
ï»¿

Internet Engineering Task Force (IETF) N. Sakimura
Request for Comments: 9101 NAT.Consulting
Category: Standards Track J. Bradley
ISSN: 2070-1721 Yubico
 M. Jones
 Microsoft
 August 2021

The OAuth 2.0 Authorization Framework: JWT-Secured Authorization Request
 (JAR)

Abstract

 The authorization request in OAuth 2.0 described in RFC 6749 utilizes
 query parameter serialization, which means that authorization request
 parameters are encoded in the URI of the request and sent through
 user agents such as web browsers. While it is easy to implement, it
 means that a) the communication through the user agents is not
 integrity protected and thus, the parameters can be tainted, b) the
 source of the communication is not authenticated, and c) the
 communication through the user agents can be monitored. Because of
 these weaknesses, several attacks to the protocol have now been put
 forward.

 This document introduces the ability to send request parameters in a
 JSON Web Token (JWT) instead, which allows the request to be signed
 with JSON Web Signature (JWS) and encrypted with JSON Web Encryption
 (JWE) so that the integrity, source authentication, and
 confidentiality properties of the authorization request are attained.
 The request can be sent by value or by reference.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9101.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Requirements Language
 2. Terminology
 2.1. Request Object

 2.2. Request Object URI
 3. Symbols and Abbreviated Terms
 4. Request Object
 5. Authorization Request
 5.1. Passing a Request Object by Value
 5.2. Passing a Request Object by Reference
 5.2.1. URI Referencing the Request Object
 5.2.2. Request Using the "request_uri" Request Parameter
 5.2.3. Authorization Server Fetches Request Object
 6. Validating JWT-Based Requests
 6.1. JWE Encrypted Request Object
 6.2. JWS-Signed Request Object
 6.3. Request Parameter Assembly and Validation
 7. Authorization Server Response
 8. TLS Requirements
 9. IANA Considerations
 9.1. OAuth Parameters Registration
 9.2. OAuth Authorization Server Metadata Registry
 9.3. OAuth Dynamic Client Registration Metadata Registry
 9.4. Media Type Registration
 9.4.1. Registry Contents
 10. Security Considerations
 10.1. Choice of Algorithms
 10.2. Request Source Authentication
 10.3. Explicit Endpoints
 10.4. Risks Associated with request_uri
 10.4.1. DDoS Attack on the Authorization Server
 10.4.2. Request URI Rewrite
 10.5. Downgrade Attack
 10.6. TLS Security Considerations
 10.7. Parameter Mismatches
 10.8. Cross-JWT Confusion
 11. Privacy Considerations
 11.1. Collection Limitation
 11.2. Disclosure Limitation
 11.2.1. Request Disclosure
 11.2.2. Tracking Using Request Object URI
 12. References
 12.1. Normative References
 12.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 The authorization request in OAuth 2.0 [RFC6749] utilizes query
 parameter serialization and is typically sent through user agents
 such as web browsers.

 For example, the parameters "response_type", "client_id", "state",
 and "redirect_uri" are encoded in the URI of the request:

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
 Host: server.example.com

 While it is easy to implement, the encoding in the URI does not allow
 application-layer security to be used to provide confidentiality and
 integrity protection. While TLS is used to offer communication
 security between the client and the user agent as well as the user
 agent and the authorization server, TLS sessions are terminated in
 the user agent. In addition, TLS sessions may be terminated
 prematurely at some middlebox (such as a load balancer).

 As a result, the authorization request of [RFC6749] has shortcomings
 in that:

 (a) the communication through the user agents is not integrity
 protected, and thus, the parameters can be tainted (integrity
 protection failure);

 (b) the source of the communication is not authenticated (source
 authentication failure);

 (c) the communication through the user agents can be monitored
 (containment/confidentiality failure).

 Due to these inherent weaknesses, several attacks against the
 protocol, such as redirection URI rewriting, have been identified.

 The use of application-layer security mitigates these issues.

 The use of application-layer security allows requests to be prepared
 by a trusted third party so that a client application cannot request
 more permissions than previously agreed upon.

 Furthermore, passing the request by reference allows the reduction of
 over-the-wire overhead.

 The JWT [RFC7519] encoding has been chosen because of:

 (1) its close relationship with JSON, which is used as OAuth’s
 response format

 (2) its developer friendliness due to its textual nature

 (3) its relative compactness compared to XML

 (4) its development status as a Proposed Standard, along with the
 associated signing and encryption methods [RFC7515] [RFC7516]

 (5) the relative ease of JWS and JWE compared to XML Signature and
 Encryption.

 The parameters "request" and "request_uri" are introduced as
 additional authorization request parameters for the OAuth 2.0
 [RFC6749] flows. The "request" parameter is a JSON Web Token (JWT)
 [RFC7519] whose JWT Claims Set holds the JSON-encoded OAuth 2.0
 authorization request parameters. Note that, in contrast to RFC
 7519, the elements of the Claims Set are encoded OAuth request
 parameters [IANA.OAuth.Parameters], supplemented with only a few of
 the IANA-managed JSON Web Token Claims [IANA.JWT.Claims], in
 particular, "iss" and "aud". The JWT in the "request" parameter is
 integrity protected and source authenticated using JWS.

 The JWT [RFC7519] can be passed to the authorization endpoint by
 reference, in which case the parameter "request_uri" is used instead
 of "request".

 Using JWT [RFC7519] as the request encoding instead of query
 parameters has several advantages:

 (a) Integrity protection. The request can be signed so that the
 integrity of the request can be checked.

 (b) Source authentication. The request can be signed so that the
 signer can be authenticated.

 (c) Confidentiality protection. The request can be encrypted so
 that end-to-end confidentiality can be provided even if the TLS
 connection is terminated at one point or another (including at
 and before user agents).

