Net wor k Wor ki ng G- oup M Padl i psky
Request for Comment: 666 26 Novenber 1974
NI C. 31396

Specification of the Unified User-Level Protoco

After many di scussions of nmy RFC 451, | discovered that the "Unified
User - Level Protocol" proposed therein had evol ved i nto what had

al ways been its underlying notivation, a comobn command | anguage.
There are several reasons why this latter approach satisfies the
original goals of the UULP and goes beyond theminto even nore usefu
areas:

1. User convenience. As evidenced by the good response to the conmpn
editor "neted", the Network Working G oup has cone to acknow edge the
fact that the conveni ence of non-system progranmmer users of the

Net wor k must be served. Allow ng users to invoke the sane generic
functions -- including "batch" jobs -- irrespective of which Server
Host they happen to be using is surely a conpelling initia
justification for a cormon comrand | anguage. Note that the concern

with generic functions -- which "all" Servers do, one way or another
-- is intended to enphasize the commobn conmand subset aspects of the
| anguage, rather than the "linguistic" elegance of it all. The

attenpt is to specify an easy way of getting many things done, not a
conplicated way of getting "everything" done.

2. "Resource sharing". Another area which is receiving attention in
the NWG of late is that of "autonmatic" or programdriven invocation
of resources on foreign systens. A conmpn internediate
representati on of sone sort is clearly necessary to perform such
functions if we are to avoid the old "n by m problent of the Tel net

Protocol -- in this case, n Hosts would otherw se have to keep track
of m conmand | anguages. For the common internedi ate representation
to be human-usable seems to kill two birds with one stone, as

expanded upon in the next point.

3. Economny of mechanism |In RFC 451, | advanced the claimthat a
singl e user-level protocol which connected via socket 1 and Tel net
woul d of fer econonmy of mechanismin that new responders woul d not be
required to service Initial Connection Protocols on socket after
socket as protocol after protocol evolved. This consideration stil
applies, but an even greater economny is visible when we consider the
context of resource sharing. For if the common comand | anguage is
designed for direct enployment by users, as the present proposal is,
there is no need for users on termnal support "mni-Hosts" (e.qg.
ANTS and TIPs) to require an internediary server when all they
actually want is to work on a particular Server in the comon

Padl i psky [Page 1]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

| anguage. (This is especially true in light of the fact that nany
such users are not professional programrers -- and are famliar with
no conmand | anguage.) That is, if resource sharing is achieved by an
i nternedi ate | anguage which is only suitable for prograns, you woul d
have to | earn the native command | anguage of Server B if you didn't
want to incur the expense of using Server A only to get at generic
functions on Server B. (And you might still have to learn the native
| anguage of Server A, even if the expense of using two Servers where
one would do isn't a factor.)

4. Front-ending. Another benefit of the common command | anguage
proposed here is that it is by and large intended to lend itself to
i mpl enentation by front-ending onto existing conmands. Thus, the
unpl easant necessity of throwi ng out existing inplenmentations is

m ni mzed. I|ndeed, the approach taken is a conscious effort to cone
up with a comon command | anguage by addition to "native" command

| anguages rather than by replacement, for the conpelling reason that
it would be unworkable as well as ill-advised to attenpt to |legislate
the richness represented by existing comand | anguages out of

exi stence. Further, as it is a closed environnent, no nam ng
conflicts with native commands woul d ari se.

5. Accounting and authentication. As evidenced by the spate of RFCs
about the inplications of the FTP in regard to both accounting for
use of Network services and authenticating users’ identifications
(Bressler’s RFC 487, Pogran’s RFC 501, and ny RFC 505 -- and even
491), this area is still up in the air. The generic |ogin comuand
proposed here should help matters, as it allows the Server to

associ ate an appropriate process with the connection while actuating
appropriate accounting and access control as well, if it chooses.

6. Process-process functions. By enabling the invocation of foreign
obj ect programs, the present proposal offers a rubric in which such
process-to-process functions as "parallelism can be performed. (See
the di scussion of the "call" command, below.) Note that the UULP is
not bei ng advanced as a panacea: It is assuned that the actua
transactions carried out are nost likely not going to be in the
conmon comrand | anguage (al though sonme certainly could be); however,
what is furnished is a known way of getting the presumably special -
cased prograns executing el sewhere. Also, it offers a convenient
environnent into which can be placed such new functions, which we
woul d i ke to have becone generic, as Day's File Access Protocol

Al'l of which seens to be a fair anmount of mleage to get out of a

di staste for renenbering whether you find out who' s | ogged in by
saying "systat", "users", "s.who:c", "listf tty", or "who"....

