File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NI C 17759

Nancy J. Nei gus See Al so: RFCs 354, 454, 495
Bolt Beranek and Newran, Inc.
Canbri dge, Mass.

File Transfer Protocol for the ARPA Network

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

PREFACE

This docunent is the result of several nonths discussion via RFC

(rel evant nunbers are 430, 448, 454, 463, 468, 478, 480), followed by a
neeting of the FTP committee at BBN on March 16, followed by further
conmuni cati on anong conmmittee nenbers. There are a considerabl e nunber
of changes for the last "official" version, see RFCs 354, 385, but the
gross structure remains the sane. The places to | ook for differences
are (1) in the definitions pf types and nodes, (2) in the specification
of the data connection and data sockets, (3) in the command-reply
sequences, (4) in the functions dependent on the TELNET protocol (FTP
has been altered to correspond to the new TELNET spec). The nodel has
been clarified and enlarged to allow inter-server file transfer, and
several new conmands have been added to accommopdate nore specialized (or
site-specific) functions. It is nmy belief that this new specificiation
reflects the views expressed by the coomittee at the above-nenti oned
neeting and i n subsequent conversations.

The | arge nunber of inconpatibilities would conplicate a phased

i mpl enent ati on schedule, such as is in effect for the TELNET protocol.
Therefore we have assigned a new socket, decinmal 21, as a tenporary

| ogger socket for the new version and a change-over date of 1 February
1974. Until that date the old (354, 385) version of FTP will be

avai | abl e on Socket 3 and the new version (attached) shoul d be

i mpl enented on Socket 21. On 1 February the new version will shift to
Socket 3 and the ol d di sappear from vi ew.

The File Transfer protocol should be considered stable at |east unti
February, though one should feel free to propose further changes via
RFC. (I nplenentation of new commands on an experinmental basis is

encour aged and should also be reported by RFC.) In addition, nenbers of
the FTP committee may be contacted directly about changes. Based on
attendance at the March 16 neeting, they are:

Abhay Bhushan M T- DMCG
Bob Braden UCLA- CCN

Bob Bressl er BBN- NET
Bob C enents BBN TENEX
John Day |LL-ANTS

Pet er Deut sch PARC- MAXC
Wayne Hat haway AMES- 67
M ke Kudlick SRI-ARC

Al ex McKenzi e BBN- NET
Bob Merryman UCSD- CC
Nancy Nei gus BBN- NET

M ke Padlipsky MT-Miltics
Ji m Pepi n USC- 44

Ken Pogran M T-Miltics
Jon Postel UCLA-NMC

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

M1 ton Reese FNWC
Brad Reussow HARV- 10
Marc Seriff M T- DMCG
Ed Taft HARV-10

Bob Thonmms BBN- TENEX
Ric Werne CMJ-10
JimWwhite SRI-ARC

I would especially Iike to thank Bob Braden, Ken Pogran, \Wayne Hat haway,
Jon Postel, Ed Taft and Al ex McKenzie for their help in preparing this
document .

NIN/ jm

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

FI LE TRANSFER PROTOCOL
I NTRODUCT! ON

The File Transfer Protocol (FTP) is a protocol for file transfer

bet ween Hosts (including Termi nal Interface Message Processors
(TIPs)) on the ARPA Conputer Network (ARPANET). The primary function
of FTP is to transfer files efficiently and reliably anbng Hosts and
to allow the convenient use of renote file storage capabilities.

The objectives of FTP are 1) to pronote sharing of files (computer
programnms and/or data), 2) to encourage indirect or inplicit (via
programnms) use of renote conputers, 3) to shield a user from
variations in file storage systens anong Hosts, and 4) to transfer
data reliably and efficiently. FTP, though usable directly by a user
at aternminal, is designed mainly for use by prograns.

The attenpt in this specification is to satisfy the diverse needs of
users of maxi-Hosts, mini-Hosts, TIPs, and the Datacomputer, with a
simple, and easily inplenmented protocol design

Thi s paper assunes know edge of the follow ng protocols described in
Nl C #7104:

The Host - Host Protoco
The Initial Connection Protoco
The TELNET Pr ot ocol
Dl SCUSSI ON
In this section, the ternm nology and the FTP nodel are discussed.
The terns defined in this section are only those that have specia
significance in FTP.
TERM NOLOGY
ASCl |
The USASCI| character set as defined in NIC #7104. |n FTP,
ASCI | characters are defined to be the lower half of an
eight-bit code set (i.e., the nost significant bit is zero).
access controls
Access control s define users’ access privileges to the use of a

system and to the files in that system Access controls are
necessary to prevent unauthorized or accidental use of files.

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

It is the prerogative of a server-FTP process to provi de access
control s.

byte size

The byte size specified for the transfer of data. The data
connection is opened with this byte size. The data connection
byte size is not necessarily the byte size in which data is to
be stored in a system nor the |ogical byte size for
interpretation of the structure of the data.

data connection

A sinmpl ex connection over which data is transferred, in a
specified byte size, node and type. The data transferred may be
a part of afile, an entire file or a nunber of files. The
path nay be between a server-DTP and a user-DTP, or between two
server - DTPs.

dat a socket

The passive data transfer process "listens" on the data socket
for an RFC fromthe active transfer process (server) in order
to open the data connection. The server has fixed data
sockets; the passive process may or may nhot.

ECF

The end-of-file condition that defines the end of a file being
transferred.

ECR

The end-of-record condition that defines the end of a record
bei ng transferred.

error recovery
A procedure that allows a user to recover fromcertain errors
such as failure of either Host systemor transfer process. In
FTP, error recovery may involve restarting a file transfer at a
gi ven checkpoi nt.

FTP commands

A set of conmands that conprise the control information flow ng
fromthe user-FTP to the server-FTP process.

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

file

An ordered set of computer data (including prograns), of
arbitrary length, uniquely identified by a pathnane.

node

The npbde in which data is to be transferred via the data
connection. The node defines the data format during transfer

i ncluding EOR and EOF. The transfer nodes defined in FTP are
described in the Section on Transni ssion Mdes.

NVT

The Network Virtual Term nal as defined in the ARPANET TELNET
Pr ot ocol

NVFS

The Network Virtual File System A concept which defines a
standard network file systemw th standard commands and

pat hname conventions. FTP only partially enbraces the NVFS
concept at this tine.

pat hname

Pat hnane is defined to be the character string which nust be
input to a file systemby a user in order to identify a file.
Pat hname nornmal |y contains device and/or directory names, and
file name specification. FTP does not yet specify a standard
pat hname convention. Each user must follow the file nam ng
conventions of the file systenms he wi shes to use.

record

A sequential file my be structured as a nunmber of contiguous
parts called records. Record structures are supported by FTP
but a file need not have record structure.

reply

A reply is an acknow edgnent (positive or negative) sent from
server to user via the TELNET connections in response to FTP
conmands. The general formof a reply is a conpletion code
(including error codes) followed by a text string. The codes
are for use by prograns and the text is usually intended for
human users.

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

server-DTP

The data transfer process, in its normal "active" state,

establ i shes the data connection by RFC to the "listening" data
socket, sets up paranmeters for transfer and storage, and
tranfers data on command fromits PlI. The DIP can be placed in

a "passive" state to listen for, rather than initiate, an RFC
on the data socket.

server-FTP process

A process or set of processes which performthe function of
file transfer in cooperation with a user-FTP process and,
possi bly, another server. The functions consist of a protoco
interpreter (PI) and a data transfer process (DTP).

server-P

The protocol interpreter "listens" on Socket 3 for an I CP from
a user-Pl and establishes a TELNET conmuni cati on connecti on

It receives standard FTP commands fromthe user-Pl, sends
replies, and governs the server-DITP

TELNET connecti ons

The full-dupl ex comunication path between a user-Pl and a
server-Pl. The TELNET connections are established via the
standard ARPANET Initial Connection Protocol (I1CP).

type

The data representation type used for data transfer and
storage. Type inplies certain transformati ons between the tine
of data storage and data transfer. The representation types
defined in FTP are described in the Section on Establishing
Dat a Connecti ons.

user

A human being or a process on behal f of a human being w shing
to obtain file transfer service. The hunan user nmay interact
directly with a server-FTP process, but use of a user-FTP
process is preferred since the protocol design is weighted

t owar ds aut onat a.