 (d) Collection minimization. The request can be signed by a trusted
 third party attesting that the authorization request is
 compliant with a certain policy. For example, a request can be
 pre-examined by a trusted third party to confirm that all the
 personal data requested is strictly necessary to perform the
 process that the end user asked for; the request would then be
 signed by that trusted third party. The authorization server
 then examines the signature and shows the conformance status to
 the end user who would have some assurance as to the legitimacy

 of the request when authorizing it. In some cases, it may even
 be desirable to skip the authorization dialogue under such
 circumstances.

 There are a few cases where request by reference is useful, such as:

 1. when it is desirable to reduce the size of a transmitted request.
 The use of application-layer security increases the size of the
 request particularly when public-key cryptography is used.

 2. when the client does not want to do the application-level
 cryptography. The authorization server may provide an endpoint
 to accept the authorization request through direct communication
 with the client, so that the client is authenticated and the
 channel is TLS protected.

 This capability is in use by OpenID Connect [OpenID.Core].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Terminology

 For the purposes of this specification, the following terms and
 definitions apply in addition to what is defined in OAuth 2.0
 Framework [RFC6749], JSON Web Signature [RFC7515], and JSON Web
 Encryption [RFC7516].

2.1. Request Object

 A Request Object is a JSON Web Token (JWT) [RFC7519] whose JWT Claims
 Set holds the JSON-encoded OAuth 2.0 authorization request
 parameters.

2.2. Request Object URI

 A Request Object URI is an absolute URI that references the set of
 parameters comprising an OAuth 2.0 authorization request. The
 content of the resource referenced by the URI is a Request Object
 (Section 2.1), unless the URI was provided to the client by the same
 authorization server, in which case the content is an implementation
 detail at the discretion of the authorization server. The content
 being a Request Object is to ensure interoperability in cases where
 the provider of the "request_uri" is a separate entity from the
 consumer, such as when a client provides a URI referencing a Request
 Object stored on the client’s backend service that is made accessible
 via HTTPS. In the latter case, where the authorization server is
 both provider and consumer of the URI, such as when it offers an
 endpoint that provides a URI in exchange for a Request Object, this
 interoperability concern does not apply.

3. Symbols and Abbreviated Terms

 The following abbreviations are common to this specification.

 JSON: JavaScript Object Notation

 JWT: JSON Web Token

 JWS: JSON Web Signature

 JWE: JSON Web Encryption

 URI: Uniform Resource Identifier

 URL: Uniform Resource Locator

4. Request Object

 A Request Object (Section 2.1) is used to provide authorization
 request parameters for an OAuth 2.0 authorization request. It MUST
 contain all the parameters (including extension parameters) used to
 process the OAuth 2.0 [RFC6749] authorization request except the
 "request" and "request_uri" parameters that are defined in this
 document. The parameters are represented as the JWT Claims of the
 object. Parameter names and string values MUST be included as JSON
 strings. Since Request Objects are handled across domains and
 potentially outside of a closed ecosystem, per Section 8.1 of
 [RFC8259], these JSON strings MUST be encoded using UTF-8 [RFC3629].
 Numerical values MUST be included as JSON numbers. The Request
 Object MAY include any extension parameters. This JSON [RFC8259]
 object constitutes the JWT Claims Set defined in JWT [RFC7519]. The
 JWT Claims Set is then signed or signed and encrypted.

 To sign, JSON Web Signature (JWS) [RFC7515] is used. The result is a
 JWS-signed JWT [RFC7519]. If signed, the Authorization Request
 Object SHOULD contain the Claims "iss" (issuer) and "aud" (audience)
 as members with their semantics being the same as defined in the JWT
 [RFC7519] specification. The value of "aud" should be the value of
 the authorization server (AS) "issuer", as defined in RFC 8414
 [RFC8414].

 To encrypt, JWE [RFC7516] is used. When both signature and
 encryption are being applied, the JWT MUST be signed, then encrypted,
 as described in Section 11.2 of [RFC7519]. The result is a Nested
 JWT, as defined in [RFC7519].

 The client determines the algorithms used to sign and encrypt Request
 Objects. The algorithms chosen need to be supported by both the
 client and the authorization server. The client can inform the
 authorization server of the algorithms that it supports in its
 dynamic client registration metadata [RFC7591], specifically, the
 metadata values "request_object_signing_alg",
 "request_object_encryption_alg", and "request_object_encryption_enc".
 Likewise, the authorization server can inform the client of the
 algorithms that it supports in its authorization server metadata
 [RFC8414], specifically, the metadata values
 "request_object_signing_alg_values_supported",
 "request_object_encryption_alg_values_supported", and
 "request_object_encryption_enc_values_supported".

 The Request Object MAY be sent by value, as described in Section 5.1,
 or by reference, as described in Section 5.2. "request" and
 "request_uri" parameters MUST NOT be included in Request Objects.

 A Request Object (Section 2.1) has the media type [RFC2046]
 "application/oauth-authz-req+jwt". Note that some existing
 deployments may alternatively be using the type "application/jwt".

 The following is an example of the Claims in a Request Object before
 base64url [RFC7515] encoding and signing. Note that it includes the
 extension parameters "nonce" and "max_age".

