


Net wor k Wor ki ng Group
RFC #684

NI C #32252

April 15,1975

A Commentary on Procedure Calling as a Network Protoco
Ri chard Schant z

BBN- TENEX

Pr ef ace

This RFC is being issued as a first step in an attenpt to stimulate
a dialog on sonme issues in designing a distributed conmputing system
In particular, it considers the approach taken in a design set forth
in RFC #674, comonly known as the "Procedure Call Protocol" (PCP).
In the present docunent, the concentration is on what we believe to
be the shortcom ngs of such a design approach

Note at the outset that this is not the first tine we are providing
a critical commentary on PCP. During the earlier PCP design stages,
we net with the PCP designers for a brief period, and suggested
several changes, nmany of which becane part of PCP Version 2. W
hasten to add, however, that the nature of those suggestions stem
from an entirely different point of view than those presented here.
Qur original suggestions, and al so some subsequent ones, were nainly
addressing details of inplementation. In this note the concern is
nore with the concepts underlying the PCP design than with the PCP
i mpl enent ati on.

This note is being distributed because we feel that it raises
certain issues which have not been adequately addressed yet. The
PCP designers are to be congratulated for providing a detailed
witten description of their ideas, thereby creating a natura
starting point for a discussion of distributed system design
concepts. It is the intent of this note to stinulate an interaction
anmong individuals involved with distributed conputing, which could
perhaps result in systens whose designs don't preclude their use in
projects other than the one for which they were originally
concei ved.

The ideas expressed in this RFC have benefited from nunerous
di scussions with Bob Thomas, BBN-TENEX, who shares the point of view
t aken.



A COMMVENTARY on PROCEDURE CALLI NG Page 2

| nt roducti on

VWil e the Procedure Call Protocol (PCP) and its use within the
Nati onal Software Wrks (NSW context attacks nmany of the problens
associated with integrating i ndependent conputing systens to handle
a distributed conputation, it is our feeling that its design
contains flaws which should prevent its wi despread use, and in our
view, limt its overall utility. W are not voicing our objection
to the use of PCP, in its current definition, as the base |eve
i npl enentation vehicle for the NSWproject. It is already too late
for any such objection, and PCP nay, in fact, be very effective for
the NSW inplenmentation, since they are proceeding in parallel and
have probably influenced each other. Rather, we are voicing an
objection to the "PCP philosophy”, in the hope of preventing this
type of protocol frombecom ng the de-facto network standard for
distributed conputation, and in the hope of influencing the future
direction of this and simlar efforts.

Sone of the objectionable aspects of PCP, it can be argued, are
di fferences of individual preference, and phil osophers have often
i ndi cated that you cannot argue about tastes. W have tried to
avoid such argunents in this docunent. Rather, we consider PCP in
light of our experience in devel opi ng di stributed syst ens.
Considered in this way, we feel that PCP and its underlying
phi | osophy have flaws which nake it inappropriate as a general
pur pose protocol and virtual programm ng systemfor the construction

of distributed software systems. It is our opinion that PCP is
probably conplete in the sense that one can probably do anything
that is required using its primtives. A key issue then, is not

whet her this function or that function can be supported. Rather, to
us an inportant question is howeasy it is to do the things which
experience has indicated are inportant to distributed conputing. In
addi tion, a programm ng discipline dedicated to network applications
should pay particular attention to coercing its users away from
actions which systenms progranming in general and network progranmm ng
in particular have shown to be pitfalls in systeminplenmentation

A Point of View_

At the outset, we fully support the aspects of the PCP design
effort that have gone into systematizing the interaction and
agreements between distributed elenents to support inter-nmachine
conput i ng. This includes the definition of the various types of
replies, the standardization of the data structure format for
i nter-machine exchange, and the process creation prinitives which
extend the nachi ne boundaries. Such notions are basic and nmnust be
part of any distributed systemdefinition. Qur main concern is not
with these efforts.



