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Self-Delimting Numeric Values (SDNVs) have recently been introduced
as a field type in proposed Del ay- Tol erant Networki ng protocols.
SDNVs encode an arbitrary-1ength non-negative integer or arbitrary-
length bitstring with mninumoverhead. They are intended to provide
protocol flexibility without sacrificing econony and to assist in
future-proofing protocols under devel opnent. This docunent describes
formats and al gorithms for SDNV encodi ng and decodi ng, along with
notes on inplenmentation and usage. This docunment is a product of the
Del ay- Tol erant Networ ki ng Research Group and has been revi ewed by
that group. No objections to its publication as an RFC were rai sed.
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Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for informational purposes.

This docunent is a product of the Internet Research Task Force
(IRTF). The I RTF publishes the results of Internet-related research
and devel opnent activities. These results nmight not be suitable for
depl oyment. This RFC represents the consensus of the Del ay-Tol erant
Net wor ki ng Research Group of the Internet Research Task Force (IRTF).
Docurent s approved for publication by the IRSG are not a candi date
for any level of Internet Standard; see Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,
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http://ww.rfc-editor.org/info/rfc6256
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1. Introduction

Thi s docunent is a product of the Internet Research Task Force (I RTF)
Del ay- Tol erant Networki ng (DTN) Research Group (DTNRG. The docunent
has received review and support within the DINRG as discussed in the
Acknowl edgenents section of this docunent.

Thi s docunent begi ns by describing the drawbacks of using fixed-w dth
protocol fields. It then provides sonme background on the Self-
Delimting Nuneric Val ues (SDNVs) proposed for use in DIN protocols,
and notivates their potential applicability in other networking
protocols. The DINRG has created SDNVs to neet the challenges it
attenpts to solve, and it has been noted that SDNVs cl osely resenble
certain constructs within ASN. 1 and even older | TU protocols, so the
probl ens are not new or unique to DIN. SDNVs focus strictly on
nuneric values or bitstrings, while other nechani sns have been

devel oped for encodi ng nore conplex data structures, such as ASN. 1
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encodi ng rul es and Haverty’'s Message Services Data Transm ssion
Protocol (MSDTP) [RFC0713]. Because of this focus, SDNVs can be
quickly inplemented with only a small anmpunt of code.

SDNVs are tersely defined in both the Bundl e Protocol [RFC5050] and
Li cklider Transm ssion Protocol (LTP) [RFC5326] specifications, due
to the flow of docunent production in the DINRG This docunent
clarifies and further explains the notivations and engi neering
deci si ons behi nd SDNVs.

1.1. Problens with Fi xed-Val ue Fields

Pr ot ocol designers commonly face an optimnization problemin

determ ning the proper size for header fields. There is a strong
desire to keep fields as small as possible, in order to reduce the
protocol’s overhead and al so allow for fast processing. Since
protocol s can be used for many years (even decades) after they are
desi gned, and networki ng technol ogy has tended to change rapidly, it
is not uncommon for the use, deploynent, or performance of a
particul ar protocol to be limted or infringed upon by the |ength of
sone header field being too short. Two well-known exanples of this
phenonenon are the TCP-advertised receive wi ndow and the | Pv4 address
| engt h.

TCP segnents contain an advertised receive window field that is fixed
at 16 bits [RFC0793], encoding a maxi mum val ue of around 65

kil obytes. The purpose of this value is to provide flow control, by
allowing a receiver to specify how many sent bytes its peer can have
out st andi ng (unacknow edged) at any tine, thus allow ng the receiver
tolimt its buffer size. As network speeds have grown by severa
orders of magnitude since TCP' s inception, the conbination of the 65
ki | obyte maxi num adverti sed wi ndow and | ong round-trip tines
prevented TCP senders from being able to achieve the high throughput
that the underlying network supported. This limtation was renedied
through the use of the Wndow Scal e option [ RFC1323], which provides
a nultiplier for the advertised wi ndow field. However, the W ndow
Scale multiplier is fixed for the duration of the connection

requi res support fromeach end of a TCP connection, and linmits the
precision of the advertised receive window, so this is certainly a

| ess-than-ideal solution. Because of the field width limt in the
original design however, the Wndow Scale is necessary for TCP to
reach high sending rates.