 {
 "iss": "s6BhdRkqt3",
 "aud": "https://server.example.com",
 "response_type": "code id_token",
 "client_id": "s6BhdRkqt3",
 "redirect_uri": "https://client.example.org/cb",
 "scope": "openid",
 "state": "af0ifjsldkj",
 "nonce": "n-0S6_WzA2Mj",
 "max_age": 86400
 }

 Signing it with the "RS256" algorithm [RFC7518] results in this
 Request Object value (with line wraps within values for display

 purposes only):

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ewogICAgImlzcyI6ICJzNkJoZF
 JrcXQzIiwKICAgICJhdWQiOiAiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLAog
 ICAgInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsCiAgICAiY2xpZW50X2
 lkIjogInM2QmhkUmtxdDMiLAogICAgInJlZGlyZWN0X3VyaSI6ICJodHRwczovL2Ns
 aWVudC5leGFtcGxlLm9yZy9jYiIsCiAgICAic2NvcGUiOiAib3BlbmlkIiwKICAgIC
 JzdGF0ZSI6ICJhZjBpZmpzbGRraiIsCiAgICAibm9uY2UiOiAibi0wUzZfV3pBMk1q
 IiwKICAgICJtYXhfYWdlIjogODY0MDAKfQ.Nsxa_18VUElVaPjqW_ToI1yrEJ67BgK
 b5xsuZRVqzGkfKrOIX7BCx0biSxYGmjK9KJPctH1OC0iQJwXu5YVY-vnW0_PLJb1C2
 HG-ztVzcnKZC2gE4i0vgQcpkUOCpW3SEYXnyWnKzuKzqSb1wAZALo5f89B_p6QA6j6
 JwBSRvdVsDPdulW8lKxGTbH82czCaQ50rLAg3EYLYaCb4ik4I1zGXE4fvim9FIMs8O
 CMmzwIB5S-ujFfzwFjoyuPEV4hJnoVUmXR_W9typPf846lGwA8h9G9oNTIuX8Ft2jf
 pnZdFmLg3_wr3Wa5q3a-lfbgF3S9H_8nN3j1i7tLR_5Nz-g

 The following RSA public key, represented in JSON Web Key (JWK)
 format, can be used to validate the Request Object signature in this
 and subsequent Request Object examples (with line wraps within values
 for display purposes only):

 {
 "kty":"RSA",
 "kid":"k2bdc",
 "n":"x5RbkAZkmpRxia65qRQ1wwSMSxQUnS7gcpVTV_cdHmfmG2ltd2yabEO9XadD8
 pJNZubINPpmgHh3J1aD9WRwS05ucmFq3CfFsluLt13_7oX5yDRSKX7poXmT_5
 ko8k4NJZPMAO8fPToDTH7kHYbONSE2FYa5GZ60CUsFhSonI-dcMDJ0Ary9lxI
 w5k2z4TAdARVWcS7sD07VhlMMshrwsPHBQgTatlkxyIHXbYdtak8fqvNAwr7O
 lVEvM_Ipf5OfmdB8Sd-wjzaBsyP4VhJKoi_qdgSzpC694XZeYPq45Sw-q51iF
 UlcOlTCI7z6jltUtnR6ySn6XDGFnzH5Fe5ypw",
 "e":"AQAB"
 }

5. Authorization Request

 The client constructs the authorization request URI by adding the
 following parameters to the query component of the authorization
 endpoint URI using the "application/x-www-form-urlencoded" format:

 request
 REQUIRED unless "request_uri" is specified. The Request Object
 (Section 2.1) that holds authorization request parameters stated
 in Section 4 of [RFC6749] (OAuth 2.0). If this parameter is
 present in the authorization request, "request_uri" MUST NOT be
 present.

 request_uri
 REQUIRED unless "request" is specified. The absolute URI, as
 defined by RFC 3986 [RFC3986], that is the Request Object URI
 (Section 2.2) referencing the authorization request parameters
 stated in Section 4 of [RFC6749] (OAuth 2.0). If this parameter
 is present in the authorization request, "request" MUST NOT be
 present.

 client_id
 REQUIRED. OAuth 2.0 [RFC6749] "client_id". The value MUST match
 the "request" or "request_uri" Request Object’s (Section 2.1)
 "client_id".

 The client directs the resource owner to the constructed URI using an
 HTTP redirection response or by other means available to it via the
 user agent.

 For example, the client directs the end user’s user agent to make the
 following HTTPS request:

 GET /authz?client_id=s6BhdRkqt3&request=eyJhbG..AlMGzw HTTP/1.1
 Host: server.example.com

 The value for the request parameter is abbreviated for brevity.

 The Authorization Request Object MUST be one of the following:

 (a) JWS signed

 (b) JWS signed and JWE encrypted

 The client MAY send the parameters included in the Request Object
 duplicated in the query parameters as well for backward
 compatibility, etc. However, the authorization server supporting
 this specification MUST only use the parameters included in the
 Request Object.

5.1. Passing a Request Object by Value

 The client sends the authorization request as a Request Object to the
 authorization endpoint as the "request" parameter value.

 The following is an example of an authorization request using the
 "request" parameter (with line wraps within values for display
 purposes only):

 https://server.example.com/authorize?client_id=s6BhdRkqt3&
 request=eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ewogICAgImlzcyI6
 ICJzNkJoZFJrcXQzIiwKICAgICJhdWQiOiAiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBs
 ZS5jb20iLAogICAgInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsCiAg
 ICAiY2xpZW50X2lkIjogInM2QmhkUmtxdDMiLAogICAgInJlZGlyZWN0X3VyaSI6
 ICJodHRwczovL2NsaWVudC5leGFtcGxlLm9yZy9jYiIsCiAgICAic2NvcGUiOiAi
 b3BlbmlkIiwKICAgICJzdGF0ZSI6ICJhZjBpZmpzbGRraiIsCiAgICAibm9uY2Ui
 OiAibi0wUzZfV3pBMk1qIiwKICAgICJtYXhfYWdlIjogODY0MDAKfQ.Nsxa_18VU
 ElVaPjqW_ToI1yrEJ67BgKb5xsuZRVqzGkfKrOIX7BCx0biSxYGmjK9KJPctH1OC
 0iQJwXu5YVY-vnW0_PLJb1C2HG-ztVzcnKZC2gE4i0vgQcpkUOCpW3SEYXnyWnKz
 uKzqSb1wAZALo5f89B_p6QA6j6JwBSRvdVsDPdulW8lKxGTbH82czCaQ50rLAg3E
 YLYaCb4ik4I1zGXE4fvim9FIMs8OCMmzwIB5S-ujFfzwFjoyuPEV4hJnoVUmXR_W
 9typPf846lGwA8h9G9oNTIuX8Ft2jfpnZdFmLg3_wr3Wa5q3a-lfbgF3S9H_8nN3
 j1i7tLR_5Nz-g

5.2. Passing a Request Object by Reference

 The "request_uri" authorization request parameter enables OAuth
 authorization requests to be passed by reference rather than by
 value. This parameter is used identically to the "request"
 parameter, except that the Request Object value is retrieved from the
 resource identified by the specified URI rather than passed by value.