Padl i psky [Page 2]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

Cont ext

Al though ultimately intended to becorme the general responder to the
Initial Connection Protocol, the UULP is initially to be a Tel net
Prot ocol "negotiated option”. Wen the option is enabled, the Server
Host will furnish a command environment which supports the combn
conventions and comuands di scussed herein

In a sense, the UULP is a "selector". That is, the comon conmand
subset includes commands to exit fromthe common comrand environnent
and enter various other environnments, along the lines of CCN s
current Telnet Server. To exit fromthe UULP environment to the
"native" command processor, the UULP command is "local" (see also the
di scussion of Case, below). Note that all commands terminate in

Tel net "New i ne" (currently cr-1f), unless altered by the "eol"
conmand (below); internal separator is space (blank). (Entrance into
ot her environments -- such as the FTP Server -- is discussed bel ow.)
There are two reasons for introducing a nechani smother than the
apparently natural one of sinply de-negotiating the option: First, it
is bound to be nore convenient for the user to type a command than to
escape to his User Telnet programto cause the option disabling.
Second, it is hoped that eventually the UULP will be legislated to be
the default environnent encountered by any Network | ogin, in which
case the natural way to enter the Server’s "native" conmmand

envi ronnent woul d be by UULP comrand.

Note: all UULP commrands di scussed herein are listed in Appendix 1
categorized as to optionality, with brief descriptions given. The
appendi x may be taken as a first-pass UULP Users’ Manual

Responses

Any optional comands which are not supported by a particular Server
are to be responded to by a nessage of the form "Not inplenmented:
conmandnane. ", where the variable is the nane of the commuand which
was requested. Note that throughout this docunment, all literals nust
be sent exactly as specified, so as to allow for the possibility of
Servers’ being driven by prograns (including "automata" or "conmand
macros") in addition to "live" users.

In general, the view has been taken here that a small nunber of
literal, constrained responses is superior to a vast variety of
nunerically coded responses in which text may vary. Again, the
notivation is to achieve an econony of nechanism For on the coded
nodel , there nust be a coordi nator of code assignnents, which is just
as well avoided. Further, as has been experienced in the use of the
FTP, when there are many codes there are many anbiguities. (The
sender may have a perfectly valid case for choosing, say, 452, while

Padl i psky [Page 3]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

the receiver may have an equally good interpretation of the codes’
definitions for expecting, say, 453.) Experience with a related
"error table" mechanismon Miltics al so bears out the assertion that
coded responses create both managerial and technical problens. A
final objection to nuneric codes m ght be considered irrel evant by
live some, but | think that the aesthetics of the situation do merit
sone attention. And when the common command | anguage i s being

enpl oyed by live users, it seenms to me that they would only be

di stracted by all those nunmbers flying around. (Nor can we assune
that the nunbers could be stripped by their "User UULP', for one of
the basic goals here is to make it straightforward enough for a user
at a TIP to deal with.)

Argunent s

During the review process, it becane evident that sone gl oba
conments on argunents were in order. Two areas in particul ar appear
to have led to sone confusion: the strategy of specification of
argunents on the comand |ine, and the question of "contro
argunents”". On the first score, the goal of "front-endability" nust
be recalled. Consider two native inplenentations of a particul ar
conmand, one of which (A) expects to collect its argunments by
interrogation of the user, and the other of which (B) expects to
receive themon invocation (being invoked as a closed subroutine).
Now, it is easy to inmagine that a "Server UULP' could feed the
argunents to A as needed without requiring Ato be rewitten, but it
is quite difficult to see how B could be made to interrogate for
argunents wthout extensive rewiting. Therefore, a "least comon
denom nator" approach of specifying argunents in advance incurs the
m ni mum cost in terns of reworking existing inplenentations.

On the second score, | have borrowed a notion fromthe Miltics
conmand | anguage’ s convention called "control arguments" because it
seens to be quite convenient in actual practice. The key is that
sone argunents are neant as literals, usually specifying a node or
control function to the comand, while others are vari abl es,

speci fying something like a particular file name or user identifier
A common exanple is a "mail" command, where the variables are the
user identifiers and the Host identifiers, and the "control argument"
is the designator that user identifiers have ceased and Host
identifiers have begun. The convention used here is to begin the
control argunent with a hyphen, as this character never seens to be
used to begin variable argunents. Thus, we use "-at" in the mai
exanple. Although it is not a deep philosophical point, this
approach does relieve argunment |ists of order-dependency, and feels
right to ne.

