Net wor k Wor ki ng Group L. Daigle

Request for Comments: 2016 P. Deutsch
Cat egory: Experi ment al B. Heel an
C. Al paugh

M Macl achl an
Bunyi p I nformation Systens, Inc.
Oct ober 1996

Uni f or m Resour ce Agents (URAs)
Status of this Meno

This meno defines an Experimental Protocol for the Internet
conmunity. This neno does not specify an Internet standard of any
ki nd. Discussion and suggestions for inprovenment are requested.
Distribution of this menp is unlimted.

Abst ract

Thi s paper presents an experinental architecture for an agent system
that provides sophisticated Internet information access and
managenent. Not a generalized architecture for active objects that
roamthe Internet, these agents are nodel ed as extensions of existing
pi eces of the Internet information infrastructure. This experinmenta
agent technol ogy focuses on the necessary information structures to
encapsul ate Internet activities into objects that can be activated,
transforned, and conbined into |arger structured activities.

Acknowl edgenent s

Several people have shared thoughts and viewpoints that have hel ped
shape the thinking behind this work over the past few years. W'd
like to thank, in particular, Chris Wider, Patrik Faltstrom M chae
Meal ling, Alan Entage, and the participants in the | ETF URl Wrking
Group for many thought-provoki ng di scussions.

Sima Newel| provided insightful comments on the docunment -- thanks to
her it is nuch nore readabl e!

| ntroducti on

Thi s docunent outlines an experinental agent system architecture that
was designed for the purpose of addressing high-1evel Internet
activities through encapsul ati on of protocol -specific actions.
Oiginally presented to the Uniform Resource lIdentifier (URI) working
group at the IETF, this technol ogy was seen as taking a step beyond
resource |location and resource namng. By providing a structured
nmechani sm for abstracting characteristics of desired i nformati on and

Daigle, et. al. Experi nment al [Page 1]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

di stanci ng the necessary access incantations fromthe client, the
noti on of a Uniform Resource Agent (URA) was created.

The evolution of Internet information systens has been characterized
by buil di ng upon successive | ayers of encapsul ated technol ogi es.
Machi ne address nunbers were devised, and then encapsulated in
advertised nmachi ne nanmes, which has allowed the evol ution of the
Dormai n Name System (DNS) [RFC1034, RFC1035]. Protocols were

devel oped for accessing Internet resources of various descriptions,
and then uni form nechani sns for specifying resource | ocations,

st andardi zed across protocol types, were devel oped (URLs) [RFC1738].
Each | ayer of Internet information primtives has served as the
bui | di ng bl ocks for the next |evel of abstraction and sophistication
of information access, |ocation, discovery and nmanagenent.

The work described in this paper is an experinental system designed
to take another step in encapsulation. Wile TCP/IP protocols for
routing, addressing, etc, have permtted the connection and
accessibility of a plethora of information services on the Internet,
these nust yet be considered a diverse collection of heterogeneous
resources. The Wrld Wde Wb effort is the nmost successful to date
in attenpting to knit these resources into a cohesive whol e.

However, the activity best-supported by this structure is (human)
browsi ng of these resources as docunents. The URA initiative

expl ores the possibility of specifying an activity with the sane kind
of precision accorded to resource naning and identification. By
focusing on activities, and not actions, URAs encapsul ate resource
access nechani sns based on comonal ity of information content, not
protocol simlarity.

An invoker -- hunman or otherwi se -- may del egate an entire set of
tasks to a fully-instantiated URA. The nature of the tasks is

conpl etely specified by the agent, because it encapsul ates know edge
about relevant Internet resources and the information required in
order to access them In this way, URAs insulate invokers fromthe
details of Internet protocols while allowing themto carry out high-
| evel Internet activities (such as searching a set of web pages and
news groups relevant to a given topic). Also, by formally specifying
a high-level Internet activity in an agent, the sane activity can be
repeated at a later date by the sane invoker, sonmeone el se or even
anot her agent. Myreover, the agent object may easily be nodified to
carry out another rel ated task.

