I nt ernet Engi neering Task Force (1 ETF) A. Barth
Request for Comments: 6265 U.C. Berkel ey
obsol etes: 2965 April 2011
Cat egory: Standards Track

| SSN: 2070-1721

HTTP St ate Management Mechani sm
Abst r act

Thi s docunent defines the HTTP Cooki e and Set- Cooki e header fields.
These header fields can be used by HITP servers to store state
(cal l ed cookies) at HITP user agents, letting the servers maintain a
stateful session over the nostly statel ess HITP protocol. Although
cooki es have many historical infelicities that degrade their security
and privacy, the Cooki e and Set- Cookie header fields are w dely used
on the Internet. This docunent obsol etes RFC 2965.

Status of This Meno
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,
and how to provide feedback on it may be obtained at
http://ww.rfc-editor.org/info/rfc6265

Copyri ght Notice

Copyright (c) 2011 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega

Provi sions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document rnust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Barth St andards Track [Page 1]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

Thi s docunent nmay contain material from | ETF Docunents or |ETF
Contri butions published or made publicly avail abl e before Novenber

10,

2008. The person(s) controlling the copyright in sonme of this

material may not have granted the IETF Trust the right to allow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format

it

for publication as an RFC or to translate it into | anguages other

than Engli sh.

Tabl e

1
2.

Bart h

of Contents
[Nt roducCti ON ... 3
CONVENT i ONS . .. 4
2.1. Conformance Criteria 4
2.2, Syntax Notation 5
2.3, Termnol Ogy . ..o e 5
O B Vi BW L ottt 6
3. 1. EXanpl @S . 6
Server Requirement S 8
4.1, Set-Cooki e 8
4. 1. 1. SYNtaAX o 8
4.1.2. Senmantics (Non-Normative), 10
4. 2. C00KI € .ot e 13
4.2, 1. SYNtaX ... 13
4.2.2. SEMBNLI CS ... e 13
User Agent Requirement s e e e 14
5.1. Subconmponent Algorithnms 14
B L. L. DAt S ot 14
5.1.2. Canonicalized Host Nanes 16
5.1.3. Domain Matching 16
5.1.4. Paths and Path-Match 16
5.2. The Set-Cookie Header 17
5.2.1. The Expires Attribute 19
5.2.2. The Max-Age Attribute 20
5.2.3. The Dommin Attribute 20
5.2.4. The Path Attribute, 21
5.2.5. The Secure Attribute 21
5.2.6. The HitpOnly Attribute 21
5.3. Storage Model 21
5.4. The Cookie Header 25
I mpl ementation Considerations 27
B. L. Limts .. 27
6.2. Application Progranming Interfaces 27
6.3. I DNA Dependency and Mgration 27
Privacy Considerati onst 28
St andards Track [Page 2]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

7.1. Third-Party CooKi €S e 28
7.2, User Control s 28
7.3, Expiration Dates 29
8. Security Considerati ONS 29
8. 1. OVEBIVI BW ..ttt e e 29
8.2. Ambient Authority 30
8. 3. Cear TeXt ... 30
8.4. Session ldentifiers 31
8.5. Weak Confidentiality i, 32
8.6. Weak Integrity 32
8.7. Reliance on DNS e 33
9. TANA Considerati ONS e 33
9. 1. CoOKi € .ot e 34
9. 2. Set-Co0Ki & .. o e 34
9. 3. Co0Ki 2 . .. 34
9.4, Set-Co0Ki 82 . .. e 34
10. Ref BrENCEeS . . o o e 35
10. 1. Normmtive References 35
10.2. Informative References 35
Appendi x A. Acknowl edgements 37
1. Introduction

Thi s docunent defines the HTTP Cooki e and Set- Cooki e header fields.
Usi ng the Set-Cookie header field, an HTTP server can pass nane/val ue
pairs and associ ated netadata (called cookies) to a user agent. Wen
the user agent makes subsequent requests to the server, the user
agent uses the netadata and other information to deterni ne whether to
return the nane/value pairs in the Cookie header

Al t hough sinple on their surface, cookies have a nunber of
conplexities. For exanple, the server indicates a scope for each
cooki e when sending it to the user agent. The scope indicates the
maxi mum armount of time in which the user agent should return the
cooki e, the servers to which the user agent should return the cookie,
and the URI schenes for which the cookie is applicable.

For historical reasons, cookies contain a nunber of security and
privacy infelicities. For exanple, a server can indicate that a

gi ven cookie is intended for "secure" connections, but the Secure
attribute does not provide integrity in the presence of an active
network attacker. Simlarly, cookies for a given host are shared
across all the ports on that host, even though the usual "same-origin
policy" used by web browsers isolates content retrieved via different
ports.

There are two audiences for this specification: devel opers of cookie-
generating servers and devel opers of cooki e-consum ng user agents.

Barth St andards Track [Page 3]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

2.

2.

To maxim ze interoperability with user agents, servers SHOULD limt
thenselves to the well-behaved profile defined in Section 4 when
generati ng cooki es.

User agents MJST inplenment the nore |iberal processing rules defined
in Section 5, in order to naximze interoperability with existing
servers that do not conformto the well-behaved profile defined in
Section 4.

Thi s docunent specifies the syntax and semantics of these headers as
they are actually used on the Internet. |In particular, this docunent
does not create new syntax or semantics beyond those in use today.
The recomendati ons for cookie generation provided in Section 4
represent a preferred subset of current server behavior, and even the
nore |iberal cookie processing algorithmprovided in Section 5 does
not reconmend all of the syntactic and semantic variations in use
today. Were sone existing software differs fromthe reconmended
protocol in significant ways, the document contains a note explaining
the difference.

Prior to this docunent, there were at |east three descriptions of
cooki es: the so-called "Netscape cookie specification" [Netscape],
RFC 2109 [RFC2109], and RFC 2965 [RFC2965]. However, none of these
docunents descri be how t he Cooki e and Set-Cooki e headers are actually
used on the Internet (see [Kri2001] for historical context). 1In
relation to previous |ETF specifications of HITP state nmanagenent
mechani sns, this document requests the follow ng actions:

1. Change the status of [RFC2109] to Historic (it has already been
obsol eted by [RFC2965]).

2. Change the status of [RFC2965] to Historic.

3. Indicate that [RFC2965] has been obsol eted by this docunent.

In particular, in noving RFC 2965 to Historic and obsoleting it, this
docunent deprecates the use of the Cooki e2 and Set- Cooki e2 header
fields.

Conventi ons
1. Conformance Criteria

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Barth St andards Track [Page 4]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

Requi renents phrased in the inperative as part of algorithnms (such as
"strip any | eading space characters” or "return false and abort these
steps") are to be interpreted with the meaning of the key word
("MJST", "SHOULD', "MAY", etc.) used in introducing the algorithm

Conf ormance requirements phrased as algorithns or specific steps can
be i nmpl emented in any manner, so long as the end result is
equivalent. |In particular, the algorithns defined in this
specification are intended to be easy to understand and are not

i ntended to be performant.

2.2. Syntax Notation

Thi s specification uses the Augnmented Backus- Naur Form (ABNF)
notati on of [RFC5234].

The followi ng core rules are included by reference, as defined in

[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF
(CR LF), CTLs (controls), DIA@T (deciml 0-9), DQUOTE (double quote),
HEXDI G (hexadeci mal 0-9/A-F/a-f), LF (line feed), NUL (null octet),
OCTET (any 8-bit sequence of data except NUL), SP (space), HTAB
(horizontal tab), CHAR (any [USASCII] character), VCHAR (any visible
[USASCI I] character), and WP (whitespace).

The OA5 (optional whitespace) rule is used where zero or nore |inear
whi t espace characters MAY appear:

ons = *([obs-fold] WSP)
; "optional" whitespace
obs-fold = CRLF

ON5 SHOULD either not be produced or be produced as a single SP
character.