Padl i psky [Page 4]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

Case

Al 'though it appears to have been |egislated out of existence by the
specification of the Network Virtual Term nal’s keyboard in the

Tel net Protocol, the question of what to do about users at upper-
case-only termnals remains a thorny one in practice. There are two
aspects to consider: the al phabetic case of commands, and the ability
to cause "case-mapping" in order to allow | ower-case input. Sone
Servers have no local problens with the first aspect, as they operate
internally in all upper-case or all |ower-case and nmerely map al

i nput appropriately. (Problens do arise, though, when one is using
the User FTP on such a systemto deal with a m xed-case system for
exanple.) O her Servers, however, attach the normal |inguistic
significance to case. (E.g., Smith's nane is "Snith" -- not "SMTH',
and not "smith".) To mnimse superfluous processing for those
Servers which are indifferent to case, all UULP commands are to be
recogni zed as such whether they arrive as all upper-case or al

| ower-case. (They will be shown here as all |ower nmerely for typing
convenience.) Note that arbitrarily nixed case is not recogni zed, as
it is an unwarranted assunption about |ocal inplenentation to suppose
that input will necessarily be case-napped.

On the second aspect, any Server which does distinguish between
upper- and | ower-case in conmmands’ argunents (a.k.a. paraneters) nust
furnish a UULP "nmap" comand as specified in Appendix 2 in order to
support logins fromupper-case-only termnals attached to User Hosts
whi ch either do not support the Telnet Protocol’s dictumthat all 128
ASCI | codes must be generable, or support it awkwardly. This seens a
simpler and preferable solution than the alternative of |egislating
that upper-case Network-w de personal identifiers (and perhaps even
Network Virtual Path Nanes) be pre-conditions to a usabl e common
command subset. (As noted below, these latter concepts will fit in
snoot hly when they are agreed upon. The point here, though, is that
we need not deprive ourselves of the benefits of a UULP until they
are agreed upon.)

User Nanes

As inmplied above, the various Servers have their various ways of
expressing users’ nanes. Cearly, the principle of econony of menory
dictates that there should be a common internedi ate representation of

nanes in and for the Network. It is probably also clear that this
representation will be based upon the Network Information Center’s
"NIC ID s". However, it is unfortunately anply clear than an

accept abl e mechani sm for securing up-to-date information cannot be
| egi sl ated here - nuch | ess a mechani smfor securely updating the
inmplied data base. Therefore, at this stage it seens to be the

Padl i psky [Page 5]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

sensible thing to specify only the UULP syntax for conveying to the
Server the fact that it is to treat a user name as a Network-wi de
nane rather than as a local name, and let the supporting nechani sns
evol ve as they nay.

The prefacing of a name with an asterisk ("*") denotes a Network-wi de
nane. (Such nanes nmay be either all upper-case or all |ower-case, as
with UULP commands’ names.) The nane "*free" is explicitly reserved
to nmean that (in the context of logging in) a login is desired on a
supported or sampling account, if such an account is available. The
response if no such account is available is to be "lInvalid ident:
*free." When Network-w de nanmes are generally available Servers wll
either nmap theminto | ocal nanes or cause themto be registered as

| ocal nanmes as they prefer. The point is that a Network-w de nane
will be "made to work" by the Server in the context of the UULP

Speci al Characters and Signal s

Anot her area in which the facts of life nust outweigh the letter of
the Tel net Protocol if the user’s convenience is to be served is that
of "erase" and "kill" characters. It is possible that User Telnets
will uniformy facilitate the transm ssion of the Tel net contro
codes for generic character erase and generic line kill. It is
certain, however, that User Telnets will differ -- and users will, if
they use nore than one User Tel net, be again placed in the
unconfortabl e position of having to develop too nany sets of

refl exes. Therefore, the UULP will optionally support the follow ng
conmands: "erase char” and "kill char", where char is a printable
ASCI | character (to avoid possible conflicts with "contro

characters" which are recognized in the innernost areas of particul ar
operating systens). Presumably, unwary users can be instructed not
to choose an al phabetic, so as to avoid being placed in a position
where they cannot invoke certain comrands (erase and kill thensel ves,
for exanple, in which case they couldn’'t be changed).

These comuands are supplenents to the related Tel net control codes,
and have the sane neanings. The point here is that it may be far
nore convenient for a user to be able to say "erase #" and get the
"#" to be recogni zed as the erase character by the Server than for
the user to get his User Telnet to send the Tel net equivalent. The
conmands are designated as optional because they may | ead to severe
i mpl enent ati on probl ens on sonme Servers, and because the equival ent
functions do, after all, exist in Tel net.

Note: the erasing is assumed to be perforned "as early as

possi ble". That is, the sequence "erase x" "erase x" should cone
out equivalent to "erase x" "erase" -- the second appearance of

Padl i psky [Page 6]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

x" resulting in the erasing of the space in the comand |ine.
Presunably, this is a sufficiently unconmon path that anonal ous
results woul d be tolerated by the user community, but the intent
ought to be clear.

The Tel net "synch" and "break" nechanisns are, by their very nature,
best left to Telnet. End of Iine, however, mght well be a different
story. Therefore, as a potential convenience, the UULP optionally
supports "eol char" to ask the Server to treat char as the end of
line character thenceforth. To revert to Telnet New ine, "eol"
(i.e., no argunent, current termnator).

