RFC. 761
I EN: 129

DCD STANDARD

TRANSM SSI ON CONTRCL PROTOCOL

January 1980

prepared for

Def ense Advanced Research Projects Agency
I nformati on Processing Techni ques Ofice
1400 W1 son Boul evard
Arlington, Virginia 22209

by

I nformation Sciences Institute
Uni versity of Southern California
4676 Admralty Wy
Mari na del Rey, California 90291

January 1980

Transm ssion Control Protoco

TABLE OF CONTENTS

PREFACE i

1. INTRODUCTI ON .ottt e e e e e e e e e e e e e e 1
1.1 Motivati ONn ... e 1

L 2 SCOPE .t 2
1.3 About This DOCUMBNL e e 2
1.4 Interfaces ... 3
1.5 Operati On ... 3
2. PHI LOSOPHY . .o 7
2.1 Elements of the Internetwork System 7
2.2 NModel of Operation 7
2.3 The Host ENVironment 8
2.4 Interfaces 9
2.5 Relation to Gher Protocols 9
2.6 Reliable Comunication 10
2.7 Connection Establishnment and Clearing 10
2.8 Data Communi Cati ON 12
2.9 Precedence and SeCUrity 13
2.10 Robustness Principle 13
3. FUNCTIONAL SPECIFI CATI ON ..ottt e e e e e e e 15
3.1 Header FOrmat 15
3.2 Termnol Ogy . ..o 19
3.3 Sequence NUMDEr S 24
3.4 Establishing a connection 29
3.5 dosing a Connection 35
3.6 Precedence and SeCUrity 38
3.7 Data Communi Cati ON 38
3.8 Interfaces 42
3.9 Event ProCesSSiNgt 52
LSS ARY . .t 75
REFERENCESo e 83

[Page i]

January 1980
Transm ssi on Control Protoco

[Page ii]

January 1980
Transm ssi on Control Protoco

PREFACE

Thi s docunment describes the DoD Standard Transm ssion Control Protoco
(TCP). There have been eight earlier editions of the ARPA TCP
specification on which this standard is based, and the present text
draws heavily fromthem There have been many contributors to this work
both in terns of concepts and in terns of text. This edition

i ncorporates the addition of security, conpartnmentation, and precedence
concepts into the TCP specification

Jon Post el

Edi t or

[Page iii]

January 1980

RFC. 761

| EN: 129

Repl aces: | ENs 124, 112,
81, 55, 44, 40, 27, 21, 5

DCD STANDARD

TRANSM SSI ON CONTRCL PROTOCCL

1. | NTRODUCTI ON

The Transni ssion Control Protocol (TCP) is intended for use as a highly
reliabl e host-to-host protocol between hosts in packet-sw tched conputer
conmuni cati on networks, and especially in interconnected systens of such
net wor ks.

Thi s docunent describes the functions to be performed by the
Transm ssion Control Protocol, the programthat inplenents it, and its
interface to progranms or users that require its services.

1.1. Motivation

Conput er comuni cation systens are playing an increasingly inportant
role in mlitary, government, and civilian environnents. This
docunent primarily focuses its attention on nilitary conputer

conmuni cati on requirements, especially robustness in the presence of
conmuni cation unreliability and availability in the presence of
congestion, but many of these problens are found in the civilian and
government sector as well.

As strategic and tactical conmputer conmunication networks are

devel oped and deployed, it is essential to provide neans of

i nterconnecting themand to provide standard interprocess

conmuni cati on protocols which can support a broad range of
applications. 1In anticipation of the need for such standards, the
Deputy Undersecretary of Defense for Research and Engi neering has
decl ared the Transm ssion Control Protocol (TCP) described herein to
be a basis for DoD wi de inter-process conmunication protoco

st andar di zat i on.

TCP is a connection-oriented, end-to-end reliable protocol designed to
fit into a |ayered hierarchy of protocols which support nulti-network
applications. The TCP provides for reliable inter-process

conmuni cati on between pairs of processes in host conputers attached to
di stinct but interconnected conputer communicati on networks. Very few
assunptions are made as to the reliability of the communication
protocols below the TCP | ayer. TCP assunes it can obtain a sinple,
potentially unreliable datagram service fromthe |ower |eve

protocols. In principle, the TCP should be able to operate above a

wi de spectrum of conmmuni cati on systenms rangi ng from hard-wired
connections to packet-sw tched or circuit-sw tched networks.

[Page 1]

January 1980
Transm ssi on Control Protoco
| ntroducti on

TCP is based on concepts first described by Cerf and Kahn in [1]. The
TCP fits into a layered protocol architecture just above a basic
Internet Protocol [2] which provides a way for the TCP to send and
recei ve variabl e-1ength segnents of information enclosed in internet
dat agram "envel opes". The internet datagram provides a neans for
addr essing source and destination TCPs in different networks. The

i nternet protocol also deals with any fragnentation or reassenbly of
the TCP segnents required to achieve transport and delivery through
nmul tipl e networks and interconnecting gateways. The internet protoco
also carries informati on on the precedence, security classification
and conpartnentation of the TCP segnents, so this information can be
conmuni cat ed end-to-end across multiple networks.

Pr ot ocol Layering

o e e e e e oo +
| hi gher - | evel |
o m e e e e aa o - +
| TCP |
T +
| internet protocol

o e e e e e oo +
| conmuni cati on net wor k|
o m e e e e aa o - +

Figure 1

Much of this document is witten in the context of TCP inplenentations
whi ch are co-resident with higher |evel protocols in the host

conputer. As a practical matter, many conputer systems will be
connected to networks via front-end conputers which house the TCP and
internet protocol |ayers, as well as network specific software. The
TCP specification describes an interface to the higher |evel protocols
whi ch appears to be inplenentable even for the front-end case, as |ong
as a suitable host-to-front end protocol is inplenented.

1.2. Scope
The TCP is intended to provide a reliable process-to-process
conmuni cation service in a multinetwork environment. The TCP is
i ntended to be a host-to-host protocol in common use in multiple
net wor ks.
1.3. About this Document
Thi s docunent represents a specification of the behavior required of

any TCP inplementation, both in its interactions with higher |eve
protocols and in its interactions with other TCPs. The rest of this

[Page 2]

January 1980
Transm ssi on Control Protoco
| ntroducti on

section offers a very brief view of the protocol interfaces and
operation. Section 2 sumarizes the phil osophical basis for the TCP
design. Section 3 offers both a detailed description of the actions
requi red of TCP when various events occur (arrival of new segnents,
user calls, errors, etc.) and the details of the formats of TCP
segnent s.

1.4. Interfaces

The TCP interfaces on one side to user or application processes and on
the other side to a |l ower |evel protocol such as Internet Protocol

The interface between an application process and the TCP is
illustrated in reasonable detail. This interface consists of a set of
calls much like the calls an operating system provides to an
application process for manipulating files. For exanple, there are
calls to open and cl ose connections and to send and receive letters on
establ i shed connections. It is also expected that the TCP can
asynchronously conmmuni cate with application progranms. Although

consi derable freedomis permtted to TCP inplenentors to design

i nterfaces which are appropriate to a particular operating system
environnent, a mnimumfunctionality is required at the TCP/ user
interface for any valid inplenmentation.

The interface between TCP and | ower |evel protocol is essentially
unspeci fied except that it is assuned there is a nechani sm whereby the
two | evel s can asynchronously pass informati on to each other

Typi cal ly, one expects the |ower |evel protocol to specify this
interface. TCP is designed to work in a very general environment of

i nterconnected networks. The |ower |evel protocol which is assumed
throughout this docunment is the Internet Protocol [2].

1.5. Qperation

As noted above, the primary purpose of the TCP is to provide reliable,
securabl e logical circuit or connection service between pairs of
processes. To provide this service on top of a less reliable internet
conmuni cation systemrequires facilities in the follow ng areas:

Basi ¢ Data Transfer
Reliability

Fl ow Contro

Mul ti pl exi ng

Connecti ons

Precedence and Security

The basic operation of the TCP in each of these areas is described in
the foll ow ng paragraphs.

[Page 3]

January 1980
Transm ssi on Control Protoco
| ntroducti on

Basi ¢ Data Transfer:

The TCP is able to transfer a continuous stream of octets in each
direction between its users by packagi ng sone nunber of octets into
segnents for transmi ssion through the internet system In this
stream node, the TCPs deci de when to bl ock and forward data at their
own conveni ence.

For users who desire a record-oriented service, the TCP al so pernits
the user to subnit records, called letters, for transnmission. Wen
the sending user indicates a record boundary (end-of-letter), this
causes the TCPs to pronptly forward and deliver data up to that
point to the receiver.

Reliability:

The TCP nmust recover fromdata that is damaged, |ost, duplicated, or
delivered out of order by the internet conmunication system This

i s achi eved by assigning a sequence nunber to each octet
transmtted, and requiring a positive acknow edgnment (ACK) fromthe
receiving TCP. If the ACKis not received within a tineout
interval, the data is retransmtted. At the receiver, the sequence
nunbers are used to correctly order segnents that may be received
out of order and to elimnate duplicates. Damage is handled by
addi ng a checksumto each segment transmtted, checking it at the
recei ver, and di scardi ng danaged segnents.

As long as the TCPs continue to function properly and the internet
system does not become conpletely partitioned, no transm ssion
errors will affect the users. TCP recovers fromi nternet

conmuni cati on systemerrors.

F

ow Contr ol

TCP provides a nmeans for the receiver to govern the anpbunt of data
sent by the sender. This is achieved by returning a "wi ndow' with
every ACK indicating a range of acceptabl e sequence nunbers beyond
the | ast segnent successfully received. For stream node, the w ndow
i ndi cates an all owed nunber of octets that the sender may transmt
before receiving further permssion. For record node, the w ndow

i ndi cates an all owed anmount of buffer space the sender may consune,
this may be nore than the nunber of data octets transmitted if there
is a msmtch between letter size and buffer size.

[Page 4]

January 1980
Transm ssi on Control Protoco
| ntroducti on

Mul ti pl exi ng:

To allow for many processes within a single Host to use TCP

comuni cation facilities sinultaneously, the TCP provides a set of
addresses or ports within each host. Concatenated with the network
and host addresses fromthe internet comrunication layer, this forms
a socket. A pair of sockets uniquely identifies each connection
That is, a socket may be sinultaneously used in nultiple

connecti ons.

The binding of ports to processes is handl ed i ndependently by each
Host. However, it proves useful to attach frequently used processes
(e.g., a "logger"” or timesharing service) to fixed sockets which are
made known to the public. These services can then be accessed
through the known addresses. Establishing and | earning the port
addresses of other processes may involve nore dynam ¢ nechani sns.

Connecti ons:

The reliability and flow control mechani sns descri bed above require
that TCPs initialize and nmaintain certain status information for
each data stream The conbination of this information, including
sockets, sequence numbers, and w ndow sizes, is called a connection
Each connection is uniquely specified by a pair of sockets
identifying its two sides.

When two processes w sh to conmunicate, their TCP's nust first
establish a connection (initialize the status information on each
side). Wen their comunication is conplete, the connection is
term nated or closed to free the resources for other uses.

Si nce connections nmust be established between unreliable hosts and
over the unreliable internet comruni cati on system a handshake
mechani smwi t h cl ock- based sequence nunbers is used to avoid
erroneous initialization of connections.

Precedence and Security:
The users of TCP may indicate the security and precedence of their

comrmuni cation. Provision is made for default values to be used when
these features are not needed.

[Page 5]

January 1980
Transm ssi on Control Protoco

[Page 6]

January 1980

2.

Transm ssi on Control Protoco

2. PHI LOSCPHY
1. Elenents of the Internetwork System

The internetwork environment consists of hosts connected to networks
which are in turn interconnected via gateways. It is assuned here
that the networks may be either l|ocal networks (e.g., the ETHERNET) or
| arge networks (e.g., the ARPANET), but in any case are based on
packet swi tching technology. The active agents that produce and
consume nessages are processes. Various levels of protocols in the
net wor ks, the gateways, and the hosts support an interprocess

conmuni cati on systemthat provides two-way data flow on | ogica
connecti ons between process ports.

We specifically assune that data is transmtted from host to host
through neans of a set of networks. Wen we say network, we have in
m nd a packet switched network (PSN). This assunption is probably
unnecessary, since a circuit switched network or a hybrid conbination
of the two could al so be used; but for concreteness, we explicitly
assune that the hosts are connected to one or nore packet sw tches of
a PSN.

The term packet is used generically here to nean the data of one
transaction between a host and a packet switch. The format of data
bl ocks exchanged between the packet switches in a network wll
generally not be of concern to us.

Hosts are conputers attached to a network, and fromthe comruni cation
network’s point of view, are the sources and destinations of packets.
Processes are viewed as the active elenments in host conputers (in
accordance with the fairly common definition of a process as a program
in execution). Even termnals and files or other 1/0O devices are

vi ewed as communi cating with each other through the use of processes.
Thus, all communication is viewed as inter-process comruni cation.

Since a process may need to distinguish anobng several conmuni cation
streans between itself and anot her process (or processes), we inagine
that each process may have a nunmber of ports through which it

conmuni cates with the ports of other processes.

.2. Mdel of QOperation

Processes transnmt data by calling on the TCP and passing buffers of
data as argunents. The TCP packages the data fromthese buffers into
segnents and calls on the internet nodule to transmt each segnent to
the destination TCP. The receiving TCP places the data froma segnent
into the receiving user’s buffer and notifies the receiving user. The
TCPs include control information in the segnents which they use to
ensure reliable ordered data transm ssion.

[Page 7]

January 1980
Transm ssi on Control Protoco
Phi | osophy

The nodel of internet comrunication is that there is an internet
protocol nodul e associated with each TCP which provides an interface
to the local network. This internet nbdul e packages TCP segnents

i nside internet datagrans and routes these datagrans to a destination
internet nodule or intermediate gateway. To transmit the datagram
through the local network, it is enbedded in a |ocal network packet.

The packet switches may perform further packagi ng, fragmentation, or
ot her operations to achieve the delivery of the |ocal packet to the
destination internet nodul e.

At a gateway between networks, the internet datagramis "unw apped"
fromits | ocal packet and exam ned to determ ne through which network
the internet datagram should travel next. The internet datagramis
then "wrapped" in a |local packet suitable to the next network and
routed to the next gateway, or to the final destination

A gateway is permtted to break up an internet datagraminto smaller
internet datagramfragnments if this is necessary for transm ssion
through the next network. To do this, the gateway produces a set of

i nternet datagrans; each carrying a fragment. Fragnments nmay be broken
into small er ones at internedi ate gateways. The internet datagram
fragment format is designed so that the destination internet nodul e
can reassenble fragments into internet datagrans.

A destination internet nodul e unwraps the segnent fromthe datagram
(after reassenbling the datagram if necessary) and passes it to the
destinati on TCP

This sinmple nodel of the operation gl osses over nmany details. One

i mportant feature is the type of service. This provides informtion
to the gateway (or internet nodule) to guide it in selecting the
service paraneters to be used in traversing the next network.

I ncluded in the type of service information is the precedence of the
datagram Datagrans may al so carry security information to permt
host and gateways that operate in nmultilevel secure environnents to
properly segregate datagrans for security considerations.

