Net wor k Wor ki ng G oup John Nagl e
Request For Comments: 896 6 January 1984
Ford Aerospace and Commruni cati ons Corporation

Congestion Control in I P/ TCP I nternetworks

This menmp di scusses sone aspects of congestion control in [P/ TCP

I nt er net wor ks. It is intended to stimulate thought and further
di scussion of this topic. Wil e sone specific suggestions are
nmade for inproved congestion control inplenentation, this nmeno

does not specify any standards.
I ntroduction

Congestion control is a recognized problemin conplex networks.
We have di scovered that the Departnent of Defense’'s Internet Pro-
tocol (IP) , a pure datagram protocol, and Transm ssion Contro
Protocol (TCP), a transport l|layer protocol, when used together,
are subject to unusual congestion problenms caused by interactions

between the transport and datagramlayers. |In particular, IP
gat eways are vul nerable to a phenonenon we call "congestion col -
| apse", especially when such gateways connect networks of widely

di fferent bandwi dth. W have devel oped solutions that prevent
congestion col |l apse.

These problens are not generally recogni zed because these proto-
cols are used nost often on networks built on top of ARPANET | MP
technol ogy. ARPANET | MP based networks traditionally have wuni-
form bandwi dth and identical sw tching nodes, and are sized with
substantial excess capacity. This excess capacity, and the abil -
ity of the IMP systemto throttle the transm ssions of hosts has
for nost IP/ TCP hosts and networks been adequate to handle
congestion. Wth the recent split of the ARPANET into two inter-
connected networks and the growth of other networks with differ-
ing properties connected to the ARPANET, however, reliance on the
beni gn properties of the IMP systemis no | onger enough to allow
hosts to conmunicate rapidly and reliably. Inproved handling of
congestion is now mandatory for successful network operation
under | oad.

Ford Aerospace and Conmuni cations Corporation, and its parent
conpany, Ford Mdtor Conpany, operate the only private |IP/ TCP
| ong- haul network in existence today. This network connects four
facilities (one in Mchigan, two in California, and one in Eng-
| and) sonme with extensive local networks. This net is cross-tied
to the ARPANET but wuses its own long-haul circuits; traffic
between Ford facilities flows over private leased circuits,
including a leased transatlantic satellite connection. Al
swi tching nodes are pure IP datagramswitches wth no node-to-
node flow control, and all hosts run software either witten or
heavily nodified by Ford or Ford Aerospace. Bandwi dth of [|inks
in this network varies widely, from 1200 to 10, 000,000 bits per
second. In general, we have not been able to afford the [uxury
of excess | ong-haul bandw dth that the ARPANET possesses, and our
| ong- haul |inks are heavily | oaded during peak peri ods. Transit
times of several seconds are thus comon in our network.

RFC 896 Congestion Control in I P/ TCP Internetworks 1/ 6/ 84

Because of our pure datagram orientation, heavy |oading, and w de
variation in bandwidth, we have had to solve problens that the
ARPANET / M LNET conmunity is just beginning to recognize. Qur
network is sensitive to suboptinmal behavior by host TCP inpl emen-
tations, both on and off our own net. W have devoted consider-
able effort to exam ning TCP behavi or under various conditions,
and have solved sonme widely prevalent problens with TCP. We
present here two problens and their solutions. Mny TCP inple-
nment ati ons have these problens; if throughput is worse through an
ARPANET / MLNET gateway for a given TCP inplenmentation than
t hroughput across a single net, there is a high probability that
the TCP i npl enentati on has one or both of these problens.

Congestion col | apse

Bef ore we proceed with a discussion of the two specific problens
and their solutions, a description of what happens when these
probl ens are not addressed is in order. |In heavily |oaded pure
datagram networks with end to end retransm ssion, as switching
nodes becone congested, the round trip tine through the net
increases and the count of datagrams in transit within the net
al so increases. This is normal behavior under |load. As long as
there is only one copy of each datagramin transit, congestion is
under control. Once retransm ssion of datagrans not yet
delivered begins, there is potential for serious trouble.