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

user - DTP
The data transfer process "listens" on the data socket for an
RFC from a server-FTP process. |If two servers are transferring

data between them the user-DTP is inactive.
user- FTP process

A set of functions including a protocol interpreter, a data
transfer process and a user interface which together perform
the function of file transfer in cooperation with one or nore
server-FTP processes. The user interface allows a |oca

| anguage to be used in the conmand-reply dial ogue with the
user.

user - Pl
The protocol interpreter initiates the ICP to the server-FTP
process, initiates FTP commands, and governs the user-DTP if
that process is part of the file transfer.

THE FTP MODEL

Wth the above definitions in mnd, the follow ng nmodel (shown in
Figure 1) may be diagranmed for an FTP service.

N \!
I User Il --------
Illnterface! <--->! User !
A LR i B
---------- ! \Y, !
Vi------ \!I' FTP Conmands !/--------- \!
I'Serverl<----------------- ! User !!
T = R > PI I
IN--r---/1] FTP Replies !\----:----/1I
! V !] \V/]
-------- f------\1 Dat a T e
I File I'<--->1Server!<------------o--- >l User I<--->! File !
I System ' DTP I Connections !! DTP I I Syst em
________ I\oooooo/] T WP oY o
Server-FTP User - FTP

NOTES: 1. The data connection nmay be in either direction
2. The data connection need not exist all of the tine.

Figure 1 Mdel for FTP Use

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

In the nodel described in Figure 1, the user-protocol interpreter
initiates the TELNET connections. At the initiation of the user
standard FTP conmands are generated by the user-Pl and transmitted to
the server process via the TELNET connections. (The user nay
establish a direct TELNET connection to the server-FTP, froma TIP
termi nal for exanple, and generate standard FTP conmands hi nsel f,

by- passi ng the user-FTP process.) Standard replies are sent fromthe
server-Pl to the user-Pl over the TELNET connections in response to

t he commands.

The FTP commands specify the paranmeters for the data connection (data
socket, byte size, transfer node, representation type, and structure)
and the nature of file systemoperation (store, retrieve, append,

delete, etc.). The user-DIP or its designate should "listen" on the
specified data socket, and the server initiate the data connection
and data transfer in accordance with the specified paraneters. It

shoul d be noted that the data socket need not be in the sane Host
that initiates the FTP commuands via the TELNET connections, but the
user or his user-FTP process nmust ensure a "listen" on the specified
data socket. It should also be noted that two data connecti ons, one
for send and the other for receive, may exist sinultaneously.

In anot her situation a user might wish to transfer files between two
Hosts, neither of which is his local Host. He sets up TELNET
connections to the two servers and then arranges for a data
connection between them In this manner control information is
passed to the user-Pl but data is transferred between he server data
transfer processes. Following is a nodel of this server-server

i nteraction.

TELNET ------------ TELNET
----------- I User-FTP l------------
I > User-Pl I<--------- !
I ! "C ! I
AV IV
I Server-FTP ! Dat a Connecti on I Server-FTP
! A" S I ! "B" !

Figure 2

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

The protocol requires that the TELNET connecti ons be open while data
transfer is in progress. It is the responsibility of the user to
request the closing of the TELNET connections when finished using the
FTP service, while it is the server who takes the action. The server
may abort data transfer if the TELNET connections are closed w thout
comand.

DATA TRANSFER FUNCTI ONS

Files are transferred only via the data connection(s). The TELNET
connection is used for the transfer of conmands, which describe the
functions to be performed, and the replies to these commands (see the
Section on FTP Replies). Several conmands are concerned with the
transfer of data between Hosts. These data transfer commands incl ude
the BYTE, MODE, and SOCKet commands whi ch specify how the bits of the
data are to be transmtted, and the STRUcture and TYPE commands,
which are used to define the way in which the data are to be
represented. The transmission and representation are basically

i ndependent but "Stream transm ssion node is dependent on the file
structure attribute and if "Conpressed"” transm ssion node is used the
nature of the filler byte depends on the representation type.

DATA REPRESENTATI ON AND STORAGE

Data is transferred froma storage device in the sending Host to a
storage device in the receiving Host. Oten it is necessary to
performcertain transformati ons on the data because data storage
representations in the two systens are different. For exanple,
NVT-ASCI | has different data storage representations in diffeent
systenms. PDP-10’'s generally store NVT-ASCI| as five 7-bit ASCl
characters, left-justified in a 36-bit word. 360's store NVT-ASCI| as
8-bit EBCDI C codes. Multics stores NVI-ASCI|I as four 9-bit characters
ina 36-bit word. It may be desirable to convert characters into the
standard NVT-ASCI| representation when transnmitting text between

di ssimlar systens. The sending and receiving sites would have to
performthe necessary transformati ons between the standard
representation and their internal representations.

A different problemin representation arises when transnitting binary
data (not character codes) between Host systems with different word
lengths. It is not always clear how the sender should send data, and
the receiver store it. For exanple, when transmtting 32-bit bytes
froma 32-bit word-length systemto a 36-bit word-length system it
may be desirable (for reasons of efficiency and useful ness) to store
the 32-bit bytes right-justified in a 36-bit word in the latter
system In any case, the user should have the option of specifying
data representation and transformation functions. It should be noted
that FTP provides for very limted data type representations.
Transformati ons desired beyond this limted capability should be

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

performed by the user directly or via the use of the Data
Reconfiguration Sevice (DRS, RFC #138, N C #6715). Additona
representation types may be defined later if there is a denonstrable
need.

Data representations are handled in FTP by a user specifying a
representation type. This type may inmplicitly (as in ASCI|1 or
EBCDI C) or explicitly (as in Local byte) define a byte size for
interpretation which is referred to as the "logical byte size." This
has nothing to do with the byte size used for transm ssion over the
data connection(s) (called the "transfer byte size") and the two
shoul d not be confused. For exanple, NVT-ASCI| has a | ogical byte
size of 8 bits but an ASCII file mght be transferred using a
transfer byte size of 32. |If the type is Local byte, then the TYPE
conmand has an obligatory second paraneter specifying the |ogica
byte si ze.

The types ASCI|I and EBCDIC al so take a second (optional) paraneter;
this is to indicate what kind of vertical format control, if any, is
associated with a file. The follow ng data representation types are
defined in FTP:

ASCI | For nat

This is the default type and nust be accepted by all FTP

i mpl enentations. It is intended primarily for the transfer of
text files, except when both Hosts would find the EBCDI C type
nore conveni ent.

The sender converts the data fromhis internal character
representation to the standard 8-bit NVT-ASCI| representation
(see the TELNET specification). The receiver will convert the
data fromthe standard formto his own internal form

In accordance with the NVT standard, the <CRLF> sequence shoul d
be used, where necessary, to denote the end of a line of text.
(See the discussion of file structure at the end of the Section
on Data Representation and Storage).

Using the standard NVT-ASCI| representati on neans that data
nmust be interpreted as 8-bit bytes. |If the BYTE comand (see
the Section on Transfer Parameter Comands) specifies a
transfer byte size different from8 bits, the 8-bit ASC
characters shoul d be packed contiguously w thout regard for
transfer byte boundaries.

The Format paranmeter for ASCI|I and EBCDI C types is discussed
bel ow.

10

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

EBCDI C For mat

This type is intended for efficient transfer between Hosts
whi ch use EBCDIC for their internal character representation

For transm ssion the data are represented as 8-bit EBCDI C
characters. The character code is the only difference between
the functional specifications of EBCDIC and ASCI| types.

End-of -1i ne (as opposed to end-of-record--see the discussion of
structure) will probably be rarely used with EBCDI C type for
pur poses of denoting structure, but where it is necessary the
<NL> character shoul d be used.

A character file may be transferred to a Host for one of three
purposes: for printing, for storage and later retrieval, or for
processing. If afile is sent for printing, the receiving Host nust
know how the vertical format control is represented. In the second
case, it nust be possible to store a file at a Host and then retrieve
it later in exactly the sane form Finally, it ought to be possible
to nove a file fromone Host to another and process the file at the
second Host without undue trouble. A single ASCI|I or EBCDI C format
does not satisfy all these conditions and so these types have a
second paraneter specifying one of the follow ng three fornats:

Non- pri nt
This is the default format to be used if the second (format)
paraneter is onmitted. Non-print format nust be accepted by al
FTP i npl erent ati ons.