An I Pv4 address is fixed at 32 bits [RFC0791] (as a historical note,
an early version of the I P header format specification in [IEN21]
used variabl e-1ength addresses in nultiples of 8 bits up to 120
bits). Due to the way that subnetting and assi gnnent of address

bl ocks was perfornmed, the nunber of |IPv4 addresses has been seen as a
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[imt to the growth of the Internet [Hain0O5]. Two divergent paths to
solve this probl emhave been the use of Network Address Translators
(NATs) and the devel opnent of IPv6. NATs have caused a nunber of

ot her issues and problens [RFC2993], leading to increased complexity
and fragility, as well as forcing workarounds to be engi neered for
many other protocols to function within a NATed environnent. The

| Pv6 solution’s transitional work has been underway for severa

years, but has still only just begun to have visible inmpact on the

gl obal Internet.

O course, in both the case of the TCP receive w ndow and | Pv4
address length, the field size chosen by the designers seened |ike a
good idea at the time. The fields were nore than big enough for the
originally perceived usage of the protocols, and yet were snal

enough to allow the headers to renmain conpact and rel atively easy and
efficient to parse on machines of the time. The fixed sizes that
were defined represented a trade-off between the scalability of the
protocol versus the overhead and efficiency of processing. 1In both
cases, these engineering decisions turned out to be painfully
restrictive in the |Ionger term

1.2. SDNvs for DTN Protocols

In specifications for the DIN Bundl e Protocol (BP) [RFC5050] and

Li cklider Transm ssion Protocol (LTP) [RFC5326], SDNVs have been used
for several fields including identifiers, payl oad/ header |engths, and
serial (sequence) numbers. SDNVs were devel oped for use in these
types of fields, to avoid sending nore bytes than needed, as well as
avoiding fixed sizes that may not end up being appropriate. For
exanple, since LTP is intended primarily for use in |ong-del ay

i nterplanetary comuni cations [ RFC5325], where links may be fairly
low in capacity, it is desirable to avoid the header overhead of
routinely sending a 64-bit field where a 16-bit field would suffice.
Since many of the nodes inplenmenting LTP are expected to be beyond
the current range of human spaceflight, upgrading their on-board LTP
i npl enentations to use longer values if the defined fields are found
to be too short would al so be problematic. Furthernore, extensions
simlar in nechanismto TCP's W ndow Scal e option are unsuitable for
use in DTN protocols since, due to high delays, DTN protocols nust
avoi d handshaki ng and confi guration parameter negotiation to the
greatest extent possible. All of these reasons make the choi ce of
SDNVs for use in DIN protocols attractive.
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1.3. SDNV Usage

In short, an SDNV is sinmply a way of representing non-negative
integers (both positive integers of arbitrary magnitude and 0),
wi t hout expendi ng much unnecessary space. This definition allows
SDNVs to represent many conmon protocol header fields, such as:

o Randomidentification fields as used in the | Psec Security
Paraneters Index or in IP headers for fragnment reassenbly (Note:
the 16-bit IP ID field for fragment reassenbly was recently found
to be too short in sone environments [ RFC4963]).

0 Sequence nunbers as in TCP or the Stream Control Transni ssion
Prot ocol (SCTP).

o Values used in cryptographic algorithm such as RSA keys, Diffie-
Hel | man key agreenent, or coordinates of points on elliptic
curves.

o Message lengths as used in file transfer protocols.
o Nonces and cooki es.

As any bitfield can be interpreted as an unsigned integer, SDNVs can
al so encode arbitrary-length bitfields, including bitfields
representing signed integers or other data types; however, this
document assunmes SDNV encodi ng and decoding in terns of unsigned
integers. Inplementations may differ in the interface that they
provide to SDNV encodi ng and decodi ng functions, in terns of whether
the val ues are nuneric, bitfields, etc.; this detail does not alter
the representation or algorithns described in this docunent.