2.3. The Host Environnent

The TCP is assunmed to be a nodule in a tinme sharing operating system
The users access the TCP nmuch |ike they would access the file system
The TCP may call on other operating system functions, for exanple, to
manage data structures. The actual interface to the network is
assuned to be controlled by a device driver nodule. The TCP does not
call on the network device driver directly, but rather calls on the

i nternet datagram protocol module which may in turn call on the device
driver.

[Page 8]

January 1980
Transm ssi on Control Protoco
Phi | osophy

Though it is assuned here that processes are supported by the host
operating system the nechanisns of TCP do not preclude inplenentation
of the TCP in a front-end processor. However, in such an

i mpl enentation, a host-to-front-end protocol nust provide the
functionality to support the type of TCP-user interface described
above.

2.4. Interfaces

The TCP/user interface provides for calls made by the user on the TCP
to OPEN or CLOSE a connection, to SEND or RECEI VE data, or to obtain
STATUS about a connection. These calls are like other calls from user
programs on the operating system for exanple, the calls to open, read
from and close a file.

The TCP/internet interface provides calls to send and receive

dat agr ans addressed to TCP nodul es in hosts anywhere in the internet
system These calls have paraneters for passing the address, type of
service, precedence, security, and other control information

2.5. Relation to G her Protocols

The following diagramillustrates the place of the TCP in the protoco
hi er ar chy:

S + oo + oo + S R +
| Telnet| | FTP | |Voice|l ... | | Application Leve
oo + oo + oo + oo - +
| I I
+--m - - + +--m - - + +--m - - +
| TCP | | RTP | ... | | Host Leve
oonns + oonns + oonns +
I I I
e +
| I nt ernet Protocol | Gateway Leve
o e e e e e e e e e e e e aa o s +
I
e +
| Local Network Protocol | Net wor k Leve
e +

Prot ocol Rel ationships

Fi gure 2.

[Page 9]

January 1980
Transm ssi on Control Protoco
Phi | osophy

It is expected that the TCP will be able to support higher |eve
protocols efficiently. It should be easy to interface higher |eve
protocols |ike the ARPANET Telnet [3] or AUTODIN Il THP to the TCP

2.6. Reliable Comrunication

A stream of data sent on a TCP connection is delivered reliably and in
order at the destination.

Transmi ssion is made reliable via the use of sequence nunbers and
acknow edgnents. Conceptually, each octet of data is assigned a
sequence nunber. The sequence nunber of the first octet of data in a
segnent is the sequence nunber transmitted with that segnent and is
call ed the segnent sequence nunber. Segnents also carry an

acknow edgnent nunber which is the sequence nunber of the next
expected data octet of transnmissions in the reverse direction. Wen
the TCP transmits a segnment, it puts a copy on a retransm ssion queue
and starts a tiner; when the acknow edgnment for that data is received,
the segnent is deleted fromthe queue. |If the acknow edgnent is not
received before the tinmer runs out, the segnent is retransmtted.

An acknowl edgnent by TCP does not guarantee that the data has been
delivered to the end user, but only that the receiving TCP has taken
the responsibility to do so.

To govern the flow of data into a TCP, a flow control nechanismis
enpl oyed. The the data receiving TCP reports a wi ndow to the sending
TCP. This wi ndow specifies the nunber of octets, starting with the
acknow edgment nunber that the data receiving TCP is currently
prepared to receive

2.7. Connection Establishnment and d earing

To identify the separate data streans that a TCP may handl e, the TCP
provides a port identifier. Since port identifiers are selected

i ndependently by each operating system TCP, or user, they m ght not
be unique. To provide for unique addresses at each TCP, we
concatenate an internet address identifying the TCP with a port
identifier to create a socket which will be unique throughout al

net wor ks connect ed t oget her

A connection is fully specified by the pair of sockets at the ends. A
| ocal socket may participate in many connections to different foreign
sockets. A connection can be used to carry data in both directions,
that is, it is "full duplex".

TCPs are free to associate ports with processes however they choose.
However, several basic concepts seem necessary in any inplenmentation.

[Page 10]

January 1980
Transm ssi on Control Protoco
Phi | osophy

There nust be wel | -known sockets which the TCP associates only with
the "appropriate" processes by sone nmeans. W envision that processes
may "own" ports, and that processes can only initiate connections on
the ports they own. (Means for inplenenting ownership is a |loca

i ssue, but we envision a Request Port user command, or a nethod of

uni quely allocating a group of ports to a given process, e.g., by
associ ating the high order bits of a port nanme with a given process.)

A connection is specified in the OPEN call by the local port and
forei gn socket argunents. In return, the TCP supplies a (short) l|oca
connection name by which the user refers to the connection in
subsequent calls. There are several things that nust be remenbered
about a connection. To store this information we inagine that there
is a data structure called a Transm ssion Control Block (TCB). One

i npl enentation strategy woul d have the | ocal connection nanme be a
pointer to the TCB for this connection. The OPEN call also specifies
whet her the connection establishnent is to be actively pursued, or to
be passively waited for.

A passive OPEN request neans that the process wants to accept incom ng
connection requests rather than attenpting to initiate a connection
O'ten the process requesting a passive OPEN will accept a connection
request fromany caller. In this case a foreign socket of all zeros
is used to denote an unspecified socket. Unspecified foreign sockets
are allowed only on passive OPENs.

A service process that wished to provide services for unknown ot her
processes coul d i ssue a passive OPEN request with an unspecified
foreign socket. Then a connection could be made with any process that
requested a connection to this |local socket. It would help if this

| ocal socket were known to be associated with this service.

Wel | - known sockets are a conveni ent mechanismfor a priori associating
a socket address with a standard service. For instance, the

"Tel net-Server" process mght be permanently assigned to a particul ar
socket, and ot her sockets m ght be reserved for File Transfer, Renote
Job Entry, Text Cenerator, Echoer, and Sink processes (the |last three
being for test purposes). A socket address m ght be reserved for
access to a "Look-Up" service which would return the specific socket
at which a newy created service would be provided. The concept of a
wel | - known socket is part of the TCP specification, but the assignnent
of sockets to services is outside this specification.

Processes can issue passive OPENs and wait for matching calls from

ot her processes and be inforned by the TCP when connecti ons have been
established. Two processes which issue calls to each other at the
sane time are correctly connected. This flexibility is critical for

[Page 11]

January 1980
Transm ssi on Control Protoco
Phi | osophy

the support of distributed conputing in which conponents act
asynchronously with respect to each other

There are two cases for matching the sockets in the |ocal request and
an incomng segnent. In the first case, the |local request has fully
specified the foreign socket. |In this case, the match nust be exact.
In the second case, the local request has |left the foreign socket
unspecified. In this case, any foreign socket is acceptable as |ong
as the local sockets match.

If there are several pending passive OPENs (recorded in TCBs) with the
same | ocal socket, an incom ng segment should be matched to a request
with the specific foreign socket in the segment, if such a request

exi sts, before selecting a request with an unspecified foreign socket.

The procedures to establish and cl ear connections utilize synchronize
(SYN) and finis (FIN) control flags and involve an exchange of three
nmessages. This exchange has been termed a three-way hand shake [4].

A connection is initiated by the rendezvous of an arriving segnment
containing a SYN and a waiting TCB entry created by a user OPEN
conmand. The matching of | ocal and foreign sockets deternines when a
connection has been initiated. The connection becones "established"
when sequence nunbers have been synchronized in both directions.

The clearing of a connection also involves the exchange of segnments,
in this case carrying the FIN control flag.

2.8. Data Communi cati on

The data that flows on a connection may be thought of as a stream of
octets, or as a sequence of records. In TCP the records are called
letters and are of variable length. The sending user indicates in
each SEND call whether the data in that call conpletes a letter by the
setting of the end-of-letter paraneter.

The I ength of a letter may be such that it nust be broken into
segnents before it can be transmitted to its destination. W assune
that the segnents will nornmally be reassenbled into a letter before
bei ng passed to the receiving process. A segnent may contain all or a
part of a letter, but a segment never contains parts of nore than one
letter. The end of a letter is marked by the appearance of an ECL
control flag in a segment. A sending TCP is allowed to collect data
fromthe sending user and to send that data in segnents at its own
conveni ence, until the end of letter is signaled then it nust send al
unsent data. Wen a receiving TCP has a conplete letter, it must not
wait for nore data fromthe sending TCP before passing the letter to
the receiving process.

[Page 12]

January 1980
Transm ssi on Control Protoco
Phi | osophy

There is a coupling between letters as sent and the use of buffers of
data that cross the TCP/user interface. Each time an end-of-letter
(EQL) flag is associated with data placed into the receiving user’s
buffer, the buffer is returned to the user for processing even if the

buffer is not filled. |If aletter is longer than the user’s buffer,
the letter is passed to the user in buffer size units, the |last of
which may be only partly full. The receiving TCP's buffer size may be

conmuni cated to the sending TCP when the connection is being
est abl i shed.

The TCP is responsible for regulating the flow of segnents on the
connections, as a way of preventing itself from becom ng saturated or
over|l oaded with traffic. This is done using a wi ndow fl ow contro
mechani sm The data receiving TCP reports to the data sending TCP a
wi ndow whi ch is the range of sequence nunbers of data octets that data
receiving TCP is currently prepared to accept.

TCP al so provides a nmeans to comunicate to the receiver of data that
at some point further along in the data streamthan the receiver is
currently reading there is urgent data. TCP does not attenpt to
define what the user specifically does upon being notified of pending
urgent data, but the general notion is that the receiving process
shoul d take action to read through the end urgent data quickly.

2.9. Precedence and Security

The TCP makes use of the internet protocol type of service field and
security option to provide precedence and security on a per connection
basis to TCP users. Not all TCP nmodules will necessarily function in
a multilevel secure environment, sone nmay be limted to unclassified
use only, and others may operate at only one security |level and
conpartnent. Consequently, sone TCP inplenentations and services to
users may be limted to a subset of the nmultil evel secure case.

TCP nodul es which operate in a multilevel secure environnment shoul d
properly mark outgoing segnents with the security, compartmnent, and
precedence. Such TCP nodul es should al so provide to their users or
hi gher | evel protocols such as Telnet or THP an interface to allow
themto specify the desired security |evel, conpartnent, and
precedence of connecti ons.

2.10. Robustness Principle
TCP i npl enent ati ons should foll ow a general principle of robustness:

be conservative in what you do, be liberal in what you accept from
ot hers.

[Page 13]

January 1980
Transm ssi on Control Protoco

[Page 14]

January 1980
Transm ssi on Control Protocol

3. FUNCTI ONAL SPECI FI CATI ON
3.1. Header For mat

TCP segnents are sent as internet datagranms. The Internet Protocol
header carries several information fields, including the source and
destinati on host addresses [2]. A TCP header follows the internet
header, supplying information specific to the TCP protocol. This
division allows for the existence of host |evel protocols other than
TCP.

TCP Header For nat

0 1 2 3
01234567890123456789012345678901
s S S i I S R R e h T Tk e S S S o T S
| Sour ce Port | Destination Port |
B i aT T ST S O S it T ol STEE S U SR U S e O S S N S S
| Sequence Number |
Rk o T T e e e R i i R S S S ks T S S S e e e o
Acknowl edgrment Nunber |
T T i S e i s st oI S e S e S il Tt S S R S S e S
Dat a |
fset|
|

| U Al E| Rl S| F|
9
L

Q

R
Reserved |RCQS|lVY]I]| W ndow

| G KILITINN
e i i e S R it I S T i e it NI S I N SR R S R R o i

|

+

| |
| |
| |
+- +
| Checksum | Urgent Pointer |
e i I R R i T R it i S S e e e i I T R T e e i
| |
+- +
| |
+- +

+

Opti ons | Paddi ng
R e ik ik i i i i oI I I T e e e e e S e e

dat a
T et el e e S i S T i T HIE S e e e S e S
TCP Header For nat
Note that one tick mark represents one bit position.
Fi gure 3.
Source Port: 16 bits
The source port numnber.

Destination Port: 16 bits

The destination port nunber.

[Page 15]

January 1980
Transm ssion Control Protoco
Functional Specification

Sequence Number: 32 bits

The sequence nunber of the first data octet in this segnent (except
when SYN is present).

Acknowl edgrment Number: 32 bits

If the ACK control bit is set this field contains the value of the
next sequence nunber the sender of the segnent is expecting to
receive. Once a connection is established this is always sent.

Data Offset: 4 bits

The nunber of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header including options is an integra
nunber of 32 bits |ong.

Reserved: 6 bits
Reserved for future use. Mist be zero.
Control Bits: 8 bits (fromleft to right):

URG Urgent Pointer field significant
ACK: Acknow edgnent field significant
EOL: End of Letter

RST: Reset the connection

SYN: Synchroni ze sequence nunbers

FIN No nore data from sender
W ndow. 16 bits

The nunber of data octets beginning with the one indicated in the
acknow edgnment field which the sender of this segnment is willing to
accept.

Checksum 16 bits

The checksumfield is the 16 bit one's conplenent of the one's
conpl ement sumof all 16 bit words in the header and text. |If a
segnent contains an odd nunmber of header and text octets to be
checksunmed, the |last octet is padded on the right with zeros to
forma 16 bit word for checksum purposes. The pad is not
transmtted as part of the segnent. Wile conputing the checksum
the checksumfield itself is replaced with zeros.

The checksum al so covers a 96 bit pseudo header conceptually
prefixed to the TCP header. This pseudo header contains the Source

[Page 16]

January 1980
Transm ssion Control Protoco
Functional Specification

Address, the Destination Address, the Protocol, and TCP | ength.
This gives the TCP protection against msrouted segnents. This
information is carried in the Internet Protocol and is transferred
across the TCP/ Network interface in the argunments or results of
calls by the TCP on the IP.

T +
| Sour ce Address |
O +
| Destinati on Address
It +
| zero | PTCL | TCP Length
T +

The TCP Length is the TCP header plus the data length in octets
(this is not an explicitly transmtted quantity, but is conputed
fromthe total length, and the header |ength).

Urgent Pointer: 16 bits

This field comunicates the current value of the urgent pointer as a
positive offset fromthe sequence nunber in this segnent. The
urgent pointer points to the sequence nunmber of the octet follow ng
the urgent data. This field should only be interpreted in segnents
with the URG control bit set.

Options: variable
Options may occupy space at the end of the TCP header and are a
multiple of 8 bits in length. Al options are included in the
checksum An option may begin on any octet boundary. There are two
cases for the format of an option
Case 1: A single octet of option-Kkind.

Case 2: An octet of option-kind, an octet of option-length, and
the actual option-data octets.

The option-length counts the two octets of option-kind and
option-length as well as the option-data octets.

Note that the list of options may be shorter than the data offset
field mght inply. The content of the header beyond the
End- of - Opti on option should be header padding (i.e., zero).

A TCP must inplenment all options.

[Page 17]

Transm ssion Contro

Functi ona

January 1980

Pr ot oco
Speci fication

Currently defined options include (kind indicated in octal):

Ki nd
0
1
100
105

End of option list.
No- Oper at i on.
Reserved

Buf fer Size.