The file need contain no vertical format information. |If it is
passed to a printer process, this process may assunme standard
val ues for spacing and margi ns.

Normal ly, this format will be used with files destined for
processi ng or just storage.

TELNET Format Controls
The file contains ASCI|I/EBCD C vertical format controls (i.e.
<CR>, <LF>, <NL>, <VT> <FF>) which the printer process wll
interpret appropriately. <CRLF>, in exactly this sequence,
al so denotes end-of-1ine.

Carriage Control (ASA)
The file contains ASA (FORTRAN) vertical format contro
characters. (See NWH RFC #189 Appendi x C and Comuni cati ons of

11

the ACM Vol .
record,
character is not to be printed.
determ ne the vertical novenent

pl ace before the rest of the record is printed.
Standard specifies the followi ng contro

7, No. 10, 606 (Cct.
formatted according to the ASA Standard,

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

In aline or a

the first
Instead it should be used to

of the paper which should take

The ASA

characters:

1964)).

Char act er Vertical Spacing

bl ank Move paper up one |ine

0 Move paper up two |ines

1 Move paper to top of next page
+ No movenent, i.e., overprint

Clearly there nmust be sonme way for a printer
di stingui sh the end of the structura
record structure (see below) this is no problem

be explicitly marked during transfer and storage.

has no record structure,
overridden by the ASA controls.
| mage

The data are sent as contiguous
packed into transfer
command.
bits.

record-structured file) to sone
or block). This paddi ng, which
only at the end of the file (or
there nust be a way of identifyi
they may be stripped off
transformati on should be well

if the file is retrieved.

process to
If a file has
records wll
If the file

entity.

the <CRLF> end-of-1ine sequence is
used to separate printing |ines,

but these format effectors are

bits which, for transfer, are

bytes of the size specified in the BYTE
The receiving site nust store the data as conti guous
The structure of the storage system mi ght necessitate
the padding of the file (or of each record,

for a
conveni ent boundary (byte, word
must be all zeroes, may occur

at the end of each record) and
ng the padding bits so that
The paddi ng

publicized to enable a user to

process a file at the storage site.

I mage type is intended for the efficient storage and retrieva

of files and for the transfer of binary data.
recommended that this type be accepted by al

i mpl ement ati ons.

Local byte Byte size

The data is transferred in |ogica
by the obligatory second paraneter,
i nteger;
byte size is not necessarily the same as the

If there is a difference in byte sizes,

Byte size nust be a decinma
The | ogi ca

transfer byte size.

12

It is

FTP

bytes of the size specified
Byte size. The val ue of
there is no default val ue.

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

then the | ogical bytes should be packed contiguously,
di sregardi ng transfer byte boundaries and with any necessary
paddi ng at the end.

When the data reaches the receiving Host it will be transforned
in a manner dependent on the |ogical byte size and the
particul ar Host. This transformation nmust be invertible (that
is an identical file can be retrieved if the sane paraneters
are used) and should be well publicized by the FTP

i mpl enent ors.

This type is intended for the transfer of structured data. For
exanpl e, a user sending 36-bit floating-point numbers to a Host
with a 32-bit word could send his data as Local byte with a

| ogi cal byte size of 36. The receiving Host woul d then be
expected to store the |logical bytes so that they could be
easily manipulated; in this exanple putting the 36-bit |ogica
bytes into 64-bit double words should suffice.

A note of caution about paranmeters: a file nust be stored and
retrieved with the sanme paraneters if the retrieved version is to be
identical to the version originally transmtted. Conversely, FTP

i mpl ementations nust return a file identical to the original if the
paranmeters used to store and retrieve a file are the sane.

In addition to different representation types, FTP allows the
structure of a file to be specified. Currently two file structures
are recogni zed in FTP: file-structure, where there is no interna
structure, and record-structure, where the file is nade up of
records. File-structure is the default, to be assurmed if the

STRUct ure command has not been used but both structures nust be
accepted for "text" files (i.e., files with TYPE ASCI| or EBCDI C) by
all FTP inplenentations. The structure of a file will affect both
the transfer node of a file (see the Section on Transni ssion Mdes)
and the interpretation and storage of the file.

The "natural" structure of a file will depend on which Host stores
the file. A source-code file will usually be stored on an IBM 360 in
fixed length records but on a PDP-10 as a stream of characters
partitioned into lines, for exanple by <CRLF>. |f the transfer of
files between such disparate sites is to be useful, there nust be
some way for one site to recognize the other’s assunptions about the
file.

Wth sonme sites being naturally file-oriented and others naturally
record-oriented there may be problens if a file with one structure is
sent to a Host oriented to the other. |If a text file is sent with
record-structure to a Host which is file oriented, then that Host
shoul d apply an internal transformation to the file based on the

13

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

record structure. oviously this transformation shoul d be useful but
it must also be invertible so that an identical file may be
retreieved using record structure.

In the case of a file being sent with file-structure to a
record-oriented Host, there exists the question of what criteria the
Host shoul d use to divide the file into records which can be
processed locally. [If this division is necessary the FTP

i mpl enent ati on shoul d use the end-of-1ine sequence, <CRLF> for ASCl I
or <NL> for EBCDIC text files, as the delinmter. |If an FTP

i mpl enent ati on adopts this technique, it nust be prepared to reverse
the transformation if the file is retrieved with file-structure.

ESTABLI SHI NG DATA CONNECTI ONS

The nechanics of transferring data consists of setting up the data
connection to the appropriate sockets and choosing the paraneters for
transfer--byte size and node. Both the user and the server-DTPs have
default data sockets; these are the two sockets (for send and
receive) inmrediately following the standard | CP TELNET socket ,i.e.
(W4) and (U+5) for the user-process and (S+2), (S+3) for the server.
The use of default sockets will ensure the security of the data
transfer, w thout requiring the socket information to be explicitly
exchanged.

The byte size for the data connection is specified by the BYTE
conmand, or, if left unspecified, defaults to 8-bit bytes. This byte
size is relevant only for the actual transfer of the data; it has no
bearing on representation of the data within a Host's file system
The protocol does not require servers to accept all possible byte
sizes. Since the use of various byte sizes is intended for efficiency
of transfer, servers may inplenent only those sizes for which their
data transfer is efficient including the default byte size of 8 bits.

The passive data transfer process (this nay be a user-DTP or a second
server-DTP) shall "listen" on the data socket prior to sending a
transfer request command. The FTP request conmand determ nes the
direction of the data transfer and thus which data socket (odd or
even) is to be used in establishing the connection. The server, upon
receiving the transfer request, will initiate the data connection by
RFC to the appropriate socket using the specified (or default) byte
size. Wen the connection is opened, the data transfer begins
between DTP's, and the server-Pl sends a confirmng reply to the
user - Pl

It is possible for the user to specify an alternate data socket by
use of the SOCK command. He might want a file dunped on a TIP line
printer or retrieved froma third party Host. 1In the latter case the
user-Pl sets up TELNET connections with both server-Pl’s and sends

14

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

each a SOCK command indicating the fixed data sockets of the other
One server is then told (by an FTP command) to "listen" for an RFC
which the other will initiate and finally both are sent the
appropriate transfer comrmands. The exact sequence of commands and
replies sent between the user-controller and the servers is defined
in the Section on FTP Repli es.

In general it is the server’s responsibility to maintain the data
connection--to initiate the RFC s and the closes. The exception to
this is when the user-DTP is sending the data in a transfer node that
requires the connection to be closed to indicate EO-. The server
MUST cl ose the data connection under the follow ng conditions:

1. The server has conpleted sending data in a transfer node that
requires a close to indicate ECF

2. The server receives an ABORT command fromthe user

3. The socket or byte size specification is changed by a command
fromthe user.

4. The TELNET connections are closed |legally or otherw se.
5. An irrecoverable error condition occurs.

O herwi se the close is a server option, the exercise of which he nust
indicate to the user-process by an appropriate reply.

TRANSM SSI ON MODES

The next consideration in transferring data is choosing the
appropriate transm ssion node. There are three nodes: one which
formats the data and allows for restart procedures; one which al so
conpresses the data for efficient transfer; and one which passes the

data with little or no processing. 1In this |ast case the node
interacts with the structure attribute to deternine the type of
processing. In the conpressed nbde the representation type

determ nes the filler byte.