The use of SDNVs rather than fixed-length fields gives protoco
designers the ability to ameliorate the consequences of making
difficult-to-reverse field-sizing decisions, as the SDNV format grows
and shrinks depending on the particular value encoded. SDNVs do not
necessarily provide optimal encodings for values of any particul ar

| engt h; however, they all ow protocol designers to avoid potentia

bl unders in assigning fixed |l engths and renove the conmplexity

i nvol ved with either negotiating field | engths or constructing

prot ocol extensions. However, if SDNVs are used to encode bitfields,
it is essential that the sender and receiver have a consistent
interpretation of the decoded value. This is discussed further in
Section 2.

To our know edge, at this time, no | ETF transport or network-|ayer

prot ocol designed for use outside of the DIN domain has proposed to
use SDNVs; however, there is no inherent reason not to use SDNVs nore
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broadly in the future. The two exanples cited here, of fields that
have proven too small in general Internet protocols, are only a snal
sampling of the much larger set of simlar instances that the authors
can think of. Qutside the Internet protocols, within ASN. 1 and
previous | TU protocols, constructs very simlar to SDNVs have been
used for many years due to engineering concerns very simlar to those
facing the DINRG

Many protocols use a Type-Length-Value nethod for encoding vari abl e-
length fields (e.g., TCP's options format or many of the fields in
the Internet Key Exchange Protocol version 2 (IKEv2)). An SDNV is
equi val ent to conbining the I ength and val ue portions of this type of
field, with the overhead of the | ength portion anortized out over the
bytes of the value. The penalty paid for this in an SDNV may be
several extra bytes for long values (e.g., 1024-bit RSA keys). See
Section 4 for further discussion and a conpari son.

As is shown in later sections, for large values, the current SDNV
schene is fairly inefficient in terns of space (1/8 of the bits are
over head) and not particularly easy to encode/ decode in comnparison to
alternatives. The best use of SDNVs may often be to define the
Length field of a TLV structure to be an SDNV whose value is the
length of the TLV' s Value field. 1In this way, one can avoid forcing
| arge nunbers frombeing directly encoded as an SDNV, yet retain the
extensibility that using SDNVs grants.

2. Definition of SDNVs

Early in the work of the DINRG it was agreed that the properties of
an SDNV were useful for DTN protocols. The exact SDNV format used by
the DTNRG evol ved sonmewhat over tine before the publication of the
initial RFCs on LTP and BP. An earlier version (see the initia
version of LTP Internet Draft [BRFO4]) bore a resenbl ance to the
ASN. 1 [ ASN1] Basic Encoding Rules (BER) [ X. 690] for lengths (Section
8.1.3 of X.690). The current SDNV format is the one used by ASN. 1
BER for encoding tag identifiers greater than or equal to 31 (Section
8.1.2.4.2 of X.690). A conparison between the current SDNV for mat
and the early SDNV format is made in Section 4.

The format currently used is very sinple. Before encoding, an
integer is represented as a left-to-right bitstring beginning with
its nmost significant bit and ending with its |east significant bit.
If the bitstring’s length is not a multiple of 7, then the string is
| eft-padded with zeros. Wen transnitted, the bits are encoded into
a series of bytes. The loworder 7 bits of each byte in the encoded
format are taken left-to-right fromthe integer’s bitstring

Eddy & Davi es I nf or mati onal [ Page 6]



RFC 6256 Usi ng SDNVs May 2011

representation. The nost significant bit of each byte specifies
whether it is the final byte of the encoded value (when it holds a
0), or not (when it holds a 1).