 The entire Request URI SHOULD NOT exceed 512 ASCII characters. There
 are two reasons for this restriction:

 1. Many phones on the market as of this writing still do not accept
 large payloads. The restriction is typically either 512 or 1024
 ASCII characters.

 2. On a slow connection such as a 2G mobile connection, a large URL
 would cause a slow response; therefore, the use of such is not
 advisable from the user-experience point of view.

 The contents of the resource referenced by the "request_uri" MUST be
 a Request Object and MUST be reachable by the authorization server
 unless the URI was provided to the client by the authorization
 server. In the first case, the "request_uri" MUST be an "https" URI,
 as specified in Section 2.7.2 of [RFC7230]. In the second case, it
 MUST be a URN, as specified in [RFC8141].

 The following is an example of the contents of a Request Object
 resource that can be referenced by a "request_uri" (with line wraps
 within values for display purposes only):

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ewogICAgImlzcyI6ICJzNkJoZF
 JrcXQzIiwKICAgICJhdWQiOiAiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLAog
 ICAgInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsCiAgICAiY2xpZW50X2
 lkIjogInM2QmhkUmtxdDMiLAogICAgInJlZGlyZWN0X3VyaSI6ICJodHRwczovL2Ns
 aWVudC5leGFtcGxlLm9yZy9jYiIsCiAgICAic2NvcGUiOiAib3BlbmlkIiwKICAgIC
 JzdGF0ZSI6ICJhZjBpZmpzbGRraiIsCiAgICAibm9uY2UiOiAibi0wUzZfV3pBMk1q

 IiwKICAgICJtYXhfYWdlIjogODY0MDAKfQ.Nsxa_18VUElVaPjqW_ToI1yrEJ67BgK
 b5xsuZRVqzGkfKrOIX7BCx0biSxYGmjK9KJPctH1OC0iQJwXu5YVY-vnW0_PLJb1C2
 HG-ztVzcnKZC2gE4i0vgQcpkUOCpW3SEYXnyWnKzuKzqSb1wAZALo5f89B_p6QA6j6
 JwBSRvdVsDPdulW8lKxGTbH82czCaQ50rLAg3EYLYaCb4ik4I1zGXE4fvim9FIMs8O
 CMmzwIB5S-ujFfzwFjoyuPEV4hJnoVUmXR_W9typPf846lGwA8h9G9oNTIuX8Ft2jf
 pnZdFmLg3_wr3Wa5q3a-lfbgF3S9H_8nN3j1i7tLR_5Nz-g

5.2.1. URI Referencing the Request Object

 The client stores the Request Object resource either locally or
 remotely at a URI the authorization server can access. Such a
 facility may be provided by the authorization server or a trusted
 third party. For example, the authorization server may provide a URL
 to which the client POSTs the Request Object and obtains the Request
 URI. This URI is the Request Object URI, "request_uri".

 It is possible for the Request Object to include values that are to
 be revealed only to the authorization server. As such, the
 "request_uri" MUST have appropriate entropy for its lifetime so that
 the URI is not guessable if publicly retrievable. For the guidance,
 refer to Section 5.1.4.2.2 of [RFC6819] and "Good Practices for
 Capability URLs" [CapURLs]. It is RECOMMENDED that the "request_uri"
 be removed after a reasonable timeout unless access control measures
 are taken.

 The following is an example of a Request Object URI value (with line
 wraps within values for display purposes only). In this example, a
 trusted third-party service hosts the Request Object.

 https://tfp.example.org/request.jwt/
 GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM

5.2.2. Request Using the "request_uri" Request Parameter

 The client sends the authorization request to the authorization
 endpoint.

 The following is an example of an authorization request using the
 "request_uri" parameter (with line wraps within values for display
 purposes only):

 https://server.example.com/authorize?
 client_id=s6BhdRkqt3
 &request_uri=https%3A%2F%2Ftfp.example.org%2Frequest.jwt
 %2FGkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM

5.2.3. Authorization Server Fetches Request Object

 Upon receipt of the Request, the authorization server MUST send an
 HTTP "GET" request to the "request_uri" to retrieve the referenced
 Request Object unless the Request Object is stored in a way so that
 the server can retrieve it through other mechanisms securely and
 parse it to recreate the authorization request parameters.

 The following is an example of this fetch process. In this example,
 a trusted third-party service hosts the Request Object.

 GET /request.jwt/GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM HTTP/1.1
 Host: tfp.example.org

 The following is an example of the fetch response:

 HTTP/1.1 200 OK
 Date: Thu, 20 Aug 2020 23:52:39 GMT
 Server: Apache/2.4.43 (tfp.example.org)
 Content-type: application/oauth-authz-req+jwt
 Content-Length: 797
 Last-Modified: Wed, 19 Aug 2020 23:52:32 GMT

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ewogICAgImlzcyI6ICJzNkJoZF
 JrcXQzIiwKICAgICJhdWQiOiAiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLAog

 ICAgInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsCiAgICAiY2xpZW50X2
 lkIjogInM2QmhkUmtxdDMiLAogICAgInJlZGlyZWN0X3VyaSI6ICJodHRwczovL2Ns
 aWVudC5leGFtcGxlLm9yZy9jYiIsCiAgICAic2NvcGUiOiAib3BlbmlkIiwKICAgIC
 JzdGF0ZSI6ICJhZjBpZmpzbGRraiIsCiAgICAibm9uY2UiOiAibi0wUzZfV3pBMk1q
 IiwKICAgICJtYXhfYWdlIjogODY0MDAKfQ.Nsxa_18VUElVaPjqW_ToI1yrEJ67BgK
 b5xsuZRVqzGkfKrOIX7BCx0biSxYGmjK9KJPctH1OC0iQJwXu5YVY-vnW0_PLJb1C2
 HG-ztVzcnKZC2gE4i0vgQcpkUOCpW3SEYXnyWnKzuKzqSb1wAZALo5f89B_p6QA6j6
 JwBSRvdVsDPdulW8lKxGTbH82czCaQ50rLAg3EYLYaCb4ik4I1zGXE4fvim9FIMs8O
 CMmzwIB5S-ujFfzwFjoyuPEV4hJnoVUmXR_W9typPf846lGwA8h9G9oNTIuX8Ft2jf
 pnZdFmLg3_wr3Wa5q3a-lfbgF3S9H_8nN3j1i7tLR_5Nz-g

6. Validating JWT-Based Requests

6.1. JWE Encrypted Request Object

 If the Request Object is encrypted, the authorization server MUST
 decrypt the JWT in accordance with the JSON Web Encryption [RFC7516]
 specification.

 The result is a signed Request Object.

 If decryption fails, the authorization server MUST return an
 "invalid_request_object" error to the client in response to the
 authorization request.

6.2. JWS-Signed Request Object

 The authorization server MUST validate the signature of the JWS-
 signed [RFC7515] Request Object. If a "kid" Header Parameter is
 present, the key identified MUST be the key used and MUST be a key
 associated with the client. The signature MUST be validated using a
 key associated with the client and the algorithm specified in the
 "alg" Header Parameter. Algorithm verification MUST be performed, as
 specified in Sections 3.1 and 3.2 of [RFC8725].

 If the key is not associated with the client or if signature
 validation fails, the authorization server MUST return an
 "invalid_request_object" error to the client in response to the
 authorization request.

6.3. Request Parameter Assembly and Validation

 The authorization server MUST extract the set of authorization
 request parameters from the Request Object value. The authorization
 server MUST only use the parameters in the Request Object, even if
 the same parameter is provided in the query parameter. The client ID
 values in the "client_id" request parameter and in the Request Object
 "client_id" claim MUST be identical. The authorization server then
 validates the request, as specified in OAuth 2.0 [RFC6749].

 If the Client ID check or the request validation fails, then the
 authorization server MUST return an error to the client in response
 to the authorization request, as specified in Section 5.2 of
 [RFC6749] (OAuth 2.0).

7. Authorization Server Response

 The authorization server response is created and sent to the client
 as in Section 4 of [RFC6749] (OAuth 2.0).

 In addition, this document uses these additional error values:

 invalid_request_uri
 The "request_uri" in the authorization request returns an error or
 contains invalid data.

 invalid_request_object
 The request parameter contains an invalid Request Object.

 request_not_supported
 The authorization server does not support the use of the "request"

 parameter.

 request_uri_not_supported
 The authorization server does not support the use of the
 "request_uri" parameter.

8. TLS Requirements

 Client implementations supporting the Request Object URI method MUST
 support TLS, following "Recommendations for Secure Use of Transport
 Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
 [RFC7525].

 To protect against information disclosure and tampering,
 confidentiality protection MUST be applied using TLS with a cipher
 suite that provides confidentiality and integrity protection.

 HTTP clients MUST also verify the TLS server certificate, using DNS-
 ID [RFC6125], to avoid man-in-the-middle attacks. The rules and
 guidelines defined in [RFC6125] apply here, with the following
 considerations:

 * Support for DNS-ID identifier type (that is, the dNSName identity
 in the subjectAltName extension) is REQUIRED. Certification
 authorities that issue server certificates MUST support the DNS-ID
 identifier type, and the DNS-ID identifier type MUST be present in
 server certificates.

 * DNS names in server certificates MAY contain the wildcard
 character "*".

 * Clients MUST NOT use CN-ID identifiers; a Common Name field (CN
 field) may be present in the server certificate’s subject name but
 MUST NOT be used for authentication within the rules described in
 [RFC7525].

 * SRV-ID and URI-ID as described in Section 6.5 of [RFC6125] MUST
 NOT be used for comparison.

9. IANA Considerations

9.1. OAuth Parameters Registration

 Since the Request Object is a JWT, the core JWT claims cannot be used
 for any purpose in the Request Object other than for what JWT
 dictates. Thus, they have been registered as OAuth authorization
 request parameters to avoid future OAuth extensions using them with
 different meanings.

 This specification adds the following values to the "OAuth
 Parameters" registry [IANA.OAuth.Parameters] established by
 [RFC6749].

 Name: "iss"
 Parameter Usage Location: authorization request
 Change Controller: IETF
 Specification Document(s): This document and Section 4.1.1 of
 [RFC7519].

 Name: "sub"
 Parameter Usage Location: authorization request
 Change Controller: IETF
 Specification Document(s): This document and Section 4.1.2 of
 [RFC7519].

 Name: "aud"
 Parameter Usage Location: authorization request
 Change Controller: IETF
 Specification Document(s): This document and Section 4.1.3 of
 [RFC7519].

 Name: "exp"
 Parameter Usage Location: authorization request
 Change Controller: IETF
 Specification Document(s): This document and Section 4.1.4 of
 [RFC7519].

 Name: "nbf"
 Parameter Usage Location: authorization request
 Change Controller: IETF
 Specification Document(s): This document and Section 4.1.5 of
 [RFC7519].

 Name: "iat"
 Parameter Usage Location: authorization request
 Change Controller: IETF
 Specification Document(s): This document and Section 4.1.6 of
 [RFC7519].