A COMMVENTARY on PROCEDURE CALLI NG Page 3

Rat her, we take exception to PCP's underlying prem se: that the
procedure calling discipline is the starting point for building
mul ti-conputer systems. This premise |leads to a nodel which has a
central point for the entire algorithmcontrol, rather than a nore
natural (in network situations) distributed control acconplished by
cooperating i ndependent entities i nteracting through conmon
conmuni cati on paths. While the procedure call nmay be an appropriate
basis for certain applications, we believe that it can neither
directly nor accurately nodel the i nteractions and contro
structures that occur in many distributed multi-conputer systens.

Much of what follows nay seemto be a pedagogic argunent, and
PCP supporters may take the position of "who cares what you call it,
its doing the same thing". Qur reply is that it is very inportant
to achieve a clear and concise nodel of distributed computation, and
while the PCP nodel does not require "poor inplenmentation” of
distributed systens, neither does it nake "good i npl enentati on" any

easier, nor does it prohibit ill-advised programmng practices. A
nodel stressing the dynam c interconnection of sonmewhat independent
conputing entities, we feel, adheres nore to the notions of

def ensive progranm ng, which we have found to be fundanental to
bui | di ng usabl e mul ti-machi ne inpl ementations.

The rest of this RFC discusses what we feel to be some of the
short com ngs of a procedure call protocol

Limtations of Procedure Calling Across Machi nes

First and forenost, it is our contention that procedure calling
should not be the basis for nmulti-machine interactions. W fee
that a request and reply protocol along wth suitably rmanipul ated
conmuni cati on paths between processes forns a nbdel better suited to
the situation in which the network places us. In a network
envi ronnent one has aut ononmous conputing entities which have agreed
on their cooperation, rather than a master process forcing execution
of a certain body of code to fulfill its conputing needs. In such a
configuration, actions required of a process are best accompdated
indirectly (by request) rather than directly (by procedure call), in
order to maintain the integrity of the constituent processes.

Procedure calling is most often a very prinmitive operation
whose i mpl enent ati on often requires only a single nmachine
instruction. In addition, it is usually true that procedure calling
is wusually not wthin the domain of the operating system [The
Multics intersegment procedure calling nechanism nay present an
exception to this, wuntil linkage is conplete. |In the renote PCP
case, however, linkage can never be conplete in the sense of
supporting a fast transfer of control between nodul es]. Processes
and comuni cati on pat hs between processes, however, are undeniably
operating system constructs. In an environment where |oca
procedure calling was "cheap", it would be ill-advised to blur the



A COMMVENTARY on PROCEDURE CALLI NG Page 4

distinction between a local (inexpensive in tinme and effort) and a
renote procedure call, which obviously requires a great deal of
effort by the "PCP systent, if not by the PCP user. It also seens
to be the case that the cost of Dblurring the | ocal /rempt e
distinction at the procedure call level will be found in the nore
frequent use of a less efficient |local procedure calling nechanism
I nterprocess comunication, on the other hand, (at |east with regard
to streamor nmnessage oriented channels and not just interrupt
si gnal s) is generally regarded as having a significant cost
associated with it. Message sending is always an interprocess
action, and requires systemintervention always. There is not as
substantial a difference between the I PC of |ocal processes and the
IPC of renpte processes, as between |ocal and renote procedure
calling. PCP is suggestive of a nodel in which processes exist that
span machi ne boundaries to provide inter-machi ne subroutine calling.
Yet the PCP docunentation has not advocated the notion of a process
that spans nachine boundaries, and rightfully so since such a
creation woul d cause i nnunerabl e problens. Since procedure calling
is nmore suitable as an intra-process notion, it seenms to be a better
idea to take the interprocess comruni cati on franework and extend it
to have a uniforminterpretation locally and renotely, rather than
to extend the procedure calling nodel. It is also our contention
that a nodel which relies on procedure calling for its basis does
not take into account the special nature of the network environnment,
and that such an environment can be nore suitably handled in a
nmessage passing nodel. Furthernore, we feel that progranming as a
whol e, even purely local computing, will benefit from paying nore
attention to such areas as reliability and robustness, which have
been brought to the forefront through experience with an oftentines
unreliable network and collection of hosts. An | PC nodel, by
enphasi zing the connections between disjoint processes, seens to
reinforce the idea that distributed conputing is acconplished by
joining separate entities, and that defensive programm ng and error
handl i ng techni ques are appropriate. Since PCPis, we think, for
distributed system builders, and not for the end user (e.g. an
RSEXEC user), avoiding the network, interconnection issues, and
relative costs, may be counter-productive if the goal is to achieve
usabl e network systens.