Specific Option Definitions

End of Option List

This option code indicates the end of the option list. This

m ght not coincide with the end of the TCP header according to
the Data Ofset field. This is used at the end of all options,
not the end of each option, and need only be used if the end of
the options would not otherw se coincide with the end of the TCP

header .

No- Qper ati on

Thi s option code nay be used between options, for exanple, to
align the begi nning of a subsequent option on a word boundary.
There is no guarantee that senders will use this option, so
recei vers nust be prepared to process options even if they do
not begin on a word boundary.

Buffer Size
B R B R B R B R +
| 01000101| 00000100| buf fer size
E - E - S E - +

Ki nd=105 Lengt h=4

[Page 18]

January 1980
Transm ssion Control Protoco
Functional Specification

Buf fer Size Option Data: 16 bits

If this option is present, then it conmuni cates the receive
buffer size at the TCP which sends this segnment. This field
shoul d only be sent in the initial connection request (i.e.,
in segments with the SYN control bit set). |If this option is
not used, the default buffer size of one octet is assumed.

Paddi ng: variabl e

The TCP header padding is used to ensure that the TCP header ends
and data begins on a 32 bit boundary. The padding is conposed of
zeros.

3.2. Term nol ogy

Bef ore we can di scuss very much about the operation of the TCP we need
to introduce some detailed term nology. The maintenance of a TCP
connection requires the remenbering of several variables. W conceive
of these variables being stored in a connection record called a
Transm ssion Control Block or TCB. Anpbng the variables stored in the
TCB are the | ocal and renpte socket nunbers, the security and
precedence of the connection, pointers to the user’s send and receive
buf fers, pointers to the retransmt queue and to the current segment.
In addition several variables relating to the send and receive
sequence nunbers are stored in the TCB

Send Sequence Vari abl es

SND. UNA - send unacknow edged
SND. NXT - send sequence

SND. WVAD - send wi ndow

SND. BS - send buffer size
SND. UP - send urgent pointer

SND. W - send sequence nunber used for |ast w ndow update
SND. LBB - send | ast buffer beginning
| SS - initial send sequence numnber

Recei ve Sequence Vari abl es

RCV. NXT - receive sequence
RCV. WAD - recei ve w ndow
RCV.BS - receive buffer size

RCV. UP - receive urgent pointer
RCV.LBB - receive |ast buffer beginning
| RS - initial receive sequence nunber

[Page 19]

January 1980
Transm ssion Control Protoco
Functional Specification

The foll owi ng diagranms may help to relate some of these variables to
t he sequence space.

Send Sequence Space

SND. UNA SND. NXT SND. UNA
+SND. VWD

- ol d sequence nunbers whi ch have been acknow edged
- sequence nunbers of unacknow edged dat a

sequence nunbers allowed for new data transni ssion
- future sequence nunbers which are not yet all owed

APOWONPE
1

Send Sequence Space

Fi gure 4.

Recei ve Sequence Space

1 - old sequence nunbers which have been acknow edged

2 - sequence nunbers all owed for new reception

3 - future sequence nunbers which are not yet all owed
Recei ve Sequence Space

Fi gure 5.

There are al so sone variables used frequently in the di scussion that
take their values fromthe fields of the current segnent.

[Page 20]

January 1980
Transm ssion Control Protocol
Functional Specification

Current Segment Vari abl es

SEG. SEQ - segnment sequence nunber

SEG. ACK - segment acknow edgnent numnber
SEG LEN - segnent |ength

SEG WNAD - segment w ndow

SEG UP - segment urgent pointer

SEG. PRC - segnent precedence val ue

A connection progresses through a series of states during its
lifetime. The states are: LISTEN, SYN SENT, SYN- RECEI VED,

ESTABLI SHED, FIN-WAIT-1, FIN-WAIT-2, TIME-WAIT, CLOSE-WAIT, CLOSING
and the fictional state CLOSED. CLOSED is fictional because it
represents the state when there is no TCB, and therefore, no
connection. Briefly the neanings of the states are:

LI STEN - represents waiting for a connection request fromany renote
TCP and port.

SYN-SENT - represents waiting for a natching connection request
after having sent a connection request.

SYN- RECEI VED - represents waiting for a confirm ng connection
request acknow edgnent after having both received and sent a
connection request.

ESTABLI SHED - represents an open connection, ready to transmt and
recei ve data segnents.

FINNVAIT-1 - represents waiting for a connection term nation request
fromthe renote TCP, or an acknow edgnent of the connection
term nation request previously sent.

FINNVWAIT-2 - represents waiting for a connection term nation request
fromthe rennte TCP.

TIME-WAIT - represents waiting for enough time to pass to be sure
the renote TCP received the acknow edgnent of its connection
term nation request.

CLOSE-WAIT - represents waiting for a connection term nation request
fromthe | ocal user

CLOSING - represents waiting for a connection term nation request
acknow edgnment fromthe renote TCP

CLOSED - represents no connection state at all

[Page 21]

January 1980
Transm ssi on Control Protoco

Functional Specification

A TCP connection progresses fromone state to another in response to
events. The events are the user calls, OPEN, SEND, RECEIVE, CLCSE
ABORT, and STATUS; the incom ng segnents, particularly those
containing the SYN and FIN flags; and timeouts.

The d ossary contains a nore conplete list of terms and their
definitions.

The state diagramin figure 6 only illustrates state changes, together
with the causing events and resulting actions, but addresses neither
error conditions nor actions which are not connected with state
changes. In a later section, nore detail is offered with respect to
the reaction of the TCP to events.

[Page 22]

January 1980
Transm ssion Control Protoco
Functional Specification

AT oo \ active OPEN
| CLOSED | L LR T
AT LSRR \ \ create TCB
| n \ \ snd SYN
passi ve OPEN | | CLCSE \ \
---------------------- \ \
create TCB | | delete TCB \ \
\Y, | \ \
AT + CLCOSE | \
| LISTEN| aemeemem-- |
R + delete TCB | |
rcv SYN | | SEND |
----------- N I v
AT + snd SYN, ACK / \ snd SYN AT +
| R LT T e LT EEE P EEES > |
| SYN | rcv SYN | SYN |
| ROVD | Q-mmmmmm oo e e | SENT
| | snd ACK | |
| R L L ELEEE R | |
AT + rcv ACK of SYN \ !/ rcv SYN, ACK AT +
| e I B
| X | | snd ACK
| \Y, \Y,
| CLGSE S +
------- | ESTAB
| snd FIN R +
| CLOSE | | rcv FIN
Voo e | |
R + snd FIN / \ snd ACK R +
| FIN SR e PR > CLOSE
| WAIT-1 |--------mmmmmmmmae e | VAT
AT + rcv FIN \ / CLCSE AT +
| rcv ACK of FIN = ------- I I
| -----emmee - - snd ACK | | snd FIN
\Y, X \Y, \Y,
SR + SR +
| FI NWAI T- 2| | CLOSI NG
STy + STy +
| rev FIN | rcv ACK of FIN
| ------- Ti meout =2MsL | ----emeee--
V snd ACK ------------ V delete TCB
R + delete TCB +--------- +
| TIME WAIT| ----------------- >| CLOSED
STy + STy +

TCP Connection State Di agram
Fi gure 6.

[Page 23]

January 1980
Transm ssion Control Protoco
Functional Specification

3.3. Sequence Nunbers

A fundanental notion in the design is that every octet of data sent
over a TCP connection has a sequence nunber. Since every octet is
sequenced, each of them can be acknow edged. The acknow edgmnent
mechani sm enpl oyed i s cumul ative so that an acknow edgment of sequence
nunber X indicates that all octets up to but not including X have been
received. This mechanismallows for straight-forward duplicate
detection in the presence of retransm ssion. Nunbering of octets
within a segnent is that the first data octet imediately follow ng
the header is the | owest nunbered, and the followi ng octets are
nunber ed consecutively.

It is essential to renenber that the actual sequence nunber space is
finite, though very large. This space ranges fromO0O to 2**32 - 1
Since the space is finite, all arithnetic dealing with sequence
nunbers nust be performed nodul o 2**32. This unsigned arithnetic
preserves the rel ationship of sequence nunbers as they cycle from
2**32 - 1 to 0 again. There are sone subtleties to conputer nodul o
arithmetic, so great care should be taken in programmng the

conpari son of such values. The typical kinds of sequence nunber
conpari sons which the TCP nust performinclude:

(a) Determning that an acknow edgnent refers to some sequence
nunber sent but not yet acknow edged.

(b) Determning that all sequence nunbers occupi ed by a segnent
have been acknow edged (e.g., to renove the segnent froma
retransm ssion queue).

(c) Determning that an incom ng segnment contains sequence nunbers

which are expected (i.e., that the segnent "overl aps" the
recei ve wi ndow).

[Page 24]

January 1980
Transm ssion Control Protoco
Functional Specification

On send connections the follow ng conpari sons are needed:

ol der sequence nunbers newer sequence nunbers

SND. UNA SEG. ACK SND. NXT

| | |
-] e XK= - - - - - XHXKKKHKKKKK= = = = = = - - - XXXKKK= == =] = - - -

| | | | | |

| | |
Segnent 1 Segnent 2 Segnent 3
<----- sequence space ----- >

Sendi ng Sequence Space | nfornmation

Fi gure 7.
SND. UNA = ol dest unacknow edged sequence number
SND. NXT = next sequence nunber to be sent
SEG ACK = acknow edgnent (next sequence nunber expected by the

acknow edgi ng TCP)
SEG SEQ = first sequence number of a segnent
SEG SEQ+SEG. LEN-1 = | ast sequence nunber of a segnent

A new acknow edgnent (called an "acceptable ack"), is one for which
the inequality bel ow hol ds:

SND. UNA < SEG ACK =< SND. NXT

Al arithmetic is nodul o 2¥**32 and that conparisons are unsigned.
"=<" means "l ess than or equal"

A segnent on the retransnission queue is fully acknow edged if the sum
of its sequence nunber and length is | ess than the acknow edgnent
val ue in the incom ng segnent.

SEG LEN i s the nunber of octets occupied by the data in the segment.
It is inportant to note that SEG LEN nust be non-zero; segnents which
do not occupy any sequence space (e.g., enpty acknow edgnent segnents)
are never placed on the retransm ssion queue, so would not go through
this particular test.

[Page 25]

January 1980
Transm ssion Control Protoco
Functional Specification

On receive connections the foll owi ng conmpari sons are needed:

ol der sequence nunbers newer sequence nunbers
RCV. NXT RCV. NXT+RCV. WND
| |
--------- XXX| XXX- = = = = = XOKKKKKKKK- = = == === e XXX XK= === - - - -
|| | ||
| | |
Segnent 1 Segnent 2 Segnent 3
<----- sequence space ----- >

Recei vi ng Sequence Space |nfornation
Fi gure 8.
RCV. NXT = next sequence nunber expected on incom ng segnents

RCV. NXT+RCV. WAD = | ast sequence nunber expected on incom ng
segnents, plus one

SEG SEQ = first sequence number occupi ed by the inconi ng segnent

SEG. SEQ+SEG. LEN-1 = | ast sequence nunber occupi ed by the incom ng
segment

A segnent is judged to occupy a portion of valid receive sequence
space if

0 =< (SEG SEQ+SEG LEN-1 - RCV. NXT) < (RCV. NXT+RCV. WAD - RCV. NXT)
SEG SEQ+SEG. LEN-1 is the | ast sequence nunber occupied by the segnent;
RCV. NXT is the next sequence nunber expected on an inconi ng segnent;
and RCV. NXT+RCV.WND is the right edge of the receive w ndow.

Actually, it is alittle nore conplicated than this. Due to zero

wi ndows and zero | ength segnments, we have four cases for the
acceptability of an incom ng segment:

[Page 26]

January 1980
Transm ssion Control Protoco
Functional Specification

Segnment Receive Test
Length W ndow

0 0 SEG. SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND

>0 0 not acceptabl e

>0 >0 RCV. NXT < SEG SEQ+SEG LEN =< RCV. NXT+RCV. WND

Note that the acceptance test for a segnent, since it requires the end
of a segnent to lie in the window, is somewhat nore restrictive than
is absolutely necessary. |If at |least the first sequence number of the
segnment lies in the receive window, or if some part of the segnent
lies in the receive wi ndow, then the segment mi ght be judged
acceptable. Thus, in figure 8, at |east segments 1 and 2 are
acceptable by the strict rule, and segnent 3 may or may not be,
dependi ng on the strictness of interpretation of the rule.

Not e that when the receive windowis zero no segnents shoul d be
accept abl e except ACK segnents. Thus, it should be possible for a TCP
to maintain a zero receive window while transmtting data and
recei vi ng ACKs.

We have taken advantage of the nunbering schene to protect certain
control information as well. This is achieved by inplicitly including
some control flags in the sequence space so they can be retransmtted
and acknow edged wi t hout confusion (i.e., one and only one copy of the

control will be acted upon). Control information is not physically
carried in the segnment data space. Consequently, we nmust adopt rules
for inplicitly assigning sequence nunmbers to control. The SYN and FIN

are the only controls requiring this protection, and these controls
are used only at connection opening and closing. For sequence numnber
pur poses, the SYN is considered to occur before the first actual data
octet of the segnment in which it occurs, while the FIN is considered
to occur after the last actual data octet in a segnent in which it
occurs. The segnent |ength includes both data and sequence space
occupying controls. Wen a SYNis present then SEG SEQ is the
sequence nunber of the SYN

Initial Sequence Nunber Sel ection
The protocol places no restriction on a particular connection being
used over and over again. A connection is defined by a pair of

sockets. New instances of a connection will be referred to as
i ncarnations of the connection. The problemthat arises owing to this

[Page 27]

January 1980
Transm ssion Control Protoco
Functional Specification

is -- "how does the TCP identify duplicate segnments from previous

i ncarnations of the connection?" This problem becones apparent if the
connection is being opened and cl osed in quick succession, or if the
connection breaks with I oss of nmenory and is then reestablished.

To avoi d confusion we nust prevent segnents from one incarnation of a
connection from being used while the same sequence nunmbers may stil

be present in the network froman earlier incarnation. W want to
assure this, even if a TCP crashes and | oses all know edge of the
sequence nunbers it has been using. Wen new connections are created,
an initial sequence nunmber (I1SN) generator is enployed which selects a
new 32 bit I1SN. The generator is bound to a (possibly fictitious) 32
bit clock whose Iow order bit is increnmented roughly every 4

m croseconds. Thus, the I SN cycl es approxi mately every 4.55 hours.
Since we assune that segments will stay in the network no nore than
tens of seconds or ninutes, at worst, we can reasonably assune that
ISN's will be unique.

For each connection there is a send sequence nunber and a receive
sequence nunber. The initial send sequence nunber (ISS) is chosen by
the data sending TCP, and the initial receive sequence nunber (IRS) is
| earned during the connection establishing procedure.

For a connection to be established or initialized, the two TCPs rnust
synchroni ze on each other’s initial sequence numbers. This is done in
an exchange of connection establishing messages carrying a control bit
called "SYN' (for synchronize) and the initial sequence nunbers. As a
short hand, nessages carrying the SYN bit are also called "SYNs".