 Name: "jti"
 Parameter Usage Location: authorization request
 Change Controller: IETF
 Specification Document(s): This document and Section 4.1.7 of
 [RFC7519].

9.2. OAuth Authorization Server Metadata Registry

 This specification adds the following value to the "OAuth
 Authorization Server Metadata" registry [IANA.OAuth.Parameters]
 established by [RFC8414].

 Metadata Name: "require_signed_request_object"
 Metadata Description: Indicates where authorization request needs to
 be protected as Request Object and provided through either
 "request" or "request_uri parameter".
 Change Controller: IETF
 Specification Document(s): Section 10.5 of this document.

9.3. OAuth Dynamic Client Registration Metadata Registry

 This specification adds the following value to the "OAuth Dynamic
 Client Registration Metadata" registry [IANA.OAuth.Parameters]
 established by [RFC7591].

 Metadata Name: "require_signed_request_object"
 Metadata Description: Indicates where authorization request needs to
 be protected as Request Object and provided through either
 "request" or "request_uri parameter".
 Change Controller: IETF
 Specification Document(s): Section 10.5 of this document.

9.4. Media Type Registration

9.4.1. Registry Contents

 This section registers the "application/oauth-authz-req+jwt" media
 type [RFC2046] in the "Media Types" registry [IANA.MediaTypes] in the
 manner described in [RFC6838]. It can be used to indicate that the
 content is a JWT containing Request Object claims.

 Type name: application
 Subtype name: oauth-authz-req+jwt
 Required parameters: N/A
 Optional parameters: N/A
 Encoding considerations: binary; a Request Object is a JWT; JWT
 values are encoded as a series of base64url-encoded values (some
 of which may be the empty string) separated by period (".")
 characters.
 Security considerations: See Section 10 of RFC 9101
 Interoperability considerations: N/A
 Published specification: Section 4 of RFC 9101
 Applications that use this media type: Applications that use Request

 Objects to make an OAuth 2.0 authorization request
 Fragment identifier considerations: N/A
 Additional information:
 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): N/A
 Macintosh file type code(s): N/A
 Person & email address to contact for further information:
 Nat Sakimura <nat@nat.consulting>
 Intended usage: COMMON
 Restrictions on usage: none
 Author: Nat Sakimura <nat@nat.consulting>
 Change controller: IETF
 Provisional registration? No

10. Security Considerations

 In addition to all the security considerations discussed in OAuth 2.0
 [RFC6819], the security considerations in [RFC7515], [RFC7516],
 [RFC7518], and [RFC8725] need to be considered. Also, there are
 several academic papers such as [BASIN] that provide useful insight
 into the security properties of protocols like OAuth.

 In consideration of the above, this document advises taking the
 following security considerations into account.

10.1. Choice of Algorithms

 When sending the Authorization Request Object through the "request"
 parameter, it MUST be either signed using JWS [RFC7515] or signed and
 then encrypted using JWS [RFC7515] and JWE [RFC7516], respectively,
 with algorithms considered appropriate at the time.

10.2. Request Source Authentication

 The source of the authorization request MUST always be verified.
 There are several ways to do it:

 (a) Verifying the JWS Signature of the Request Object.

 (b) Verifying that the symmetric key for the JWE encryption is the
 correct one if the JWE is using symmetric encryption. Note,
 however, that if public key encryption is used, no source
 authentication is enabled by the encryption, as any party can
 encrypt to the public key.

 (c) Verifying the TLS Server Identity of the Request Object URI. In
 this case, the authorization server MUST know out-of-band that
 the client uses the Request Object URI and only the client is
 covered by the TLS certificate. In general, this is not a
 reliable method.

 (d) When an authorization server implements a service that returns a
 Request Object URI in exchange for a Request Object, the
 authorization server MUST perform client authentication to
 accept the Request Object and bind the client identifier to the
 Request Object URI it is providing. It MUST validate the
 signature, per (a). Since the Request Object URI can be
 replayed, the lifetime of the Request Object URI MUST be short
 and preferably one-time use. The entropy of the Request Object
 URI MUST be sufficiently large. The adequate shortness of the
 validity and the entropy of the Request Object URI depends on
 the risk calculation based on the value of the resource being
 protected. A general guidance for the validity time would be
 less than a minute, and the Request Object URI is to include a
 cryptographic random value of 128 bits or more at the time of
 the writing of this specification.

 (e) When a trusted third-party service returns a Request Object URI
 in exchange for a Request Object, it MUST validate the
 signature, per (a). In addition, the authorization server MUST

 be trusted by the third-party service and MUST know out-of-band
 that the client is also trusted by it.

10.3. Explicit Endpoints

 Although this specification does not require them, research such as
 [BASIN] points out that it is a good practice to explicitly state the
 intended interaction endpoints and the message position in the
 sequence in a tamper-evident manner so that the intent of the
 initiator is unambiguous. It is RECOMMENDED by this specification to
 use this practice for the following endpoints defined in [RFC6749],
 [RFC6750], and [RFC8414]:

 (a) Protected resources ("protected_resources")

 (b) Authorization endpoint ("authorization_endpoint")

 (c) Redirection URI ("redirect_uri")

 (d) Token endpoint ("token_endpoint")

 Further, if dynamic discovery is used, then this practice also
 applies to the discovery-related endpoints.

 In [RFC6749], while the redirection URI is included in the
 authorization request, others are not. As a result, the same applies
 to the Authorization Request Object.

10.4. Risks Associated with request_uri

 The introduction of "request_uri" introduces several attack
 possibilities. Consult the security considerations in Section 7 of
 [RFC3986] for more information regarding risks associated with URIs.

10.4.1. DDoS Attack on the Authorization Server

 A set of malicious clients can launch a DoS attack to the
 authorization server by pointing the "request_uri" to a URI that
 returns extremely large content or is extremely slow to respond.
 Under such an attack, the server may use up its resource and start
 failing.