2.3. Term nol ogy
The ternms user agent, client, server, proxy, and origin server have
the same neaning as in the HITP/ 1.1 specification ([RFC2616], Section
1.3).
The request-host is the name of the host, as known by the user agent,
to which the user agent is sending an HTTP request or fromwhich it
is receiving an HTTP response (i.e., the nane of the host to which it
sent the correspondi ng HTTP request).

The termrequest-uri is defined in Section 5.1.2 of [RFC2616].

Barth St andards Track [Page 5]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

Two sequences of octets are said to case-insensitively match each
other if and only if they are equival ent under the i;ascii-casenmap
col lation defined in [RFC4790] .

The term string means a sequence of non-NUL octets.
3. Overview

This section outlines a way for an origin server to send state
information to a user agent and for the user agent to return the
state information to the origin server.

To store state, the origin server includes a Set-Cookie header in an
HTTP response. |In subsequent requests, the user agent returns a
Cooki e request header to the origin server. The Cookie header
contai ns cooki es the user agent received in previous Set-Cookie
headers. The origin server is free to ignore the Cooki e header or
use its contents for an application-defined purpose.

Oigin servers MAY send a Set-Cooki e response header with any
response. User agents MAY ignore Set-Cooki e headers contained in
responses with 100-1evel status codes but MJST process Set- Cookie
headers contained in other responses (including responses wth 400-
and 500-1evel status codes). An origin server can include nultiple
Set - Cooki e header fields in a single response. The presence of a
Cooki e or a Set-Cookie header field does not preclude HTTP caches
fromstoring and reusing a response.

Oigin servers SHOULD NOT fold multiple Set-Cookie header fields into
a single header field. The usual nechanismfor folding HITP headers
fields (i.e., as defined in [RFC2616]) m ght change the senantics of
the Set-Cooki e header field because the %2C (",") character is used
by Set-Cookie in a way that conflicts with such fol ding.

3.1. Exanples

Usi ng the Set-Cookie header, a server can send the user agent a short
string in an HTTP response that the user agent will return in future
HTTP requests that are within the scope of the cookie. For exanple,
the server can send the user agent a "session identifier" named SID
with the val ue 31d4d96e407aad42. The user agent then returns the
session identifier in subsequent requests.

Barth St andards Track [Page 6]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

== Server -> User Agent ==

Set - Cooki e: Sl D=31d4d96e407aad42
== User Agent -> Server ==
Cooki e: Sl D=31d4d96e407aad42

The server can alter the default scope of the cookie using the Path
and Domain attributes. For example, the server can instruct the user
agent to return the cookie to every path and every subdomai n of
exanpl e. com

== Server -> User Agent ==

Set - Cooki e: Sl D=31d4d96e407aad42; Pat h=/; Domai n=exanpl e. com
== User Agent -> Server ==

Cooki e: Sl D=31d4d96e407aad42

As shown in the next exanple, the server can store multiple cookies
at the user agent. For exanple, the server can store a session
identifier as well as the user’s preferred | anguage by returning two
Set - Cooki e header fields. Notice that the server uses the Secure and
HtpOnly attributes to provide additional security protections for
the nore sensitive session identifier (see Section 4.1.2.)

== Server -> User Agent ==

Set - Cooki e: S| D=31d4d96e407aad42; Pat h=/; Secure; H1tpOly
Set - Cooki e: | ang=en-US; Path=/; Domai n=exanpl e.com

== User Agent -> Server ==
Cooki e: SI D=31d4d96e407aad42; | ang=en-US

Notice that the Cookie header above contains two cookies, one naned
SI D and one naned lang. |f the server wi shes the user agent to
persi st the cookie over multiple "sessions" (e.g., user agent
restarts), the server can specify an expiration date in the Expires
attribute. Note that the user agent mght delete the cookie before
the expiration date if the user agent’s cookie store exceeds its
quota or if the user manually deletes the server’s cookie.

Barth St andards Track [Page 7]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

4.

4.

4.

== Server -> User Agent ==

Set - Cooki e: | ang=en-US; Expires=Wed, 09 Jun 2021 10:18:14 GMI

== User Agent -> Server ==

Cooki e: SI D=31d4d96e407aad42; | ang=en-US

Finally, to renove a cookie, the server returns a Set-Cookie header
with an expiration date in the past. The server will be successfu
in renoving the cookie only if the Path and the Domain attribute in
t he Set- Cooki e header match the val ues used when the cookie was
created.

== Server -> User Agent ==

Set - Cooki e: | ang=; Expires=Sun, 06 Nov 1994 08:49:37 GMI

== User Agent -> Server ==

Cooki e: Sl D=31d4d96e407aad42

Server Requirenents

Thi s section describes the syntax and senantics of a well-behaved
profile of the Cooki e and Set- Cooki e headers.

1. Set-Cookie

The Set - Cooki e HTTP response header is used to send cookies fromthe
server to the user agent.

1.1. Syntax

Informally, the Set-Cookie response header contains the header nane
"Set - Cookie" followed by a ":" and a cookie. Each cookie begins with
a nane-val ue-pair, followed by zero or nore attribute-val ue pairs.
Servers SHOULD NOT send Set-Cooki e headers that fail to conformto
the follow ng granmar:

Barth St andards Track [Page 8]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

set - cooki e- header
set - cooki e-string
cooki e-pair
cooki e- nane

cooki e-val ue
cooki e- oct et

" Set - Cooki e: " SP set-cookie-string
cookie-pair *(";" SP cookie-av)
cooki e-name "=" cooki e-val ue
t oken
*cooki e-octet / (DQUOTE *cooki e-octet DQUOTE)
W21 /| 9%23-2B / 2D 3A / 9%&3C-5B / 95D 7E
; US-ASCI| characters excluding CTLs,
; whi tespace DQUOTE, coma, semnicol on
; and backsl ash
t oken = <token, defined in [RFC2616], Section 2.2>

cooki e- av expires-av / max-age-av / donmain-av /
path-av / secure-av / httponly-av /
ext ensi on- av
"Expi res=" sane-cooki e-date
<rfcll123-date, defined in [RFC2616], Section 3.3.1>
"Max- Age=" non-zero-digit *DIAT
; In practice, both expires-av and nmax-age-av
; are limted to dates representable by the
; user agent.
%31- 39
; digits 1 through 9
"Domai n=" donai n-val ue
<subdonai n>
; defined in [RFCL034], Section 3.5, as
; enhanced by [RFC1123], Section 2.1

expires-av
sane- cooki e-dat e
max- age- av

non-zero-di gi t

domai n- av
domai n-val ue

pat h-av = "Pat h=" path-val ue

pat h-val ue = <any CHAR except CTLs or ";">
secure-av = "Secure"

htt ponl y- av = "HtpOnly"

ext ensi on- av <any CHAR except CTLs or ";">

Note that some of the grammatical termnms above reference docunents
that use different grammati cal notations than this docunent (which
uses ABNF from [RFC5234]).

The senmantics of the cookie-value are not defined by this docunent.

To maxim ze conpatibility with user agents, servers that wish to
store arbitrary data in a cookie-value SHOULD encode that data, for
exanpl e, using Base64 [RFC4648] .

The portions of the set-cookie-string produced by the cookie-av term
are known as attributes. To maximnmi ze conpatibility with user agents,
servers SHOULD NOT produce two attributes with the sane nanme in the
same set-cookie-string. (See Section 5.3 for how user agents handl e
this case.)

Barth St andards Track [Page 9]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

Servers SHOULD NOT include nore than one Set-Cookie header field in
the same response with the sane cooki e-nane. (See Section 5.2 for
how user agents handle this case.)