For exanpl e:

o 1 (decimal) is represented by the bitstring "0000001" and encoded
as the single byte 0x01 (in hexadeci mal).

o0 128 is represented by the bitstring "10000001 00000000" and
encoded as the bytes 0x81 foll owed by 0x00.

o0 Oher values can be found in the test vectors of the source code
in Appendi x A

To be perfectly clear, and avoid potential interoperability issues
(as have occurred with ASN.1 BER tinme values), we explicitly state
two considerations regardi ng zero-paddi ng. (1) Wen encodi ng SDNVs,
any | eading (nost significant) zero bits in the input nunber m ght be
di scarded by the SDNV encoder. Protocols that use SDNVs shoul d not
rely on | eadi ng-zeros being retai ned after encodi ng and decodi ng
operations. (2) Wen decodi ng SDNVs, the rel evant number of |eading
zeros required to pad up to a machine word or other natural data unit
m ght be added. These are put in the nost significant positions in
order to not change the value of the nunber. Protocols using SDNVs
shoul d consi der situations where | ost zero-paddi ng may be

probl emati c.

The issues of zero-padding are particularly relevant where an SDNV is
being used to represent a bitfield to be transmitted by a protocol
The specification of the protocol and any associated | ANA registry
shoul d specify the allocation and usage of bit positions within the
unencoded field. Unassigned and reserved bits in the unencoded field
will be treated as zeros by the SDNV encoding prior to transm ssion.
Assuming the bit positions are nunbered starting fromO at the |east
significant bit position in the integer representation, then if

hi gher - nunbered positions in the field contain all zeros, the
encodi ng process nmay not transmit these bits explicitly (e.g., if al
the bit positions nunbered 7 or higher are zeros, then the
transmtted SDNV can consist of just one octet). On reception, the
decodi ng process will treat any untransmtted hi gher-nunbered bits as
zeros. To ensure correct operation of the protocol, the sender and
recei ver nmust have a consistent interpretation of the width of the
bitfield. This can be achieved in various ways:

o the bitfield width is inmplicitly defined by the version of the
protocol in use in the sender and receiver,
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o sending the width of the bitfield explicitly in a separate item

o the higher-nunbered bits can be safely ignored by the receiver
(e.g., because they represent optimzations), or

o nmarking the highest-nunbered bit by prepending a '1' bit to the
bitfield.

The protocol specification nmust record how the consi stent
interpretation is achieved.

The SDNV encodi ng technique is also known as Variabl e Byte Encodi ng
(see Section 5.3.1 of [Manning09]) and is equivalent to Base-128

Eli as Gamma Encodi ng (see Section 5.3.2 of [Manning09] and Section
3.5 of [Sayood02]). However, the primary notivation for SDNVs is to
provi de an extensible protocol franmework rather than optinal data
conpression, which is the nmotivation behind the other uses of the
techni que. [Manni ng09] points out that the key feature of this
encoding is that it is "prefix free" nmeaning that no code is a prefix
of any other, which is an alternative way of expressing the self-
delimting property.

3. Basic Algorithmns

This section describes sonme sinple algorithns for creating and
parsing SDNV fields. These may not be the nost efficient algorithns
possi bl e, however, they are easy to read, understand, and inplenent.
Appendi x A contains Python source code inplenmenting the routines
descri bed here. The algorithnms presented here are convenient for
converting between an internal data block and serialized data stream
associated with a transm ssion device. O her approaches are possible
with different efficiencies and trade-offs.

3.1. Encoding Algorithm

There is a very sinple algorithmfor the encoding operation that
converts a non-negative integer (value n, of length 1+floor(log n)
bits) into an SDNV. This algorithmtakes n as its only argunent and
returns a string of bytes:

o (Initial Step) Set a variable X to a byte sharing the |east
significant 7 bits of n, and with 0 in the nost significant bit,
and a variable Y to n, right-shifted by 7 bits.

o0 (Recursion Step) If Y ==0, return X. Qherwise, set Zto the
bitwi se-or of 0x80 with the 7 least significant bits of Y, and
append Z to X. Right-shift Y by 7 bits and repeat the Recursion
St ep.
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This encoding algorithmhas a tine conplexity of O(log n), since it
takes a nunmber of steps equal to ceil(n/7), and no additional space
beyond the size of the result (8/7 log n) is required. One aspect of
this algorithmis that it assumes strings can be efficiently appended
to new bytes. One way to inplenment this is to allocate a buffer for
the expected length of the result and fill that buffer one byte at a
time fromthe right end

If, for some reason, an inplenentation requires an encoded SDNV to be
some specific length (possibly related to a machi ne word), any

| ef t rost zero-padding included needs to properly set the high-order
bit in each byte of padding.