Hence, the solution requires a suitable nechanismfor picking an
initial sequence number and a slightly involved handshake to exchange
the ISN's. A "three way handshake" is necessary because sequence
nunbers are not tied to a global clock in the network, and TCPs may
have different nechanisns for picking the ISN's. The receiver of the
first SYN has no way of know ng whether the segnent was an ol d del ayed
one or not, unless it remenbers the | ast sequence number used on the
connection (which is not always possible), and so it rust ask the
sender to verify this SYN

The "three way handshake" and the advantages of a "cl ock-driven"
schenme are discussed in [4].

Knowi ng When to Keep Qui et

To be sure that a TCP does not create a segnent that carries a
sequence nunber which nay be duplicated by an old segnent remaining in
the network, the TCP nust keep quiet for a maxi num segnent lifetine
(MBL) before assigning any sequence nunbers upon starting up or
recovering froma crash in which nenory of sequence nunbers in use was

[Page 28]

January 1980
Transm ssion Control Protoco
Functional Specification

lost. For this specification the MSL is taken to be 2 mnutes. This
is an engineering choice, and may be changed if experience indicates
it is desirable to do so. Note that if a TCP is reinitialized in sone
sense, yet retains its nmenory of sequence nunbers in use, then it need
not wait at all; it nust only be sure to use sequence nunbers | arger
than those recently used.

It should be noted that this strategy does not protect against
spoofing or other replay type duplicate nessage problens.

3.4. Establishing a connection

The "three-way handshake” is the procedure used to establish a
connection. This procedure normally is initiated by one TCP and
responded to by another TCP. The procedure also works if two TCP
simul taneously initiate the procedure. Wen simultaneous attenpt
occurs, the TCP receives a "SYN' segnent which carries no

acknow edgnent after it has sent a "SYN'. O course, the arrival of
an old duplicate "SYN' segment can potentially make it appear, to the
reci pient, that a sinultaneous connection initiation is in progress.
Proper use of "reset" segments can di sanbi guate these cases. Severa
exanpl es of connection initiation follow. Al though these exanples do
not show connection synchroni zation using data-carrying segnents, this
is perfectly legitimate, so long as the receiving TCP doesn’t deliver
the data to the user until it is clear the data is valid (i.e., the
data nust be buffered at the receiver until the connection reaches the
ESTABLI SHED state). The three-way handshake reduces the possibility
of false connections. It is the inplenentation of a trade-off between
menory and nmessages to provide information for this checking.

The sinplest three-way handshake is shown in figure 9 below The
figures should be interpreted in the following way. Each line is
nunbered for reference purposes. Right arrows (-->) indicate
departure of a TCP segnent fromTCP Ato TCP B, or arrival of a
segnent at B fromA Left arrows (<--), indicate the reverse.
Ellipsis (...) indicates a segment which is still in the network
(delayed). An "XXX'" indicates a segnment which is |lost or rejected.
Conments appear in parentheses. TCP states represent the state AFTER
the departure or arrival of the segnment (whose contents are shown in
the center of each line). Segnment contents are shown in abbreviated
form w th sequence number, control flags, and ACK field. O her
fields such as wi ndow, addresses, |engths, and text have been |l eft out
inthe interest of clarity.

[Page 29]

January 1980
Transm ssion Control Protoco
Functional Specification

TCP A TCP B
1. CLOSED LI STEN
2. SYN- SENT --> <SEQ=100><CTL=SYN> --> SYN- RECEI VED

3. ESTABLI SHED <-- <SEQ@=300><ACK=101><CTL=SYN, ACK> <-- SYN RECEI VED
4. ESTABLI SHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLI SHED
5. ESTABLI SHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLI SHED
Basi ¢ 3-Way Handshake for Connection Synchroni zati on
Fi gure 9.

In line 2 of figure 9, TCP A begins by sending a SYN segnent
indicating that it will use sequence nunbers starting with sequence
nunber 100. In line 3, TCP B sends a SYN and acknow edges the SYN it
received fromTCP A. Note that the acknow edgrment field indicates TCP
B is now expecting to hear sequence 101, acknow edgi ng the SYN which
occupi ed sequence 100.

At line 4, TCP A responds with an enpty segnment containing an ACK for
TCP B's SYN, and in line 5, TCP A sends sone data. Note that the
sequence nunber of the segment inline 5is the sane as in line 4
because the ACK does not occupy sequence nunber space (if it did, we
woul d wi nd up ACKi ng ACK s!).

Si nul taneous initiation is only slightly nore conplex, as is shown in
figure 10. Each TCP cycles from CLOSED to SYN-SENT to SYN-RECEI VED to
ESTABLI SHED.

The principle reason for the three-way handshake is to prevent old
duplicate connection initiations from causing confusion. To deal wth
this, a special control nessage, reset, has been devised. |If the
receiving TCP is in a non-synchronized state (i.e., SYN SENT,

SYN- RECEI VED), it returns to LISTEN on receiving an acceptabl e reset.
If the TCP is in one of the synchronized states (ESTABLI SHED
FINNWAIT-1, FINWAIT-2, TIME-WAIT, CLOSE-WAIT, CLOSING, it aborts the
connection and inforns its user. W discuss this latter case under
"hal f - open" connections bel ow.

[Page 30]

January 1980

TCP A
1. CLOSED
2. SYN- SENT

3. SYN- RECEI VED <--

5. SYN- RECEI VED -->

6. ESTABLISHED <--

7.

TCP A
1. CLOSED
2. SYN- SENT

3. (duplicate)

4. SYN- SENT
5. SYN- SENT
6.

7. SYN- SENT

Transm ssi on Control Protoco

Functional Specification
TCP B
CLCSED
<SEQ=100><CTL=SYN>
<SEQ=300><CTL=SYN> <-- SYN SENT

<SEQ=100><CTL=SYN>

<SEQ=101><ACK=301><CTL=ACK> ..

<SEQ=301><ACK=101><CTL=ACK> <--

--> SYN- RECEI VED

SYN- RECEI VED

<SEQ=101><ACK=301><CTL=ACK> --> ESTABLI SHED

Si mul t aneous Connection Synchroni zati on

Fi gure 10.

<SEQ=100><CTL=SYN>

<SEQ=1000><CTL=SYN>

-->

<SEQ=300><ACK=1001><CTL=SYN, ACK> <--

<SEQ=1001><CTL=RST>

<SEQ=100><CTL=SYN>

<SEQ=400><ACK=101><CTL=SYN, ACK>

8. ESTABLI SHED - -> <SEQ=101><ACK=401><CTL=ACK>

As a sinple exanple of

Recovery from A d Duplicate SYN

Fi gure 11.

recovery fromold duplicates,

-->

<--

TCP B

LI STEN

SYN- RECEI VED

SYN- RECEI VED

LI STEN

SYN- RECEI VED

SYN- RECEI VED

ESTABL| SHED

consi der

[Page 31]

January 1980
Transm ssion Control Protoco
Functional Specification

figure 11. At line 3, an old duplicate SYN arrives at TCP B. TCP B
cannot tell that this is an old duplicate, so it responds nornally
(line 4). TCP A detects that the ACK field is incorrect and returns a
RST (reset) with its SEQ field selected to nake the segnent

believable. TCP B, on receiving the RST, returns to the LI STEN state.
VWhen the original SYN (pun intended) finally arrives at line 6, the
synchroni zati on proceeds normally. |If the SYN at line 6 had arrived
before the RST, a nore conpl ex exchange m ght have occurred with RST s
sent in both directions.

Hal f - Open Connections and O her Anonalies

An established connection is said to be "half-open" if one of the
TCPs has closed or aborted the connection at its end without the
know edge of the other, or if the two ends of the connection have
becorme desynchroni zed owing to a crash that resulted in | oss of
menory. Such connections will automatically becone reset if an
attenpt is made to send data in either direction. However, half-open
connections are expected to be unusual, and the recovery procedure is
mldly invol ved

If at site A the connection no |onger exists, then an attenpt by the
user at site Bto send any data on it will result in the site B TCP
receiving a reset control nessage. Such a nmessage should indicate to
the site B TCP that something is wong, and it is expected to abort

t he connecti on.

Assunme that two user processes A and B are conmunicating with one

anot her when a crash occurs causing | oss of menmory to A's TCP
Dependi ng on the operating system supporting A's TCP, it is likely
that some error recovery mechani smexists. Wen the TCP is up again
Ais likely to start again fromthe beginning or froma recovery
point. As aresult, Awll probably try to OPEN the connection again
or try to SEND on the connection it believes open. 1In the latter
case, it receives the error message "connection not open" fromthe
local (A's) TCP. In an attenpt to establish the connection, A's TCP
will send a segnment containing SYN. This scenario |eads to the
exanpl e shown in figure 12. After TCP A crashes, the user attenpts to
re-open the connection. TCP B, in the neantinme, thinks the connection
i's open.

[Page 32]

January 1980
Transm ssion Control Protoco
Functional Specification

TCP A TCP B
1. (CRASH (send 300, recei ve 100)
2. CLOSED ESTABLI SHED
3. SYN-SENT --> <SEQ=400><CTL=SYN> --> (??)
4. (') <-- <SEQ=300><ACK=100><CTL=ACK> <-- ESTABLI SHED
5. SYN-SENT --> <SEQ=100><CTL=RST> --> (Abort!!)
6. CLOSED
7. SYN SENT --> <SEQ=400><CTL=SYN> -->

Hal f - Open Connection Di scovery
Figure 12.

When the SYN arrives at line 3, TCP B, being in a synchronized state,
responds with an acknow edgnment indicating what sequence it next
expects to hear (ACK 100). TCP A sees that this segment does not
acknow edge anything it sent and, being unsynchroni zed, sends a reset
(RST) because it has detected a hal f-open connection. TCP B aborts at
line 5. TCP Awll continue to try to establish the connection; the
problemis now reduced to the basic 3-way handshake of figure 9.

An interesting alternative case occurs when TCP A crashes and TCP B
tries to send data on what it thinks is a synchronized connection
This is illustrated in figure 13. In this case, the data arriving at
TCP A from TCP B (line 2) is unacceptabl e because no such connection
exists, so TCP A sends a RST. The RST is acceptable so TCP B
processes it and aborts the connection.

[Page 33]

January 1980
Transm ssion Control Protoco
Functional Specification

TCP A TCP B
1. (CRASH (send 300, recei ve 100)
2. (??) <-- <SEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLI SHED
3. --> <SEQ=100><CTL=RST> --> (ABORT!!)
Active Side Causes Hal f-Open Connection Di scovery
Fi gure 13.
In figure 14, we find the two TCPs A and B with passive connections
waiting for SYN. An old duplicate arriving at TCP B (line 2) stirs B
into action. A SYNACK is returned (line 3) and causes TCP A to

generate a RST (the ACK in line 3 is not acceptable). TCP B accepts
the reset and returns to its passive LISTEN state.

TCP A TCP B
1. LISTEN LI STEN
2. ... <SEQ=Z><CTL=SYN> --> SYN RECEI VED

3. (??) <-- <SEQEX><ACK=Z+1><CTL=SYN, ACK> <-- SYN- RECEI VED
4. --> <SEQ@=Z+1><CTL=RST> --> (return to LISTEN)
5. LI STEN LI STEN
Od Duplicate SYN Initiates a Reset on two Passive Sockets
Fi gure 14.

A variety of other cases are possible, all of which are accounted for
by the followi ng rules for RST generation and processing.

Reset Generati on

As a general rule, reset (RST) should be sent whenever a segnent
arrives which apparently is not intended for the current or a future
i ncarnation of the connection. A reset should not be sent if it is
not clear that this is the case. Thus, if any segnent arrives for a
nonexi stent connection, a reset should be sent. |If a segnent ACKs

[Page 34]

January 1980
Transm ssion Control Protoco
Functional Specification

somet hi ng whi ch has never been sent on the current connection, then
one of the follow ng two cases applies.

1. |If the connection is in any non-synchronized state (LI STEN

SYN- SENT, SYN- RECEIVED) or if the connection does not exist, a reset
(RST) should be formed and sent for any segnent that acknow edges
somet hing not yet sent. The RST should take its SEQ field fromthe
ACK field of the offending segnment (if the ACK control bit was set),
and its ACK bit should be reset (zero), except to refuse a initia
SYN. A reset is also sent if an incomng segment has a security |eve
or conmpartnent which does not exactly match the | evel and comnpart nent
requested for the connection. |If the precedence of the incom ng
segnent is |less than the precedence | evel requested a reset is sent.

2. If the connection is in a synchronized state (ESTABLI SHED
FINNWAIT-1, FINWAIT-2, TIME-WAIT, CLOSE-WAIT, CLOSING, any
unaccept abl e segnent should elicit only an enpty acknow edgnent
segnment containing the current send-sequence nunmber and an
acknow edgnent indicating the next sequence nunber expected to be
recei ved.

Reset Processing

Al reset (RST) segnents are validated by checking their SEQ fiel ds.
Areset is valid if its sequence nunber is in the window In the case
of a RST received in response to an initial SYN any sequence nunber is
acceptable if the ACK field acknow edges the SYN

The receiver of a RST first validates it, then changes state. |If the
receiver was in the LISTEN state, it ignores it. |If the receiver was
i n SYN-RECEI VED state and had previously been in the LI STEN state,
then the receiver returns to the LI STEN state, otherw se the receiver
aborts the connection and goes to the CLOSED state. |If the receiver
was in any other state, it aborts the connection and advi ses the user
and goes to the CLOSED state.

3.5. dosing a Connection

CLCSE is an operation neaning "I have no nore data to send." The

noti on of closing a full-duplex connection is subject to ambi guous
interpretation, of course, since it may not be obvious how to treat
the receiving side of the connection. W have chosen to treat CLOSE
in a sinplex fashion. The user who CLOSEs may continue to RECElIVE
until he is told that the other side has CLOSED al so. Thus, a program
could initiate several SENDs followed by a CLOSE, and then continue to
RECEI VE until signaled that a RECElI VE fail ed because the other side
has CLOSED. W assune that the TCP will signal a user, even if no
RECEI VEs are outstanding, that the other side has closed, so the user

[Page 35]

January 1980
Transm ssion Control Protoco
Functional Specification

can term nate his side gracefully. A TCP will reliably deliver al

buf fers SENT before the connection was CLOSED so a user who expects no
data in return need only wait to hear the connection was CLOSED
successfully to know that all his data was received at the destination
TCP.

There are essentially three cases:
1) The user initiates by telling the TCP to CLOSE the connection
2) The renpte TCP initiates by sending a FIN control signa
3) Both users CLOSE sinultaneously

Case 1: Local user initiates the close

In this case, a FIN segnent can be constructed and pl aced on the

out goi ng segnent queue. No further SENDs fromthe user will be
accepted by the TCP, and it enters the FINWAIT-1 state. RECEIVEs
are allowed in this state. Al segnents preceding and including FIN
will be retransmitted until acknow edged. Wen the other TCP has
bot h acknowl edged the FIN and sent a FIN of its own, the first TCP
can ACK this FIN. It should be noted that a TCP receiving a FIN
will ACK but not send its own FIN until its user has CLOSED t he
connection al so.

Case 2: TCP receives a FIN fromthe network
If an unsolicited FIN arrives fromthe network, the receiving TCP

can ACK it and tell the user that the connection is closing. The
user should respond with a CLOSE, upon which the TCP can send a FIN

to the other TCP. The TCP then waits until its own FINis

acknow edged whereupon it deletes the connection. If an ACK is not
forthconming, after a timeout the connection is aborted and the user
is told.