If a server sends multiple responses containing Set-Cookie headers
concurrently to the user agent (e.g., when comunicating with the
user agent over nultiple sockets), these responses create a "race
condition" that can | ead to unpredictabl e behavior

NOTE: Sonme existing user agents differ in their interpretation of
two-digit years. To avoid conpatibility issues, servers SHOULD use
the rfcll23-date format, which requires a four-digit year

NOTE: Sone user agents store and process dates in cookies as 32-bit
UNI X time_t values. Inplenentation bugs in the libraries supporting
time_t processing on some systens m ght cause such user agents to
process dates after the year 2038 incorrectly.

4.1.2. Semantics (Non-Normative)

This section describes sinplified semantics of the Set-Cookie header
These semantics are detailed enough to be useful for understanding
the nmost conmon uses of cookies by servers. The full semantics are
described in Section 5.

When the user agent receives a Set-Cooki e header, the user agent
stores the cookie together with its attributes. Subsequently, when
the user agent makes an HITP request, the user agent includes the
appl i cabl e, non-expired cookies in the Cooki e header

If the user agent receives a new cookie with the sane cooki e-nane,
donai n-val ue, and pat h-value as a cookie that it has already stored,
the existing cookie is evicted and replaced with the new cooki e.
Noti ce that servers can del ete cookies by sending the user agent a
new cookie with an Expires attribute with a value in the past.

Unl ess the cookie' s attributes indicate otherwi se, the cookie is
returned only to the origin server (and not, for exanple, to any
subdorai ns), and it expires at the end of the current session (as
defined by the user agent). User agents ignore unrecognized cookie
attributes (but not the entire cookie).

Barth St andards Track [Page 10]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

4.1.2.1. The Expires Attribute

The Expires attribute indicates the maximumlifetine of the cookie,
represented as the date and time at which the cookie expires. The
user agent is not required to retain the cookie until the specified
date has passed. |In fact, user agents often evict cookies due to
MeNDry pressure or privacy concerns.

4.1.2.2. The Max-Age Attribute

The Max-Age attribute indicates the maxinumlifetime of the cookie,
represented as the nunber of seconds until the cookie expires. The
user agent is not required to retain the cookie for the specified
duration. |In fact, user agents often evict cookies due to nenory
pressure or privacy concerns.

NOTE: Sone existing user agents do not support the Max-Age
attribute. User agents that do not support the Max-Age attribute
ignore the attribute.

If a cookie has both the Max- Age and the Expires attribute, the Max-
Age attribute has precedence and controls the expiration date of the
cookie. If a cookie has neither the Max-Age nor the Expires
attribute, the user agent will retain the cookie until "the current
session is over" (as defined by the user agent).

4.1.2.3. The Donmin Attribute

The Domain attribute specifies those hosts to which the cookie will
be sent. For exanple, if the value of the Domain attribute is
"exanpl e. com', the user agent will include the cookie in the Cookie
header when maki ng HTTP requests to exanpl e.com ww. exanple.com and
www. cor p. exanpl e.com (Note that a leading %2E ("."), if present,
is ignored even though that character is not permtted, but a
trailing %2E ("."), if present, will cause the user agent to ignore
the attribute.) |If the server onmts the Dommin attribute, the user
agent will return the cookie only to the origin server.

WARNI NG Sone existing user agents treat an absent Domain
attribute as if the Domain attribute were present and cont ai ned
the current host nane. For exanple, if example.comreturns a Set-
Cooki e header without a Donmmin attribute, these user agents wll
erroneously send the cookie to www exanpl e.com as wel | .

Barth St andards Track [Page 11]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

The user agent will reject cookies unless the Donain attribute
specifies a scope for the cookie that would include the origin
server. For exanple, the user agent will accept a cookie with a
Domain attribute of "example.coni or of "foo.exanple.cont from

f 0oo. exanpl e.com but the user agent will not accept a cookie with a
Domain attribute of "bar.exanple.cont or of "baz.foo.exanple.conf

NOTE: For security reasons, many user agents are configured to reject
Domain attributes that correspond to "public suffixes". For exanple,
some user agents will reject Domain attributes of "conmt' or "co.uk".
(See Section 5.3 for nore information.)

4.1.2.4. The Path Attribute

The scope of each cookie is linted to a set of paths, controlled by
the Path attribute. |If the server omits the Path attribute, the user
agent will use the "directory” of the request-uri’s path conponent as
the default value. (See Section 5.1.4 for nore details.)

The user agent will include the cookie in an HTTP request only if the
path portion of the request-uri matches (or is a subdirectory of) the
cookie's Path attribute, where the %2F ("/") character is
interpreted as a directory separator.

Al t hough seenmingly useful for isolating cookies between different
paths within a given host, the Path attribute cannot be relied upon
for security (see Section 8).

4.1.2.5. The Secure Attribute

The Secure attribute limts the scope of the cookie to "secure"
channel s (where "secure" is defined by the user agent). Wen a
cooki e has the Secure attribute, the user agent will include the
cookie in an HTTP request only if the request is transnmtted over a
secure channel (typically HTTP over Transport Layer Security (TLS)

[RFC2818]) .

Al 't hough seemingly useful for protecting cookies fromactive network
attackers, the Secure attribute protects only the cookie's
confidentiality. An active network attacker can overwite Secure
cookies froman insecure channel, disrupting their integrity (see
Section 8.6 for nore details).

Barth St andards Track [Page 12]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

4.1.2.6. The HitpOnly Attribute

The HttpOnly attribute linits the scope of the cookie to HITP
requests. In particular, the attribute instructs the user agent to
omt the cookie when providing access to cookies via "non-HTTP" APIs
(such as a web browser APl that exposes cookies to scripts).

Note that the HtpOnly attribute is independent of the Secure
attribute: a cookie can have both the HtpOnly and the Secure
attribute.

4.2. Cookie
4.2.1. Syntax

The user agent sends stored cookies to the origin server in the
Cooki e header. |If the server conforns to the requirenments in

Section 4.1 (and the user agent conforns to the requirenents in
Section 5), the user agent will send a Cooki e header that conforns to
the foll ow ng granmar:

"Cooki e:" ON5 cookie-string OAS
cookie-pair *(";" SP cookie-pair)

cooki e- header
cooki e-string

4.2.2. Semantics

Each cookie-pair represents a cookie stored by the user agent. The
cooki e-pair contains the cooki e-name and cooki e-val ue the user agent
received in the Set-Cookie header

Notice that the cookie attributes are not returned. |In particular
the server cannot determnmine fromthe Cookie header al one when a
cookie will expire, for which hosts the cookie is valid, for which
paths the cookie is valid, or whether the cookie was set with the
Secure or HtpOnly attributes.

The semantics of individual cookies in the Cooki e header are not
defined by this docunent. Servers are expected to inbue these
cookies with application-specific semantics.

Al t hough cookies are serialized Iinearly in the Cooki e header
servers SHOULD NOT rely upon the serialization order. |In particular
if the Cooki e header contains two cookies with the sane nane (e.g.
that were set with different Path or Domain attributes), servers
SHOULD NOT rely upon the order in which these cookies appear in the
header .

Barth St andards Track [Page 13]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

5. User Agent Requirenents

This section specifies the Cooki e and Set- Cookie headers in
sufficient detail that a user agent inplenmenting these requirements
precisely can interoperate with existing servers (even those that do
not conformto the well-behaved profile described in Section 4).

A user agent could enforce nore restrictions than those specified
herein (e.g., for the sake of inproved security); however,
experiments have shown that such strictness reduces the |ikelihood
that a user agent will be able to interoperate with existing servers.

5.1. Subconponent Al gorithms

This section defines sonme algorithms used by user agents to process
speci fi c subconponents of the Cookie and Set- Cooki e headers.

5 1. 1. Dat es

The user agent MJST use an al gorithm equivalent to the follow ng
algorithmto parse a cookie-date. Note that the various bool ean
flags defined as a part of the algorithm(i.e., found-time, found-
day- of - nont h, found-nonth, found-year) are initially "not set”.