More detail describing the underlying phil osophy of this particular
approach can be found in [I]AW5].

Daigle, et. al. Experi ment al [Page 2]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

Exanpl es

Re

As a very sinple exanple, consider the client task of subscribing to
amiling list. There are many mechani sms for providing users with
i nformati on necessary to conplete a subscription. Currently, al
applications which provide the ability to subscribe to mailing lists
nmust contain protocol -aware code to carry out the task once the
requi site personal data has been solicited fromthe user

Furthernore, any application programthat enbeds the ability to
subscribe in its code necessarily limts the set of mailing lists to
which a client can subscribe (i.e, to those types foreseen by the
software’s creators). |If, instead, there is an agent to which this
task can be del egated, all applications can make use of the agent,
and that agent becones responsible for carrying out the necessary
interactions to conplete the subscription. Furthernore, that agent
may be a client to other agents which can supply particul ar

i nformati on about how to subscribe to new types of mail servers, etc.
URAs have been explored as an agent technol ogy to address just these
types of issues.

ationship to O her Internet Agents

A nunber of Internet-aware agent and transportabl e code systens have
beconme popul ar -- Java [JAVA], TCL [TCL] and Safe-TCL, Tel escript

[TELE], and the TACOVA system [TACOVA], to nane a few of them To
understand the scope of the problemthat URAs tackle, it is helpfu
to understand how these systens differ fromthe URA approach. Sone
of these agent systens, |ike Java, focus on providi ng nechani sns for
creating and distributing (inter)active docunments in the Wrld Wde
Web. Ohers, |ike TACOVA, have nore general intentions of providing
environnents for nobile, interacting processes.

Wi |l e each of these systens makes its individual contribution to
solving the transportation, conmunication, and security issues
normal |y associated with agent systens, they yield nore objects that
exist within the Internet informati on space. That is, while they may
permt individual users to have a nore sophisticated interaction with
a particular information resource, they do not address the nore
general Internet problens of naming, identifying, |ocating resources,
and |l ocating the same or simlar resources again at a later date. It
is this set of problens that URAs specifically set out to address.

In order to create these URA objects that encapsulate a set of
Internet activities, it is necessary to specify their operating

envi ronnent and design structure. Together, these forman
experimental architecture for URAs, which can be evaluated in a
prelimnary way through a prototype inplenentation. The remai nder of
this paper describes such an experinental architecture, and outlines

Daigle, et. al. Experi ment al [Page 3]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

a prototype application built to test the concepts involved in the
creation and execution of URAs.

The Experinmental Architecture

The main goal in designing the URA architecture was to provide a
nmechani sm for separating client need descriptions fromthe

speci fications of nmechanisns for satisfying those needs. For

exanple, fromthe client’s perspective, the need to find MD nusic
files is quite distinct fromthe particular Internet resource actions
that m ght be necessary to find themat a given point in time. This
one need m ght be best nmet by integrating information from severa
very different sources. Also, the client nay have the sane need on a
di fferent day, but there nay be new or different resources to call on
to satisfy it.

A further goal was to provide very structured specifications of the
Internet actions carried out by a particular URA. By making the
structure of an action explicit, it becones possible to operate on
portions of an agent structure wi thout requiring an understandi ng of
the complete semantics of its activity.

At the centre of the URA architecture is the concept of a
(persistent) specification of an activity. For purposes that should
beconme clear as the expected usage of URAs is described in nore
detail, we choose to support this concept with the follow ng

requi renents of the architecture

- there is a formalized environment in which these specifications
are exam ned and executed and ot herwi se mani pulated. This is
referred to as a URAgency.

- the activity specifications are nodul ar, and i ndependent of a
gi ven URAgency environnent. Thus, they exist as object constructs
that can be shared anongst URAgencies. There is a standardized
_virtual _ structure of these URA objects, although different
types may exist, with different underlying inplenmentations.