Al data transfers nust be conpleted with an end-of-file (EOF) which
may be explicitly stated or inplied by the closing of the data
connection. For files with record structure, all the end-of-record
markers (EOR) are explicit, including the final one.

Note: In the rest of this section, byte neans "transfer byte" except
where explicitly stated otherw se.

15

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

The foll owi ng transm ssi on nodes are defined in FTP:
Stream

The data is transnitted as a streamof bytes. There is no
restriction on the representation type used; record structures
are allowed, in which case the transfer byte size nust be at

| east 3 bitsl!

In a record structured file EOR and EOF will each be indicated
by a two-byte control code of whatever byte size is used for
the transfer. The first byte of the control code will be al
ones, the escape character. The second byte will have the | ow
order bit on and zeroes el sewhere for EOR and the second | ow
order bit on for EOF, that is, the byte will have value 1 for
EOR and value 2 for EOF. EOR and ECF may be indicated together
on the last byte transmitted by turning both | ow order bits on
i.e., the value 3. If a byte of all ones was intended to be
sent as data, it should be repeated in the second byte of the
control code.

If the file does not have record structure, the EOF is
i ndi cated by the sending Host closing the data connection and
all bytes are data bytes.

For the purpose of standardized transfer, the sending Host will
translate his internal end of Iine or end of record denotation into
the representation prescribed by the transfer node and file
structure, and the receiving Host will performthe inverse
translation to his internal denotation. An IBM 360 record count
field may not be recognized at another Host, so the end of record
informati on may be transferred as a two byte control code in Stream
node or as a flagged bit in a Block or Conpressed node descriptor.
End of line in an ASCII or EBCDIC file with no record structure
shoul d be indicated by <CRLF> or <NL>, respectively. Since these
transformations inply extra work for sone systens, identical systens
transferring non-record structured text files mght wish to use a

bi nary representation and stream node for the transfer.

Bl ock

The file is transnitted as a series of data bl ocks preceded by
one or nore header bytes. The header bytes contain a count
field, and descriptor code. The count field indicates the
total length of the data block in bytes, thus marking the

begi nning of the next data block (there are no filler bits).
The descriptor code defines: last block in the file (ECF) | ast
block in the record (EOR), restart marker (see the Section on
Error Recovery and Restart) or suspect data (i.e., the data

16

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

being transferred is suspected of errors and is not reliable).
This last code is NOT intended for error control within FTP.

It is notivated by the desire of sites exchanging certain types
of data (e.g., seismic or weather data) to send and receive al
the data despite local errors (such as "magnetic tape read
errors"), but to indicate in the transm ssion that certain
portions are suspect). Record structures are allowed in this
node, and any representation type may be used. There is no
restriction on the transfer byte size.

The header consists of the smallest integral number of bytes
whose length is greater than or equal to 24 bits. Only the
LEAST significant 24 bits (right-justified) of header shal
have information; the remaining nmost significant bits are
"don't care" bits. O the 24 bits of header information, the
16 | ow order bits shall represent byte count, and the 8 high
order bits shall represent descriptor codes as shown bel ow.

I ntegral nunber of bytes greater than or equal to 24 bits
! Don't care ! Descri pt or ! Byte Count !
' 0to 231 bits ! 8 bits ! 16 bits !

The descriptor codes are indicated by bit flags in the
descriptor byte. Four codes have been assigned, where each
code nunber is the decimal value of the corresponding bit in
the byte.

Code Meani ng
128 End of data block is EOR
64 End of data block is EOF
32 Suspected errors in data bl ock
16 Data block is a restart narker

Wth this encoding nore than one descriptor coded condition may
exist for a particular block. As nmany bits as necessary may be
fl agged.

The restart marker is enbedded in the data stream as an

i ntegral number of 8-bit bytes representing printable
characters in the | anguage bei ng used over the TELNET
connection (e.g., default--NVT-ASCII). These narker bytes are
right-justified in the smallest integral nunber of transfer
bytes greater than or equal to 8 bits. For exanple, if the

17

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

byte size is 7 bits, the restart marker byte would be one byte
right-justified per two 7-bit bytes as shown bel ow

Two 7-bit bytes
! I Marker Char !
! ! 8 bits !

If the transfer byte size is 16 or nore bits, the naximum
possi bl e nunber of conpl ete marker bytes shoul d be packed,
right-justified, into each transfer byte. The restart narker
should begin in the first marker byte. |If there are any unused
mar ker bytes, these should be filled with the character <SP>
(Space, in the appropriate |anguage). <SP> nust not be used
WTH N a restart marker. For exanple, to transmt a

si x-character nmarker with a 36-bit transfer byte size, the
followi ng three 36-bit bytes would be sent:

I Don’t care !Descriptor! Byte count = 2 !
! 12 bits ! code = 16! !

Conpr essed

The file is transnmitted as series of bytes of the size
specified by the BYTE command. There are three kinds of
information to be sent: regular data, sent in a byte string;
conpressed data, consisting of replications or filler; and
control information, sent in a two-byte escape sequence. |If
the byte size is B bits and n>0 bytes of regular data are sent,
these n bytes are preceded by a byte with the left-nost bit set
to 0 and the right-nost B-1 bits containing the nunber n.

18

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

1 B1 B B
Byte string: !0l n! Id(D!...!d(n)!
"""" A A
I---n bytes---!
of data
String of n data bytes d(1),..., d(n)

Count n nust be positive

To conpress a string of n replications of the data byte d, the
following 2 bytes are sent:

Replicated Byte: ! 1 0! n Frd !

A string of n filler bytes can be conpressed into a single
byte, where the filler byte varies with the representation
type. |If the type is ASCII or EBCDIC the filler byte is <SP>
(Space, ASCI|I code 32., EBCDIC code 64). |If the transfer byte
size is not 8, the expanded byte string should be filled with
8-bit <SP> characters in the manner described in the definition
of ASCI| representation type (see the Section on Data
Representation and Storage). |If the type is Imge or Loca

byte the filler is a zero byte.

Filler String: ! 11! n !

The escape sequence is a double byte, the first of which is the
escape byte (all zeroes) and the second of which contains
descriptor codes as defined in Block node. This inplies that
the byte size nust be at least 8 bits, which is not nuch of a
restriction for efficiency in this node. The descriptor codes
have the same neaning as in Block node and apply to the
succeedi ng string of bytes.

Conpressed node is useful for obtaining increased bandw dth on
very large network transnissions at a little extra CPU cost.

It is nost efficient when the byte size chosen is that of the
word size of the transmitting Host, and can be nost effectively
used to reduce the size of printer files such as those
generated by RJE Hosts.

19

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

ERROR RECOVERY AND RESTART

There is no provision for detecting bits |ost or scranbled in data
transfer. This issue is perhaps handl ed best at the NCP | evel where
it benefits nobst users. However, a restart procedure is provided to
protect users fromgross systemfailures (including failures of a
Host, an FTP-process, or the I MP subnet).

The restart procedure is defined only for the block and conpressed
nodes of data transfer. It requires the sender of data to insert a
special marker code in the data streamwith some marker infornmation
The marker information has neaning only to the sender, but nust
consi st of printable characters in the default or negotiated | anguage
of the TELNET connection. The marker could represent a bit-count, a
record-count, or any other information by which a systemmay identify
a data checkpoint. The receiver of data, if it inplenents the
restart procedure, would then mark the correspondi ng position of this
marker in the recieving system and return this information to the
user.

In the event of a systemfailure, the user can restart the data
transfer by identifying the marker point with the FTP restart
procedure. The following exanple illustrates the use of the restart
procedure.

The sender of the data inserts an appropriate marker block in the
data stream at a convenient point. The receiving Host nmarks the
corresponding data point in its file systemand conveys the | ast
known sender and receiver marker information to the user, either
directly or over the TELNET connection in a 251 reply (dependi ng on
who is the sender). In the event of a systemfailure, the user or
controll er process restarts the server at the |ast server marker by
sending a restart command with server’s marker code as its argumnent.
The restrart command is transnmitted over the TELNET connection and is
i mediately followed by the command (such as RETR, STOR or LI ST)

whi ch was bei ng executed when the system failure occurred.