Host TCP inplenentations are expected to retransmt packets
several times at increasing tine intervals until sone upper limt
on the retransmt interval is reached. Normally, this nmechanism
is enough to prevent serious congestion problens. Even with the
better adaptive host retransm ssion al gorithns, though, a sudden
| oad on the net can cause the round-trip time to rise faster than
the sending hosts neasurenments of round-trip tine can be updated.
Such a Jload occurs when a new bulk transfer, such a file

transfer, begins and starts filling a |arge w ndow. Should the
round-trip tinme exceed the maxi numretransm ssion interval for
any host, that host will begin to introduce nore and nore copies

of the sane datagrans into the net. The network is nowin seri-
ous trouble. Eventually all available buffers in the sw tching
nodes wll be full and packets must be dropped. The round-trip
time for packets that are delivered is now at its nmaxi num Hosts
are sending each packet several tines, and eventually sone copy

of each packet arrives at its destination. This is congestion
col I apse

This condition is stable. Once the saturation point has been
reached, if the algorithmfor selecting packets to be dropped is
fair, the network will continue to operate in a degraded condi-
tion. In this condition every packet is being transnmitted
several times and throughput is reduced to a small fraction of
nor mal . We have pushed our network into this condition experi-
mental ly and observed its stability. It is possible for round-

trip tine to becone so large that connections are broken because

RFC 896 Congestion Control in I P/ TCP Internetworks 1/ 6/ 84

the hosts involved tine out.

Congestion col | apse and pat hol ogi cal congestion are not normally
seen in the ARPANET / M LNET system because these networks have
substantial excess capacity. Where connections do not pass
through I P gateways, the | MP-to host flow control nechani sns usu-
ally prevent congestion collapse, especially since TCP inplenen-
tations tend to be well adjusted for the tine constants associ -
ated with the pure ARPANET case. However, other than |ICVMP Source
Quench nmessages, nothing fundanentally prevents congestion col -
| apse when TCP is run over the ARPANET / M LNET and packets are
being dropped at gateways. Wrth noting is that a few badly-
behaved hosts can by thensel ves congest the gateways and prevent
other hosts frompassing traffic. W have observed this problem
repeatedly with certain hosts (with whose adm nistrators we have
conmuni cated privately) on the ARPANET.

Addi ng additional nenory to the gateways will not solve the prob-
| em The nore nenory added, the |onger round-trip times nust
becorme before packets are dropped. Thus, the onset of congestion

collapse will be del ayed but when coll apse occurs an even | arger
fraction of the packets in the net wll be duplicates and
throughput will be even worse.

The two probl ens

Two key problens with the engi neering of TCP inplenentations have
been observed; we <call these the small-packet problem and the
source-quench problem The second is being addressed by severa

i mpl enentors; the first is generally believed (incorrectly) to be
sol ved. W have discovered that once the snall-packet problem
has been solved, the source-quench problem becones nmuch nore
tractable. W thus present the small-packet problem and our
solution to it first.

The smal | - packet problem

There is a special problemassociated with small packets. VWhen
TCP is wused for the transm ssion of single-character messages
originating at a keyboard, the typical result is that 41 byte
packets (one byte of data, 40 bytes of header) are transmtted
for each byte of useful data. This 4000% overhead is annoying
but tolerable on lightly | oaded networks. On heavily | oaded net-
wor ks, however, the congestion resulting fromthis overhead can
result in |lost datagrams and retransm ssions, as well as exces-
sive propagation tine caused by congestion in swtching nodes and
gat eways. In practice, throughput nay drop so |low that TCP con-
nections are aborted.

This classic problemis well-known and was first addressed in the
Tymmet network in the late 1960s. The solution used there was to
inmpose a limt on the count of datagrans generated per unit tinme.
This limt was enforced by delaying transm ssion of small packets

RFC 896 Congestion Control in I P/ TCP Internetworks 1/ 6/ 84

until a short (200-500ns) tine had el apsed, in hope that another
character or two woul d become available for addition to the sane
packet before the tinmer ran out. An additional feature to
enhance user acceptability was to inhibit the tinme delay when a
control character, such as a carriage return, was received

Thi s techni que has been used in NCP Telnet, X. 25 PADs, and TCP
Telnet. It has the advantage of being well-understood, and is not
too difficult to inplement. |Its flawis that it is hard to cone
up with a tine limt that will satisfy everyone. Atine limt
short enough to provide highly responsive service over a 10Mbits

per second Ethernet will be too short to prevent congestion col -
| apse over a heavily loaded net with a five second round-trip
time; and conversely, a time |imt |Iong enough to handle the
heavily | oaded net will produce frustrated users on the Ethernet.

The solution to the small-packet problem

Clearly an adaptive approach is desirable. One would expect a
proposal for an adaptive inter-packet tine |imt based on the
round-trip del ay observed by TCP. While such a nechanism could
certainly be inplenented, it 1is unnecessary. A sinple and
el egant sol uti on has been di scovered.