Basi ¢ URAgency Requirements

In the nost abstract sense, a URAgency is a software systemthat
mani pul ates URA objects. 1In the term nol ogy of objects, a URAgency
identifies the types of URAs it handles, and is responsible for
appl yi ng nethods to objects of those types. For the purposes of this
experimental work, the only nethods it is required to support are
those to get information about a given URA, and to execute a URA

Daigle, et. al. Experi ment al [Page 4]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

The expected result of applying the "get information" method to a URA
is a description of sonme or all of the URA follow ng the standardized
virtual structure of a URA object, outlined bel ow

The appropriate way to "execute” a URA is to supply information for
the individual URA data segnents (in effect, to permt the creation
of an instance of a virtual object), or to identify a URA instance.
Again, the information is to be supplied in accordance with the
virtual structure bel ow

A URAgency claimng to handle a particular type of URA nust have the
ability to map the inplenmentation structure of that type of URA into
and out of the standard virtual URA structure. The URAgency nust al so
know how to activate the URA, and it must satisfy any runtine
dependenci es for that type of URA

For exanple, a URA type may consist of a Pascal program binary which,
when run with particular conmand |ine argunents, yields information
in the standard URA object structure. Activating this type of URA

m ght consist of executing the Pascal binary with an input file
containing all the necessary data segments. A URAgency claiming to
handl e this sort of URA type nmust first be able to provide an
environnent to execute the Pascal binary (for whatever platformit
was conpiled), and also be able to interact with the Pascal binary
according to these conventions to get information about the URA, or
execute it.

As an alternative exanple, a URA type may consist of a script in some
interpreted | anguage, with the URA object structure enbedded as data
structures within the script. A URAgency handling this type of URA
m ght have to be able to parse the script to pull out the standard
URA obj ect structure, and provide the script |anguage interpreter for
the purposes of executing the URA

URA (bj ect Structure

In order to capture the necessary information for carrying out the
type of Internet activity described in the introductory paragraphs of
this docunment, six basic (virtual) conponents of a URA object have
been identified. Any inplementation of a URA type is expected to be
able to conformto this structure within the context of a URAgency.

The six basic conponents of a URA object are:
URA HEADER
Identification of the URA object, including a URA nane, type

and abstract, creator name, and the resources required by the
URA.

Daigle, et. al. Experi ment al [Page 5]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

ACTI VATI ON DATA:
Specification of the data elenments required to carry out the
URA activity. For exanple, in the case of an Internet search
for "people", this could include specification of fields for
person nane, organization, e-mail address.

TARGETS:
Specification of the URL/URN s to be accessed to carry out the
activity. Note that, until URN s are in common use, the
ability to adjust URLs will be necessary. A key issue for
URAs is the ability to transport them and activate themfar
fromthe creator’s originating site. This may have
inmplications in terns of accessibility of resource sites. For
exanpl e, a software search created in Canada will likely
access a Canadi an Archie server, and North American ftp sites.
However, an invoker in Australia should not be obliged to edit
the URA object in order to render it relevant in Australia.
The creator, then, can use this section to specify the
expected type of service, with variables for the parts
that can be nodified in context (e.g., the host name for an
Archie server, or a mrror ftp site).

EXPERI ENCE | NFORMATI ON
Specification of data elenents that are not strictly involved
in conversing with the targets in order to carry out the
agent’s activity. This space can be used to store information
fromone invocation of a URA instance to the next.
This kind of information could include date of | ast
execution, or URLs of resources |ocated on a previous
i nvocation of the agent.