1. Using the grammar bel ow, divide the cookie-date into date-tokens.
*delimter date-token-list *delimter

dat e-token *(1*deliniter date-token)
1*non-delimter

cooki e-dat e
dat e-t oken-1i st
dat e-t oken

delimter = %09 / 9&20-2F / 9%3B-40 / 9%5B-60 / 9% 7B-7E
non-delimter = %%00-08 / %&OA-1F / DAT / ":" | ALPHA /| 9%7F-FF
non-di gi t = W00- 2F / 9%3A-FF

day- of - nont h 1*2DIG T (non-digit *OCTET)

nont h ("jan" [/ "feb" / "mar" [/ "apr" |/
"may" / "jun" [/ "jul" [/ "aug" /
"sep" / "oct" / "nov" / "dec") *OCTET
year = 2*4DIG T (non-digit *OCTET)
time = hms-time (non-digit *OCTET)
hns-ti ne =time-field ":" tinme-field ":" time-field

tine-field 1*2DIG T

2. Process each date-token sequentially in the order the date-tokens
appear in the cookie-date:

Barth St andards Track [Page 14]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

Bart h

1. If the found-tinme flag is not set and the token natches the
time production, set the found-tine flag and set the hour-
val ue, ninute-value, and second-value to the nunbers denoted
by the digits in the date-token, respectively. Skip the
remai ni ng sub-steps and continue to the next date-token

2. If the found-day-of-nmonth flag is not set and the date-token
mat ches the day-of-nonth production, set the found-day-of -
nonth flag and set the day-of-nonth-value to the nunber
denoted by the date-token. Skip the remaining sub-steps and
continue to the next date-token

3. If the found-nonth flag is not set and the date-token matches
the nonth production, set the found-nonth flag and set the
nont h-val ue to the nonth denoted by the date-token. Skip the
remai ni ng sub-steps and continue to the next date-token.

4. |If the found-year flag is not set and the date-token matches
the year production, set the found-year flag and set the
year-val ue to the nunber denoted by the date-token. Skip the
remai ni ng sub-steps and continue to the next date-token

If the year-value is greater than or equal to 70 and | ess than or
equal to 99, increment the year-val ue by 1900.

If the year-value is greater than or equal to O and |l ess than or
equal to 69, increnment the year-val ue by 2000.

1. NOTE: Sone existing user agents interpret two-digit years
differently.

Abort these steps and fail to parse the cookie-date if:

* at |east one of the found-day-of-nonth, found-nonth, found-
year, or found-time flags is not set,

* the day-of-nonth-value is less than 1 or greater than 31
* the year-value is less than 1601,

* the hour-value is greater than 23,

* the mnute-value is greater than 59, or

* the second-value is greater than 59.

(Note that | eap seconds cannot be represented in this syntax.)

St andards Track [Page 15]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

6. Let the parsed-cookie-date be the date whose day-of - nonth, nonth,
year, hour, minute, and second (in UTC) are the day-of -nonth-
val ue, the nonth-val ue, the year-value, the hour-value, the
m nut e-val ue, and the second-val ue, respectively. |If no such
dat e exists, abort these steps and fail to parse the cookie-date.

7. Return the parsed-cookie-date as the result of this algorithm

5.1.2. Canonicalized Host Nanes

A canoni cal i zed host nanme is the string generated by the foll ow ng

al gorithm

1. Convert the host nane to a sequence of individual domain nane
| abel s.

2. Convert each label that is not a Non-Reserved LDH (NR-LDH) | abel
to an A-label (see Section 2.3.2.1 of [RFC5890] for the forner
and latter), or to a "punycode | abel" (a |abel resulting fromthe
"ToASCI I " conversion in Section 4 of [RFC3490]), as appropriate
(see Section 6.3 of this specification).

3. Concatenate the resulting | abels, separated by a %2E (".")
character.

5.1.3. Donmmi n Matchi ng

A string domai n-matches a given domain string if at |east one of the

foll owi ng conditions hol d:

o0 The domain string and the string are identical. (Note that both

the domain string and the string will have been canonicalized to
| ower case at this point.)

o Al of the follow ng conditions hold:

* The donmain string is a suffix of the string.
* The |l ast character of the string that is not included in the
domain string is a W2E (".") character.
* The string is a host nanme (i.e., not an |IP address).
5.1.4. Paths and Path-Match

The user agent MJST use an al gorithm equivalent to the foll ow ng

algorithmto conpute the default-path of a cookie:

Barth St andards Track [Page 16]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

5.

1. Let uri-path be the path portion of the request-uri if such a
portion exists (and enpty otherwi se). For exanple, if the
request-uri contains just a path (and optional query string),
then the uri-path is that path (w thout the %3F ("?") character
or query string), and if the request-uri contains a ful
absoluteURI, the uri-path is the path component of that URI

2. If the uri-path is enpty or if the first character of the uri-
path is not a %2F ("/") character, output %2F ("/") and skip
the remaini ng steps.

3. If the uri-path contains no nore than one %2F ("/") character,
out put %2F ("/") and skip the renaining step.

4. CQutput the characters of the uri-path fromthe first character up
to, but not including, the right-nmost %2F ("/").

A request-path path-matches a given cookie-path if at |east one of
the follow ng conditions holds:

o The cookie-path and the request-path are identical

o The cookie-path is a prefix of the request-path, and the | ast
character of the cookie-path is %2F ("/").

o The cookie-path is a prefix of the request-path, and the first
character of the request-path that is not included in the cookie-
path is a %2F ("/") character.

The Set - Cooki e Header

When a user agent receives a Set-Cookie header field in an HTTP
response, the user agent MAY ignore the Set-Cookie header field in
its entirety. For exanple, the user agent m ght wi sh to bl ock
responses to "third-party" requests fromsetting cookies (see
Section 7.1).

I f the user agent does not ignore the Set-Cookie header field inits
entirety, the user agent MJUST parse the field-value of the Set-Cookie
header field as a set-cookie-string (defined bel ow).

NOTE: The al gorithm below is nore perm ssive than the granmar in
Section 4.1. For exanple, the algorithmstrips leading and trailing
whi t espace fromthe cookie nane and val ue (but maintains interna

whi t espace), whereas the grammar in Section 4.1 forbids whitespace in
these positions. User agents use this algorithmso as to
interoperate with servers that do not follow the recommendations in
Section 4.

Barth St andards Track [Page 17]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

A user agent MUST use an algorithmequivalent to the foll ow ng
algorithmto parse a "set-cookie-string"

1

If the set-cookie-string contains a %3B (";") character:

The nane-val ue-pair string consists of the characters up to,
but not including, the first %3B (";"), and the unparsed-
attributes consist of the remainder of the set-cookie-string
(including the %3B (";") in question).

O herw se:

The nane-val ue-pair string consists of all the characters
contained in the set-cookie-string, and the unparsed-
attributes is the enpty string.

If the name-val ue-pair string |acks a %3D ("=") character,
i gnore the set-cookie-string entirely.

The (possibly empty) name string consists of the characters up
to, but not including, the first %3D ("=") character, and the
(possibly enmpty) value string consists of the characters after
the first %3D ("=") character.

Renove any | eading or trailing WBP characters fromthe nane
string and the val ue string.

If the name string is enpty, ignore the set-cookie-string
entirely.

The cookie-nanme is the name string, and the cookie-value is the
val ue string.

The user agent MJST use an al gorithm equivalent to the foll ow ng
algorithmto parse the unparsed-attributes:

1

Bart h

If the unparsed-attributes string is enpty, skip the rest of
t hese steps.

Di scard the first character of the unparsed-attributes (which
will be a %3B (";") character).

If the remaining unparsed-attributes contains a %3B (";")
character:

Consume the characters of the unparsed-attributes up to, but
not including, the first %3B (";") character.

St andards Track [Page 18]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

O herw se:
Consume the remai nder of the unparsed-attributes.
Let the cookie-av string be the characters consunmed in this step.
4. |f the cookie-av string contains a %3D ("=") character:

The (possibly enpty) attribute-name string consists of the
characters up to, but not including, the first %3D ("="
character, and the (possibly enpty) attribute-value string
consi sts of the characters after the first %3D ("="
character.