FI LE TRANSFER FUNCTI ONS

The communi cation channel fromthe user-Pl to the server-Pl is
established by ICP fromthe user to a standard server socket. The
user protocol interpreter is responsible for sending FTP comands and
interpreting the replies received; the server-Pl interprets commands,
sends replies and directs its DIP to set up the data connection and
transfer the data. |If the second party to the data transfer (the
passive transfer process) is the user-DIP then it is governed through
the internal protocol of the user-FTP Host; if it is a second
server-DTP then it is governed by its Pl on conmand fromthe user-Pl

20

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

FTP COMVANDS

The File Transfer Protocol follows the specifications of the TELNET
protocol for all conmunications over the TELNET connection - see NIC
#7104. Since, in the future, the | anguage used for TELNET

conmuni cati on may be a negotiated option, all references in the next
two sections will be to the "TELNET | anguage" and the correspondi ng
"TELNET end of line code". Currently one may take these to nean
NVT-ASCI | and <CRLF>. No other specifications of the TELNET protoco
will be cited.

FTP commands are "TELNET strings" terminated by the "TELNET end of
line code". The command codes thensel ves are al phabetic characters
term nated by the character <SP> (Space) if parameters follow and
TELNET- ECL ot herwi se. The command codes and the semantics of
conmands are described in this section; the detailed syntax of
conmands is specified in the Section on Commands, the reply sequences
are discussed in the Section on Sequenci ng of Comrands and Repli es,
and scenarios illustrating the use of comands are provided in the
Section on Typical FTP Scenari os.

FTP conmmands nay be partitioned as those specifying access-contro
identifiers, data transfer paraneters, or FTP service requests.
Certai n commands (such as ABOR, STAT, BYE) nmay be sent over the
TELNET connections while a data transfer is in progress. Sone
servers may not be able to nonitor the TELNET and data connections
si mul taneously, in which case sone special action will be necessary
to get the server’'s attention. The exact formof the "specia
action" is related to decisions currently under review by the TELNET
commttee; but the following ordered format is tentatively

r ecommended:

1. User systeminserts the TELNET "Interrupt Process" (IP) signa
in the TELNET stream

2. User system sends the TELNET "Synch" signha

3. User systeminserts the command (e.g., ABOR) in the TELNET
stream

4. Server Pl,, after receiving "IP", scans the TELNET stream for
EXACTLY ONE FTP conmand.

(For other servers this may not be necessary but the actions |isted
above shoul d have no unusual effect.)

21

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

ACCESS CONTRCOL COMVANDS

The foll owi ng commands specify access control identifiers (command
codes are shown in parentheses).

USER NAME (USER)

The argument field is a TELNET string identifying the user

The user identification is that which is required by the server
for access to its file system This comand will nornally be
the first command transmitted by the user after the TELNET
connections are nmade (some servers may require this).
Additional identification information in the formof a password
and/ or an account conmand may al so be required by some servers.
Servers may allow a new USER command to be entered at any point
in order to change the access control and/or accounting
information. This has the effect of flushing any user
password, and account information already supplied and

begi nning the | ogin sequence again. Al transfer paraneters
are unchanged and any file transfer in progress is conpleted
under the old acccount.

PASSWORD (PASS)
The argurment field is a TELNET string identifying the user’s

password. This conmand must be i mredi ately preceded by the
user nane comand, and, for sonme sites, conpletes the user’s

identification for access control. Since password infornmation
is quite sensitive, it is desirable in general to "mask" it or
suppress typeout. It appears that the server has no fool proof
way to achieve this. It is therefore the responsibility of the

user - FTP process to hide the sensitive password information
ACCOUNT (ACCT)

The argurment field is a TELNET string identifying the user’s
account. The command is not necessarily related to the USER
conmand, as sone sites may require an account for |ogin and
others only for specific access, such as storing files. 1In the
|atter case the command may arrive at any tine. There are two
reply codes to differentiate these cases for the autonaton:
when account information is required for login, the response to
a successful PASSword command is reply code 331; then if a
conmand ot her than ACCounT is sent, the server may renmenber it
and return a 331 reply, prepared to act on the conmand after
the account information is received; or he may flush the
conmand and return a 433 reply asking for the account. On the
ot her hand, if account information is NOT required for login
the reply to a successful PASSword conmand is 230; and if the

22

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

information is needed for a comand issued later in the

di al ogue, the server should return a 331 or 433 reply depending
on whet her he stores (pending receipt of the ACCounT conmand)
or discards the comrand, respectively.

REI NI TI ALl ZE (REI N)

This command term nates a USER, flushing all 1/O and account

i nfornmation, except to allow any transfer in progress to be
conpleted. Al paraneters are reset to the default settings
and the TELNET connection is left open. This is identical to
the state in which a user finds hinmself inmediately after the
ICP is compl eted and the TELNET connections are opened. A USER
conmand may be expected to foll ow.

LOGOUT (BYE)
This command terninates a USER and if file transfer is not in
progress, the server closes the TELNET connection. If file
transfer is in progress, the connection will remain open for
result response and the server will then close it. |If the

user-process is transferring files for several USERs but does
not wish to close and then reopen connections for each, then
the REIN conmand shoul d be used instead of BYE

An unexpected cl ose on the TELNET connection will cause the
server to take the effective action of an abort (ABOR) and a
| ogout (BYE)

TRANSFER PARAMETER COMVANDS

Al data transfer parameters have default val ues, and the commands
specifying data transfer paraneters are required only if the default
par anmet er values are to be changed. The default value is the | ast
specified value, or if no value has been specified, the standard
default value as stated here. This inplies that the server nust
"remenber” the applicable default values. The conmands may be in any
order except that they nust precede the FTP service request. The
foll owi ng commands specify data transfer paraneters.

BYTE SI ZE (BYTE)

The argument is a decinmal integer (1 through 255) specifying
the byte size for the data connection. The default byte size
is 8 bits. A server nay reject certain byte sizes that he has
not inpl enented.

23

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

DATA SOCKET (SOCK)

The argument is a HOST- SOCKET specification for the data socket
to be used in data connection. There nmay be two data sockets,
one for transfer fromthe "active" DIP to the "passive" DIP and
one for "passive" to "active". An odd socket nunber defines a
send socket and an even socket nunber defines a receive socket.
The default HOST is the user Host to which TELNET connections
are made. The default data sockets are (U+4) and (U+5) where U
is the socket nunber used in the TELNET |ICP and the TELNET
connections are on sockets (U+2) and (U+3). The server has

fi xed data sockets (S+2) and (S+3) as well, and under norma
circimstances this command and its reply are not needed.

PASSI VE (PASV)

This command requests the server-DTP to "listen" on both of his
data sockets and to wait for an RFC to arrive for one socket
rather than initiate one upon receipt of a transfer conmmand.

It is assunmed the server has already received a SOCK command to
i ndicate the foreign socket fromwhich the RFC will arrive to
ensure the security of the transfer.

REPRESENTATI ON TYPE (TYPE)

The argument specifies the representation type as described in
the Section on Data Representation and Storage. Several types
take a second paraneter. The first parameter is denoted by a
singl e TELNET character, as is the second Format paraneter for
ASCI | and EBCDI C, the second paraneter for local byte is a
decimal integer to indicate Bytesize. The paranmeters are
separated by a <SP> (Space, ASCI| code 32.). The follow ng
codes are assigned for type:

\ /
A - ASCI ! I' N - Non-print
I-><-1 T - TELNET format effectors
E - EBCD C I C- Carriage Control (ASA)
/ \
| - Inage

L # - Local byte Bytesize

The default representation type is ASCII Non-print. |[If the
Format parameter is changed, and later just the first argunent
i s changed, Format then returns to the Non-print default.