ACTI VI TY:
If URAs were strictly data objects, specifying required data
and URL/URN s woul d suffice to capture the essence of the
conposite net interaction. However, the variability of
Internet resource accesses and the scope of what URAs could
acconplish in the net environnment seemto suggest the need to
give the creator sonme neans of organizing the instantiation of
the component URL/URN s. Thus, the body of the URA shoul d
contain a scripting nechanismthat mnimally allows
conditional instantiation of individual URL/URN s. These
conditions could be based on which (content) data el enments the
user provided, or accessibility of one URL/URN, etc. It also
provi des a mechani sm for suggesting scheduling of URL/URN
i nstantiation.

Daigle, et. al. Experi ment al [Page 6]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

The activity is specified by a script or programin a | anguage
specified by the URA type, or by the URA header information
Al the required activation data, targets, and experience
information are referenced by their specification nanes.

RESPONSE FI LTER
The main purpose of the ACTIVITY nodule is to specify the
steps necessary to take the ACTI VATI ON DATA, contact the
TARGETS, and coll ect responses fromthose services. The
pur pose of the RESPONSE FILTER nodule is to transformthose
responses into the result of the URA invocation. This
transformati on may be along the lines of reformatting
sone text, or it nmay be a nore el aborate interpretation
such as a relevance rating for a retrieved HTM. page.

The response filter is specified by a script or programin a
| anguage specified by the URA type, or by the URA header
information. All the required activation data, targets, and
experience information are referenced by their specification
nanes.

See Appendix 1 for a nore detailed description of the conmponents of a
URA. Appendi x 2 contains a sanple virtual URA structure.

The Architecture in Action

Havi ng i ntroduced the required capabilities of the URAgency and
virtual structure of URA objects, it is nowtime to elaborate on the
tasks and interactions that are best supported by URAs.

URAs are constructed by identifying net-based resources of interest
(targets) to carry out a particular task. The activation data
conponent of a URA is the author’s nechanismfor specifying (to the
i nvoker) the elements of information that are required for successfu
execution . An invoker creates an instance of a URA object by
providing data that is consistent with, or fills in, this tenplate.
Such an instance encapsul ates everything that the agent "needs to
know' in order to contact the specified target(s), make a request of
the resource ("get", "search", etc.) and return a result to the

i nvoker. This encapsulation is a sophisticated identification of the
task results.

For exanple, in the case of a mailing list subscription URA, the
creator will identify the target URL for a resource that handles I|ist
subscription (e.g., an HTM. form, and specify the data required by
that resource (such as user name, user nmail address, and mailing |ist
identifier). Wen an invoker provides that information and
instantiates the URA, the resulting object conpletely encapsul ates

Daigle, et. al. Experi ment al [Page 7]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

all that is needed in order to subscribe the user -- the subscription
result is identified.

URAs are mani pul ated t hrough the application of methods. This, in
turn , is governed by the URAgency with which the invoker is
interacting. However, because the virtual structure of URAs is
represented consistently across URA types and URAgenci es, a URAgency
can act as one of the targets of a URA. Since nethods can be applied
to URAs remotely, URAs can act as invokers of URAs. This can yield a
conpl ex structure of task nodul es.

For exanple, a URA designed to carry out a generalized search of
book-selling resources m ght make use of individual URAs tailored to
each resource. Thus, the top-level URA becones the orchestrating URA
for access to a nunber of disparate resources, while being insul ated
fromthe mnute details of accessing those resources.

A Prototype | nplenentation

The experinmental work with URAs includes a prototype inplenentation
of URA objects. These are witten in the Tcl scripting | anguage. A
sampl e prototype Tcl URA can be found in Appendi x 3.

The URAgency that was created to handle these URAs is part of the
Si |l k Desktop Internet Resource Discovery tool. Silk provides a
graphi cal user interface environment that allows the user to access
and search for Internet information w thout having to know where to
| ook or how to look. Silk presents a list of the available URAs to
carry out these activities (e.g., "search for tech reports" or
"hotlist"). For each activity, the user is pronpted for the
activation data, and Silk’'s URAgency executes the URA. The Silk
software al so supports the creation and nai ntenance of URA obj ect

i nstances. Users can add new URAs by creating new Tcl scripts (per
the guidelines in the "URA Witer’'s CGuide", available with the Silk
software. See [SILK]). The Silk graphical interface hides some of
the nechanics of the underlying URAgency. A nore directly-accessible
versi on of this URAgency wi |l becone avail able.