Prompt s
Anot her aspect in which Servers vary while being the sane is how they
i ndicate "being at conmand | evel". Sonme output "ready nessages”;
ot hers, "pronpt characters". For the UULP, where some functions wll

be performed by nmeans of a conmmand’s logging in to another system
the ability to specify a known pronpt character is extrenely
desirable. The UULP conmmand is "pronpt char" where char is the
character which is to be sent when the user’s process (on the Server)
is at command level. It is explicitly pernmitted to prefix char to a
line consisting of a "native" pronpt or ready nessage. Also, this
conmand is explicitly acknow edged to be perm ssible prior to login
(Agai n, warning nmust be made of the bad results which can ensue if an
al phabetic character is chosen.)

Note: "pronpt", "eol", "erase", and "kill" may all be re-invoked
with a new value of char in order to change the relevant setting;
all may be turned off by invocation with no argunent.

Logi n

Per haps the stickiest wicket of themall is the attenpt to specify a
generic login, but here we go. The UULP |ogin conmand is "l ogin
userident", where userident is either a |ocally-acceptable user
identifier or a Network-wi de identifier as discussed above. Note
that for utility in contexts to be discussed later, the |ocally-
acceptabl e form nust not contain spaces. Servers may respond to the
login attenpt with arbitrary text (such as a "nessage of the day"),
but sone line of the response nmust be one of the follow ng: a pronpt
(as discussed above; indicating, in the present context, successfu
login); "Password:"; or "lnvalid ident: userident." Wen passwords
are required, it is the Server’s responsibility either to send a mask
or to successfully negotiate the Hi de Your Input option

Padl i psky [Page 7]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

Note that "login *free" is specifically defined to require no
password. (If a "freeloader" has access to a User Tel net and has

| earned of the "*free" syntax, it is fruitless to assume that he
couldn’t have al so read the common password.) If a password nust be
gi ven, acceptable responses are arbitrary text containing a |line

begi nning either with a pronpt or with "Login unsuccessful." or with
"Account:". |If an account is requested, the responses nust be either
the "Login unsuccessful" nessage or the text containing a pronpt

al ready described. |If any errors occur during the |ogin sequence,
users are to re-try by starting fromthe login conmand. (l.e., it is
not required that the Server "remenber" idents or passwords.)

It is explicitly acknow edged that an acceptabl e response to "login
*free" is "Limted access only." (followed by a pronpt). This is

i ntended to warn (human) users that the free account on the Server in
guestion exists only to all ow such functions as accepting mail and
telling if a particular user happens to be |ogged in. (For
objections to "l oginless" performance of such tasks, see RFC 491.
Not e al so that nothing here says that a Server nust do anything other
than return a pronpt in response to "login *free" in the event that

| ogi nl ess operation is natural to it.) Gven the UULP |ogin

di scipline and the "pronpt" command, it is reasonably straightforward
for a programto login on a free account and perform one of these
functions, for if the |l ogin command succeeded, the programw Il "
a guar anteed pronpt character.

see

To make life sinmpler for those Hosts which normally have some sort of
"daenon" process service mail and the like, a further expansion to
loginis in order. The point here is that some Hosts may not know
what sort of process to pass an unqualified "login *free" to, whereas
they'd be sure what to do with an explicit request to process mail,
do a who command, or set up console to consol e conmuni cati ons.
Therefore, UULP "login" will allow a "control argunent" (as discussed
above) of either "-mail", "-who", or "-conconi, and the respective
UULP commands invol ved nust use the respective strings in any |login
line they transmt. Again, nothing is being said about what a Server
has to do with the information, but some Servers need/want it.

Usage I nformation

Most Servers offer sonme sort of on-line docunentation, fromcalling
sequences of conmmands to entire users’ manuals. There are two sorts
of information of interest in the UULP environnent: "normal" system

i nformation, and information about the particular Server’s UULP

i mpl enentation. To learn how to get descriptions of "native"
commands, the UULP command is "help -sys" (abbreviation: "?"). Note
that "-sys" is viewed as a "control argunment” and as such prefaced by

Padl i psky [Page 8]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

a hyphen ("-") to facilitate distinction fromother sorts of nane
(e.g., command nanes). To get a description of the Server’'s UULP

i mpl enentation, "help -uulp". To get a description of a particular
UULP command’ s i npl enentation, "help commame". To be rem nded of how
to use the hel p command, "hel p".

Note: as with command nanmes and Networ k-w de user nanes, contro
argunents may be either all upper-case or all |ower-case.