The solution is to inhibit the sending of new TCP segnents when
new outgoing data arrives from the wuser if any previously
transmtted data on the connection remains unacknow edged. Thi s
inhibition is to be unconditional; no timers, tests for size of
data received, or other conditions are required. | mpl ement ati on
typically requires one or two lines inside a TCP program

At first glance, this solution seens to inply drastic changes in
the behavior of TCP. This is not so. It all works out right in
the end. Let us see why this is so.

When a user process wites to a TCP connection, TCP receives sone
dat a. It may hold that data for future sending or may send a
packet inmmediately. If it refrains from sending now, it wll
typically send the data | ater when an i ncom ng packet arrives and
changes the state of the system The state changes in one of two
ways; the incom ng packet acknow edges old data the di stant host
has received, or announces the availability of buffer space in
the distant host for new data. (This last is referred to as
"updating the wi ndow'). Each tine data arrives on a connec-
tion, TCP nust reexamne its current state and perhaps send sone
packets out. Thus, when we omt sending data on arrival fromthe
user, we are sinply deferring its transmssion until the next

nessage arrives fromthe distant host. A nessage nust al ways
arrive soon unless the connection was previously idle or conmuni-
cations with the other end have been lost. In the first case,
the idle connection, our schenme will result in a packet being

sent whenever the user wites to the TCP connection. Thus we do
not deadlock in the idle condition. |In the second case, where

RFC 896 Congestion Control in I P/ TCP Internetworks 1/ 6/ 84

the distant host has failed, sending nore data is futile anyway.
Note that we have done nothing to inhibit normal TCP retransm s-
sion logic, so |ost messages are not a probl em

Exami nation of the behavior of this schene under various condi-
tions denobnstrates that the scheme does work in all cases. The
first case to examne is the one we wanted to solve, that of the
character-oriented Telnet connection. Let us suppose that the
user is sending TCP a new character every 200ms, and that the
connection is via an Ethernet with a round-trip time including
software processing of 50ns. Wthout any nechanism to prevent
smal | - packet congestion, one packet will be sent for each charac-
ter, and response will be optimal. Overhead will be 4000% but
this is acceptable on an Ethernet. The classic timer schene,
with a limt of 2 packets per second, will cause tw or three
characters to be sent per packet. Response will thus be degraded
even though on a high-bandwidth Ethernet this is unnecessary.

Overhead will drop to 1500% but on an Ethernet this is a bad
tradeoff. Wth our schene, every character the user types wll
find TCP with an idle connection, and the character will be sent
at once, just as in the no-control case. The user wll see no
vi sible del ay. Thus, our schenme perforns as well as the no-

control schene and provides better responsiveness than the tiner
schene.

The second case to examine is the same Telnet test but over a
long-haul link with a b5-second round trip tine. Wthout any
mechani smto prevent snall-packet congestion, 25 new packets
woul d be sent in 5 seconds.* Overhead here is 4000% Wth the
classic timer scheme, and the sane linmt of 2 packets per second,
there would still be 10 packets outstanding and contributing to
congestion. Round-trip tine will not be inproved by sendi ng many
packets, of course; in general it will be worse since the packets
will contend for line tine. Overhead now drops to 1500% Wth
our scheme, however, the first character fromthe user would find
an idle TCP connection and would be sent inmmediately. The next
24 characters, arriving fromthe user at 200ns intervals, would
be held pending a nessage fromthe distant host. Wen an ACK
arrived for the first packet at the end of 5 seconds, a single
packet wth the 24 queued characters would be sent. Qur schene
thus results in an overhead reduction to 320% with no penalty in
response tine. Response tinme will usually be inproved with our
schene because packet overhead is reduced, here by a factor of
4.7 over the classic timer scheme. Congestion will be reduced by
this factor and round-trip delay will decrease sharply. For this

* This problemis not seen in the pure ARPANET case because the
IMPs will block the host when the count of packets
out st andi ng becones excessive, but in the case where a pure
dat agram | ocal net (such as an Ethernet) or a pure datagram
gateway (such as an ARPANET / M LNET gateway) is involved, it
is possible to have | arge nunbers of tiny packets
out st andi ng.

RFC 896 Congestion Control in I P/ TCP Internetworks 1/ 6/ 84

case, our schenme has a striking advantage over either of the
ot her approaches.

We use our schene for all TCP connections, not just Telnet con-
nections. Let us see what happens for a file transfer data con-
nection using our technique. The two extrene cases will again be
consi der ed.