Concl usi ons

This work was originally conceived as an extension to the famly of
Uni form Resource ldentifiers (URIs): Uniform Resource Locators
(URLs), Uniform Resource Characteristics (URCs), and the proposed

Uni form Resource Nanmes (URNs). The approach of formalizing the
characteristics of an information task in a standardi zed obj ect
structure is seen as a nmeans of identifying a class of resources, and
contributes to the level of abstraction with which users can refer to
I nt ernet resources.

Daigle, et. al. Experi ment al [Page 8]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

Al though still in its experinmental stages, this work has al ready
evoked interest and shown promise in the area of providi ng nechani sns
for building nore advanced tools to interact with the Internet at a
nore sophisticated | evel than just browsi ng web pages.

One of the major difficulties that has been faced in devel oping a
collection of URAs is the brittleness induced by interacting with
services that are primarily geared towards human-users. Snal

changes in output formats that are easily discernible by the human
eye can be entirely disruptive to a software client that nust apply a
parsing and interpretation mechani sm based on placenment of cues in
the text. This problemis certainly not unique to URAs -- any
software acting upon results fromsuch a service is affected

Perhaps there is the need for an evolution of "service entrances" to
i nformati on servers on the Internet -- nechanisns for getting "just
the facts" froman information server. O course, one way to provide
such access is for the service provider to devel op and distribute a
URA that interacts with the service. Wen the service' s interface
changes, the service provider will be noved to update the URA that
was built to access it reliably.

Work will continue to devel op new types of URAs, as well as other
URAgenci es. This will necessitate the creation of URAgency
interaction standards -- the "common virtual URA object structure" is

the first step towards defining a |ingua franca anong URAs of
di sparate types and intention

Daigle, et. al. Experi ment al [Page 9]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

Ref er ences

[11AV®5] Leslie L. Daigle, Peter Deutsch, "Agents for Internet
Information Clients", CIKM 95 Intelligent Information Agents
Wor kshop, Decenber 1995.
Avail abl e from
<htt p://www. bunyi p. conf products/sil k/silktree/uratree/iiawd5. ps>

[JAVA] "The Java Language: A Wiite Paper" Avail able from
<http://java. sun. com 1. Oal pha2/ doc/ overvi ew j ava/i ndex. ht n >

[RFC1034] Mockapetris, P., "Domain Nanmes - Concepts and Facilities",
STD 13, RFC 1034, Novenber 1987.

[RFC1035] Mockapetris, P., "Domain Names - |nplenmentation and
Speci fication", STD 13, RFC 1035, Novenber 1987.

[RFC1738] T. Berners-Lee, L. Masinter, M MQCahill, "Uniform Resource
Locators (URL)", RFC 1738, Decenber 1994.

[SILK] Bunyip's Silk project honepage:
<http://ww. bunyi p. comf product s/ sil k/ >

[SILKURA] Silk URA information:
<htt p://wwv. bunyi p. contf products/sil k/silktree/uraintro.htm >

[TACOMA] Johansen, D. van Renesse, R Schneider, F. B., "An
Introduction to the TACOVA Distributed System', Technical Report
95- 23, Departnent of Conputer Science, University of Tronso,

Nor way, June 1995.

[TCL] Qusterhout, J. K "Tcl and the Tk Tool kit", Addi son \Wesl ey,
1994.

[TELE] White, J. E., "Telescript Technol ogy: The Foundation for the

El ectroni ¢ Marketpl ace", Ceneral ©Mgic Wite Paper, General Magic
Inc., 1994.