O herw se:

The attribute-name string consists of the entire cookie-av
string, and the attribute-value string is enpty.

5. Renove any leading or trailing WSP characters fromthe attri bute-
name string and the attribute-value string.

6. Process the attribute-nane and attribute-value according to the
requirenents in the follow ng subsections. (Notice that
attributes with unrecogni zed attribute-nanmes are ignored.)

7. Return to Step 1 of this algorithm

VWen the user agent finishes parsing the set-cookie-string, the user
agent is said to "receive a cookie" fromthe request-uri wth nane
cooki e- nanme, val ue cooki e-val ue, and attributes cookie-attribute-
list. (See Section 5.3 for additional requirenents triggered by
receiving a cookie.)

5.2.1. The Expires Attribute

If the attribute-nane case-insensitively matches the string
"Expires", the user agent MJST process the cookie-av as foll ows.

Let the expiry-time be the result of parsing the attribute-value as
cooki e-date (see Section 5.1.1).

If the attribute-value failed to parse as a cookie date, ignore the
cooki e- av.

If the expiry-tine is later than the | ast date the user agent can

represent, the user agent MAY replace the expiry-time with the | ast
representabl e date

Barth St andards Track [Page 19]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

If the expiry-tine is earlier than the earliest date the user agent
can represent, the user agent MAY replace the expiry-tinme with the
earliest representabl e date.

Append an attribute to the cookie-attribute-list with an attri bute-
nane of Expires and an attribute-value of expiry-tine.

5.2.2. The Max-Age Attribute

If the attribute-nane case-insensitively matches the string "Max-
Age", the user agent MJUST process the cookie-av as follows.

If the first character of the attribute-value is not a DIG@T or a
character, ignore the cookie-av.

If the remai nder of attribute-value contains a non-DIA@ T character,
i gnore the cookie-av.

Let delta-seconds be the attribute-val ue converted to an integer
If delta-seconds is less than or equal to zero (0), let expiry-tine
be the earliest representable date and time. Qherw se, let the
expiry-tinme be the current date and tine plus delta-seconds seconds.

Append an attribute to the cookie-attribute-list with an attri bute-
name of Max- Age and an attribute-value of expiry-tine.

5.2.3. The Donmin Attribute

If the attribute-nane case-insensitively matches the string "Domain",
the user agent MJST process the cookie-av as foll ows.

If the attribute-value is enpty, the behavior is undefined. However,
the user agent SHOULD ignore the cookie-av entirely.

If the first character of the attribute-value string is %2E ("."):

Let cookie-domain be the attribute-value w thout the |eading %2E
(".") character.

O herw se:
Let cooki e-domain be the entire attribute-val ue.
Convert the cookie-domain to | ower case.

Append an attribute to the cookie-attribute-list with an attri bute-
nane of Dommin and an attribute-val ue of cooki e-donmain

Barth St andards Track [Page 20]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

5.2.4. The Path Attribute

If the attribute-nane case-insensitively matches the string "Path",
the user agent MJST process the cookie-av as foll ows.

If the attribute-value is enpty or if the first character of the
attribute-value is not %W2F ("/"):

Let cookie-path be the default-path.
O herw se:
Let cookie-path be the attribute-val ue.

Append an attribute to the cookie-attribute-list with an attribute-
nane of Path and an attri bute-val ue of cookie-path.

5.2.5. The Secure Attribute

If the attribute-nane case-insensitively matches the string "Secure"
the user agent MJST append an attribute to the cookie-attribute-list
with an attribute-name of Secure and an enpty attri bute-val ue.

5.2.6. The HitpOnly Attribute

If the attribute-name case-insensitively matches the string

"Htt pOnly", the user agent MJST append an attribute to the cookie-
attribute-list with an attribute-name of HtpOnly and an enpty
attri bute-val ue

5.3. Storage Mde

The user agent stores the follow ng fields about each cookie: nane,
val ue, expiry-tine, dommin, path, creation-tine, |ast-access-tine,
persistent-flag, host-only-flag, secure-only-flag, and http-only-
flag.

When the user agent "receives a cookie" froma request-uri wth nane
cooki e- nane, val ue cooki e-val ue, and attributes cookie-attribute-
list, the user agent MJST process the cookie as follows:

1. A user agent MAY ignore a received cookie in its entirety. For
exanpl e, the user agent mght wish to bl ock receiving cookies
from"third-party" responses or the user agent m ght not wish to
store cooki es that exceed some size.

Barth St andards Track [Page 21]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

2. Create a new cooki e with name cooki e-nanme, val ue cooki e-val ue.
Set the creation-tine and the | ast-access-tine to the current
date and tine.

3. If the cookie-attribute-list contains an attribute with an
attribute-nane of "Max-Age":

Set the cookie's persistent-flag to true.
Set the cookie’'s expiry-time to attribute-value of the |ast
attribute in the cookie-attribute-list with an attri bute-nane
of " Max-Age".
O herwise, if the cookie-attribute-list contains an attribute
with an attribute-name of "Expires" (and does not contain an
attribute with an attribute-nane of "Max-Age"):
Set the cookie's persistent-flag to true.
Set the cookie's expiry-tinme to attribute-value of the |ast
attribute in the cookie-attribute-list with an attribute-nane
of "Expires".
O herw se:
Set the cookie’'s persistent-flag to fal se.

Set the cookie’'s expiry-time to the | atest representable
dat e.

4, If the cookie-attribute-list contains an attribute with an
attri bute-nanme of "Domain":

Let the domain-attribute be the attribute-value of the | ast
attribute in the cookie-attribute-list with an attri bute-nane
of "Domai n".

G herw se:

Let the domain-attribute be the enpty string.

5. If the user agent is configured to reject "public suffixes" and
the domain-attribute is a public suffix:

If the domain-attribute is identical to the canonicalized
request - host:

Let the domain-attribute be the enpty string.

Barth St andards Track [Page 22]

RFC 6265

Bart h

HTTP St at e Managenment Mechani sm April 2011

O herw se:
I gnore the cookie entirely and abort these steps.

NOTE: A "public suffix" is a domain that is controlled by a
public registry, such as "coni, "co.uk", and "pvt.k12. wy.us".
This step is essential for preventing attacker.comfrom

di srupting the integrity of exanple.comby setting a cookie
with a Domain attribute of "comf. Unfortunately, the set of
public suffixes (also known as "registry controll ed domains")
changes over tine. |If feasible, user agents SHOULD use an
up-to-date public suffix list, such as the one naintai ned by
the Mozilla project at <http://publicsuffix.org/>.

If the domain-attribute is non-enpty:

If the canonicalized request-host does not domain-match the
domai n-attribute:

I gnore the cookie entirely and abort these steps.
O herwi se:
Set the cookie’'s host-only-flag to fal se.
Set the cookie’'s domain to the donain-attribute.
O herwi se:
Set the cookie’'s host-only-flag to true.
Set the cookie’s domain to the canonicalized request-host.
If the cookie-attribute-list contains an attribute with an
attribute-nane of "Path", set the cookie’'s path to attribute-
val ue of the last attribute in the cookie-attribute-list with an
attribute-nane of "Path". Oherwi se, set the cookie's path to
the default-path of the request-uri.
If the cookie-attribute-list contains an attribute with an
attribute-nane of "Secure", set the cookie s secure-only-flag to
true. Oherw se, set the cookie's secure-only-flag to fal se.
If the cookie-attribute-list contains an attribute with an

attribute-nane of "HttpOnly", set the cookie's http-only-flag to
true. Oherw se, set the cookie's http-only-flag to fal se.

St andards Track [Page 23]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

10. If the cookie was received froma "non-HTTP* APl and the
cookie's http-only-flag is set, abort these steps and ignore the
cookie entirely.