In a simlar vein, the entire notion of inter-machine procedure
calling underlies a nodel which in effect has extended the address
space of a single process. That is, there is a single |ocus of
algorithm control (al t hough perhaps not a single Ilocus of
execution). Wile this nodel nmay well serve the needs of a "local"
conputation where the parts are strongly bound together, our
experience in building working distributed systems has shown the
utility of a nodel which has multiple loci of control and execution
In such a nodel, it is through agreenments on the nmethod and type of
information interchange and synchronization, that a conputation is
carried out, rather than at the singular direction of a centra
entity. In a nodel that has distributed control and execution, we
feel a process will be in a better position to naturally cope wth
the many vagaries that necessarily arise in a network environment.



A COMMVENTARY on PROCEDURE CALLI NG Page 5

The unmistakable trend in systens programring is t owar d
i nvi ol abl e (protected) process structures with ext erna
synchroni zati on as a means of coping with conplex debugging tasks
and the difficulty of making systemchanges. This trend is better
supported, we feel, by a nmessage passing rather than a procedura
nodel of conputation. Furthernore, we feel that network programm ng
techni ques should be applied to | ocal conputation, not the other way
around.

Sonme Particulars

In the following list, we try to be nore specific with respect
to particular situations where we think the PCP concept may be weak
as the basis for a network progranm ng system For sonme of these
exanpl es to be neani ngful, the reader should be fairly famliar with
the PCP docunents issued as RFC 674.

1. Recovery from conponent nulfunction my be very
difficult to handle by a process that is not the centra
control (i.e. a process which is being manipulated by
having its procedures executed). I's the situation where
there is network trouble, for exanple, to be nodeled by a
forced procedure call to sone error recovery routine? It is
preci sely such situations where distributed control serves
as a better nodel. Consider the act of introducing an
inferior to another acquai ntance and then supplying the new
handle as a paraneter of a subsequent procedure call in the
inferior. The inferior’'s blind use of the paraneter to
interact with the other process illustrates the manipul ative
aspects of a superior. The inferior never really is aware
of a new conmuni cation path to a new process. The inferior
environnent (as nmaintained by the PCP "systeni) has been
changed by the superior, with no active notification of the
inferior. Certainly this nakes user coded error recovery
sonewhat awkwar d.

2. Such process nmanipulation may at times violate the
principles of modular programming. |In this vein, it seens
beneficial to be able to debug separately the pieces of a
conputation and then worry only about their synchronization
to achieve a totally debugged system Wth PCP in its
full est sense, the danger of error propagati on seens greater
because of the power of a process to cause execution of an
arbitrary procedure and to read/wite renpte data stores
wi thout the active participation of the renote process.

3. Can we assune a proper initialization sequence if our
pr ocedur es are called renotely? Must every procedure
contain the code to check for the propriety and correct
sequencing of the call? A nodel in which each renote process
is an active conputing element seens better able to



A COMMVENTARY on PROCEDURE CALLI NG Page 6

conveniently apply protective standards to the code and data
it enconpasses.

4. PCP doesn’t nmodel long termparallel activity in a
conveni ent fashion, as is required to handle various
asynchronous producer/consuner process relationships. The
synchroni zation is geared nmore to a one-to-one call and
return, rather than to the asynchronous nature and nultiple
returns for a single request, as exhibited by many network
services. In addition, low priority, preenptable background
tasks are hard (inpossible?) to nodel in a procedure cal
envi ronnent .