It is specifically acknow edged that "No peculiarities.” is an
appropriate response to "help comane"” if nothing of interest need be
sai d about the Server’s inplenentation of the UULP conmand in
guestion. (After all, we're sparing users the necessity of studying
a dozen or so users’ mamnuals; the |least they can do is to read the
UULP command list.) Appropriate information for |ess taciturn Hosts
to furnish woul d be such data as |ocal command invoked (if such be
the case), argument syntax (e.g., pathnanme description, or name of
help file about pathnanes), "To be inplenented.", or even "Not to be
i mpl enented. "

"Mail"

Even t hough a separate nmail protocol is being evolved for genera

pur poses, the UULP needs to address this topic as, by virtue of being
| ogin based, it allows systens which do access control and sender

aut hentication on mail to nmake these abilities available to users
within its framework of generic functions. Therefore, to read one’s
mai | box, the UULP command is "readmail". To have "live" input
collected and sent to a |local user, "mmil userident"; to a renpte
user, "mail userident -at hostname", where the argunents have the

"obvi ous" neanings. To send a previously-created file, "mail -f
filenanme userident -at hostnane". Several useridents may be

furni shed; the delinmter is space (blank). Simlar considerations
apply to hostnanes. |If both are lists, they sould be treated

pairwise. (A nore elaborate syntax could be invented to deal with
the desire to send to several users at a given host and then to ot her
users at other hosts, but it seenms unnecessary to do so at this
point, for multiple invocations would get the job done.)

The mail command prefaces the nessage with a line identifying the
sender (Host and tine desirable, but not mandatory). For "live"
collection, the end of nmessage is indicated by a |ine consisting of
only a period (".") followed by the regnant |ine term nator (usually
the Tel net Newline, but see also the discussion of the eol conmand).
If remote mail is not successfully transmitted, it is to be saved in
a local file and that file's name is to be output as part of the
failure nessage. ("Queueing" for later transm ssion is admred, but

Padl i psky [Page 9]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

not required.) The transm ssion nechanismw |l follow the genera

mail protocol. Note that when invoked with a "-at" clause, the nai
conmand will send "login *free -mail" to the rempte Host(s), followed
by a mail command with no "-at" cl ause.

A desirabl e, but not required, enbellishment to "readmail" would be
the accepting of a Host nane ("-at hostnanme") to cause the |ocal Host
to go off to the naned Host (via "login *free -mail") and check for
mail there. Several hostnanmes could, of course, be specified. A
further enbellishment, which would probably be quite expensive, would
be to accept "-all" as a request to check all Hosts (or, perhaps, al
Hosts known to have a free account for the purpose) for nmil

Di rect Commruni cati on

The ability to exchange nessages directly with other |ogged in users
is apparently greatly prized by many users. Therefore, despite the
fact that there is a sense in which this function is not within the
purview of the UULP, we will address it, after a digression

Di gression: The UULP assumes that there can be straightforward
"front ends" at the various Servers which translate generic
function calls in a common spelling to calls for specific, pre-
existing "native" functions. |In the area of console to console
comuni cati ons, however, this premise does not really hold. The
problemis that both major "native" inplenmentations known to the
aut hor are seriously flawed. The TENEX "link" mechanismis both
i nsecure (you’'ve got no business seeing everything | type even if
I"mcarel ess enough to let you) and inconveni ent (why should | be
forced to renenber that pesky sem -colon? how do | get back into
phase after |1've forgotten one?). It is also likely to be
extrenmely difficult to sinulate on systems which do not force
Network 1/O through local TTY buffers, even if the user interface
were not subject to criticism The Miltics "send_nessage”
mechani sm on the other hand, has a nore sophisticated design, but
is absurdly expensive. Therefore, the UULP nechanismto be
described assunmes that, for this function, new | oca

i mpl enentations will be devel oped to support it.

To permit console to console comunications: "concom-on"; to refuse
"concom-off". Default is off. To enter nessage-sendi ng node
"concom userident -at hostnane" ("-at" clause is optional). To exit
from nessage- sendi ng node, type a |line consisting of only a period
(cf. Mail, above). Wiile in nmessage-sending node, each line will be
transmtted as a unit. The first nessage sent by concom nust be
prefaced by an identifying |line, beginning "From" and contai ni ng an
appropriate address to which to reply. The closing period-only |ine

Padl i psky [Page 10]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

Fi

shoul d be transmtted, so as to allow the other concomto cl ose as

well. Acceptable error response is "Not avail able: userident."
(which neither confirms nor denies the existence of the particul ar
user -- a matter of concern on the security front). The comrand
must, of course, do whatever is necessary to transmt the messages;
i.e., if locally invoked, access the |ocal mechanism and if invoked

for remote conmuni cations, access the renpte Host’'s concom conmand
(via "login *free -concom'). Thus, a user at a TIP would use the

[ocal form of concomon the Host of the other party if this is
convenient, or would use the remote formon his "usual" Server if the
direct use is inconvenient for sone reason (such as having no account
there, say).