Daigle, et. al. Experi ment al [Page 10]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

Aut hors’ Addr esses

Leslie Daigle
Pet er Deut sch
Bill Heel an
Chris Al paugh
Mary Macl achl an

Bunyi p I nformati on Systens, Inc.
310 St. Catherine St. West

Suite 300

Montreal , Quebec, CANADA

H2X 2A1

Phone: (514) 875-8611
EMai | : ura-bunyi p@unyi p. com

Daigle, et. al. Experi ment al [Page 11]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

Appendix 1 -- Virtual URA Structure

Thi s appendi x contains a BNF-style description of the expected
virtual structure of a URA object. This "virtual structure" acts as
the canoni cal representation of the information encapsulated in a
given URA. It is expected that nore informati on nay optionally be
contained in the el enents of the conponents -- the elenents listed
here are offered as the "mnimum' or "standard" set.

N. B. :
[]-delimted itens are optiona
%% denot es a commrent
\0 represents the enpty string
| is "or"
{} are literal characters

This formis used for convenience and clarity of expression --
whi t espace and ordering of individual elenments are not considered
significant.
<VI RTUAL_URA> : = {<virtual -ura-structure>}
<virtual -ura-structure> : = { URAHDR <ur a- header> }
{ ACTDATA <activation-data> }
{ TARG <targets> }
{ EXPI NFO <experience information> }
{ ACTSPEC <activity> }
{ RESPFILT <response filter>}

<ur a- header> : = { nane <ura-nane> }

{ author <ura-author>}

{ version <ura-version> }

[{ lang <l ang-dependenci es> }]
[

{ parent <parent-of-instance> }]

<activation-data> := <act-data-el enent ><activation-data> | \0

<act-data-elenment> := {
{ name <data-elt-name> }
{ response <data-elt-val ue> }
{ pronpt <data-elt-pronmpt>}
[{ required <bool ean> }]
[{ default <data-default-val> }]

}

<targets> := <target-service><targets> | \0

Daigle, et. al. Experi ment al [Page 12]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

<target-service> := {
{ nanme <targ-url>}
{ protocol <url-protocol>}
{ url <url-spec>}
[{ <url-type-specific-data> }]
}

<url-spec> := <conplete-url> | <url-constructor>

<conplete-url> := %Bba conplete, valid URL string
(e.g., http://ww.bunyip.com)

{

<url-constructor> :
schene <url -schene-spec> }
host <url - host - spec> }

{ port <url-port-spec> }]

sel ector <url-sel ector-spec> }

P Ll s Tt

<url - schene- spec>

]
)

nane <schene- nane> }
response <scheme-val ue> }
pronmpt <scheme- pronpt> }

Lt Yot Yo

<url - host - spec> :

1
)

nane <host-nane> }
response <host-val ue> }
prompt <host - pronpt > }

Lot Yot Yt

PN

<url -port-spec> :
{ nane <port-nanme> }
{ response <port-val ue> }
{ pronpt <port-pronpt> }
}
<url -sel ector-spec> : = {
{ nane <sel ector-nanme> }
{ response <sel ector-val ue> }
{ pronpt <sel ector-pronpt> }
}

<experience information> := {
{ nane <data-elt-name> }
{ response <data-elt-value> }

}

<activity> := <conmpound-string>

Daigle, et. al. Experi ment al [Page 13]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

<response filter> := <conmpound-string>

%0 Wthout requiring nore detail..