Case 3: both users close sinultaneously

A sinmul taneous CLOSE by users at both ends of a connection causes
FI N segnents to be exchanged. Wen all segnents preceding the FINs
have been processed and acknow edged, each TCP can ACK the FIN it
has received. Both will, upon receiving these ACKs, delete the
connecti on.

[Page 36]

January 1980

TCP A
ESTABLI SHED

(d ose)
FIN-WAIT-1

FI N-WAI T- 2

TI ME-WAI T
TI ME-WAIT

(2 MBL)
CLOSED

TCP A
ESTABL| SHED

(d ose)
FIN-WAIT-1

CLOSI NG

CLOSED

-->

<--

-->
<- -

o>
<- -

Transm ssion Contro

Functi ona

<SEQ=100><CTL=FI N>

<SEQ=300><ACK=101><CTL=ACK>

<SEQ=301><CTL=FI N>

<SEQ=100><ACK=301><CTL=ACK>

Nor mal Cl ose Sequence

Fi gure 15.

<SEQ=100><CTL=FI N>
<SEQ=300><CTL=FI N>
<SEQ=100><CTL=FI N>

<SEQ=100><ACK=301><CTL=ACK>

<SEQ=300><ACK=101><CTL=ACK>
<SEQ=100><ACK=301><CTL=ACK>

Si mul t aneous C ose Sequence

Fi gure 16.

Pr ot oco
Speci fication

TCP B

ESTABLI SHED

CLOSE-WAI'T
CLOSE-VWAI'T

(d ose)
CLCSI NG

CLOSED

TCP B
ESTABL| SHED

(d ose)
FIN-WAIT-1

CLOSI NG

CLOSED

[Page 37]

January 1980

Transm ssi on Control Protoco
Functional Specification

3.

6. Precedence and Security

The intent is that connection be allowed only between ports operating
with exactly the sanme security and conpartnent values and at the

hi gher of the precedence |evel requested by the two parts.

The precedence | evels are:

flash override - 111
flash - 110
i mredi at e - 10X
priority - 01X
routine - 00X

The security levels are:

top secret - 11
secret - 10
confidential - 01
uncl assified - 00

The conpartnents are assigned by the Defense Comunications Agency.
The defaults are precedence: routine, security: unclassified,
conpartnent: zero. A host which does not inplement precedence or
security feature should clear these fields to zero for segments it
sends.

A connection attenpt with m snmatched security/conpartnment values or a
| ower precedence val ue should be rejected by sending a reset.

Note that TCP nodul es which operate only at the default val ue of
precedence will still have to check the precedence of incom ng
segnents and possibly raise the precedence | evel they use on the
connecti on.

. 7. Data Conmuni cation

Once the connection is established data is comuni cated by the
exchange of segnents. Because segnents may be | ost due to errors
(checksumtest failure), or network congestion, TCP uses

retransm ssion (after a tineout) to ensure delivery of every segment.
Duplicate segnents may arrive due to network or TCP retransm ssion.
As discussed in the section on sequence nunbers the TCP perforns
certain tests on the sequence and acknow edgnment nunbers in the
segnents to verify their acceptability.

The sender of data keeps track of the next sequence number to use in
the variable SND. NXT. The receiver of data keeps track of the next

[Page 38]

January 1980
Transm ssion Control Protoco
Functional Specification

sequence nunber to expect in the variable RCV.NXT. The sender of data
keeps track of the ol dest unacknow edged sequence nunber in the
variable SND.UNA. If the data flowis nonmentarily idle and all data
sent has been acknow edged then the three variables will be equal

VWen the sender creates a segnent and transmits it the sender advances
SND. NXT. When the receiver accepts a segnent it advances RCV. NXT and
sends an acknow edgnent. When the data sender receives an

acknow edgnent it advances SND. UNA. The extent to which the val ues of
these variables differ is a nmeasure of the delay in the comunication

Normal |y the amount by which the variables are advanced is the length
of the data in the segnent. However, when letters are used there are
speci al provisions for coordination the sequence nunbers, the letter
boundari es, and the receive buffer boundaries.

End of Letter Sequence Number Adjustnents

There is provision in TCP for the receiver of data to optionally
communi cate to the sender of data on a connection at the tine of the

connection synchroni zation the receiver's buffer size. |If thisis
done the receiver nmust use this fixed size of buffers for the lifetine
of the connection. |If a buffer size is communicated then there is a

coordi nati on between receive buffers, letters, and sequence nunbers.

Each tine a buffer is conpleted either due to being filled or due to
an end of letter, the sequence nunber is increnented through the end
of that buffer.

That is, whenever an EQL is transnitted, the sender advances its send
sequence nunber, SND. NXT, by an ampunt sufficient to consunme all the
unused space in the receiver’s buffer. The anmpunt of space consuned
in this fashion is subtracted fromthe send wi ndow just as is the
space consuned by actual data

And, whenever an ECL is received, the receiver advances its receive
sequence nunber, RCV.NXT, by an ampunt sufficient to consunme all the
unused space in the receiver’s buffer. The anmbunt of space consuned
in this fashion is subtracted fromthe receive window just as is the
space consuned by actual data

[Page 39]

January 1980

Transm ssi on Control Protoco
Functional Specification

ol der sequence nunbers newer sequence nunbers

| Buf fer 1 | Buf fer 2

|

|

L

SEG. SEQ A B

XXX - data octets from segnent
+++ - phant om dat a

<----- sequence space ----- >

End of Letter Adjustnent

Fi gure 17.
In the case illustrated above, if the segnment does not carry an EQOL
flag, the next value of SND.NXT or RCV.NXT will be A If it does
carry an EOL flag, the next value will be B.

The exchange of buffer size and sequencing information is done in
units of octets. If no buffer size is stated, then the buffer size is
assuned to be 1 octet. The receiver tells the sender the size of the
buffer in a SYN segnment that contains the 16 bit buffer size data in
an option field in the TCP header

Each EQOL advances the sequence nunmber (SN) to the next buffer boundary
Wil e LBB < SEG SEQ+SEG LEN
Do LBB <- LBB + BS End
SN <- LBB
where LBB is the Last Buffer Beginning, and BS is the buffer size.

The CLOSE user call inplies an end of letter, as does the FIN contro
flag in an incom ng segrent.

The Conmuni cation of Urgent |nformation
The objective of the TCP urgent nechanismis to allow the sendi ng user
to stimulate the receiving user to accept sone urgent data and to

permit the receiving TCP to indicate to the receiving user when al
the currently known urgent data has been received by the user

[Page 40]

January 1980
Transm ssion Control Protoco
Functional Specification

Thi s mechanismpermts a point in the data streamto be designated as
the end of "urgent" information. Wenever this point is in advance of
the receive sequence number (RCV.NXT) at the receiving TCP, that TCP
should tell the user to go into "urgent node"; when the receive
sequence nunber catches up to the urgent pointer, the TCP should tel

user to go into "normal node". |If the urgent pointer is updated while
the user is in "read fast" node, the update will be invisible to the
user.

The nmet hod enploys a urgent field which is carried in all segments
transmtted. The URG control flag indicates that the urgent field is
meani ngf ul and shoul d be added to the segment sequence nunber to yield
the urgent pointer. The absence of this flag indicates that the
urgent pointer has not changed.

To send an urgent indication the user nust also send at |east one data
octet. If the sending user also indicates end of letter, timely
delivery of the urgent information to the destination process is
enhanced.

Managi ng the W ndow

The wi ndow sent in each segnent indicates the range of sequence nunber
the sender of the window (the data receiver) is currently prepared to
accept. There is an assunption that this is related to the currently
avai | abl e data buffer space available for this connection. The w ndow
information is a guideline to be ained at.

Indicating a | arge wi ndow encourages transnissions. |If nore data
arrives than can be accepted, it will be discarded. This will result
i n excessive retransm ssions, adding unnecessarily to the | oad on the
network and the TCPs. Indicating a small w ndow may restrict the
transm ssion of data to the point of introducing a round trip del ay
bet ween each new segnment transmitted

The nmechani snms provided allow a TCP to advertise a | arge wi ndow and to
subsequent |y advertise a much smaller w ndow wi t hout having accepted
that nmuch data. This, so called "shrinking the window," is strongly
di scouraged. The robustness principle dictates that TCPs will not
shrink the wi ndow thensel ves, but will be prepared for such behavi or
on the part of other TCPs.

The sending TCP nmust be prepared to accept and send at | east one octet
of new data even if the send window is zero. The sending TCP should
regularly retransmt to the receiving TCP even when the wi ndow is
zero. Two minutes is recomended for the retransmi ssion interval when
the window is zero. This retransmission is essential to guarantee

[Page 41]

January 1980
Transm ssion Control Protoco
Functional Specification

that when either TCP has a zero wi ndow the re-opening of the w ndow
will be reliably reported to the other

The sendi ng TCP packages the data to be transmitted i nto segnents
which fit the current wi ndow, and may repackage segnments on the
retransm ssi on queue. Such repackaging is not required, but may be
hel pf ul .

Users nust keep readi ng connections they close for sending until the
TCP says no nore data

In a connection with a one-way data flow, the w ndow information wll
be carried in acknow edgnment segments that all have the same sequence
nunber so there will be no way to reorder themif they arrive out of
order. This is not a serious problem but it will allow the w ndow
information to be on occasion tenporarily based on old reports from
the data receiver.

3. 8. I nterfaces

There are of course two interfaces of concern: the user/ TCP interface
and the TCP/IP interface. W have a fairly elaborate nodel of the
user/ TCP interface, but only a sketch of the interface to the | ower

| evel protocol nodule.

User/ TCP Interface

The functional description of user commands to the TCP is, at best,
fictional, since every operating systemwi |l have different
facilities. Consequently, we must warn readers that different TCP
i mpl enent ati ons may have different user interfaces. However, al
TCPs nmust provide a certain mninumset of services to guarantee
that all TCP inplenentations can support the sane protoco

hi erarchy. This section specifies the functional interfaces
required of all TCP inplenmentations.

TCP User Conmands

The foll owi ng sections functionally characterize a USER TCP
interface. The notation used is simlar to nbst procedure or
function calls in high level |anguages, but this usage is not
meant to rule out trap type service calls (e.g., SVCs, UUGCs,
EMIS) .

The user commands descri bed bel ow specify the basic functions the
TCP nmust performto support interprocess comruni cation

I ndi vi dual inplenmentations should define their own exact format,
and may provide conbinations or subsets of the basic functions in

[Page 42]

January 1980
Transm ssion Control Protoco
Functional Specification

single calls. In particular, sone inplenentations may wi sh to
automatically OPEN a connection on the first SEND or RECEI VE
i ssued by the user for a given connection

In providing interprocess communication facilities, the TCP nust
not only accept conmands, but nust also return information to the
processes it serves. The latter consists of:

(a) general information about a connection (e.g., interrupts,
renote close, binding of unspecified foreign socket).

(b) replies to specific user comrands indicating success or
various types of failure.

Open

Format: OPEN (local port, foreign socket, active/passive
[, buffer size] [, tinmeout] [, precedence]
[, security/conmpartment]) -> local connection name

We assune that the local TCP is aware of the identity of the
processes it serves and will check the authority of the process
to use the connection specified. Depending upon the

i mpl enentati on of the TCP, the |ocal network and TCP identifiers
for the source address will either be supplied by the TCP or by
the processes that serve it (e.g., the programwhich interfaces
the TCP network). These considerations are the result of
concern about security, to the extent that no TCP be able to
masquer ade as another one, and so on. Simlarly, no process can
masquer ade as anot her w thout the collusion of the TCP

If the active/passive flag is set to passive, then this is a
call to LISTEN for an incom ng connection. A passive open nay
have either a fully specified foreign socket to wait for a
particul ar connection or an unspecified foreign socket to wait
for any call. A fully specified passive call can be made active
by the subsequent execution of a SEND

A full-duplex transnission control block (TCB) is created and
partially filled in with data fromthe OPEN comand paraneters.

On an active OPEN conmand, the TCP will begin the procedure to
synchronize (i.e., establish) the connection at once.

The buffer size, if present, indicates that the caller wll

al ways receive data fromthe connection in that size of buffers.
This buffer size is a neasure of the buffer between the user and

[Page 43]

January 1980
Transm ssion Control Protoco
Functional Specification

the local TCP. The buffer size between the two TCPs may be
different.

The tineout, if present, permits the caller to set up a tineout
for all buffers transmitted on the connection. |If a buffer is
not successfully delivered to the destination within the tineout
period, the TCP will abort the connection. The present gl oba
default is 30 seconds. The buffer retransmission rate nmay vary;
nost likely, it will be related to the neasured tinme for
responses fromthe renote TCP

The TCP or some conponent of the operating systemwll verify
the users authority to open a connection with the specified
precedence or security/conpartment. The absence of precedence
or security/conpartment specification in the OPEN call indicates
the default val ues shoul d be used.

TCP will accept incom ng requests as matching only if the
security/conpartment information is exactly the sane and only if
the precedence is equal to or higher than the precedence
requested in the OPEN call

The precedence for the connection is the higher of the val ues
requested in the OPEN call and received fromthe incom ng
request, and fixed at that value for the life of the connection

Dependi ng on the TCP inpl enentation, either a |local connection
nane will be returned to the user by the TCP, or the user wll
specify this local connection nane (in which case anot her
paranmeter is needed in the call). The local connection name can
then be used as a short hand termfor the connection defined by
the <l ocal socket, foreign socket> pair

Send

Format: SEND(| ocal connection name, buffer address, byte count,
ECL flag, URCGENT flag [, timeout])

This call causes the data contained in the indicated user buffer
to be sent on the indicated connection. |f the connection has
not been opened, the SEND is considered an error. Some

i mpl enentations may allow users to SEND first; in which case, an
automati c OPEN woul d be done. If the calling process is not

aut hori zed to use this connection, an error is returned.

If the ECL flag is set, the data is the End O a Letter, and the
EQL bit will be set in the last TCP segnent created fromthe

[Page 44]

January 1980
Transm ssion Control Protoco
Functional Specification

buffer. |If the ECL flag is not set, subsequent SENDs wil
appear to be part of the sanme letter.

If the URGENT flag is set, segments resulting fromthis cal

wi Il have the urgent pointer set to indicate that sone of the
data associated with this call is urgent. This facility, for
exanpl e, can be used to simulate "break" signals fromterm nals
or error or conpletion codes froml/O devices. The senantics of
this signal to the receiving process are unspecified. The
receiving TCP will signal the urgent condition to the receiving
process as long as the urgent pointer indicates that data
precedi ng the urgent pointer has not been consuned by the

recei ving process. The purpose of urgent is to stinmulate the
receiver to accept sone urgent data and to indicate to the
receiver when all the currently known urgent data has been
received.

The nunber of times the sending user’s TCP signals urgent wll
not necessarily be equal to the nunber of tines the receiving
user will be notified of the presence of urgent data.