The prerequisites for establishing communi cations are to find out if
the user is logged in, and what "address" to use if so. The
mechani sm for gathering this information is an expanded "who"
conmand. (Note that "who" is the UULP conmand to invoke the generic
who’s logged in function, with no constraints on format of reply.)
The syntax is "who userident -at hostnanme”, where both argunments may
be multiple. If no "-at" clause, then check | ocal Host only.
Response must begin "From host nanme: userident:" followed by either an
appropriate address (e.g., "Il" if local "concom' uses TTY nunbers
and userident is logged in on TTY Il), or "Not available."

As with mail, a "-all" enbellishnent m ght be pleasant. Note that

the search for the specified user(s) -- whether or not "-all" is used
-- still assunmes that a "login *free -who" login will be used on the
appropriate remote Host(s), followed by "who userident". This is why

responses to the expanded who command nmust be so rigidly specified.
Not e al so that regardless of whether the inquiry is nade in terns of
Net wor k-wi de or | ocal user name, the response nust be appropriate for

use in "concon'.

"Good" concominplementations will presumably do an expanded who
conmand automatically, so as to spare the user the necessity of
having to do it separately. Indeed, the -concomcontrol argunent to

login is defined to inply the ability to do a who as well as a concom
to cater to this possibility. It is tenpting to |legislate that such
an approach be the rule, but the inplenmentation inplications are not
quite clear enough to do so. The inplicit who should be viewed as a
strong hint to inplementers, though

e Creation and Mani pul ation

The comon comand subset rust furnish the ability to create and
mani pul ate files. Creation is necessary in order to send mail on the
one hand, and to produce source files for subsequent conpilation on
the other hand. Manipul ation (such as copying, renam ng, typing out,

Padl i psky [Page 11]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

and the like) is necessary both as a conveni ence aspect for users who
seek to operate only in the conmon comrand | anguage and as a neans of
perform ng desired batch functions (see below). For file
mani pul ati on commands, the user could enter the File Transfer

Prot ocol environment. However, the FTP user interface is constrained
by a very high degree of programdrivability. It is also |acks
abbrevi ations and suffers fromthe |ack of menonicity dictated by
[imting comand names to four characters. Further, some val uable
functions (such as causing a file to be typed out) are not dealt

with. Therefore, various UULP file manipul ati on comrmands are given
in Appendix 1. They need not be addressed in detail here. However,
sone context woul d be useful:

The file manipul ati on commands assume that all Servers have sone

noti on roughly corresponding to "the user’s working directory". Al
file names, whether the yet to be invented Network Virtual Pathnane
or the "local" variety, are taken to refer to files in this directory
unl ess otherw se indicated. That is, the user should not have to
furnish "dsk:" or the like; it is taken as given that when he refers
to file "x" he nmeans "the file naned 'x’ in ny current working
directory" and the Server "knows" what that neans.

At the present stage of devel opnent of the UULP, it does not seem
fruitful to go into a reasoned explication of the follow ng
statenment. For now, suffice it to say that those file nmanipul ation
commands (a copy of a foreign file, for exanple) which need to enpl oy
the FTP do enploy the FTP and let it go at that. As the context and
i mplications of the protocol become nore wi dely understood, the
detail ed i npl ementation notes will be added to the file comuands --
and refined for the other conmands, doubtless. In a way, the common
file commands may be viewed as a kind of "User FTP" of known hunan
interface when they deal with foreign files. (And, of course, unti
there’s a Network virtual pathnane, the issue doesn’'t really arise.)
| expect that an "identify" command m ght be desirable, so that UULP
conmands whi ch have to access other Servers in turn on behalf of the
specific current user can have the necessary login information
available to them Such a command is included in Appendix 1, but
shoul d rank as specul ati on for now.

On the topic of file creation, matters are rather conplicated. It is
clear that the ability to create files in the UULP environment is
extremely desirable. It is also clear that using mail to a fake
address to get the file created, then renanming the "unsent nmail" file

is too byzantine to expect users to do. Unfortunately, it is not
clear exactly what the alternative is. That is, it's fairly clear
that we need a common editor, but it’s not at all clear which editor
it should be.

Padl i psky [Page 12]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

Two wi del y-known editors cone to mnd: TECO and QED. However, not
everybody has them Even if everybody did, the "dialects" problemis
bound to be a large one. Even if all the rel evant system programers
could agree, there remains the question of whether the intended user
popul ation would be willing to bother |earning a | anguage as conpl ex
as TECO or QED. Therefore an optional UULP command to be called
"neted" is proposed. (See also RFC 569.) This editor is a |ine-
oriented context editor (no "regular expressions", but also no line
nunbers). It is copiously docunented in Chapter 4 or the Miltics
Programers’ Manual, including an annotated listing of the (PL/1)
source code. A sinple user’s guide has been prepared (see Appendi x
3). Several inplementations already exist, and comm tnents have been
nmade for nore. It may al so be repughant to sonme of the system
progranmmers who woul d be called upon to inplenment it -- which is why
it is optional, until and unless higher authority nmakes it nandatory.