3.2. Decoding Al gorithm

Decoding SDNVs is a nore difficult operation than encoding them due
to the fact that no bound on the resulting value is known until the
SDNV i s parsed, at which point the value itself is already known.
This nmeans that if space is allocated in advance to hold the val ue
that results fromdecoding an SDNV, in general, it is not known

whet her this space will be large enough until it is 7 bits away from
bei ng overfl owed. However, as specified in Section 3.3, protocols
usi ng SDNVs must specify the | argest nunber of bits that an

i npl enentation is expected to handle, which mtigates this problem

o (Initial Step) Set the result to 0. Set an index to the first
byte of the encoded SDNV.

0 (Recursion Step) Shift the result left 7 bits. Add the |ow order
7 bits of the value at the index to the result. If the high-order
bit under the pointer is a 1, advance the index by one byte within
the encoded SDNV and repeat the Recursion Step, otherw se return
the current value of the result.

Thi s decodi ng al gorithmtakes no nore additional space than what is
required for the result (7/8 the length of the SDNV) and the pointer.
The conplication is that before the result can be left-shifted in the
Recursion Step, an inplenentation needs to first make sure that this
will not cause any bits to be lost, and re-allocate a | arger piece of
menory for the result, if required. The pure time conplexity is the
same as for the encoding algorithmagiven, but if re-allocation is
needed due to the inability to predict the size of the result,
decodi ng may be sl ower.

These decodi ng steps include removal of any |eftnpost zero-padding

that m ght be used by an encoder to create encodings of a certain
| engt h.
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3.3. Limtations of I|nplenentations

Because of efficiency considerations or conveni ence of interna
representati on of decoded integers, inplenmentations nmay choose to
[imt the number of bits in SDNVs that they will handle. To avoid
interoperability problens, any protocol that uses SDNVs nust specify
the largest nunber of bits in an SDNV that an inplenentation of that
protocol is expected to handle.

For exanple, Section 4.1 of [RFC5050] specifies that inplenentations
of the DTN Bundle Protocol are not required to handle SDNVs with nore
than 64 bits in their unencoded val ue. Accordingly, integer val ues
transmtted in SDNVs have an upper linit and SDNV-encoded flag fields
nmust be limted to 64 bit positions in any future revisions of the
protocol unless the restriction is altered.

4. Conparison to Alternatives

This section conpares three alternative ways of inplenenting the
concept of SDNvs: (1) the TLV schene commonly used in the Internet
famly, and many other families of protocols, (2) the old style of
SDNVs (both the SDNV-8 and SDNV-16) defined in an early stage of
LTP' s devel opnent [BRF04], and (3) the current SDNV format.

The TLV nmethod uses two fixed-length fields to hold the Type and
Length elenents that then inply the syntax and senmantics of the Value
elenent. This is only sinmilar to an SDNV in that the val ue el enent
can grow or shrink within the bounds capabl e of being conveyed by the
Length field. Two fundamental differences between TLVs and SDNVs are
that through the Type elenent, TLVs also contain sone notion of what
their contents are senantically, while SDNVs are sinply generic non-
negative integers, and protocol engineers still have to choose fixed-
field I engths for the Type and Length fields in the TLV format.

Sone protocols use TLVs where the val ue conveyed within the Length
field needs to be decoded into the actual |ength of the Value field.
This may be acconplished through sinple nultiplication, |eft-
shifting, or a |look-up table. 1In any case, this tactic linmts the
granul arity of the possible Value | engths, and can contribute sone
degree of bloat if Values do not fit neatly within the avail abl e
decoded Lengt hs.