11. If the cookie store contains a cookie with the sanme name,
domain, and path as the newly created cookie:

1. Let old-cookie be the existing cookie with the sanme nane,
domai n, and path as the newWy created cookie. (Notice that
this algorithmmaintains the invariant that there is at npst
one such cookie.)

2. If the newy created cookie was received froma "non-HITP"
APl and the ol d-cookie's http-only-flag is set, abort these
steps and ignore the newWy created cookie entirely.

3. Update the creation-time of the newy created cookie to
match the creation-time of the ol d-cookie.

4. Renove the ol d-cookie fromthe cookie store
12. Insert the newly created cookie into the cookie store.
A cookie is "expired" if the cookie has an expiry date in the past.

The user agent MJST evict all expired cookies fromthe cookie store
if, at any time, an expired cookie exists in the cookie store.

At any time, the user agent MAY "rempve excess cookies" fromthe
cookie store if the nunber of cookies sharing a donmain field exceeds
sone i npl enent ati on-defi ned upper bound (such as 50 cookies).

At any tine, the user agent MAY "renove excess cookies" fromthe
cookie store if the cookie store exceeds sone predeterm ned upper
bound (such as 3000 cookies).

When the user agent renpbves excess cookies fromthe cookie store, the
user agent MJST evict cookies in the following priority order

1. Expired cooki es.

2. Cookies that share a domain field with nore than a predeterm ned
nunber of other cookies.

3. Al cookies.

If two cookies have the sane renoval priority, the user agent MJST
evict the cookie with the earliest |ast-access date first.

Barth St andards Track [Page 24]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

When "the current session is over" (as defined by the user agent),
the user agent MJST renmpve fromthe cookie store all cookies with the
persistent-flag set to false.

5.4. The Cooki e Header

The user agent includes stored cookies in the Cookie HTTP request
header .

VWen the user agent generates an HITP request, the user agent MJST
NOT attach nore than one Cooki e header field.

A user agent MAY onmit the Cookie header in its entirety. For
exanpl e, the user agent mght wish to bl ock sendi ng cookies during
“"third-party" requests fromsetting cookies (see Section 7.1).

If the user agent does attach a Cookie header field to an HITP
request, the user agent MJST send the cookie-string (defined bel ow)
as the value of the header field.

The user agent MJST use an al gorithm equivalent to the foll ow ng
algorithmto conpute the "cookie-string”" froma cookie store and a
request-uri:

1. Let cookie-list be the set of cookies fromthe cookie store that
neets all of the follow ng requirenents:

* Either:

The cookie's host-only-flag is true and the canonicalized
request-host is identical to the cookie’s donain.

The cookie’s host-only-flag is false and the canonicalized
request - host donmai n-mat ches the cookie’s domain

* The request-uri’s path path-matches the cookie' s path.

* |f the cookie's secure-only-flag is true, then the request-
uri’s schene nust denote a "secure" protocol (as defined by
the user agent).

NOTE: The notion of a "secure" protocol is not defined by

this document. Typically, user agents consider a protoco
secure if the protocol makes use of transport-|ayer

Barth St andards Track [Page 25]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

security, such as SSL or TLS. For exanple, nost user
agents consider "https" to be a schene that denotes a
secure protocol

* |f the cookie’s http-only-flag is true, then exclude the
cookie if the cookie-string is being generated for a "non-
HTTP" APl (as defined by the user agent).

2. The user agent SHOULD sort the cookie-list in the follow ng
order:

* Cookies with longer paths are listed before cookies with
shorter paths.

* Anong cookies that have equal -1 ength path fields, cookies with
earlier creation-tines are |listed before cookies with |ater
creation-tinmes.

NOTE: Not all user agents sort the cookie-list in this order, but
this order reflects common practice when this docunent was
witten, and, historically, there have been servers that
(erroneously) depended on this order

3. Update the last-access-tinme of each cookie in the cookie-list to
the current date and time.

4. Serialize the cookie-list into a cookie-string by processing each
cookie in the cookie-list in order

1. CQutput the cookie's nane, the %3D ("=") character, and the
cooki e’ s val ue.

2. If there is an unprocessed cookie in the cookie-list, output
the characters %3B and %20 ("; ").

NOTE: Despite its nane, the cookie-string is actually a sequence of
octets, not a sequence of characters. To convert the cookie-string
(or components thereof) into a sequence of characters (e.g., for
presentation to the user), the user agent night wish to try using the
UTF- 8 character encoding [RFC3629] to decode the octet sequence.

Thi s decoding m ght fail, however, because not every sequence of
octets is valid UTF-8

Barth St andards Track [Page 26]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

6. I nplenentation Considerations
6.1. Limts

Practical user agent inplenentations have limts on the nunmber and
size of cookies that they can store. General-use user agents SHOULD
provi de each of the follow ng mninumcapabilities:

o At least 4096 bytes per cookie (as neasured by the sum of the
l ength of the cookie’s name, value, and attributes).

o0 At |least 50 cookies per domain
o At l|least 3000 cookies total.

Servers SHOULD use as few and as smal|l cookies as possible to avoid
reaching these inplenentation limts and to m nimze network
bandwi dth due to the Cooki e header being included in every request.

Servers SHOULD gracefully degrade if the user agent fails to return
one or nore cookies in the Cookie header because the user agent m ght
evict any cookie at any time on orders fromthe user

6.2. Application Programm ng Interfaces

One reason the Cookie and Set-Cooki e headers use such esoteric syntax
is that many platforms (both in servers and user agents) provide a
string-based application programm ng interface (API) to cookies,
requiring application-layer progranmers to generate and parse the
syntax used by the Cooki e and Set- Cooki e headers, which nmany
programmers have done incorrectly, resulting in interoperability

pr obl ens.

I nstead of providing string-based APIs to cookies, platforns would be
wel | -served by providing nore semantic APlIs. It is beyond the scope
of this docunent to recomend specific APl designs, but there are
clear benefits to accepting an abstract "Date" object instead of a
serialized date string

6.3. | DNA Dependency and M gration

| DNA2008 [RFC5890] supersedes | DNA2003 [RFC3490]. However, there are
di fferences between the two specifications, and thus there can be
differences in processing (e.g., converting) domain nane |abels that
have been regi stered under one fromthose registered under the other
There will be a transition period of some time during which | DNA2003-
based domain nane |abels will exist in the wild. User agents SHOULD
i mpl enent | DNA2008 [RFC5890] and MAY i npl enent [UTS46] or [RFC5895]

Barth St andards Track [Page 27]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

in order to facilitate their IDNA transition. |If a user agent does
not inplenment | DNA2008, the user agent MJST i npl enent | DNA2003
[RFC3490] .

7. Privacy Considerations

Cookies are often criticized for letting servers track users. For
exanpl e, a nunmber of "web anal ytics" conpani es use cookies to
recogni ze when a user returns to a web site or visits another web
site. Although cookies are not the only mechani sm servers can use to
track users across HITP requests, cookies facilitate tracking because
they are persistent across user agent sessions and can be shared

bet ween host s.

7.1. Third-Party Cookies

Particularly worrisome are so-called "third-party” cookies. In
renderi ng an HTM. docunent, a user agent often requests resources
fromother servers (such as advertising networks). These third-party
servers can use cookies to track the user even if the user never
visits the server directly. For exanple, if a user visits a site
that contains content froma third party and then later visits
another site that contains content fromthe sane third party, the
third party can track the user between the two sites.

Sone user agents restrict how third-party cookies behave. For
exanpl e, some of these user agents refuse to send the Cooki e header
in third-party requests. Qhers refuse to process the Set- Cookie
header in responses to third-party requests. User agents vary w dely
intheir third-party cookie policies. This docunent grants user
agents wide latitude to experinent with third-party cookie policies
that bal ance the privacy and conpatibility needs of their users.
However, this docunent does not endorse any particular third-party
cooki e policy.