If no foreign socket was specified in the OPEN, but the
connection is established (e.g., because a LISTEN ng connection
has becone specific due to a foreign segnment arriving for the

| ocal socket), then the designated buffer is sent to the inplied
foreign socket. In general, users who nake use of OPEN with an
unspeci fied forei gn socket can nake use of SEND without ever
explicitly knowi ng the foreign socket address.

However, if a SEND is attenpted before the foreign socket
beconmes specified, an error will be returned. Users can use the
STATUS call to determ ne the status of the connection. |n sone
i mpl enentations the TCP may notify the user when an unspecified
socket is bound.

If a timeout is specified, then the current timeout for this
connection is changed to the new one.

In the sinplest inplenentation, SEND woul d not return control to
the sending process until either the transm ssion was conplete
or the tinmeout had been exceeded. However, this sinple nethod
is both subject to deadl ocks (for example, both sides of the
connection mght try to do SENDs before doi ng any RECElI VES) and
of fers poor performance, so it is not recommended. A nore

sophi sticated i nplenentation would return inmediately to all ow
the process to run concurrently with network 1/0O, and,
furthernore, to allow multiple SENDs to be in progress.

[Page 45]

January 1980
Transm ssion Control Protoco
Functional Specification

Multiple SENDs are served in first come, first served order, so
the TCP will queue those it cannot service i mediately.

We have inplicitly assumed an asynchronous user interface in
which a SEND | ater elicits sone kind of SIGNAL or
pseudo-interrupt fromthe serving TCP. An alternative is to
return a response i Mmedi ately. For instance, SENDs night return
i medi ate | ocal acknow edgnent, even if the segnment sent had not
been acknow edged by the distant TCP. W could optim stically

assume eventual success. |If we are wong, the connection wll
cl ose anyway due to the timeout. |In inplenmentations of this
ki nd (synchronous), there will still be some asynchronous

signals, but these will deal with the connection itself, and not
with specific segnents or letters.

NOTA BENE: In order for the process to distinguish anbng error
or success indications for different SENDs, it might be
appropriate for the buffer address to be returned along with the
coded response to the SEND request. TCP-to-user signals are

di scussed below, indicating the information which should be
returned to the calling process.

Recei ve

Format: RECEIVE (local connection name, buffer address, byte
count)

This command al |l ocates a receiving buffer associated with the
speci fied connection. |f no OPEN precedes this conmrand or the
calling process is not authorized to use this connection, an
error is returned.

In the sinplest inplenentation, control would not return to the
calling programuntil either the buffer was filled, or sone
error occurred, but this scheme is highly subject to deadl ocks.
A nore sophisticated i nplenentation would pernit severa

RECEI VEs to be outstanding at once. These would be filled as,
segnents arrive. This strategy permts increased throughput at
the cost of a nore el aborate schene (possibly asynchronous) to
notify the calling programthat a letter has been received or a
buffer filled.

If insufficient buffer space is given to reassenble a conplete
letter, the EOL flag will not be set in the response to the
RECEI VE. The buffer will be filled with as nuch data as it can
hold. The last buffer required to hold the letter is returned
with EOL signal ed.

[Page 46]

January 1980
Transm ssion Control Protoco
Functional Specification

The remaining parts of a partly delivered letter will be placed
in buffers as they are nade avail abl e via successi ve RECEIl VEs.

I f a nunber of RECEIVEs are outstanding, they may be filled with
parts of a single long letter or with at nost one letter each
The return codes associated with each RECEIVE will indicate what
is contained in the buffer.

If a buffer size was given in the OPEN call, then all buffers
presented in RECElIVE calls nust be of exactly that size, or an
error indication will be returned.

The URGENT flag will be set only if the receiving user has
previously been inforned via a TCP-to-user signal, that urgent
data is waiting. The receiving user should thus be in
"read-fast" node. |If the URGENT flag is on, additional urgent
data remains. |If the URGENT flag is off, this call to RECEIVE
has returned all the urgent data, and the user nmay now | eave
"read-fast" node.

To di stinguish anong several outstandi ng RECEI VEs and to take
care of the case that a letter is smaller than the buffer
supplied, the return code is acconpani ed by both a buffer

poi nter and a byte count indicating the actual Iength of the
| etter received.

Al ternative inplenentations of RECEIVE m ght have the TCP

al l ocate buffer storage, or the TCP night share a ring buffer
with the user. Variations of this kind will produce obvious
variation in user interface to the TCP

C ose
Format: CLOSE(local connection nane)

Thi s command causes the connection specified to be closed. |If
the connection is not open or the calling process is not

aut horized to use this connection, an error is returned.

Cl osing connections is intended to be a graceful operation in
the sense that outstanding SENDs will be transmitted (and
retransmtted), as flow control permits, until all have been
serviced. Thus, it should be acceptable to make several SEND
calls, followed by a CLOSE, and expect all the data to be sent
to the destination. It should also be clear that users should
continue to RECEI VE on CLOSI NG connections, since the other side
may be trying to transmt the last of its data. Thus, CLCSE
neans "I have no nore to send" but does not nean "I will not
receive any nore." It nmay happen (if the user level protocol is
not well thought out) that the closing side is unable to get rid

[Page 47]

January 1980
Transm ssion Control Protoco
Functional Specification

of all its data before timng out. 1In this event, CLOSE turns
into ABORT, and the closing TCP gives up

The user may CLOSE the connection at any time on his own
initiative, or in response to various pronpts fromthe TCP
(e.g., renote close executed, transm ssion timeout exceeded,
destinati on inaccessible).

Because cl osing a connection requires comunication with the
foreign TCP, connections nmay remain in the closing state for a
short time. Attenpts to reopen the connection before the TCP
replies to the CLOSE conmand will result in error responses.

Close also inplies end of letter.
St at us
Format: STATUS(| ocal connection nane)

This is an inplenentati on dependent user conmmand and coul d be
excluded w thout adverse effect. Information returned would
typically come fromthe TCB associated with the connection

This command returns a data bl ock containing the foll ow ng
i nformation:

| ocal socket,

foreign socket,

| ocal connection nane,

recei ve w ndow,

send w ndow,

connection state,

nunber of buffers awaiting acknow edgnent,
nunber of buffers pending receipt (including partial ones),
recei ve buffer size,

urgent state,

pr ecedence,

security/ conpartnent,

and default transm ssion tinmeout.

Dependi ng on the state of the connection, or on the

i mpl enentation itself, some of this information may not be
avai |l abl e or meaningful. |If the calling process is not

aut horized to use this connection, an error is returned. This
prevents unaut horized processes fromgaining i nformati on about a
connecti on.

[Page 48]

January 1980
Transm ssion Control Protoco
Functional Specification

Abor t
Format: ABORT (|l ocal connection nane)

Thi s command causes all pending SENDs and RECEI VES to be
aborted, the TCB to be renoved, and a special RESET message to
be sent to the TCP on the other side of the connection
Dependi ng on the inplenentation, users nmay receive abort

i ndi cations for each outstanding SEND or RECEIVE, or may sinmply
recei ve an ABORT-acknow edgnent .

TCP-t 0- User Messages

It is assunmed that the operating system environnent provides a
neans for the TCP to asynchronously signal the user program \Wen
the TCP does signal a user program certain information is passed
to the user. Oten in the specification the information will be
an error nessage. |In other cases there will be information
relating to the conpletion of processing a SEND or RECEI VE or

ot her user call

The following information is provided:

Local Connection Name Al ways
Response String Al ways

Buf f er Address Send & Receive
Byte count (counts bytes received) Recei ve
End- of - Letter fl ag Recei ve
End- of - Urgent fl ag Recei ve

TCP/ Network I nterface

The TCP calls on a |ower |evel protocol nbdule to actually send and
receive information over a network. One case is that of the ARPA

i nternetwork system where the |lower |evel nodule is the Internet
Protocol [2]. In nost cases the follow ng sinmple interface would be
adequat e.

[Page 49]

January 1980

Transm ssi on Control Protoco
Functional Specification

The fol | ow

ng two calls satisfy the requirements for the TCP to

i nternet protocol nobdul e comunication

SEND (dest, TGOS, TTL, Buf PTR, len, Id, DF, options => result)

wher e:

dest

TS =

= destination address
type of service

TTL = time to live
Buf PTR = buffer pointer

len = length of buffer
Id = ldentifier
DF = Don’t Fragnent
options = internet option data
result = response
K = dat agram sent ok

Error = error in argunents or |ocal network error

Note that the precedence is included in the TGOS and the
security/conpartnent is passed as an option

RECV (Buf PTR => result, source, dest, prot, TGS, |en)

wher e:
Buf PTR = buffer pointer
result = response
OK = dat agram recei ved ok

Error = error in argunments
source = source address

dest = destination address
prot = protocol

TOS = type of service

options = internet option data
len = length of buffer

Note that the precedence is in the TGOS, and the
security/conpartrment is an option

When t he

TCP sends a segment, it executes the SEND call supplying

all the argunents. The internet protocol nodule, on receiving

this cal
nessage.
the | oca

, checks the arguments and prepares and sends the
If the argunents are good and the segnent is accepted by
network, the call returns successfully. |[If either the

argunents are bad, or the segnment is not accepted by the | oca

net wor k,
returns,

[Page 50]

the call returns unsuccessfully. On unsuccessfu
a reasonabl e report should be nade as to the cause of the

January 1980
Transm ssion Control Protoco
Functional Specification

problem but the details of such reports are up to individua
i npl enent ati ons.

When a segment arrives at the internet protocol nodule fromthe

| ocal network, either there is a pending RECV call from TCP or
there is not. In the first case, the pending call is satisfied by
passing the information fromthe segnent to the TCP. 1In the
second case, the TCP is notified of a pending segnent.

The notification of a TCP may be via a pseudo interrupt or simlar
mechani sm as appropriate in the particular operating system
envi ronnent of the inplenmentation

A TCP's RECV call may then either be i mediately satisfied by a
pendi ng segnment, or the call may be pending until a segnent
arrives.

We note that the Internet Protocol provides arguments for a type
of service and for a tine to live. TCP uses the follow ng
settings for these paraneters:

Type of Service = Precedence: none, Package: stream
Reliability: higher, Preference: speed, Speed: higher; or
00011111.
Tinme to Live = one mnute, or 00111100.

Note that the assuned maxi num segnent lifetine is two m nutes.

Here we explicitly ask that a segment be destroyed if it
cannot be delivered by the internet systemw thin one ninute.

[Page 51]

January 1980

Transm ssi on Control Protoco
Functional Specification

3.

9. Event Processing

The activity of the TCP can be characterized as responding to events.
The events that occur can be cast into three categories: user calls,
arriving segnents, and tineouts. This section describes the
processing the TCP does in response to each of the events. In many
cases the processing required depends on the state of the connection

Events that occur:
User Calls

OPEN
SEND
RECEI VE
CLOSE
ABORT
STATUS

Arriving Segnents
SEGVENT ARRI VES
Ti meout s

USER TI MEQUT
RETRANSM SSI ON TI MEQUT

The nodel of the TCP/user interface is that user comrands receive an
i medi ate return and possi bly a del ayed response via an event or
pseudo interrupt. In the follow ng descriptions, the term"signal"
neans cause a del ayed response.

Error responses are given as character strings. For exanple, user
conmands referencing connections that do not exist receive "error
connection not open".

Pl ease note in the following that all arithmetic on sequence nunbers,
acknow edgnment nunbers, w ndows, et cetera, is nodulo 2**32 the size
of the sequence nunber space. Also note that "=<" neans |ess than or
equal to.

A natural way to think about processing incomng segnents is to
imagine that they are first tested for proper sequence nunber (i.e.
that their contents lie in the range of the expected "receive w ndow'
in the sequence nunber space) and then that they are generally queued
and processed i n sequence nunber order

[Page 52]

January 1980
Transm ssion Control Protoco
Functional Specification

VWen a segnment overlaps other already received segnents we reconstruct
the segnment to contain just the new data, and adjust the header fields
to be consistent.

[Page 53]

January 1980
Transm ssion Control Protoco
Functional Specification
OPEN Cal

OPEN Cal
CLOSED STATE (i.e., TCB does not exist)

Create a new transm ssion control block (TCB) to hold connection
state information. Fill in |ocal socket identifier, foreign
socket, precedence, security/conpartnent, and user tineout
information. Verify the security and precedence requested are
allowed for this user, if not return "error: precedence not

al owed" or "error: security/conpartment not allowed." |If active
and the foreign socket is unspecified, return "error: foreign
socket unspecified"; if active and the foreign socket is

specified, issue a SYN segnment. An initial send sequence numnber
(I1SS) is selected and the TCP receive buffer size is selected (if
applicable). A SYN segnent of the form <SEQ=lI SS><CTL=SYN> i s sent
(this may include the buffer size option if applicable). Set

SND. UNA to ISS, SND.NXT to ISS+1, SND.LBB to |SS+1, enter SYN SENT
state, and return.

If the caller does not have access to the |ocal socket specified,

return "error: connection illegal for this process". |If thereis
no roomto create a new connection, return "error: insufficient
resources".

LI STEN STATE

SYN- SENT STATE
SYN- RECEI VED STATE
ESTABLI SHED STATE
FI N-VWAI T-1 STATE
FI N-VWAI T- 2 STATE
TI ME-WAI T STATE
CLOSE- WAI T STATE
CLOSI NG STATE

Return "error: connection already exists".

[Page 54]

January 1980
Transm ssi on Control Protoco

Functional Specification
SEND Cal

SEND Cal
CLOSED STATE (i.e., TCB does not exist)

If the user should no have access to such a connection, then
return "error: connection illegal for this process”.

QG herwi se, return "error: connection does not exist".
LI STEN STATE

If the foreign socket is specified, then change the connection
from passive to active, select an ISS, and select the receive

buf fer size. Send a SYN segnent, set SND.UNA to ISS, SND.NXT to
| SS+1 and SND.LBB to | SS+1. Enter SYN-SENT state. Data

associ ated with SEND may be sent with SYN segnent or queued for
transm ssion after entering ESTABLI SHED state. The urgent bit if
requested in the command should be sent with the first data
segnent sent as a result of this conmand. |If there is no roomto
gueue the request, respond with "error: insufficient resources".
I f Foreign socket was not specified, then return "error: foreign
socket unspecified".

SYN- SENT STATE

Queue for processing after the connection i s ESTABLI SHED
Typi cal ly, nothing can be sent yet, anyway, because the send
wi ndow has not yet been set by the other side. |If no space,
return "error: insufficient resources"”.

SYN- RECEI VED STATE

Queue for later processing after entering ESTABLI SHED state. |If
no space to queue, respond with "error: insufficient resources".

ESTABLI SHED STATE

Segnenti ze the buffer, send or queue it for output, with a

pi ggybacked acknow edgnent (acknow edgnment val ue = RCV.NXT) with
the data. |If there is insufficient space to renenber this buffer,
simply return "error: insufficient resources"”.

If renmpte buffer size is not one octet, and, if this is the end of

a letter, do the followi ng end-of-letter/buffer-size adjustnent
processi ng:

[Page 55]

January 1980
Transm ssi on Control Protoco

Functional Specification
SEND Cal

if EOL = 0 then
SND. NXT <- SEG SEQ + SEG LEN

if EOL = 1 then
Whi l e SND. LBB < SEG SEQ + SEG LEN
Do SND. LBB <- SND. LBB + SND. BS End
SND. NXT <- SND. LBB

If the urgent flag is set, then SND. UP <- SND. NXT-1 and set the
urgent pointer in the outgoing segnent.