5. Comunication paths are not treated as abstract
objects which are independent fromthe actual entities they
connect, and hence they cannot be utilized in some usefu
ways (e.g. to carry non PCP nmessages). Also with respect to
treating conmuni cation paths as objects, there is no concept
of passing a communication path to an inferior (or an
acquai ntance), w thout having to create a new "connection"
(whether or not this turns out to be a physical channel).
The ability to pass conmunication paths is often wuseful in
subcontracting requests to inferior processes. To do this
within PCP requires the cooperation of the calling process
(i.e. to wuse the new connection handle), which again seens
to violate the concepts of nodular progranm ng. The
alternative approach in PCP is to have the superior relay
the subsequent communications to its created inferior, but
the effort involved would probably prohibit the use of this
techni que for subcontracting.

6. PCP seens too conplicated to be used for the type of
processing which requires periodic but short (i.e. a few
words exchanged) interactions. An exanpl e of such
interactions is the way the TIP uses the TENEX accounti ng
servers (see RFC #672). Furthernore, PCP is probably nuch
too conplex for inplenentation on a snmall host. In that
regard, there does not seemto be a definition of what m ght
constitute a mninmuminplementation for a host/process which
di d/ coul d not handle all of what has been devel oped.

7. In the PCP nodel, it nay becone awkward or resource
consuming for a service programto do such things as queue
operations for execution at a later tine (persistence) or at
a nore opportune tine (priority servicing nechanisn). Such
i mpl enentations may require dummy returns and nodification
of the controlling fork concept, or nmintenance of
processing forks over long periods of inactivity.

8. It is not always true that a process connecting
(splicing) to a service should be able to influence the
service process environment in any direct way. How can a

service process in PCP prevent a malicious user fomsplicing



A COMMVENTARY on PROCEDURE CALLI NG Page 7

to it and then introducing it to an arbitrary nunmber of
processes, thereby overflowing the table space in that
process. Al of that could have been done wthout ever
executing a single instruction of user witten code. This
difficulty is a consequence of the PCP notion of having one
process nmanipulate the environment of another without its
active participation in such actions.

9. Doesn’t the fact that the network PCP process
i mpl enentation is so nmuch neater than the TENEX PCP process
i npl enentation (since TENEX doesn't have a general |PC
facility) suggest that nessage passing and comunication
facilities supported by the "systenm' provides a sound basis
for multi-process inplenmentations, and that perhaps such
facilities should be primtively avail abl e to t he
di stributed system builders who will use PCP?

10. There is a question of whether PCP is an
i mpl enentation virtual nmachi ne (Il anguage), or an application
virtual machine (language). That is, is PCP intended to be
used to i mpl enent syst emns whi ch manage distributed
resources, or as an end product which nmakes the network
resources thenselves easier to use for the every day,

ordinary programer (e.qg. nakes the net wor k itself
transparent to users). One gets the feeling that the
desi gners had both goals, and that neither one is completely
sati sfied. If the former goal is taken, we believe that
nost of the conplexities (e.g. network trouble, broken
connecti ons, etc.) and possibilities (e.g. r edundant
i mpl enentati on, broadcast request, etc.) of net wor k
i mpl ementations are not provided for adequately. In this

view, the NSW framework (Wrks manager, FE) is t he
distributed system that wutilizes the PCP inplenentation
| anguage. W do not see how the use of PCP in this context
provi des for either an extra-reliable system through
conponent redundancy, or a persistent system which can
tolerate tenporary malfunctions. |If one subscribes to this
view, then it doesn’'t seemright that the objects that run
under the created system(i.e. the tools that run under the
PCP i npl emented Front End, Works Manager, and TBH nonitor)

should also be aware of or use PCP. |f one considers the
latter goal, that PCP inplenents a virtual nmchine to be
present ed to al | programmers for naking distributed

resources easy to use, then it is clear that PCP with its
mani fest concern for object |ocation does not provide for
the desireable properties of network transparency.

Qur conclusion is that procedure calling is not the appropriate
basis for distributed nulti-conputer systens because it can neither
directly nor accurately nmodel the network environment. The PCP
virtual programm ng system nay be inadequate for inplenenting many
distributed systenms because the conplexities and possibilities
uni que to the network environnent are not provided for at this basic



A COMMVENTARY on PROCEDURE CALLI NG Page 8

| evel .



\ 000\ 000\ 000