Third-party cooki e bl ocking policies are often ineffective at
achieving their privacy goals if servers attenpt to work around their
restrictions to track users. |In particular, two collaborating
servers can often track users w thout using cookies at all by
injecting identifying information into dynam c URLS.

7.2. User Controls
User agents SHOULD provi de users with a nechani smfor managi ng the

cooki es stored in the cookie store. For exanmple, a user agent m ght
| et users delete all cookies received during a specified time period

Barth St andards Track [Page 28]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

7.

8.

8.

or all the cookies related to a particular domain. |In addition, many
user agents include a user interface elenent that |ets users exam ne
the cookies stored in their cookie store.

User agents SHOULD provide users with a mechani sm for disabling

cooki es. When cooki es are disabled, the user agent MJST NOT incl ude
a Cooki e header in outbound HTTP requests and the user agent MJST NOT
process Set-Cookie headers in inbound HTTP responses.

Sone user agents provide users the option of preventing persistent
storage of cookies across sessions. \Wen configured thusly, user
agents MUST treat all received cookies as if the persistent-flag were
set to false. Sone popul ar user agents expose this functionality via
“private browsing" node [Aggarwal 2010].

Sone user agents provide users with the ability to approve individua
wites to the cookie store. In many common usage scenari os, these
controls generate a | arge nunber of pronpts. However, some privacy-
consci ous users find these controls useful nonethel ess.

3. Expiration Dates

Al t hough servers can set the expiration date for cookies to the

di stant future, nobst user agents do not actually retain cookies for
nmul ti pl e decades. Rather than choosing gratuitously |ong expiration
peri ods, servers SHOULD pronote user privacy by sel ecting reasonabl e
cooki e expiration periods based on the purpose of the cookie. For
exanpl e, a typical session identifier m ght reasonably be set to
expire in two weeks.

Security Considerations
1. Overview

Cooki es have a nunber of security pitfalls. This section overviews a
few of the nore salient issues.

In particular, cookies encourage devel opers to rely on anbient
authority for authentication, often becom ng vul nerable to attacks
such as cross-site request forgery [CSRF]. Al so, when storing
session identifiers in cookies, devel opers often create session
fixation vulnerabilities.

Transport-layer encryption, such as that enployed in HTTPS, is
insufficient to prevent a network attacker from obtaining or altering
a victinm s cookies because the cookie protocol itself has various

vul nerabilities (see "Wak Confidentiality"” and "Wak Integrity",

Barth St andards Track [Page 29]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

below). |In addition, by default, cookies do not provide
confidentiality or integrity fromnetwork attackers, even when used
in conjunction with HTTPS.

8.2. Anbient Authority

A server that uses cookies to authenticate users can suffer security
vul nerabilities because sone user agents let renbte parties issue
HTTP requests fromthe user agent (e.g., via HITP redirects or HTM
forns). Wen issuing those requests, user agents attach cookies even
if the renote party does not know the contents of the cooki es,
potentially letting the renbte party exercise authority at an unwary
server.

Al t hough this security concern goes by a nunber of nanes (e.g.
cross-site request forgery, confused deputy), the issue stens from
cooki es being a formof anbient authority. Cookies encourage server
operators to separate designation (in the formof URLs) from

aut horization (in the formof cookies). Consequently, the user agent
m ght supply the authorization for a resource designated by the
attacker, possibly causing the server or its clients to undertake
actions designated by the attacker as though they were authorized by
the user.

I nstead of using cookies for authorization, server operators ni ght

wi sh to consider entangling designation and authorization by treating
URLs as capabilities. Instead of storing secrets in cookies, this
approach stores secrets in URLs, requiring the renpte entity to
supply the secret itself. Although this approach is not a panacea,
judi cious application of these principles can |l ead to nore robust
security.

8.3. d(dear Text

Unl ess sent over a secure channel (such as TLS), the information in
t he Cooki e and Set-Cookie headers is transmtted in the clear

1. Al sensitive information conveyed in these headers is exposed to
an eavesdropper.

2. A mlicious intermediary could alter the headers as they trave
in either direction, with unpredictable results.

3. A mlicious client could alter the Cookie header before
transm ssion, with unpredictable results.

Barth St andards Track [Page 30]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

Servers SHOULD encrypt and sign the contents of cookies (using

what ever format the server desires) when transmitting themto the
user agent (even when sending the cookies over a secure channel).
However, encrypting and signing cookie contents does not prevent an
attacker fromtransplanting a cookie fromone user agent to another
or fromreplaying the cookie at a later tine.

In addition to encrypting and signing the contents of every cooki e,
servers that require a higher level of security SHOULD use the Cookie
and Set - Cooki e headers only over a secure channel. Wen using
cooki es over a secure channel, servers SHOULD set the Secure
attribute (see Section 4.1.2.5) for every cookie. |If a server does
not set the Secure attribute, the protection provided by the secure
channel will be largely noot.

For exanple, consider a webmail server that stores a session
identifier in a cookie and is typically accessed over HITTPS. |If the
server does not set the Secure attribute on its cookies, an active
network attacker can intercept any outbound HTTP request fromthe
user agent and redirect that request to the webnail server over HTTP.
Even if the webmail server is not listening for HTTP connections, the

user agent will still include cookies in the request. The active
networ k attacker can intercept these cookies, replay them against the
server, and learn the contents of the user’s email. |If, instead, the

server had set the Secure attribute on its cookies, the user agent
woul d not have included the cookies in the clear-text request.

8.4. Session ldentifiers

I nstead of storing session information directly in a cookie (where it
m ght be exposed to or replayed by an attacker), servers comonly
store a nonce (or "session identifier") in a cookie. Wen the server
receives an HTTP request with a nonce, the server can | ook up state

i nformati on associated with the cookie using the nonce as a key.

Using session identifier cookies limts the damage an attacker can
cause if the attacker |learns the contents of a cookie because the
nonce is useful only for interacting with the server (unlike non-
nonce cookie content, which mght itself be sensitive). Furthernore,
using a single nonce prevents an attacker from "splicing" together
cookie content fromtwo interactions with the server, which could
cause the server to behave unexpectedly.

Using session identifiers is not without risk. For exanple, the
server SHOULD take care to avoid "session fixation" vulnerabilities.
A session fixation attack proceeds in three steps. First, the
attacker transplants a session identifier fromhis or her user agent
to the victims user agent. Second, the victimuses that session

Barth St andards Track [Page 31]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

identifier to interact with the server, possibly inbuing the session
identifier with the user’s credentials or confidential information
Third, the attacker uses the session identifier to interact with
server directly, possibly obtaining the user’s authority or
confidential information.

8.5. Weak Confidentiality

Cooki es do not provide isolation by port. |[If a cookie is readable by
a service running on one port, the cookie is also readable by a
service running on another port of the same server. |If a cookie is

witable by a service on one port, the cookie is also witable by a
service running on another port of the sanme server. For this reason
servers SHOULD NOT both run nutual ly distrusting services on
different ports of the sane host and use cookies to store security-
sensitive information.

Cooki es do not provide isolation by schene. Although nost comonly
used with the http and https schenes, the cookies for a given host

m ght al so be available to other schemes, such as ftp and gopher.
Al'though this lack of isolation by scheme is nbst apparent in non-
HTTP APl s that permt access to cookies (e.g., HIM. s document. cookie
APl), the lack of isolation by scheme is actually present in

requi renments for processing cookies thenselves (e.g., consider
retrieving a URI with the gopher schene via HITTP)

Cooki es do not always provide isolation by path. Although the

net wor k- I evel protocol does not send cookies stored for one path to
anot her, some user agents expose cookies via non-HITP APls, such as
HTM.' s docunent. cookie API. Because sone of these user agents (e.g.
web browsers) do not isolate resources received fromdifferent paths,
a resource retrieved fromone path m ght be able to access cookies
stored for another path.