<conpound-string> := <string>\ n<conmpound-string>| \0
<boolean> := 0| 1

<ura-nane> : = <string>

<ura-author> := <string>
<ura-version> := <string>

<l ang- dependenci es> : = <string>
<parent-of -instance> := <string>
<data-elt-nane> := <string>

<dat a-elt-val ue> : = <string>
<data-elt-pronmpt> := <string>
<data-elt-default> := <string>

<dat a-defaul t-val > : = <string>
<targ-url> := <string>
<url-protocol> := http-get | http-post |
<url-type-specific-data> := <string>
<schene-nanme> : = <string>
<schene-val ue> : = <string>
<scheme-pronpt> : = <string>
<host - nane> : = <string>

<host -val ue> : = <string>
<host-pronpt> : = <string>
<port-name> := <string>

<port-val ue> := <string>
<port-pronpt> := <string>

<url -sel ector-nane> : = <string>

<url -sel ector-value> := <string>
<url-sel ector-pronpt> := <string>

Appendix 2 -- Sanple Virtual URA
Repr esent ati on

A valid virtual representation of a Silk Tcl URA is presented bel ow
The actual URA fromwhich it was drawn is given in Appendix 3.

{ URAHDR
{nane {Dej aNews Search}}
{aut hor {Leslie Daigle}}
{version {1.0}}

}

{ ACTDATA
{nane {Topi ¢ Keywords}}

Daigle, et. al. Experi ment al [Page 14]

RFC 2016 Uni f or m Resour ce Agents Cct ober

{pr onpt {Topi ¢ Keywords}}
{response {}}
}
{ EXPI NFO
{nane {Comment s}}
{prompt {Conment s}}
{response {}}
{ ACTSPEC
{proc mapResponsesToDej anews {} {
set resp ""

i f {[uraAreResponsesSet {Topic Keywords}]} {
| append resp [list query [uraGet SpecResponse {
Topi ¢ Keywords}]]

}

return $resp

}
proc uraRun {} {
gl obal errorinfo

foreach serv [uraLli st O Services] {
set u [uraCet ServiceURL $serv]

switch -- $serv {
dej anews {
if [catch {
set query [mapResponsesToDej anews]
if {$query = {}} {
set result [uraHTTPPost Search $u $query]
if {$result !'=""} {
set |ist [dejanews_uraHTTPPost Canonicalize
$resul t]
puts $list
}

}H

puts stderr $errorlinfo

}
}

defaul t {
can’t handl e ot her searches, yet.

Pl

1996

Daigle, et. al. Experi ment al [Page 15]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

}

{ RESPFI LT

{
proc dej anews_ur aHTTPPost Canoni cal i ze {htm Res} {

set result {}
set lines {}
set clause {}
set garb1 ""
set garb2 ""

CGet the body of the result page -- throw away | eadi ng and
trailing URLs

regexp {(["<PRE>]*)<PRE>(.*)</PRE>. *}
$ht Ml Res garbl garb2 mainres

set lines [split $mainres "\n"]
foreach clause $lines {

if [regexp
{<DT>.*(..\/..).*(["<]*) </ A>. *(["<] *) . *}
$cl ause garbl dt relurl desc grp] {

| append r [list HEADLINE [format "% (%, 9%)"
[string trim $desc] \
[string trim $grp] $dt]]
| append r [list URL [format
"http://ww. dej anews. coml cgi - bi n/ %" $relurl]]
| append r [list TYPE "text/plain"]

| append result $r

return $result

}
}

Daigle, et. al. Experi ment al [Page 16]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

Appendix 3 -- Sanple Silk Tcl URA

The following is a valid Silk Tcl URA. For nore information on the

i mpl enentati on and structure of Silk-specific URAs, see the "URA
Witers Cuide" that acconpanies the distribution of the Silk software
(avail abl e from <http://ww. bunyi p. com products/silk>).

#
Initialize the URA, its search specs and searchabl e servi ces.
#

URA init.

set uraDebug 1

uralnit {
{nane {Dej aNews Search}}
{aut hor {Leslie Daigle}}
{version {1.0}}
{description "This URA will search for UseNet News articles."}
{help "This is help on UseNet News search script."}

bug: handling of choices/labels is kind of gross.