24

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

FI LE STRUCTURE (STRU)

The argunment is a single TELNET character code specifying file
structure described in the Section on Data Representati on and
Storage. The follow ng codes are assigned for structure:

F - File (no record structure)
R - Record structure

The default structure is File (i.e., no records).
TRANSFER MODE (MODE)

The argument is a single TELNET character code specifying the
data transfer nodes described in the Section on Transm ssion
Modes. The followi ng codes are assigned for transfer nopdes:

S - Stream
B - Block
C - Conpressed

The default transfer nbde is Stream
FTP SERVI CE COVWWANDS

The FTP service commuands define the file transfer or the file system
function requested by the user. The argunent of an FTP service
conmand will nornmally be a pathnane. The syntax of pathnames nust
conformto server site conventions (with standard defaults
appl i cabl e), and the | anguage conventions of the TELNET connection
The suggested default handling is to use the | ast specified device,
directory or file nane, or the standard default defined for |oca
users. The commands may be in any order except that a "renane front
conmand nust be followed by a "renane to" command and the restart
conmand nust be followed by the interrupted service conmand. The
data, when transferred in response to FTP service commnds, shal

al ways be sent over the data connection, except for certain
informative replies. The follow ng commands specify FTP service
requests:

RETRI EVE (RETR)
Thi s command causes the server-DIP to transfer a copy of the
file, specified in the pathnane, to the server- or user-DTP at

the other end of the data connection. The status and contents
of the file at the server site shall be unaffected.

25

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

STORE (STOR)

Thi s command causes the server-DIP to accept the data
transferred via the data connection and to store the data as a
file at the server site. |If the file specified in the pathnane
exists at the server site then its contents shall be repl aced
by the data being transferred. A newfile is created at the
server site if the file specified in the pathnanme does not

al ready exi st.

APPEND (with create) (APPE)

Thi s command causes the server-DIP to accept the data
transferred via the data connection and to store the data in a
file at the server site. |If the file specified in the pathnane
exists at the server site, then the data shall be appended to
that file; otherwise the file specified in the pathnane shal

be created at the server site.

ALLOCATE (ALLO)

This command may be required by sone servers to reserve
sufficient storage to accommodate the new file to be
transferred. The argunment shall be a decinal integer
representing the nunmber of bytes (using the |ogical byte size)
of storage to be reserved for the file. For files sent with
record structure a maxi numrecord size (in |logical bytes) m ght
al so be necessary; this is indicated by a decinal integer in a
second argument field of the command. This second argunent is
optional, but when present should be separated fromthe first
by the three TELNET characters <SP> R <SP>. This conmmand shal
be foll owed by a STORe or APPEnd command. The ALLO conmand
shoul d be treated as a NOOP (no operation) by those servers
whi ch do not require that the nmaxi num size of the file be

decl ared beforehand, and those servers interested in only the
maxi mum record size shoul d accept a dumy value in the first
argunent and ignore it.

RESTART (REST)

The argurment field represents the server marker at which file
transfer is to be restarted. This conmand does not cause file
transfer but "spaces" over the file to the specified data
checkpoint. This conmand shall be inmrediately followed by the
appropriate FTP service command whi ch shall cause file transfer
to resune.

26

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

RENAME FROM (RNFR)

This command specifies the file which is to be renamed. This
conmand nust be imrediately foll owed by a "renane to" comrmand
speci fying the new file pathnane.

RENAME TO (RNTO)

Thi s command specifies the new pathnane of the file specified
in the imediately preceding "renanme fronmt conmmand. Toget her
the two comands cause a file to be renaned.

ABORT (ABOR)

This command indicates to the server to abort the previous FTP
servi ce command and any associated transfer of data. The abort
conmand nmay require "special action", as discussed in the
Section on FTP Commands, to force recognition by the server.

No action is to be taken if the previous command has been

conpl eted (including data transfer). The TELNET connecti ons
are not to be closed by the server, but the data connection
nust be closed. An appropriate reply should be sent by the
server in all cases.

DELETE (DELE)

This command causes the file specified in the pathnane to be
del eted at the server site. |If an extra |level of protection is
desired (such as the query, "DO you really wi sh to del ete?"),

it should be provided by the user-FTP process.

LI ST (LI ST)
This command causes a list to be sent fromthe server to the
passive DTP. |f the pathnanme specifies a directory, the server
should transfer a list of files in the specified directory. |If

the pat hname specifies a file then the server should send
current information on the file. A null argument inplies the
user’s current working or default directory. The data transfer
is over the data connection in type ASCI|I or type EBCDIC. (The
user nust ensure that the TYPE is appropriately ASCI | or
EBCDI C) .

NAME- LI ST (NLST)
This command causes a directory listing to be sent from server
to user site. The pathnanme should specify a directory or other

systemspecific file group descriptor; a null argunment inplies
the current directory. The server will return a stream of

27

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

nanes of files and no other information. The data will be
transferred in ASCI1 or EBCDIC type over the data connection as
val i d pat hnane strings separated by <CRLF> or <NL>. (Again the
user nust ensure that the TYPE is correct.)

S| TE PARAMETERS (S| TE)
This command is used by the server to provide services specific

to his systemthat are essential to file transfer but not
sufficiently universal to be included as conmmands in the

protocol. The nature of these services and the specification
of their syntax can be stated in a reply to the HELP SITE
conmand.

STATUS (STAT)

This command shall cause a status response to be sent over the
TELNET connection in the formof a reply. The command rmay be
sent during a file transfer (along with the TELNET I P and Synch
signal s--see the Section on FTP Commands) in which case the
server will respond with the status of the operation in
progress, or it may be sent between file transfers. |In the
latter case the command may have an argunent field. |If the
argunent is a pathnane, the command is anal ogous to the "list"
conmand except that data shall be trasferred over the TELNET
connection. |If a partial pathname is given, the server nmay
respond with a list of file names or attributes associated with
that specification. |If no argunent is given, the server should
return general status information about the server FTP process.
This shoul d include current values of all transfer paraneters
and the status of connections.

HELP (HELP)

This command shall cause the server to send hel pful information
regarding its inplementation status over the TELNET connection
to the user. The command may take an argunent (e.g., any
conmand nane) and return nore specific information as a
response. The reply is type Oxx, general systemstatus. It is
suggested that HELP be all owed before entering a USER comrand.
The server may use this reply to specify site-dependent
paraneters, e.g., in response to HELP SITE.

NOOP (NOOP)
Thi s command does not affect any paraneters or previously

entered conmmands. It specifies no action other than that the
server send a 200 reply.

28

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

M SCELLANEOQUS COMVANDS

There are several functions that utilize the services of file
transfer but go beyond it in scope. These are the Mail and Renote

Job Entry functions. It is suggested that these becone auxiliary
protocol s that can assune recognition of file transfer conmands on
the part of the server, i.e., they may depend on the core of FTP

conmands. The conmmand sets specific to Mail and RIE will be given in
separ at e docunents.

Commands that are closely related to file transfer but not proven
essential to the protocol may be inplenented by servers on an
experimental basis. The command nane should begin with an X and may
be listed in the HELP command. The official conmand set is
expandabl e from these experinents; all experinmental conmands or
proposal s for expanding the official conmand set shoul d be announced
via RFC. An exanple of a current experinental conmand is:

Change Working Directory (XCAD)

This command allows the user to work with a different directory
or dataset for file storage or retrieval without altering his
login or accounting information. Transfer paraneters are
simlarly unchanged. The argunent is a pathname specifying a
directory or other system dependent file group designator.

FTP REPLI ES

The server sends FTP replies over the TELNET connection in response
to user FTP commands. The FTP replies constitute the acknow edgnent
or conmpletion code (including errors). The FTP-server replies are
formatted for human or programinterpretation. Single line replies
consist of a leading three-digit nunmeric code followed by a space,
foll owed by a one-line text explanation of the code. For replies

that contain several lines of text, the first line will have a
| eading three-digit nunmeric code followed i mmediately by the
character "-" (Hyphen, ASCI| code 45), and possibly sone text. Al

succeedi ng continuation |lines except the last are constrained NOT to
begin with three digits; the last |ine nust repeat the nuneric code
of the first line and be followed i medi ately by a space. For
exanpl e:

100- First Line
Conti nuati on Line
Anot her Line

100 Last Line

It is possible to nest (but not overlap) a reply withiin a multi-line

29

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

reply. The sanme format for matched nunber-coded first and |l ast lines

hol ds.

The nuneric codes are assigned by groups and for ease of
interpretation by prograns in a nanner consistent with other
protocol s such as the RJE protocol. The three digits of the code are
to be interpreted as foll ows:

1. The first digit specifies type of response as indicated bel ow

OxXx

1xx

2XX

3XX

4XX

5xx

These replies are purely informative and constitute
neither a positive nor a negative acknow edgnent.

Informative replies to status inquiries. These constitute
a positive acknow edgnent to the status command.