FIN-WAI T-1 STATE
FI N-WAI T- 2 STATE
TI ME-WAI T STATE
Return "error: connection closing"” and do not service request.
CLOSE- WAI T STATE
Segnenti ze any text to be sent and queue for output. If there is
i nsufficient space to remenber the SEND, return "error
i nsufficient resources”
CLCSI NG STATE

Respond with "error: connection closing"

[Page 56]

January 1980
Transm ssi on Control Protoco

Functional Specification
RECEI VE Cal

RECEI VE Cal
CLOSED STATE (i.e., TCB does not exist)

If the user should no have access to such a connection, return
"error: connection illegal for this process".

QO herwi se return "error: connection does not exist".
LI STEN STATE
SYN- SENT STATE
SYN- RECEI VED STATE
Queue for processing after entering ESTABLI SHED state. |If there
is no roomto queue this request, respond with "error
i nsufficient resources".
ESTABLI SHED STATE

If insufficient incomng segnments are queued to satisfy the

request, queue the request. |If there is no queue space to
renmenber the RECElIVE, respond with "error: insufficient
resources".

Reassenbl e queued i ncom ng segnments into receive buffer and return
to user. Mark "end of letter" (EQL) if this is the case.

If RCV.UP is in advance of the data currently being passed to the
user notify the user of the presence of urgent data.

When the TCP takes responsibility for delivering data to the user
that fact must be comunicated to the sender via an

acknow edgnment. The formation of such an acknow edgnent is
described bel ow in the discussion of processing an incom ng
segnent .

FI N-VWAI T-1 STATE
FI N-WAI T- 2 STATE

Reassenbl e and return a letter, or as nmuch as will fit, in the

user buffer. Queue the request if it cannot be serviced
i medi atel y.

[Page 57]

January 1980

Transm ssi on Control Protoco

Functional Specification
RECEI VE Cal

TI ME-WAI T STATE
CLOSE- WAI T STATE

Since the renote side has already sent FIN, RECElIVEs nust be
satisfied by text already reassenbl ed, but not yet delivered to
the user. If no reassenbl ed segnent text is awaiting delivery,
the RECEI VE should get a "error: connection closing" response.
Q herwi se, any renai ning text can be used to satisfy the RECEI VE.

CLOSI NG STATE

Return "error: connection closing"

[Page 58]

January 1980
Transm ssion Control Protoco
Functional Specification
CLOSE Cal

CLCSE Cal
CLOSED STATE (i.e., TCB does not exist)

If the user should no have access to such a connection, return
"error: connection illegal for this process".

QG herwi se, return "error: connection does not exist".
LI STEN STATE

Any out st andi ng RECEI VEs shoul d be returned with "error: closing”
responses. Delete TCB, return "ok".

SYN- SENT STATE

Delete the TCB and return "error: closing" responses to any
gueued SENDs, or RECEI VEs.

SYN- RECEI VED STATE

Queue for processing after entering ESTABLI SHED state or
segnentize and send FIN segnent. |If the latter, enter FINWAIT-1
state.

ESTABLI SHED STATE

Queue this until all preceding SENDs have been segmentized, then
forma FIN segnent and send it. |In any case, enter FINWAIT-1
state.

FI N-WAI T-1 STATE
FI N-WAI T- 2 STATE

Strictly speaking, this is an error and should receive a "error
connection closing"” response. An "ok" response woul d be
acceptable, too, as long as a second FINis not emtted (the first
FIN may be retransnitted though).

[Page 59]

January 1980
Transm ssion Control Protoco
Functional Specification
CLOSE Cal

TI ME-WAI T STATE
Strictly speaking, this is an error and should receive a "error
connection closing" response. An "ok" response woul d be
acceptabl e, too. However, since the FIN has been sent and
acknow edged, nothing should be sent (or retransmtted).
CLOSE- WAI T STATE

Queue this request until all preceding SENDs have been
segnenti zed; then send a FIN segnent, enter CLOSING state.

CLOSI NG STATE

Respond with "error: connection closing"

[Page 60]

January 1980
Transm ssi on Control Protoco

Functional Specification
ABORT Cal

ABORT Cal
CLOSED STATE (i.e., TCB does not exist)

If the user should no have access to such a connection, return
"error: connection illegal for this process".

QG herwi se return "error: connection does not exist".
LI STEN STATE

Any out st andi ng RECEI VEs shoul d be returned with "error
connection reset" responses. Delete TCB, return "ok".

SYN- SENT STATE

Delete the TCB and return "reset" responses to any queued SENDs,
or RECEI VEs.

SYN- RECEI VED STATE
Send a RST of the form
<SEQ=SND. NXT><ACK=RCV. NXT><CTL=RST, ACK>

and return any unprocessed SENDs, or RECEIVEs with "reset" code,
del ete the TCB

ESTABLI SHED STATE
Send a reset segnent:
<SEQ=SND. NXT><ACK=RCV. NXT><CTL=RST, ACK>
Al'l queued SENDs and RECEl VEs shoul d be given "reset" responses;

all segnents queued for transm ssion (except for the RST formed
above) or retransm ssion should be flushed, delete the TCB

[Page 61]

January 1980
Transm ssion Control Protoco
Functional Specification
ABORT Cal

FI N-WAI T-1 STATE
FI N-WAI T- 2 STATE

A reset segnent (RST) should be fornmed and sent:
<SEQ=SND. NXT><ACK=RCV. NXT><CTL=RST, ACK>
Qut st andi ng SENDs, RECEI VEs, CLOSEs, and/or segnents queued for
retransm ssi on, or segnentizing, should be flushed, with
"connection reset" notification to the user, delete the TCB
TI ME- WAI T STATE
Respond with "ok" and delete the TCB
CLOSE- WAI T STATE

Fl ush any pendi ng SENDs and RECEI VEs, returning "connection reset”
responses for them Form and send a RST segnent:

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=RST, ACK>
Flush all segnent queues and del ete the TCB
CLOSI NG STATE
Respond with "ok" and del ete the TCB; flush any remmini ng segnent

queues. |If a CLOSE command is still pending, respond "error
connection reset".

[Page 62]

January 1980
Transm ssi on Control Protocol

Functional Specification
STATUS Cal |

STATUS Cal |
CLOSED STATE (i.e., TCB does not exist)

If the user should no have access to such a connection, return
"error: connection illegal for this process".

QG herwi se return "error: connection does not exist".

LI STEN STATE

Return "state LI STEN', and the TCB pointer.

SYN- SENT STATE

Return "state SYN- SENT", and the TCB pointer.
SYN- RECEI VED STATE

Return "state = SYN RECEI VED', and the TCB pointer.
ESTABLI SHED STATE

Return "state = ESTABLI SHED', and the TCB pointer.
FI N-WAI T-1 STATE

Return "state = FINNWAIT-1", and the TCB pointer.
FI N-WAI T- 2 STATE

Return "state = FINNWAIT-2", and the TCB pointer.
TI ME- WAI T STATE

Return "state = TIME-WAIT and the TCB pointer.

CLOSE- WAI T STATE

Return "state CLOSE-WAI T*, and the TCB pointer.
CLCSI NG STATE

CLCOSING', and the TCB pointer.

Return "state

[Page 63]

January 1980

Transm ssi on Control Protoco

Functional Specification
SEGVENT ARRI VES

SEGVENT ARRI VES
If the state is CLOSED (i.e., TCB does not exist) then

all data in the incom ng segnent is discarded. An incom ng
segnent containing a RST is discarded. An incom ng segment not
containing a RST causes a RST to be sent in response. The
acknow edgnent and sequence field values are selected to nake the
reset sequence acceptable to the TCP that sent the offending
segnent .

If the ACK bit is off, sequence nunber zero is used,
<SEQ=0><ACK=SEG. SEQ+SEG. LEN><CTL=RST, ACK>

If the ACK bit is on,
<SEQ=SEG. ACK><CTL=RST>

Ret ur n.

If the state is LISTEN then

first check for an ACK
Any acknow edgnment is bad if it arrives on a connection still in
the LI STEN state. An acceptable reset segnent should be forned
for any arriving ACK-beari ng segnent, except another RST. The
RST shoul d be fornmatted as foll ows:

<SEQ=SEG. ACK><CTL=RST>

Ret ur n.
An incomng RST should be ignored. Return.

if there was no ACK then check for a SYN
If the SYN bit is set, check the security. |If the
security/conpartnment on the incom ng segnent does not exactly
mat ch the security/conpartnent in the TCB then send a reset and
return. |If the SEGPRCis |less than the TCB. PRC then send a
reset and return. |If the SEG PRC is greater than the TCB. PRC
then set TCB. PRC<-SEG PRC. Now RCV.NXT and RCV.LBB are set to
SEG SEQ+1, IRS is set to SEG SEQ and any other control or text

shoul d be queued for processing later. 1SS should be sel ected
and a SYN segment sent of the form

[Page 64]

January 1980
Transm ssion Control Protocol
Functional Specification
SEGVENT ARRI VES

<SEQ=I SS><ACK=RCV. NXT><CTL=SYN, ACK>

SND. NXT and SND. LBB are set to |1SS+1 and SND.UNA to ISS. The
connection state should be changed to SYN-RECEI VED. Note that

any other incomng control or data (conbined with SYN will be
processed in the SYN RECEI VED state, but processing of SYN and
ACK shoul d not be repeated. If the listen was not fully

specified (i.e., the foreign socket was not fully specified),
then the unspecified fields should be filled in now

if there was no SYN but there was other text or control

Any ot her control or text-bearing segnent (not containing SYN)
nust have an ACK and thus woul d be discarded by the ACK
processing. An incom ng RST segnment could not be valid, since
it could not have been sent in response to anything sent by this
i ncarnation of the connection. So you are unlikely to get here,
but if you do, drop the segment, and return.

If the state is SYN-SENT t hen
first check for an ACK

If SEG ACK =< | SS, or SEG ACK > SND. NXT, or the
security/conpartnent in the segnment does not exactly natch the
security/conpartnent in the TCB, or the precedence in the
segnent is |less than the precedence in the TCB, send a reset

<SEQ=SEG. ACK><CTL=RST>
and discard the segnent. Return.

[f SND. UNA =< SEG ACK =< SND. NXT and the security/conpart ment
and precedence are acceptable then the ACK is acceptable.

SND. UNA shoul d be advanced to equal SEG ACK, and any segments on
the retransm ssion queue which are thereby acknow edged shoul d
be renoved.

if the ACKis ok (or there is no ACK), check the RST bit
If the RST bit is set then signal the user "error: connection
reset”, enter CLOSED state, drop the segment, delete TCB, and

return.

if the ACKis ok (or there is no ACK) and it was not a RST, check
the SYN bit

[Page 65]

January 1980
Transm ssi on Control Protocol

Functional Specification
SEGVENT ARRI VES

If the SYN bit is on and the security/conpartnment and precedence
are acceptable then, RCV.NXT and RCV.LBB are set to SEG SEQ+1
IRS is set to SEG SEQ If SND.UNA > I SS (our SYN has been
ACKed), change the connection state to ESTABLI SHED, otherw se
enter SYN-RECEIVED. 1|n any case, forman ACK segment:

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>

and send it. Data or controls which were queued for
transm ssi on may be incl uded.

If SEG PRC is greater than TCB. PRC set TCB. PRC<- SEG PRC
If there are other controls or text in the segment then continue

processing at the fifth step bel ow where the URG bit is checked,
ot herwi se return.

[Page 66]

January 1980
Transm ssion Control Protoco
Functional Specification
SEGVENT ARRI VES

O herw se,
first check sequence numnber

SYN- RECEI VED STATE
ESTABLI SHED STATE
FI N-WAI T-1 STATE
FI N-WAI T- 2 STATE
TI ME-VWAI T STATE
CLOSE-WAI T STATE
CLOSI NG STATE

Segnents are processed in sequence. Initial tests on arriva
are used to discard old duplicates, but further processing is
done in SEG SEQ order. |If a segnment’s contents straddle the
boundary between old and new, only the new parts shoul d be
processed.

There are four cases for the acceptability test for an i ncom ng
segnent :

Segnment Receive Test
Length W ndow

0 0 SEG SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND

>0 0 not acceptabl e

>0 >0 RCV. NXT < SEG SEQ+SEG LEN =< RCV. NXT+RCV. WND
Note that the test above guarantees that the | ast sequence
nunber used by the segnment lies in the receive-window |If the
RCV.WND i s zero, no segnents will be acceptable, but specia

al | owance shoul d be nade to accept valid ACKs, URGs and RSTs.

If an incom ng segnent is not acceptable, an acknow edgnent
shoul d be sent in reply:

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>

If the inconmi ng segnent is unacceptable, drop it and return

[Page 67]

January 1980
Transm ssi on Control Protocol

Functional Specification
SEGVENT ARRI VES

second check security and precedence

If the security/conpartment and precedence in the segnent do not
exactly match the security/conpartment and precedence in the TCB
then forma reset and return.

Note this check is placed foll owi ng the sequence check to prevent
a segnment froman old connection between these parts with a

di fferent security or precedence from causing an abort of the
current connection.

third check the ACK field,
SYN- RECEI VED STATE

If the RST bit is off and SND. UNA < SEG ACK =< SND. NXT then set
SND. UNA <- SEG ACK, renove any acknow edged segnments fromthe
retransm ssi on queue, and enter ESTABLI SHED st ate.

If the segment acknow edgnent is not acceptable, forma reset
segnent,

<SEQ=SEG. ACK><CTL=RST>

and send it, unless the incom ng segnent is an RST (or there is
no ACK), in which case, it should be discarded, then return.

ESTABLI SHED STATE

If SND. UNA < SEG ACK =< SND. NXT then, set SND. UNA <- SEG ACK.
Any segnments on the retransm ssion queue whi ch are thereby
entirely acknow edged are renoved. Users should receive
positive acknow edgnments for buffers which have been SENT and
fully acknow edged (i.e., SEND buffer should be returned with
"ok" response). If the ACKis a duplicate, it can be ignored.

If the segment passes the sequence nunber and acknow edgnent
nunber tests, the send wi ndow shoul d be updated. |If

SND. W. =< SEG. SEQ set SND. WND <- SEG WND and set

SND. W. <- SEG SEQ

If the rempte buffer size is not one, then the

end-of -l etter/buffer-size adjustment to sequence nunbers may
have an effect on the next expected sequence nunber to be
acknow edged. It is possible that the renote TCP wll
acknow edge with a SEG ACK equal to a sequence nunber of an

[Page 68]

January 1980
Transm ssion Control Protoco
Functional Specification
SEGVENT ARRI VES

octet that was skipped over at the end of a letter. This a mld
error on the rennte TCPs part, but not cause for alarm

FI N-WAI T-1 STATE
FI N-WAI T- 2 STATE

In addition to the processing for the ESTABLI SHED state, if the
retransm ssi on queue is enpty, the user’'s CLCSE can be
acknow edged ("ok") but do not delete the TCB

TI ME-WAI T STATE

The only thing that can arrive in this state is a retransm ssion
of the renote FIN. Acknow edge it, and restart the 2 MsSL
ti meout.

