder stream flow control
 and reference tracking.

 # Helper functions:
 # ====
 # Encode an integer with the specified prefix and length
 encodeInteger(buffer, prefix, value, prefixLength)

 # Encode a dynamic table insert instruction with optional static
 # or dynamic name index (but not both)
 encodeInsert(buffer, staticNameIndex, dynamicNameIndex, fieldLine)

 # Encode a static index reference
 encodeStaticIndexReference(buffer, staticIndex)

 # Encode a dynamic index reference relative to Base
 encodeDynamicIndexReference(buffer, dynamicIndex, base)

 # Encode a literal with an optional static name index
 encodeLiteral(buffer, staticNameIndex, fieldLine)

 # Encode a literal with a dynamic name index relative to Base
 encodeDynamicLiteral(buffer, dynamicNameIndex, base, fieldLine)

 # Encoding Algorithm
 # ====
 base = dynamicTable.getInsertCount()
 requiredInsertCount = 0
 for line in fieldLines:
 staticIndex = staticTable.findIndex(line)
 if staticIndex is not None:
 encodeStaticIndexReference(streamBuffer, staticIndex)
 continue

 dynamicIndex = dynamicTable.findIndex(line)
 if dynamicIndex is None:
 # No matching entry. Either insert+index or encode literal
 staticNameIndex = staticTable.findName(line.name)
 if staticNameIndex is None:
 dynamicNameIndex = dynamicTable.findName(line.name)

 if shouldIndex(line) and dynamicTable.canIndex(line):
 encodeInsert(encoderBuffer, staticNameIndex,
 dynamicNameIndex, line)
 dynamicIndex = dynamicTable.add(line)

 if dynamicIndex is None:
 # Could not index it, literal
 if dynamicNameIndex is not None:
 # Encode literal with dynamic name, possibly above Base
 encodeDynamicLiteral(streamBuffer, dynamicNameIndex,
 base, line)
 requiredInsertCount = max(requiredInsertCount,
 dynamicNameIndex)
 else:

 # Encodes a literal with a static name or literal name
 encodeLiteral(streamBuffer, staticNameIndex, line)
 else:
 # Dynamic index reference
 assert(dynamicIndex is not None)
 requiredInsertCount = max(requiredInsertCount, dynamicIndex)
 # Encode dynamicIndex, possibly above Base
 encodeDynamicIndexReference(streamBuffer, dynamicIndex, base)

 # encode the prefix
 if requiredInsertCount == 0:
 encodeInteger(prefixBuffer, 0x00, 0, 8)
 encodeInteger(prefixBuffer, 0x00, 0, 7)
 else:
 wireRIC = (
 requiredInsertCount
 % (2 * getMaxEntries(maxTableCapacity))
) + 1;
 encodeInteger(prefixBuffer, 0x00, wireRIC, 8)
 if base >= requiredInsertCount:
 encodeInteger(prefixBuffer, 0x00,
 base - requiredInsertCount, 7)
 else:
 encodeInteger(prefixBuffer, 0x80,
 requiredInsertCount - base - 1, 7)

 return encoderBuffer, prefixBuffer + streamBuffer

Acknowledgments

 The IETF QUIC Working Group received an enormous amount of support
 from many people.

 The compression design team did substantial work exploring the
 problem space and influencing the initial draft version of this
 document. The contributions of design team members Roberto Peon,
 Martin Thomson, and Dmitri Tikhonov are gratefully acknowledged.

 The following people also provided substantial contributions to this
 document:

 * Bence Beky
 * Alessandro Ghedini
 * Ryan Hamilton
 * Robin Marx
 * Patrick McManus
 * å¥¥ ä¸\200ç©\202 (Kazuho Oku)
 * Lucas Pardue
 * Biren Roy
 * Ian Swett

 This document draws heavily on the text of [RFC7541]. The indirect
 input of those authors is also gratefully acknowledged.

 Buck Krasic’s contribution was supported by Google during his
 employment there.

 A portion of Mike Bishop’s contribution was supported by Microsoft
 during his employment there.

Authors’ Addresses

 Charles ’Buck’ Krasic
 Email: krasic@acm.org

 Mike Bishop
 Akamai Technologies
 Email: mbishop@evequefou.be

 Alan Frindell (editor)
 Facebook
 Email: afrind@fb.com