Posi tive acknow edgnment of previous comand or other
successful action.

Incompl ete information. Activity cannot proceed without
further specification and input.

Unsuccessful reply. The request is correctly specified
but the server is unsuccessful in correctly fulfilling it.

Incorrect or illegal command. The conmand or its
paranmeters were invalid or inconplete froma syntactic

vi ewpoi nt, or the command is inconsistent with a previous
command. The command in question has been conpletely

i gnor ed.

6xx-9xx Reserved for future expansion

2. The second digit specifies the general category to which the
response refers:

x00-x29 General purpose replies, not assignable to other

X3X

X4x

X5x

X6X

cat egori es.

Primary access. Informative replies to the "l og-on"
attenpt.

Secondary access. The primary server is comrenting on its
ability to access a secondary servi ce.

FTP results.

RJIE resul ts.

30

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

X7x Mail Portocol results.
x8x-x9x Reserved for future expansion

The final digit specifies a particular nessage type. Since the
code is designed for an autonmaton process to interpret, it is
not necessary for every variation of a reply to have a unique
nunber. Only the basic meaning of replies need have uni que
nunbers. The text of a reply can explain the specific reason
for that reply to a human user

Each TELNET line delimted by a nunmeric code and the TELNET EOL (or
group of text lines bounded by coded lines) that is sent by the
server is intended to be a conplete reply nmessage. It should be noted
that the text of replies is intended for a human user. Only the reply
codes and in sone instances the first line of text are intended for

progr ans.
The assigned reply codes relating to FTP are:

000 Announci ng FTP.

010 Message from system operator.

020 Exected del ay.

030 Server availability information.

050 FTP comentary or user information

100 System status reply.

110 System busy doing..

150 File status reply.

151 Directory listing reply.

200 Last command received correctly.

201 An ABORT has term nated activity, as requested.

202 Abort request ignored, no activity in progress.

230 User is "logged in". May proceed.

231 User is "logged out". Service termn nated.

232 Logout command noted, will conplete when transfer done.
233 User is "logged out". Paraneters reinitialized.

250 FTP file transfer started correctly.

251 FTP Restart-marker reply.

252
253
254
257
300
301
330

Text is: MRK yyyy = nmmmm

where 'yyyy' is user’s data stream marker (yours)
and mmm is server’s equival ent marker (m ne)

(Note the spaces between the markers and '=").

FTP transfer conpleted correctly.

Renane conpl et ed

Del ete conpl et ed

Closing the data connection, transfer conpleted.
Connection greeting nessage, awaiting input.

Current command inconmplete (no <CRLF> for long tine).
Ent er password.

31

331
332
400
401
402
430
431
432
433

434
435
436
450
451
452
453
454
455
456
457
500
501
502
503
504
505
506
507
550

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

Enter account (if account required as part of |ogin sequence).
Login first, please.

Thi s service not inpl enented.

Thi s service not accepting users now, goodbye.

Conmand not i npl enented for requested val ue or action
Log-on time or tries exceeded, goodbye.

Log-on unsuccessful. User and/or password invalid.

User not valid for this service.

Cannot transfer files without valid account. Enter account and
resend conmmand.

Log-out forced by operator action. Phone site.

Log-out forced by system probl em

Servi ce shutting down, goodbye.

FTP: File not found.

FTP. File access denied to you.

FTP. File transfer inconplete, data connection closed.
FTP. File transfer inconplete, insufficient storage space.
FTP: Cannot connect to your data socket.

FTP: File systemerror not covered by other reply codes.
FTP: Name duplication; renane failed

FTP. Transfer paraneters in error

Last command |ine conpletely unrecogni zed.

Syntax of |ast command is incorrect.

Last command i nconpl ete, paraneters m ssing.

Last command invalid (ignored), illegal paraneter conbination
Last command invalid, action not possible at this tine.
Last command conflicts illegally with previous comand(s).

Last command not inplenented by the server.
Catchall error reply.
Bad pat hnane specification (e.g., syntax error).

32

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

DECLARATI VE SPECI FI CATI ONS
M NI MUM | MPLEMENTATI ON

In order to nmake FTP workabl e wi t hout needl ess error nessages, the
follow ng mninmuminplenmentation is required for servers:

TYPE - ASCI|I Non-print
MODE - Stream
STRUCTURE - File
Record
BYTE - 8
COVMANDS - USER, BYE, SOCK
TYPE, BYTE, MODE, STRU
for the default val ues
RETR, STOR,
NOOP

The initial default values for transfer paranmeters are:

TYPE - ASCI | Non-print
BYTE - 8

MODE - Stream

STRU - File

Al Hosts nmust accept the above as the standard defaults.

CONNECTI ONS
The server protocol interpreter shall "listen" on Socket 3. The user
or user protocol interpreter shall initiate the full-duplex TELNET

connections perform ng the ARPANET standard initial connection
protocol (ICP) to server Socket 3. Server- and user- processes
shoul d follow the conventions of the TELNET protocol as specified in
NI C #7104. Servers are under no obligation to provide for editing of
conmand |ines and may specify that it be done in the user Host. The
TELNET connections shall be closed by the server at the user’s
request after all transfers and replies are conpleted.

The user-DTP nmust "listen" on the specified data sockets (send and/ or
receive); these may be the default user sockets (U+4) and (U+5) or a
socket specified in the SOCK conmand. The server shall initiate the
data connection fromhis own fixed sockets (S+2) and (S+3) using the
speci fied user data socket and byte size (default - 8 bits). The

33

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

direction of the transfer and the sockets used will be determ ned by
the FTP service comrand

When data is to be transferred between two servers, A and B (refer to
Figure 2), the user-Pl, C, sets up TELNET connections with both
server-Pl’s. He then sends A's fixed sockets, S(A), to Bin a SOCK
conmmand and B's to A, replies are returned. One of the servers, say
A, is then sent a PASV command telling himto "listen" on his data
sockets rather than initiate an RFC when he receives a transfer
service command. Wen the user-Pl receives an acknow edgnent to the
PASV command, he may send (in either order) the correspondi ng service
comuands to A and B. Server Binitiates the RFC and the transfer
proceeds. The command-reply sequence is |listed bel ow where the
nmessages are vertically synchronous but horizontally asynchronous:

User-Pl - Server A User-Pl - Server B

C>A: ICP C>B: ICP

C->A : SOCK HOST-B, SKT-S(B) C->B : SOCK HOST-A, SKT-S(A)
A->C : 200 Ckay B->C : 200 Okay

C->A : PASV

A->C : 200 Ckay

C->A: STOR C->B : RETR

The data connection shall be closed by the server under the
conditions described in the Section on Establishing Data Connecti ons.
If the server wishes to close the connection after a transfer where
it is not required, he should do so imediately after the file
transfer is conpleted. He should not wait until after a new transfer

conmand i s received because the user-process will have already tested
the data connection to see if it needs to do a "listen"; (recall that
the user nmust "listen" on a closed data socket BEFORE sending the

transfer request). To prevent a race condition here, the server
sends a secondary reply (257) after closing the data connection (or
if the connection is left open, a "file transfer conpleted" reply
(252) and the user-Pl should wait for one of these replies before

i ssuing a new transfer command.

COVIVANDS

The conmmands are TELNET character string transmtted over the TELNET
connections as described in the Section on FTP Commands. The conmand
functions and semantics are described in the Section on Access
Control Commands, Transfer Paraneter Commands, FTP Servi ce Conmands,
and M scel | aneous Commands. The command syntax is specified here.

The conmmands begin with a command code foll owed by an argunent field.

34

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

The conmmand codes are four or fewer al phabetic characters. Upper and
| ower case al phabetic characters are to be treated identically. Thus
any of the following nmay represent the retrieve command:

RETR Retr retr ReTr r ETr

This al so applies to any synbols representing paraneter values, such
as Aor a for ASCII TYPE. The conmand codes and the argunent fields
are separated by one or nore spaces.

The argurment field consists of a variable length character string
ending with the character sequence <CRLF> (Carriage Return, Linefeed)
for NVT-ASCI| representation; for other negotiated | anguages a
different end of |line character mght be used. It should be noted
that the server is to take NO action until the end of |line code is
received.

The syntax is specified belowin NVT-ASCII. Al characters in the
argunent field are ASCI| characters including any ASCI |1 represented
deci mal integers. Square brackets denote an optional argunent field.
If the option is not taken, the appropriate default is inplied.