CLOSE- WAI T STATE
Do the sanme processing as for the ESTABLI SHED st ate.
CLOSI NG STATE

If the ACK acknowl edges our FIN then delete the TCB (enter the
CLOSED state), otherw se ignore the segment.

fourth check the RST bit,
SYN- RECEI VED STATE

If the RST bit is set then, if the segment has passed sequence
and acknow edgrment tests, it is valid. |If this connection was
initiated with a passive OPEN (i.e., cane fromthe LISTEN
state), then return this connection to LISTEN state. The user
need not be informed. |If this connection was initiated with an
active OPEN (i.e., came from SYN-SENT state) then the connection
was refused, signal the user "connection refused". |In either
case, all segnments on the retransm ssion queue shoul d be

renmoved

[Page 69]

January 1980

Transm ssi on Control Protoco

Functional Specification
SEGVENT ARRI VES

ESTABLI| SHED
FI N-VWAIT-1

FI N-WAI T- 2
CLOSE-WAI'T
CLOSI NG STATE

If the RST bit is set then, any outstandi ng RECEI VEs and SEND
shoul d receive "reset" responses. All segnent queues shoul d be
flushed. Users should also receive an unsolicited genera
"connection reset" signal. Enter the CLOSED state, delete the
TCB, and return.

TIME-WAI T
Enter the CLOSED state, delete the TCB, and return

fifth, check the SYN bit,

SYN- RECEI VED
ESTABLI SHED STATE

If the SYN bit is set, check the segment sequence nunber agai nst
the receive wi ndow. The segnment sequence number nust be in the
receive window, if not, ignore the segnment. If the SYNis on
and SEG SEQ = IRS then everything is ok and no action is needed;
but if they are not equal, there is an error and a reset nust be
sent.

If a reset nust be sent it is forned as foll ows:
<SEQ=SEG. ACK><CTL=RST>
The connection nust be aborted as if a RST had been received.

FI N-VAI T STATE-1
FI N-VWAI T STATE- 2
TI ME-WAI T STATE
CLOSE- WAI T STATE
CLOSI NG STATE

Thi s case should not occur, since a duplicate of the SYN which
started the current connection incarnation will have been
filtered in the SEG SEQ processing. Qher SYNs will have been
rejected by this test as well (see SYN processing for

ESTABLI SHED st ate).

[Page 70]

January 1980
Transm ssi on Control Protoco

Functional Specification
SEGVENT ARRI VES

si xth, check the URG bit,

ESTABLI SHED STATE
FI N-WAI T-1 STATE
FI N-WAI T- 2 STATE

If the URG bit is set, RCV.UP <- max(RCV. UP, SEG UP), and signa
the user that the renote side has urgent data if the urgent
pointer (RCV.UP) is in advance of the data consunmed. |If the
user has al ready been signaled (or is still in the "urgent
node") for this continuous sequence of urgent data, do not
signal the user again.

TI VE- WAI T STATE
CLOSE- WAI T STATE
CLOSI NG

Thi s shoul d not occur, since a FIN has been received fromthe
renote side. Ilgnore the URG

seventh, process the segnent text,
ESTABLI SHED STATE

Once in the ESTABLI SHED state, it is possible to deliver segnent
text to user RECEIVE buffers. Text from segnents can be noved
into buffers until either the buffer is full or the segnent is
empty. |If the segnment enpties and carries an EQL flag, then the
user is inforned, when the buffer is returned, that an EOL has
been received.

If buffer size is not one octet, then do the follow ng
end-of -l etter/buffer-size adjustment processing:

if EOL = 0 then
RCV. NXT <- SEG SEQ + SEG LEN
if ECL = 1 then
Whi l e RCV. LBB < SEG SEQ+SEG LEN
Do RCV.LBB <- RCV.LBB + RCV.BS End
RCV. NXT <- RCV. LBB
When the TCP takes responsibility for delivering the data to the

user it nmust al so acknow edge the receipt of the data. Send an
acknow edgnent of the form

[Page 71]

January 1980

Transm ssi on Control Protoco
Functional Specification

e

SEGVENT ARRI VES

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>

Thi s acknow edgnment shoul d be pi ggybacked on a segnment being
transmtted if possible without incurring undue del ay.

FI N-VWAI T-1 STATE
FI N-WAI T- 2 STATE

If there are outstandi ng RECEI VEs, they should be satisfied, if
possible, with the text of this segment; renmining text should
be queued for further processing. |If a RECEIVE is satisfied,
the user should be notified, with "end-of-letter” (EQL) signal

i f appropriate.

TI ME-VWAI T STATE
CLOSE-WAI T STATE

Thi s shoul d not occur, since a FIN has been received fromthe
renote side. Ilgnore the segnment text.

ghth, check the FIN bit,

Send an acknow edgnment for the FIN. Signal the user "connection
cl osing”, and return any pendi ng RECEI VEs with sane nessage. Note
that FIN inplies EOL for any segnent text not yet delivered to the
user. |If the current state is ESTABLI SHED, enter the CLOSE-WAI T
state. If the current state is FINWAIT-1, enter the CLOSING
state. If the current state is FINWAIT-2, enter the TIME-VWAIT
state.

and return.

[Page 72]

January 1980
Transm ssi on Control Protoco

Functional Specification
USER TI MEOUT

USER TI MEQUT

For any state if the user tineout expires, flush all queues, signa
the user "error: connection aborted due to user tinmeout" in genera
and for any outstanding calls, delete the TCB, and return.

RETRANSM SSI ON T1 MEQUT

For any state if the retransm ssion tinmeout expires on a segnent in
the retransni ssion queue, send the segment at the front of the
retransm ssi on queue again, reinitialize the retransnission tiner,
and return.

[Page 73]

January 1980
Transm ssi on Control Protoco

[Page 74]

January 1980
Transm ssi on Control Protoco

GLOSSARY

1822
BBN Report 1822, "The Specification of the Interconnection of
a Host and an IMP". The specification of interface between a
host and the ARPANET.

ACK

A control bit (acknow edge) occupying no sequence space, which
i ndi cates that the acknow edgnent field of this segment

speci fies the next sequence nunber the sender of this segment
is expecting to receive, hence acknow edgi ng receipt of al
previ ous sequence nunbers.

ARPANET nessage
The unit of transm ssion between a host and an IMP in the
ARPANET. The maxi mum size is about 1012 octets (8096 bits).

ARPANET packet
A unit of transmi ssion used internally in the ARPANET between
| MPs. The nmaxi mum si ze is about 126 octets (1008 bits).

buf fer size
An option (buffer size) used to state the receive data buffer
size of the sender of this option. May only be sent in a
segnent that also carries a SYN

connection
A logical comunication path identified by a pair of sockets.

dat agr am
A nmessage sent in a packet sw tched conputer comrunications
net wor k.

Destinati on Address
The destination address, usually the network and host
identifiers.

EOL
A control bit (End of Letter) occupying no sequence space,
indicating that this segment ends a logical letter with the
| ast data octet in the segnent. |If this end of letter causes
a less than full buffer to be released to the user and the
connection buffer size is not one octet then the
end-of -l etter/buffer-size adjustnment to the receive sequence
nunber nust be nade.

[Page 75]

January 1980
Transm ssi on Control Protoco

d ossary

FIN
A control bit (finis) occupying one sequence nunber, which
indi cates that the sender will send no nore data or contro
occupyi ng sequence space.

f ragment
A portion of a logical unit of data, in particular an internet
fragnment is a portion of an internet datagram

FTP
A file transfer protocol.

header
Control information at the beginning of a nessage, segnent,
fragnment, packet or block of data.

host

A computer. In particular a source or destination of messages
fromthe point of view of the conmunicati on network.

I dentification
An Internet Protocol field. This identifying value assigned
by the sender aids in assenbling the fragnents of a datagram

The Interface Message Processor, the packet switch of the
ARPANET.

i nternet address
A source or destination address specific to the host |evel.

i nternet datagram
The unit of data exchanged between an internet nodul e and the
hi gher | evel protocol together with the internet header

i nternet fragnent

A portion of the data of an internet datagramw th an internet
header .

| nt ernet Protocol
| RS

The Initial Receive Sequence nunber. The first sequence
nunber used by the sender on a connection

[Page 76]

January 1980

I SN

I SS

| eader

Transm ssi on Control Protoco
d ossary

The Initial Sequence Nunmber. The first sequence nunber used
on a connection, (either ISS or IRS). Selected on a clock
based procedure.

The Initial Send Sequence number. The first sequence nunber
used by the sender on a connection

Control information at the beginning of a nmessage or bl ock of
data. In particular, in the ARPANET, the control information
on an ARPANET nessage at the host-1M interface.

| eft sequence

letter

This is the next sequence nunber to be acknow edged by the
data receiving TCP (or the |lowest currently unacknow edged
sequence nunber) and is sonmetines referred to as the left edge
of the send w ndow.

A logical unit of data, in particular the logical unit of data
transmtted between processes via TCP

| ocal packet

nmodul e

MSL

oct et

Opt i ons

packet

The unit of transm ssion within a | ocal network.

An inplenentation, usually in software, of a protocol or other
pr ocedure.

Maxi mum Segnent Lifetinme, the time a TCP segnent can exist in
the internetwork system Arbitrarily defined to be 2 mi nutes.

An eight bit byte.

An Option field may contain several options, and each option
may be several octets in length. The options are used
primarily in testing situations; for exanple, to carry
timestanps. Both the Internet Protocol and TCP provide for
options fields.

A package of data with a header which may or nay not be

[Page 77]

January 1980

Transm ssi on Control Protoco

d ossary

port

process

PSN

RCV. BS

RCV. LBB

RCV. NXT

RCV. UP

RCV. WND

logically conplete. Mre often a physical packaging than a
| ogi cal packagi ng of data.

The portion of a socket that specifies which |ogical input or
out put channel of a process is associated with the data.

A programin execution. A source or destination of data from
the point of view of the TCP or other host-to-host protocol

A Packet Switched Network. For example, the ARPANET.

recei ve buffer size, the renpte buffer size

recei ve | ast buffer beginning

recei ve next sequence nunber

recei ve urgent pointer

recei ve wi ndow

recei ve | ast buffer beginning

This is the sequence nunmber of the first octet of the npst
recent buffer. This value is use in calculating the next
sequence nunber when a segnment contains an end of letter

i ndi cation.

recei ve next sequence number

This is the next sequence number the |local TCP is expecting to
receive.

recei ve wi ndow

[Page 78]

This represents the sequence nunbers the | ocal (receiving) TCP
iswilling to receive. Thus, the I ocal TCP considers that
segnments overl apping the range RCV. NXT to

RCV. NXT + RCV.WAD - 1 carry acceptable data or control

Segnents contai ni ng sequence nunbers entirely outside of this
range are consi dered duplicates and di scarded.

January 19

RST

Rubber EQOL

SEG ACK

SEG LEN

SEG PRC

SEG. SEQ

SEG UP

SEG. VWAD

segnent

segnent ac

segnent le

80
Transm ssi on Control Protoco
d ossary

A control bit (reset), occupying no sequence space, indicating
that the receiver should delete the connection wthout further
interaction. The receiver can determ ne, based on the
sequence nunber and acknow edgnent fields of the incom ng
segnment, whether it should honor the reset command or ignore
it. In no case does receipt of a segment containing RST give
rise to a RST in response.

Real Tinme Protocol: A host-to-host protocol for comunication
of tinme critical infornmation

An end of letter (EQL) requiring a sequence nunber adj ustnment
to align the beginning of the next letter on a buffer
boundary.

segnent acknow edgnent

segment | ength

segnent precedence val ue

segnent sequence

segnent urgent pointer field

segnent wi ndow field

A logical unit of data, in particular a TCP segnent is the

unit of data transfered between a pair of TCP nodul es.

know edgnent
The sequence number in the acknow edgrment field of the
arriving segnent.

ngt h

The anmount of sequence nunber space occupi ed by a segnent,
i ncludi ng any controls which occupy sequence space.

[Page 79]

January 1980
Transm ssi on Control Protoco
d ossary

segnent sequence
The nunber in the sequence field of the arriving segment.

send | ast buffer beginning
This is the sequence nunmber of the first octet of the nost
recent buffer. This value is used in calculating the next
sequence nunber when a segnment contains an end of letter
i ndi cati on.

send sequence
This is the next sequence number the |local (sending) TCP will
use on the connection. It is initially selected froman
initial sequence number curve (ISN) and is incremented for
each octet of data or sequenced control transmtted.

send wi ndow
This represents the sequence numbers which the renote
(receiving) TCP is willing to receive. It is the value of the
wi ndow field specified in segnents fromthe renote (data
receiving) TCP. The range of sequence nunbers which may be
emtted by a TCP |ies between SND. NXT and
SND. UNA + SND. WND - 1.

SND. BS
send buffer size, the local buffer size
SND. LBB
send | ast buffer beginning
SND. NXT
send sequence
SND. UNA
| eft sequence
SND. UP
send urgent pointer
SND. W
send sequence nunber at |ast wi ndow update
SND. VWD
send wi ndow
socket

An address which specifically includes a port identifier, that
is, the concatenation of an Internet Address with a TCP port.

[Page 80]

January 1980

Transm ssi on Control Protoco
d ossary

Sour ce Address

SYN

TCB

TCB. PRC

TCP

TOS

The source address, usually the network and host identifiers.

A control bit in the incom ng segnment, occupying one sequence
nunber, used at the initiation of a connection, to indicate
where the sequence nunbering will start.

Transni ssion control block, the data structure that records
the state of a connection

The precedence of the connection.

Transm ssion Control Protocol: A host-to-host protocol for
reliable communi cation in internetwork environnents.

Type of Service, an Internet Protocol field.

Type of Service

URG

urgent poi

An Internet Protocol field which indicates the type of service
for this internet fragment.

A control bit (urgent), occupying no sequence space, used to

i ndicate that the receiving user should be notified to do
urgent processing as long as there is data to be consumed with
sequence nunbers |l ess than the value indicated in the urgent
poi nter.

nt er

A control field meaningful only when the URG bit is on. This
field communi cates the value of the urgent pointer which

i ndicates the data octet associated with the sending user’s
urgent call.

[Page 81]

January 1980
Transm ssi on Control Protoco

[Page 82]

January 1980

[1]

[2]

[3]

[4]

Transm ssi on Control Protoco

REFERENCES

Cerf, V., and R Kahn, "A Protocol for Packet Network
| nt ercommuni cation," | EEE Transacti ons on Conmuni cati ons,
Vol . COM22, No. 5, pp 637-648, May 1974.

Postel, J. (ed.), "DOD Standard Internet Protocol," Defense
Advanced Research Projects Agency, |Information Processing
Techni ques O fice, RFC 760, |EN 128, January 1980.

Feinler, E. and J. Postel, ARPANET Protocol Handbook, Network
Information Center, SR International, Menlo Park, CA
January 1978.

Dal al, Y. and C. Sunshine, "Connection Managenent in Transport

Protocol s," Conmputer Networks, Vol. 2, No. 6, pp. 454-473,
Decenber 1978.

[Page 83]

January 1980
Transm ssi on Control Protoco

[Page 84]