As before, we first consider the Ethernet case. The user is now
witing data to TCP in 512 byte bl ocks as fast as TCP will accept
them The user’s first wite to TCP will start things going; our
first datagram wll be 512+40 bytes or 552 bytes long. The
user’s second wite to TCP will not cause a send but wll cause
the block to be buffered. Assune that the user fills up TCP' s
out goi ng buffer area before the first ACK cones back. Then when
the ACK cones in, all queued data up to the w ndow size will be
sent. Fromthen on, the window will be kept full, as each ACK
initiates a sending cycle and queued data is sent out. Thus,
after a one round-trip time initial period when only one block is
sent, our schenme settles down into a maxi mumthroughput condi -
tion. The delay in startup is only 50ms on the Ethernet, so the
startup transient is insignificant. Al three schemes provide
equi val ent performance for this case.

Finally, let us ook at a file transfer over the 5-second round

trip tine connection. Again, only one packet will be sent unti

the first ACK cones back; the window will then be filled and kept
full. Since the round-trip tinme is 5 seconds, only 512 bytes of
data are transmitted in the first 5 seconds. Assunming a 2K wi n-
dow, once the first ACK comes in, 2K of data will be sent and a
steady rate of 2K per 5 seconds will be maintained thereafter.

Only for this case is our schene inferior to the tiner schene,
and the difference is only in the startup transient; steady-state
throughput is identical. The naive schene and the tiner schene
woul d both take 250 seconds to transmit a 100K byte file under
the above conditions and our schene would take 254 seconds, a
di fference of 1.6%

Thus, for all cases exam ned, our schene provides at |east 98% of
the performance of both other schenes, and provides a dramatic
i nprovenent in Telnet performance over paths with long round trip
times. W use our scheme in the Ford Aerospace Software
Engi neering Network, and are able to run screen editors over Eth-
ernet and talk to distant TOPS-20 hosts with inmproved performance
in both cases.

Congestion control with | CW

Havi ng sol ved the smal | -packet congestion problemand with it the
probl em of excessive snall-packet congestion within our own net-
work, we turned our attention to the problem of general conges-
tion control. Since our own network is pure datagramw th no
node-to-node flow control, the only mnechanism available to us

RFC 896 Congestion Control in I P/ TCP Internetworks 1/ 6/ 84

under the 1P standard was the |ICMP Source Quench nessage. Wth
careful handling, we find this adequate to prevent serious
congestion problens. W do find it necessary to be careful about
the behavi or of our hosts and switching nodes regarding Source
Quench nessages.

When to send an | CVP Source Quench

The present | CWVP standard* specifies that an ICMP Source Quench
message should be sent whenever a packet is dropped, and addi -
tionally may be sent when a gateway finds itself becomng short
of resources. There is sone anbiguity here but clearly it is a
violation of the standard to drop a packet w thout sending an
| CMP nessage.

Qur basic assunption is that packets ought not to be dropped dur-
ing normal network operation. W therefore want to throttle
senders back before they overload switching nodes and gateways.
Al our switching nodes send |ICVMP Source Quench nessages wel |
bef ore buffer space is exhausted; they do not wait wuntil it is
necessary to drop a nessage before sending an | CMP Source Quench

As denonstrated in our analysis of the small-packet problem
nerely providing large anounts of buffering is not a solution

In general, our experience is that Source Quench should be sent
when about half the buffering space is exhausted; this is not
based on extensive experinmentation but appears to be a reasonabl e
engi neering decision. One could argue for an adaptive schene
that adjusted the quench generation threshold based on recent
experi ence; we have not found this necessary as yet.

There exi st other gateway inplenentations that generate Source
Quenches only after nore than one packet has been discarded. W
consi der this approach undesirable since any systemfor control -
[ing congestion based on the discarding of packets is wasteful of
bandwi dth and nmay be susceptible to congestion collapse under
heavy | oad. Qur understanding is that the decision to generate
Source Quenches with great reluctance stens froma fear that ack-
now edge traffic wll be quenched and that this will result in
connection failure. As will be shown bel ow, appropriate handling
of Source Quench in host inplenmentations elimnates this possi-
bility.

What to do when an | CVP Source Quench is received

We inform TCP or any other protocol at that |ayer when |CW
receives a Source Quench. The basic action of our TCP inplenmen-
tations is to reduce the anbunt of data outstanding on connec-
tions to the host nentioned in the Source Quench. This control is

* ARPANET RFC 792 is the present standard. W are advised by
the Defense Communi cati ons Agency that the description of
ICVMP in ML-STD- 1777 is inconplete and will be deleted from
future revision of that standard.