O her Protocols

The nominal initial inpetus for proposing a UULP was to all ow new

Net wor k user protocols to be invokable through a common mechani sm
rather than requiring a new respondi ng nechanismto be built for a
new contact socket for each new protocol. Although this goal has
been shunted into the background by the adm ssion of the true goal of
the UULP, it has not been dropped conpletely. Therefore, to enter
the FTP Server environment, the UULP command is "ftp"; to enter the
RJE Server environnent, the UULP command is "rje". Exit is as per
the respective protocols. (Where possible, exit should be back to
the UULP environnent.)

I nvoki ng Forei gn Prograns

There are two broad contexts in which it is desirable to cause a
specific local programto be invoked fromthe conmmon command
environnent: The User side of the connection may itself be a program
and the desired Server side programa specifically cooperating one;
this is the nore sophisticated context, of course. The |ess

sophi sti cated context assumes that the User side is a "live" user
and the desire is to invoke a conmpiler or an object programthe user
has al ready conpiled in the common | anguage -- again as a conveni ence

to the user so that he may operate in a sort of "Server-transparent”
node. (The latter case al so covers "batch" use of the Server; see
below.) In both contexts, the inportant role of the UUP is to
speci fy the nmechani snms through which the particul ar programs nmay be
i nvoked, irrespective of the idiosyncrasies of the Servers’ conmrand
| anguages.

Padl i psky [Page 13]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

Pr ogranm ng | anguages are nuch too big a problemto tackle here.
However, assuming that a user sonehow nmanages to create a source
program he still wants sonme commonality of spelling in invoking the
appropriate conmpiler, or even the object program As an optional but
strongly recommended UULP command, then, "call name" shoul d i nvoke
obj ect program nane (where the naned program may be a "native"
conmand with argunents specified as appropriate). The values "pl1",
"-basic", "-fortran", "-lisp", etc., should be recognized as
requesting the invocation of the appropriate |anguage processor (to
operate on a naned source file or interpretively/interactively if no
source file was nanmed), with "reasonable” defaults in effect. Note
that this all is neant to inply that "native" conmmands are not
directly invokable fromthe UULP environnment (other than by "call"),
to avoid potential nam ng conflicts between system comrands and new
UULP conmands.

Note that the "call" command in the UULP environment constitutes a
rubric for "parallel" conputation, given any ad hoc convention for
the return of conpletion information. (Witing on the Tel net
wite socket plus 2 would seem appropriate, provided the initiator
has the ability to "listen" for the rfc; but even a response in
the data stream as a speci al -cased programis assuned on the
"user"side anyway.)

O her Matters

The topic of "batch" node nmerits sone attention. As with the file
mani pul ati on commands, nore consultation is necessary for a firm
spec. However, | suspect that a "-batch" control argunent to login
should initiate batch nbde processing by the Server, and given the
call and identify conmands all we might then require is a convention
for designating the output file in order to return it via a copy
conmand in the "job" itself (if output is to be returned rather than
stored at the Server). O course, -batch will probably need sone
substructure as to password and timng matters. More details wll
enmerge in this area in future iterations.

An admittedly fictionalized scenario might |ook |like this:

login Me -batch -pw xxx -shift 3
copy *452<me>source.text source.pl 2
call -pl2 source

call source input output

identify Me2 yyy

copy out put *555>r oot >Me>out put 452
| ogout

Padl i psky [Page 14]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

where user "Me" wants the Server receiving the comands (either
directly fromhimat a TIP or perhaps from sone ot her Server on which
he has created a file containing then) to set up a batch job for him
with password "xxx", to be run on Shift 3 (whenever that is). The
job first copies file "source.text"” fromdirectory "<me>" on Host 452
into local file "source.pl2", then conpiles it with the local PL2
conpil er, executes it (assuming a "Not found" response would go into
a known file if conmpilation had failed) with specified argunents
(presumably the names of files for input and output), then copies the
"output" file to Host 555's file hierarchy at the indicated place,
using the user identifier "Me2" and the password "yyy". |It’s not

el egant, but it ought to work.

Finally, on the topic of |ogging out, the UULP command is "Il ogout".
The Server nust close the Tel net connection after doing whatever is
appropriate to effect a logout. To retain the Tel net connection,

"l ogout -save". Having the Server close is viewed as a conveni ence
for the user, in that it spares himthe necessity of causing his User
Telnet to close. It is also desirable for programdriven

applications, so as not to | eave the connections "dangling" and not
to require possibly conplex negotiations with the User side to break
the connecti on.

APPENDI X 1. THE COVWON COMVAND SUBSET

Synt ax Opt

[. "Set-up" Conmands

loginid arg

The id may be Network-w de or Host-specific.

"*free" is reserved.

The arg may be "-mail", "-who", "-concont

"-batch", or may be absent.