 Similarly, a malicious client can specify a "request_uri" value that
 itself points to an authorization request URI that uses "request_uri"
 to cause the recursive lookup.

 To prevent such an attack from succeeding, the server should a) check
 that the value of the "request_uri" parameter does not point to an
 unexpected location, b) check that the media type of the response is
 "application/oauth-authz-req+jwt", c) implement a timeout for
 obtaining the content of "request_uri", and d) not perform recursive
 GET on the "request_uri".

10.4.2. Request URI Rewrite

 The value of "request_uri" is not signed; thus, it can be tampered
 with by a man-in-the-browser attacker. Several attack possibilities
 arise because of this. For example, a) an attacker may create
 another file that the rewritten URI points to, making it possible to
 request extra scope, or b) an attacker may launch a DoS attack on a
 victim site by setting the value of "request_uri" to be that of the
 victim.

 To prevent such an attack from succeeding, the server should a) check
 that the value of the "request_uri" parameter does not point to an
 unexpected location, b) check that the media type of the response is
 "application/oauth-authz-req+jwt", and c) implement a timeout for
 obtaining the content of "request_uri".

10.5. Downgrade Attack

 Unless the protocol used by the client and the server is locked down
 to use an OAuth JWT-Secured Authorization Request (JAR), it is
 possible for an attacker to use RFC 6749 requests to bypass all the
 protection provided by this specification.

 To prevent this kind of attack, this specification defines new client
 metadata and server metadata values, both named
 "require_signed_request_object", whose values are both booleans.

 When the value of it as client metadata is "true", then the server
 MUST reject the authorization request from the client that does not
 conform to this specification. It MUST also reject the request if
 the Request Object uses an "alg" value of "none" when this server
 metadata value is "true". If omitted, the default value is "false".

 When the value of it as server metadata is "true", then the server
 MUST reject the authorization request from any client that does not
 conform to this specification. It MUST also reject the request if
 the Request Object uses an "alg" value of "none". If omitted, the
 default value is "false".

 Note that even if "require_signed_request_object" metadata values are
 not present, the client MAY use signed Request Objects, provided that
 there are signing algorithms mutually supported by the client and the
 server. Use of signing algorithm metadata is described in Section 4.

10.6. TLS Security Considerations

 Current security considerations can be found in "Recommendations for
 Secure Use of Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)" [RFC7525]. This supersedes the TLS version
 recommendations in OAuth 2.0 [RFC6749].

10.7. Parameter Mismatches

 Given that OAuth parameter values are being sent in two different
 places, as normal OAuth parameters and as Request Object claims,
 implementations must guard against attacks that could use mismatching
 parameter values to obtain unintended outcomes. That is the reason
 that the two client ID values MUST match, the reason that only the
 parameter values from the Request Object are to be used, and the
 reason that neither "request" nor "request_uri" can appear in a
 Request Object.

10.8. Cross-JWT Confusion

 As described in Section 2.8 of [RFC8725], attackers may attempt to
 use a JWT issued for one purpose in a context that it was not
 intended for. The mitigations described for these attacks can be
 applied to Request Objects.

 One way that an attacker might attempt to repurpose a Request Object
 is to try to use it as a client authentication JWT, as described in
 Section 2.2 of [RFC7523]. A simple way to prevent this is to never
 use the client ID as the "sub" value in a Request Object.

 Another way to prevent cross-JWT confusion is to use explicit typing,
 as described in Section 3.11 of [RFC8725]. One would explicitly type
 a Request Object by including a "typ" Header Parameter with the value
 "oauth-authz-req+jwt" (which is registered in Section 9.4.1). Note,
 however, that requiring explicitly typed Request Objects at existing
 authorization servers will break most existing deployments, as
 existing clients are already commonly using untyped Request Objects,
 especially with OpenID Connect [OpenID.Core]. However, requiring
 explicit typing would be a good idea for new OAuth deployment
 profiles where compatibility with existing deployments is not a
 consideration.

 Finally, yet another way to prevent cross-JWT confusion is to use a
 key management regime in which keys used to sign Request Objects are
 identifiably distinct from those used for other purposes. Then, if

 an adversary attempts to repurpose the Request Object in another
 context, a key mismatch will occur, thwarting the attack.

11. Privacy Considerations

 When the client is being granted access to a protected resource
 containing personal data, both the client and the authorization
 server need to adhere to Privacy Principles. "Privacy Considerations
 for Internet Protocols" [RFC6973] gives excellent guidance on the
 enhancement of protocol design and implementation. The provisions
 listed in it should be followed.

 Most of the provisions would apply to "The OAuth 2.0 Authorization
 Framework" [RFC6749] and "The OAuth 2.0 Authorization Framework:
 Bearer Token Usage" [RFC6750] and are not specific to this
 specification. In what follows, only the provisions specific to this
 specification are noted.

11.1. Collection Limitation

 When the client is being granted access to a protected resource
 containing personal data, the client SHOULD limit the collection of
 personal data to that which is within the bounds of applicable law
 and strictly necessary for the specified purpose(s).

 It is often hard for the user to find out if the personal data asked
 for is strictly necessary. A trusted third-party service can help
 the user by examining the client request, comparing it to the
 proposed processing by the client, and certifying the request. After
 the certification, the client, when making an authorization request,
 can submit an authorization request to the trusted third-party
 service to obtain the Request Object URI. This process has two
 steps:

 (1) (Certification Process) The trusted third-party service examines
 the business process of the client and determines what claims
 they need; this is the certification process. Once the client
 is certified, they are issued a client credential to
 authenticate against to push Request Objects to the trusted
 third-party service to get the "request_uri".

 (2) (Translation Process) The client uses the client credential that
 it got to push the Request Object to the trusted third-party
 service to get the "request_uri". The trusted third-party
 service also verifies that the Request Object is consistent with
 the claims that the client is eligible for, per the prior step.