In the SDNV format originally used by LTP, parsing the first byte of
the SDNV told an inplenmentati on how mich space was required to hold
the contained value. There were two different types of SDNVs defined
for different ranges of use. The SDNV-8 type could hold values up to
127 in a single byte, while the SDNV-16 type could hold values up to
32,767 in 2 bytes. Both formats could encode values requiring up to
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N bytes in N+2 bytes, where N<127. The mmjor difference between this
old SDNV format and the current SDNV format is that the new format is
not as easily decoded as the old format was, but the new format al so
has absolutely no limtation on its |ength.

The advantage in ease of parsing the old format nanifests itself in
two aspects: (1) the size of the value is determ nable ahead of tine,
in a way equivalent to parsing a TLV, and (2) the actual value is
directly encoded and decoded, without shifting and masking bits as is
required in the new format. For these reasons, the old format
requires |l ess conputational overhead to deal with, but is also very
limted in that it can only hold a 1024-bit nunber, at nmaxi mum

Since according to | ETF Best Current Practices, an asynmmetric

crypt ography key needed to last for a long termrequires using nodul
of over 1228 bits [RFC3766], this could be seen as a severe
[imtation of the old style of SDNVs, fromwhich the currently used
styl e does not suffer.

Tabl e 1 conpares the maxi mum val ues that can be encoded i nto SDNVs of
various |lengths using the old SDNV-8/16 nethod and the current SDNV
nmethod. The only place in this table where SDNV-16 is used rather
than SDNV-8 is in the 2-byte row. Starting with a single byte, the
two met hods are equival ent, but when using 2 bytes, the old nethod is
a nore conpact encoding by one bit. From3 to 7 bytes of length
though, the current SDNV format is nore conpact, since it only
requires one bit per byte of overhead, whereas the old format used a
full byte. Thus, at 8 bytes, both schenes are equivalent in
efficiency since they both use 8 bits of overhead. Up to 129 bytes,
the old format is nore conpact than the current one, although after
this, limt it beconmes unusabl e.
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Fomm o - o U o U +
| Bytes | SDNV- 8/ 16 | SDNV | SDNV- 8/ 16 | SDNV
| | Maxi mum Val ue | Maxi mum | Overhead Bits | Over head
| | | Val ue | | Bits |
Fomm - Fom e e e oo - S Fom e e e oo - S +
| 1 | 127 | 127 | 1 | 1 |
| | | | | |
| 2 | 32,767 | 16, 383 | 1 | 2 |
| | | | | |
| 3 | 65, 535 | 2,097,151 | 8 | 3 |
| | | | | |
| 4 | 224 - 1 | 2728 - 1 | 8 | 4 |
| | | | | |
| 5 | 2n32 - 1 | 2735 - 1 | 8 | 5 |
| | | | | |
| 6 | 2740 - 1 | 2042 - 1| 8 | 6 |
| | | | | |
| 7 | 278 - 1 | 279 - 1| 8 | 7 |
| | | | | |
| 8 | 2756 - 1 | 2756 - 1 | 8 | 8 |
| | | | | |
| 9 | 2764 - 1 | 2763 - 1 | 8 | 9 |
| | | | | |
| 10 | 2r72 - 1 | 2770 - 1| 8 | 10
| | | | | |
| 16 | 27120 - 1 | 272112 - 1 | 8 | 16 |
| | | | | |
| 32 | 27248 - 1 | 27224 - 1 | 8 | 32 |
| | | | | |
| 64 | 27504 - 1 | 27448 - 1 | 8 | 64 |
| | | | | |
| 128 | 271016 - 1 | 27896 - 1 | 8 | 128 |
| | | | | |
| 129 | 271024 - 1 | 27903 - 1 | 8 | 129 |
| | | | | |
| 130 | N A | 27910 - 1 | N A | 130
| | | | | |
| 256 | N A | 271792 - 1 | N A | 256
R oo R oo R +
Table 1

Suggest ed usages of the SDNV format that |everage its strengths and
l[imt the effects of its weaknesses are discussed in Section 1.3.