HHHE

Search spec. init.

foreach item/{

{
{nane {Topi ¢ Keywords}}
{field Topi c}
{tag STRI NG}
{description {Keywords to search for in news articles}}
{pronpt {Topi ¢ Keywords}}
{hel p {Synbol s to | ook up, separated by spaces.}}
{type STRI NG}
{ subt ype {}}
{al | owned .*}
{nunval s 1}

{required 0}

Daigle, et. al. Experi ment al [Page 17]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

{response {}}
{respset 0}
}
A
uraSear chSpeclnit $item
}
uraAnnotationlnit {
{hel p {Enter conments to store with an instance}}
{nunval s 1}
{subtype {1}
{response {}}
{nane Conmrent s}
{required 0}
{cl ass ANNOTATI ON}
{type TEXT}
{description {General conments about this URA. }}
{respset 1}
{prompt Conmrent s}
{field {}}
{al | oned .*}
}

uraResultlnit {
{nane {Rel at ed Pages}}
{contents { {
{HEADLI NE { The Dej aNews UseNet search service}}
{TYPE text/plain}
{URL http://ww. dej anews. con}

}
}

foreach item{

{

{nane dej anews}
{protocol http-post}
{url http:// marge. dej anews. coni cgi - bi n/ nph-dnquery}

}
PA

uraServiceslnit $item

}

proc dej anews_ur aHTTPPost Canoni cal i ze {htm Res} {

set result {}
set lines {}

Daigle, et. al. Experi ment al [Page 18]

RFC 2016 Uni f or m Resour ce Agents Cct ober

set clause {}
set garbl ""
set garb2 ""

Get the body of the result page
-- throw away | eading and trailing URLs

regexp {(["<PRE>]*)<PRE>(.*)</PRE>.*} $htm Res garbl garb2 mainres

set lines [split $mainres "\n"]
foreach clause $lines {
ur aDebugPuts stderr [format "Line: %" $cl ause]

if [regexp

{<DT>. *(..\/..).*([<] *) </ A>. *([A<] *). *} \

$cl ause garbl dt relurl desc grp] {
ur aDebugPut s stderr [format
"Date: % Rel URL: % Desc: % G oup:
$dt $relurl $desc $grp]

| append r [list HEADLINE [format " (%, 9%)"
[string trim $desc] \
[string trim $grp] $dt]]
lappend r [list URL [format
"http://ww. dej anews. coml cgi - bi n/ %" $relurl]]
| append r [list TYPE "text/plain"]

| append result $r

return $result

%"

1996

There is one procedure, for each searchable service, to nap the search
spec responses to a formsuitable for inclusion into a search URL (or

whatever formthe particular query procedure accepts).
#

Daigle, et. al. Experi ment al [Page 19]

RFC 2016 Uni f or m Resour ce Agents Cct ober

#
#
proc mapResponsesToDej anews {} {
set resp ""
if {[uraAreResponsesSet {Topic Keywords}]} {
| append resp [list query [uraGet SpecResponse {Topic Keywords}]]
}

return $resp

-

#
bug: need better error reporting

(i.e. which searches didn’'t work and why, etc.)
#

proc uraRun {} {

gl obal errorinfo

foreach serv [urali st O Services] {
set u [uraGet ServiceURL $serv]

switch -- $serv {
dej anews {
if [catch {
set query [mapResponsesToDej anews]
uraDebugPuts stderr [format "%s: query is ‘%’ ."
$serv $query]
if {$query = {}} {
set result [uraHTTPPost Search $u $query]
if {$result '=""} {
urabDebugPuts stderr [format "%s: result is ‘9%’ ."
$serv $result]
set list [dejanews_uraHTTPPost Canoni cal i ze $resul t]

urabDebugPuts stderr [format "%: list is ‘9% ."
$serv $list]
puts $list
}
}
A
puts stderr S$errorlnfo
}
}
defaul t {
can’t handl e ot her searches, yet.
}

Daigle, et. al. Experi ment al [Page 20]

RFC 2016 Uni f or m Resour ce Agents Cct ober 1996

Daigle, et. al. Experi ment al [Page 21]