The following are all the currently defined FTP conmrands:

USER <SP> <user name> <CRLF>
PASS <SP> <password> <CRLF>
ACCT <SP> <acct no> <CRLF>

REI N <CRLF>

BYE <CRLF>

BYTE <SP> <byte size> <CRLF>
SOCK <SP> <Host - socket > <CRLF>
PASV <CRLF>

TYPE <SP> <type code> <CRLF>
STRU <SP> <structure code> <CRLF>
MODE <SP> <npbde code> <CRLF>
RETR <SP> <pat hnane> <CRLF>
STOR <SP> <pat hnane> <CRLF>
APPE <SP> <pat hname> <CRLF>
ALLO <SP> <deci mal integer> [<SP> R <SP> <deci mal integer>] <CRLF>
REST <SP> <mar ker > <CRLF>

RNFR <SP> <pat hname> <CRLF>
RNTO <SP> <pat hname> <CRLF>
ABOR <CRLF>

DELE <SP> <pat hname> <CRLF>

LI ST [<SP> <pat hnane>] <CRLF>
NLST [<SP> <pat hnane>] <CRLF>
SI TE <SP> <string> <CRLF>

STAT [<SP> <pat hnane>] <CRLF>
HELP [<SP> <string>] <CRLF>

35

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

NOOP <CRLF>

The syntax of the above argunent fields (using BNF notation where
applicable) is:

<usernane> ::= <string>

<password> ::= <string>

<acctno> ::= <string>

<string> ::= <char>| <char ><string>

<char> ::= any of the 128 ASCI| characters except <CR> and <LF>

<marker> ::= <pr string>

<pr string> ::= <pr char>|<pr char><pr string>

<pr char> ::= any ASCI| code 33. through 126., printable
characters

<byte size> ::= any decimal integer 1 through 255

<Host - socket > :: = <socket >| <Host nunber>, <socket>

<Host - number> ::= a decimal integer specifying an ARPANET Host.

<socket> ::= decimal integer between 0 and (2**32)-1

<formcode> ::= NT|C

<type code> ::= A[<SP> <form code>] | E [SP> <form code>]| |

L <SP> <byte size>

<structure code> ::= F|R

<mode code> ::= S| B|C

<pat hnane> ::= <string>

SEQUENCI NG OF COMVANDS AND REPLI ES

The communi cation between the user and server is intended to be an
alternating dialogue. As such, the user issues an FTP command and
the server responds with a pronpt prinmary reply. The user should
wait for this initial primary success or failure response before
sendi ng further commands.

Certain conmands require a second reply for which the user shoul d
also wait. These replies may, for exanple, report on the progress or
conpl etion of file transfer or the closing of the data connection
They are secondary replies to file transfer conmands.

The third class of replies are informational and spontaneous replies
which may arrive at any tine. The user-Pl should be prepared to
receive them These replies are |isted bel ow as spont eneous.

One important group of spontaneous replies is the connection
greetings. Under normal circunstances, a server will send a 300
reply, "awaiting input", when the ICP is conpleted. The user should
wait for this greeting nmessage before sending any commands. |If the
server is unable to accept input right away, he should send a 000
"announci ng FTP" or a 020 "expected del ay" reply i mediately and a

36

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

300 reply when ready. The user will then know not to hang up if
there is a del ay.

The table below lists alternative success and failure replies for
each conmand. These nust be strictly adhered to; a server nay
substitute text in the replies, but the neaning and action inplied by
the code nunbers and by the specific command reply sequence cannot be
altered

COMVAND- REPLY CORRESPONDENCE TABLE

COMMAND SUCCESS FAI LURE
USER 230, 330 430- 432, 500- 505, 507
PASS 230, 330 430- 432, 500- 507
ACCT 230 430- 432, 500- 507
REI N 232,233 401, 436, 500- 507
Secondary Reply 300
BYE 231, 232 500- 505, 507
BYTE 200, 331 402, 500- 505, 507
SOCK 200, 331 500- 505, 507
PASV 200, 331 500- 507
TYPE 200, 331 402, 500- 505, 507
STRU 200, 331 500- 505, 507
MODE 200, 331 402, 500- 505, 507
RETR 250 402, 433, 450, 451, 454, 455, 457
500- 505, 507, 550
Secondary Reply 252,257 452
STOR 250 402, 433, 451, 454, 455, 457
500- 505, 507, 550
Secondary Reply 252,257 452, 453
APPE 250 402, 433, 451, 454, 455, 457, 500- 507
550
Secondary Reply 252,257 452, 453
ALLO 200, 331 402, 500- 507
REST 200, 331 500- 507
RNFR 200 402, 433, 450, 451, 455, 500- 507, 550
RNTO 253 402, 433, 450, 451, 455, 456, 500- 507
550
ABOR 201, 202, 331 500- 507
DELE 254 402, 433, 450, 451, 455, 500- 507, 550
LI ST 250 402, 433, 450, 451, 454, 455, 457
500- 507, 550
Secondary Reply 252,257 452
NLST 250 402, 433, 450, 451, 454, 455, 457
500- 507, 550
Secondary Reply 252,257 452
SI TE 200, 331 402, 500- 507

37

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

STAT 100, 110, 450, 451, 455, 500- 507, 550
150, 151, 331

HELP 030, 050 500- 507

NOOP 200 500- 505, 507

Spont aneous Replies 000, 010, 020, 400, 401, 434- 436

300, 301, 251, 255
TYPI CAL FTP SCENARI OS
TIP User wanting to transfer file fromHost X to local printer:
1. TIP user opens TELNET connections by ICP to Host X socket 3.

2. The followi ng commands and replies are exchanged:

TIP HOST X
<---------- 300 Awaiting input <CRLF>
USER username <CRLF> ---------- >
Sm-mmm----- 330 Enter Password <CRLF>
PASS password <CRLF> ---------- >
SR 230 User | ogged in <CRLF>
SOCK 65538 <CRLF> ---------- >

Smmmmmmm--- 200 Commmand recei ved OK<CRLF>
RETR this.file <CRLF> ---------- >

(Host X initiates data connection to TIP socket 65538,
i.e., PORT 1 receive)

Commmmeea 250 File transfer started <CRLF>
Cemmmmea - 252 File transfer conpleted <CRLF>
BYE<CRLF> ---------- >

S 231 User |ogged out <CRLF>

3. Host X closes the TELNET and data connecti ons.
Note: The TIP user should be in |Iine node.
User at Host U wanting to transfer files to/from Host S:
In general the user will communicate to the server via a nediating
user-FTP process. The following may be a typical scenario. The
user-FTP pronpts are shown in parentheses, '---->" represents

conmands fromHost Uto Host S, and '<----' represents replies from
Host S to Host U

38

LOCAL COMVANDS BY USER

ftp (host) nultics<CR>

user nane Doe <CR>

password rmumnbl e <CR>

retrieve (local type) ASClI<CR>

(l ocal pathname) test 1 <CR>
(for.pathnane) testpll<CrR>

(U+4)
<CRLF>

conpl et e<CRLF>
type | mage<CrR>

byte 36<CR>

store (local type) inmge<CR>

(l ocal pathnane) file dump<CrR>

(for. pat hnane) >udd>cn>f d<CR>

term nate

39

File Transfer Protocol
(Aug. 12, 1973)
RFC 542 NIC 17759

ACTI ON | NVOLVED

ICP to Host S, socket 3,

est abl i shing TELNET connecti ons
<---- 330 Awaiting input <CRLF>
USER Doe<CRLF>---->

<---- 330 passwor d<CRLF>

PASS munbl e<CRLF>---->

<---- 230 Doe | ogged in.<CRLF>

User - FTP opens local file in ASCI
RETR test. pll<CRLF> ---->
Server nakes data connection to

<---- 250 File transfer starts
<---- 252 File transfer

TYPE | <CRLF> ---->

<---- 200 Command OK<CRLF>

BYTE 36<CR>LF ---->

<---- 200 Command OK<CRLF>

User- FTP opens local file in | mge.
STOR >udd>cn>f d<CRLF> ---->

<---- 451 Access deni ed<CRLF>

BYE <CRLF> ---->

Server closes all connections.

\ 000

\ 032\ 002