 Upon receiving such a Request Object URI in the authorization
 request, the authorization server first verifies that the authority
 portion of the Request Object URI is a legitimate one for the trusted
 third-party service. Then, the authorization server issues an HTTP
 GET request to the Request Object URI. Upon connecting, the
 authorization server MUST verify that the server identity represented
 in the TLS certificate is legitimate for the Request Object URI.
 Then, the authorization server can obtain the Request Object, which
 includes the "client_id" representing the client.

 The Consent screen MUST indicate the client and SHOULD indicate that
 the request has been vetted by the trusted third-party service for
 the adherence to the collection limitation principle.

11.2. Disclosure Limitation

11.2.1. Request Disclosure

 This specification allows extension parameters. These may include
 potentially sensitive information. Since URI query parameters may
 leak through various means but most notably through referrer and
 browser history, if the authorization request contains a potentially
 sensitive parameter, the client SHOULD encrypt the Request Object
 using JWE [RFC7516].

 Where the Request Object URI method is being used, if the Request
 Object contains personally identifiable or sensitive information, the
 "request_uri" SHOULD be used only once and have a short validity
 period, and it MUST have sufficient entropy for the applicable
 security policies unless the Request Object itself is encrypted using
 JWE [RFC7516]. The adequate shortness of the validity and the
 entropy of the Request Object URI depends on the risk calculation
 based on the value of the resource being protected. A general
 guidance for the validity time would be less than a minute, and the
 Request Object URI is to include a cryptographic random value of 128
 bits or more at the time of the writing of this specification.

11.2.2. Tracking Using Request Object URI

 Even if the protected resource does not include personally
 identifiable information, it is sometimes possible to identify the
 user through the Request Object URI if persistent static per-user
 Request Object URIs are used. A third party may observe it through
 browser history, etc. and start correlating the user’s activity using
 it. In a way, it is a data disclosure as well and should be avoided.

 Therefore, per-user persistent Request Object URIs should be avoided.
 Single-use Request Object URIs are one alternative.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <https://www.rfc-editor.org/info/rfc7516>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC8141] Saint-Andre, P. and J. Klensin, "Uniform Resource Names
 (URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,
 <https://www.rfc-editor.org/info/rfc8141>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

12.2. Informative References

 [BASIN] Basin, D., Cremers, C., and S. Meier, "Provably Repairing
 the ISO/IEC 9798 Standard for Entity Authentication",
 Journal of Computer Security - Security and Trust
 Principles, Volume 21, Issue 6, pp. 817-846, November
 2013,
 <https://www.cs.ox.ac.uk/people/cas.cremers/downloads/
 papers/BCM2012-iso9798.pdf>.

 [CapURLs] Tennison, J., Ed., "Good Practices for Capability URLs",
 W3C First Public Working Draft, 18 February 2014,
 <https://www.w3.org/TR/capability-urls/>.

 [IANA.JWT.Claims]
 IANA, "JSON Web Token (JWT)",
 <https://www.iana.org/assignments/jwt>.

 [IANA.MediaTypes]
 IANA, "Media Types",
 <https://www.iana.org/assignments/media-types>.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <https://www.iana.org/assignments/oauth-parameters>.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M.B., de Medeiros, B.,
 and C. Mortimore, "OpenID Connect Core 1.0 incorporating
 errata set 1", OpenID Foundation Standards, 8 November
 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
 2015, <https://www.rfc-editor.org/info/rfc7523>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC8725] Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token Best
 Current Practices", BCP 225, RFC 8725,
 DOI 10.17487/RFC8725, February 2020,
 <https://www.rfc-editor.org/info/rfc8725>.

Acknowledgements

 The following people contributed to the creation of this document in
 the OAuth Working Group and other IETF roles. (Affiliations at the
 time of the contribution are used.)

 Annabelle Backman (Amazon), Dirk Balfanz (Google), Sergey Beryozkin,
 Ben Campbell (as AD), Brian Campbell (Ping Identity), Roman Danyliw
 (as AD), Martin Duke (as AD), Vladimir Dzhuvinov (Connect2id), Lars
 Eggert (as AD), Joel Halpern (as GENART), Benjamin Kaduk (as AD),
 Stephen Kent (as SECDIR), Murray Kucherawy (as AD), Warren Kumari (as
 OPSDIR), Watson Ladd (as SECDIR), Torsten Lodderstedt (yes.com), Jim
 Manico, James H. Manger (Telstra), Kathleen Moriarty (as AD), Axel
 Nennker (Deutsche Telecom), John Panzer (Google), Francesca Palombini
 (as AD), David Recordon (Facebook), Marius Scurtescu (Google), Luke
 Shepard (Facebook), Filip Skokan (Auth0), Hannes Tschofenig (ARM),
 Ã\211ric Vyncke (as AD), and Robert Wilton (as AD).

 The following people contributed to creating this document through
 the OpenID Connect Core 1.0 [OpenID.Core].

 Brian Campbell (Ping Identity), George Fletcher (AOL), Ryo Itou
 (Mixi), Edmund Jay (Illumila), Breno de Medeiros (Google), Hideki
 Nara (TACT), and Justin Richer (MITRE).

Authors’ Addresses

 Nat Sakimura
 NAT.Consulting
 2-22-17 Naka
 Kunitachi, Tokyo 186-0004
 Japan

 Phone: +81-42-580-7401
 Email: nat@nat.consulting
 URI: https://nat.sakimura.org/

 John Bradley
 Yubico

 Sucursal Talagante
 Casilla 177
 Talagante
 RM
 Chile

 Phone: +1.202.630.5272
 Email: rfc9101@ve7jtb.com
 URI: http://www.thread-safe.com/

 Michael B. Jones
 Microsoft
 One Microsoft Way
 Redmond, Washington 98052
 United States of America

 Email: mbj@microsoft.com
 URI: https://self-issued.info/