Result is to be either logged in or passed off to appropriate daenon.

pronpt char

Specifies that char is to becone or
precede the nornmal pronpt nessage.
Acceptable prior to |ogin.

erase char X
Specifies that char is the erase character.
I nvocation with no argument reverts to default.

kill char X

Padl i psky [Page 15]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

Specifies that char is the kill character.
I nvocation with no argurment reverts to default.

eol char X
Specifies that char is the newine character.
I nvocation with no argurment reverts to default.

| oca
Enter the | ocal command environnment.

ftp
Enter the FTP environnent.

rje

Enter the RJE environment.

| ogout

Logout and sever the Tel net connection.

| ogout -save
Logout but keep the Tel net connecti on.

map
Apply the case-mappi ng conventions of Appendi x 2.
Required on Hosts to which case is significant.

identify id arg X
Specifies that id is to be used as the user

identifier in any "fanout" |ogins required.

If arg is specified, it is to be either the

password to be used in such logins or "-pw', in

which case the Server will furnish a nask or negotiate the Hi de Your
| nput Tel net option; if no arg, then no password is to be furnished
on fanout | ogins.

Default idis "*free".

Il. Conmmunications Conmands

r eadmai
Type out "nmil box".

readmai | (id) -at host X
Type out "mail box" on renote Host host.

Mul tiple Hosts may be specified,

separ ated by spaces (bl anks).

Padl i psky [Page 16]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

Implies ability to change working directory
at host to directory inplied by known
user identifier, or (optionally) by id.

readmail -all XX

Search for mail.
Extremel y opti onal

mail id

Col l ect input until |ine consisting of
only a period (".") for mailing to |l oca
user specified by id.

mail -f file id

Send contents of specified file to specified
| ocal user.

mail id -at host

Col l ect input until line consisting of

only a period (".") for mailing to renote
user(s) at specified Host(s). Both id and
host may be multiple, separated by spaces.
(I'f multiple, they should be taken pairw se.)

mail -f file id -at host
Send contents of specified file to specified
renote user(s).

who
The generic who's | ogged in comrand.

who id
Is id | ogged in? Constrained responses.

who id -at host
Is the specified user logged in at the
speci fied host. Constrained responses.

concom - on
Enabl e consol e to consol e comuni cati ons.

concom - of f
Di sabl e consol e to consol e comruni cati ons.

concomid
Send messages to specified |ocal user
until line consisting of only a period (".").

Padl i psky [Page 17]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

concomid -at host
Send nmessages to specified renote user

I11. File Commands

type path

Type out the contents of the specified file.
Pat hname may be | ocal or Network-wi de.
Default to current working directory.

[istdir
List the contents of the current working directory. (Local format
acceptable.)

[istdir path
Li st the contents of the specified directory.

renane old new
Change the specified file's nane as indicated.

addname ol d new X
G ve the specified file the specified extra nane.

del ete path
Get rid of the specified file.
("Expunge" if necessary.)

copy fromto
Make a copy of the file specified by the first pathnanme at the second

pat hnane.

link fromto X

If your file system has such a concept, nmake a "link" between the two
pat hnames. [|f no second argunent,

use sane entry name in working directory.

status path st X

If your file systemhas such a concept, give status information about
the specified file or directory.

changewd path X
If no argument, return to the "hone" directory.

typewd
Type out the pathnane of the current working directory.

net ed path

Padl i psky [Page 18]

RFC 666 Uni fi ed User-Level Protocol Novenmber 1974

See Appendi x 3.
I'V. Invoking "Native" Prograns

call nane (args)

I nvoke the specified programw th the

specified argunents (if any).

The foll owing nanmes are reserved to indicate the

i nvocati on of the correspondi ng | anguage processor: "-pl1", "-basic",
"-fortran", "-lisp".

(I'f no source file indicated, invoke "interpretively" if possible.)

V. On-line Docunentation

hel p nane

Type out information about the specified UULP conmand. If nane is
"-sys", type out information about how to use the local system s help
mechani sm if

“uul p", about the l|ocal systemis UULP inplenentation. |f no name

gi ven, describe the command itself.

APPENDI X 2. MAP COMVAND CONVENTI ONS

This appendix will eventually contain the case-mappi ng conventions
detailed in RFC 411.

APPENDI X 3. EDI T COMVAND REQUESTS

This appendi x will eventually contain descriptions of the neted
conmand requests (a draft of which now exists), or a reference to the
Resour ce Not ebook version, if that gets published first. For now, it
shoul d be sufficient to point out that the requests are basically

| ocate, next, top, change, save, and quit -- i.e., it’s the "old-
fashi oned" flavor of context editor.

[Optical character recognition and initial proofreading perforned
11/ 20-21/04 by The Author. A few original typos were corrected; sone
may renmin.]

Padl i psky [Page 19]