RFC 896 Congestion Control in I P/ TCP Internetworks 1/ 6/ 84

applied by causing the sending TCP to behave as if the distant
host’s w ndow size has been reduced. Qur first inplenmentation
was sinplistic but effective; once a Source Quench has been
received our TCP behaves as if the window size is zero whenever
the window isn't enpty. This behavior continues wuntil sone
nunber (at present 10) of ACKs have been received, at that tine
TCP returns to nornmal operation.* David MIIs of Linkabit Cor-
poration has since inplemented a simlar but nore el aborate
throttle on the count of outstanding packets in his DCN systens.
The additional sophistication seens to produce a nbdest gain in
t hroughput, but we have not made formal tests. Both inplenenta-
tions effectively prevent congestion collapse in swtching nodes.

Source Quench thus has the effect of linmting the connection to a
[imted nunber (perhaps one) of outstanding nessages. Thus, com
muni cati on can continue but at a reduced rate, that is exactly
the effect desired.

This schene has the inmportant property that Source Quench doesn’'t
inhibit the sending of acknow edges or retransm ssions. |Inple-
ment ati ons of Source Quench entirely within the IP |ayer are usu-
ally unsuccessful because IP | acks enough information to throttle
a connection properly. Holding back acknow edges tends to pro-
duce retransm ssions and thus unnecessary traffic. Hol ding back
retransm ssi ons may cause | oss of a connection by a retransms-
sion timeout. Qur schene wll keep connections alive under
severe overl oad but at reduced bandw dth per connection.

Q her protocols at the sane |ayer as TCP should also be respon-

sive to Source Quench. In each case we woul d suggest that new
traffic should be throttled but acknowl edges should be treated
normal |y. The only serious problemcones fromthe User Datagram
Protocol, not normally a major traffic generator. We have not

i mpl enented any throttling in these protocols as yet; all are
passed Source Quench messages by | CVP but ignore them

Sel f -def ense for gateways

As we have shown, gateways are vulnerable to host m snanagenent
of congestion. Host m sbehavior by excessive traffic generation
can prevent not only the host’s own traffic fromgetting through
but can interfere with other unrelated traffic. The problem can
be dealt with at the host |evel but since one malfunctioning host
can interfere wth others, future gateways shoul d be capabl e of
def endi ng t henmsel ves agai nst such behavi or by obnoxi ous or mali-
cious hosts. We offer sone basic self-defense techniques.

On one occasion in late 1983, a TCP bug in an ARPANET host caused
the host to frantically generate retransnissions of the sane
dat agram as fast as the ARPANET woul d accept them The gat eway

* This follows the control engineering dictum "Never bother
with proportional control unless bang-bang doesn’t work".

RFC 896 Congestion Control in I P/ TCP Internetworks 1/ 6/ 84

that connected our net with the ARPANET was saturated and little
useful traffic could get through, since the gateway had nore
bandwi dth to the ARPANET than to our net. The gateway busily
sent |ICWMP Source Quench messages but the mal functioning host
ignored them This continued for several hours, until the nmal-
functioning host crashed. During this period, our network was
ef fectively disconnected fromthe ARPANET.

VWen a gateway is forced to discard a packet, the packet is
selected at the discretion of the gateway. C assic techniques
for making this decision are to discard the npbst recently
recei ved packet, or the packet at the end of the | ongest outgoing
gueue. W suggest that a worthwhile practical nmeasure is to dis-
card the latest packet fromthe host that originated the nost
packets currently queued within the gateway. This strategy wll
tend to balance throughput ampongst the hosts using the gateway.
We have not yet tried this strategy, but it seens a reasonable
starting point for gateway self-protection

Anot her strategy is to discard a newy arrived packet if the
packet duplicates a packet already in the queue. The conputa-
tional load for this check is not a problemif hashing techni ques

are used. This check will not protect against nalicious hosts
but will provide sone protection against TCP i nplenmentations with
poor retransmission control. Gat eways between fast |ocal net-

wor ks and sl ower |ong-haul networks may find this check valuable
if the local hosts are tuned to work well with the |ocal network.

Ideally the gateway should detect nmalfunctioning hosts and
squel ch them such detection is difficult in a pure datagram sys-
tem Failure to respond to an |CW Source Quench nessage,
though, should be regarded as grounds for action by a gateway to
di sconnect a host. Detecting such failure is non-trivial but is
a worthwhile area for further research.

Concl usi on

The congestion control problems associated with pure datagram
networks are difficult, but effective solutions exist. [If IP/
TCP networks are to be operated under heavy | oad, TCP inplenenta-
tions nmust address several key issues in ways at |east as effec-
tive as the ones described here.