8.6. Weak Integrity

Cooki es do not provide integrity guarantees for sibling domains (and
their subdonains). For exanple, consider foo.exanple.com and

bar . exanpl e.com The foo. exanpl e.com server can set a cookie with a
Domain attribute of "example.coni (possibly overwiting an existing
"exanpl e. com’ cooki e set by bar.exanple.com, and the user agent wll
i nclude that cookie in HITP requests to bar.exanple.com 1In the

wor st case, bar.exanple.comw ||l be unable to distinguish this cookie
froma cookie it set itself. The foo.exanple.comserver mght be
able to leverage this ability to nount an attack agai nst

bar . exanpl e. com

Barth St andards Track [Page 32]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

Even t hough the Set-Cooki e header supports the Path attribute, the
Path attribute does not provide any integrity protection because the
user agent will accept an arbitrary Path attribute in a Set-Cookie
header. For example, an HTTP response to a request for
http://exanpl e. com f oo/ bar can set a cookie with a Path attribute of
"/qux". Consequently, servers SHOULD NOT both run nutually

di strusting services on different paths of the sane host and use
cookies to store security-sensitive information

An active network attacker can also inject cookies into the Cookie
header sent to https://exanple.com by inmpersonating a response from
http://exanple.com and injecting a Set-Cookie header. The HITPS
server at exanple.comw |l be unable to distinguish these cookies
fromcookies that it set itself in an HTTPS response. An active
network attacker mght be able to | everage this ability to mount an
attack agai nst exanpl e.comeven if exanpl e.com uses HITPS

excl usivel y.

Servers can partially mtigate these attacks by encrypting and
signing the contents of their cookies. However, using cryptography
does not mitigate the issue conpletely because an attacker can replay
a cookie he or she received fromthe authentic exanpl e.comserver in
the user’s session, with unpredictable results.

Finally, an attacker might be able to force the user agent to delete
cookies by storing a |large nunber of cookies. Once the user agent

reaches its storage limt, the user agent will be forced to evict
some cookies. Servers SHOULD NOT rely upon user agents retaining
cooki es.

8.7. Reliance on DNS
Cooki es rely upon the Dormai n Name System (DNS) for security. |If the
DNS is partially or fully conprom sed, the cookie protocol mght fai
to provide the security properties required by applications.

9. | ANA Consi derations

The permanent nessage header field registry (see [RFC3864]) has been
updated with the follow ng registrations.

Barth St andards Track [Page 33]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

9.1. Cookie

Header field nane: Cookie

Applicable protocol: http

Status: standard

Aut hor/ Change controller: |ETF

Speci fication docunment: this specification (Section 5.4)
9.2. Set-Cookie

Header field nane: Set-Cookie

Applicable protocol: http

Status: standard

Aut hor/ Change control ler: |ETF

Speci fication docunment: this specification (Section 5.2)
9.3. Cookie2

Header field name: Cookie2

Applicable protocol: http

Status: obsol eted

Aut hor/ Change control ler: | ETF

Speci fication docunent: [RFC2965]
9.4. Set-Cookie2

Header field name: Set- Cookie2

Applicable protocol: http

Status: obsol eted

Aut hor/ Change control ler: | ETF

Speci fication docunent: [RFC2965]

Barth St andards Track [Page 34]

RFC 6265

HTTP St at e Managenment Mechani sm April 2011

10. References

10.1. Normmtive References

[RFC1034] Mockapetris, P., "Domain names - concepts and facilities”,
STD 13, RFC 1034, Novenber 1987.

[RFC1123] Braden, R, "Requirenents for Internet Hosts - Application
and Support", STD 3, RFC 1123, October 1989.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC2616] Fielding, R, GCettys, J., Mgul, J., Frystyk, H.
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3490] Faltstrom P., Hoffrman, P., and A Costello,
"Internationalizing Domain Nanmes in Applications (IDNA)",
RFC 3490, March 2003.
See Section 6.3 for an expl anati on why the nornative
reference to an obsol eted specification is needed.

[RFC4790] Newman, C., Duerst, M, and A @l brandsen, "Internet
Application Protocol Collation Registry", RFC 4790,
March 2007.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

[RFC5890] Klensin, J., "Internationalized Domai n Nanes for
Applications (I DNA): Definitions and Docurment Franmewor k",
RFC 5890, August 2010.

[USASCII] American National Standards Institute, "Coded Character
Set -- 7-bit American Standard Code for Information
I nt erchange", ANSI X3.4, 1986.

10.2. Informative References

[RFC2109] Kristol, D. and L. Montulli, "HTTP State Managenent
Mechani sni', RFC 2109, February 1997.

[RFC2965] Kristol, D. and L. Mntulli, "HITP State Managenent
Mechani sni', RFC 2965, Cct ober 2000.

Barth St andards Track [Page 35]

RFC 6265

[RFC2818]

[Net scape]

[Kri 2001]

[RFC3629]

[RFCA648]

[RFC3864]

[RFC5895]

[UTS46]

[CSRF]

HTTP St at e Managenment Mechani sm April 2011

Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

Net scape Communi cations Corp., "Persistent Client State --
HTTP Cooki es", 1999, <http://web. archive. or g/ web/
20020803110822/ htt p: / / wp. net scape. conlf newsr ef / st d/

cooki e_spec. htm >,

Kristol, D., "HTTP Cookies: Standards, Privacy, and
Politics", ACM Transactions on Internet Technol ogy Vol. 1,
#2, Novenber 2001, <http://arxiv.org/abs/cs. SE/0105018>.

Yergeau, F., "UTF-8, a transformation format of | SO
10646", STD 63, RFC 3629, Novenber 2003.

Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

Klyne, G, Nottingham M, and J. Mgul, "Registration
Procedures for Message Header Fields", BCP 90, RFC 3864,
Sept enber 2004.

Resni ck, P. and P. Hoffnman, "Mapping Characters for
Internationalized Domain Nanes in Applications (1DNA)
2008", RFC 5895, Septenber 2010.

Davis, M and M Suignard, "Unicode |DNA Conpatibility
Processi ng", Unicode Technical Standards # 46, 2010,
<http://uni code. org/ reports/tra6/>.

Barth, A., Jackson, C., and J. Mtchell, "Robust Defenses
for Cross-Site Request Forgery", 2008,
<http://portal.acmorg/citation.cfni d=1455770. 1455782>.

[Aggar wal 2010]

Bart h

Aggarwal , G, Burzstein, E., Jackson, C., and D. Boneh
"An Anal ysis of Private Browsi ng Mbdes in Modern
Browsers", 2010, <http://ww. useni x. org/events/secl0/tech/
ful | _papers/ Aggarwal . pdf >.

St andards Track [Page 36]

RFC 6265 HTTP St at e Managenment Mechani sm April 2011

Appendi x A, Acknow edgenent s

Thi s docunent borrows heavily from RFC 2109 [RFC2109]. W are

i ndebted to David M Kristol and Lou Montulli for their efforts to
specify cookies. David M Kristol, in particular, provided

i nval uabl e advi ce on navigating the | ETF process. W would also |ike
to thank Thomas Broyer, Tyler Cl ose, Alissa Cooper, Bil Corry,
corvid, Lisa Dusseault, Roy T. Fielding, Blake Frantz, Anne van
Kest eren, Eran Hammer-Lahav, Jeff Hodges, Bjoern Hoehrmann, Achim
Hof f mann, Georg Koppen, Dean MNanee, Al exey Ml ni kov, Mark M|l er,
Mar k Paul ey, Yngve N. Pettersen, Julian Reschke, Peter Saint-Andre,
Mar k Seaborn, Maciej Stachow ak, Daniel Stenberg, Tatsuhiro

Tsuj i kawa, David Wagner, Dan Wnship, and Dan Wtte for their

val uabl e feedback on this docunent.

Aut hor’ s Addr ess

Adam Barth
University of California, Berkeley

EMai | : abarth@ecs. ber kel ey. edu
URI : http://ww. adanbart h. con!

Barth St andards Track [Page 37]