Anot her aspect of the conparison between SDNVs and alternatives using

fixed-length fields is the result of errors in transmssion. Bit-
errors in an SDNV can result in either errors in the decoded val ue,
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or parsing errors in subsequent fields of the protocol. In fixed-
length fields, bit errors always result in errors to the decoded
val ue rather than parsing errors in subsequent fields. |If the

decoded values fromeither type of field encoding (SDNV or fixed-
| ength) are used as indexes, offsets, or lengths of further fields in
the protocol, simlar failures result.

5. Security Considerations

The only security considerations with regard to SDNVs are that code
that parses SDNVs shoul d have bounds-checking | ogi c and be capabl e of
handl i ng cases where an SDNV's val ue is beyond the code’'s ability to
parse. These precautions can prevent potential exploits involving
SDNV decodi ng routi nes.

Stephen Farrell noted that very early definitions of SDNVs al so

al  owed negative integers. This was considered a potential security
hol e, since it could expose inplenentations to underfl ow attacks
during SDNV decoding. There is a precedent in that many existing TLV
decoders map the Length field to a signed integer and are vul nerable
in this way. An SDNV decoder should be based on unsigned types and
not have this issue.
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ndi x A.  SDNV Pyt hon Source Code
This code may be freely copied. Attribution would be appreciated.

sdnv_decode() takes a string argument (s), which is assuned to be
an SDNV, and optionally a nunber (slen) for the maxi mum nunber of
bytes to parse fromthe string. The function returns a pair of
the non-negative integer n that is the nunmeric val ue encoded in
the SDNV, and integer that is the distance parsed into the input
string. |If the slen argunent is not given (or is not a non-zero
nunber) then, s is parsed up to the first byte whose hi gh-order
bit is 0 -- the length of the SDNV portion of s does not have to
be pre-conputed by calling code. If the slen argunent is given
as a non-zero value, then slen bytes of s are parsed. The val ue
for n of -1 is returned for any type of parsing error

NOTE: I n python, integers can be of arbitrary size. |n other
| anguages, such as C, SDNV-parsing routines should take
precautions to avoid overflow (e.g., by using the Gau MP library,
or simlar).

ef sdnv_decode(s, slen=0):

n = | ong(0)
for i in range(0, len(s)):
v = ord(s[i])
n = n<<7
n=n+ (v & OX7F)
if v>>7 == 0:
slen = i+1
br eak
elif i ==1len(s)-1 or (slen!=0 and i > slen):

n = -1 # reached end of input without seeing end of SDNV
return (n, slen)

sdnv_encode() returns the SDNV-encoded string that represents n
An enpty string is returned if nis not a non-negative integer
ef sdnv_encode(n):
r=""
# validate input
if n>= 0 and (type(n) in [type(int(1)), type(long(1))]):
flag 0
done Fal se
whi | e not done:
# encode lowest 7 bits fromn
newbits = n & OxX7F

n = n>>7
r = chr(newbits + flag) +r
if flag == 0:
& Davi es I nf or mati onal [ Page 16]
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flag = 0x80
if n==0:
done = True
returnr

# test cases fromLTP and BP internet-drafts, only print failures
def sdnv_test():
tests = [ (OXABC, chr(0x95) + chr(0x3Q)),
(0x1234, chr(0xA4) + chr (0x34)),
(0x4234, chr(0x81) + chr(0x84) + chr(0x34)),
(Ox7F, chr(0x7F))]

for tp in tests:
# test encoding function
i f sdnv_encode(tp[0]) !'= tp[1]:
print "sdnv_encode fails on input %" % hex(tp[O0])
# test decoding function
i f sdnv_decode(tp[1])[0] != tp[O]:
print "sdnv_decode fails on input %, giving %" %\
(hex(tp[0]), sdnv_decode(tp[1]))
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