Net wor k Wor ki ng Group J. Linn
Request for Comments: 1508 Ceer Zol ot Associ ates
Sept ember 1993

CGeneric Security Service Application ProgramInterface
Status of this Menp

This RFC specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" for the standardization state and status
of this protocol. Distribution of this memo is unlinted.

Abst r act

This CGeneric Security Service Application Program Interface (GSS-API)
definition provides security services to callers in a generic

fashi on, supportable with a range of underlying mechani sms and
technol ogi es and hence all owi ng source-|evel portability of
applications to different environnents. This specification defines
GSS- APl services and primtives at a |level independent of underlying
mechani sm and progranm ng | anguage environnment, and is to be

conpl emrented by other, related specifications:

docunent s defining specific paraneter bindings for particular
| anguage environnents

docunent s defining token formats, protocols, and procedures to
be inplenented in order to realize GSS-APlI services atop
particul ar security nechani sns

Tabl e of Contents

1. GSS-APlI Characteristics and Concepts 2
1.1, GSS-API CoNnStrUCES ...t e e e e e 5
1.1.1. Credential s 5
1.1. 2. TOKENS .. 6
1.1.3. Security Contextsii e 7
1.1.4. Mechani sm TYPES ...ttt e e e e e e e 8
1.1.5. Naming ... 9
1.1.6. Channel Bindings 10
1.2. GSS-APl Features and ISSUES, 11
1.2.1. Status Reporting 11
1.2.2. Per-Message Security Service Availability 12
1.2.3. Per-Mssage Replay Detection and Sequencing 13
1.2.4. Quality of Protection 15

Li nn [Page 1]

RFC 1508

Cr

wN ke

Co

OkwNE

Pe

PohE

Su

PEARARARAOWWOWNNNNNNEPEE

PNoORWONE

Mecha
1. Ke
2. Ke
3. X

Rel at

Secur
Aut _ho

Appendi x
Appendi x

1. GSS- APl

NOOTRWWWWNNNNNNNNNNNNNNNNNNNNNDNNNND

The oper
typi cal

on GSS-APlI in order to protect its comunications with

aut hent i

A GSS- API

Interface Descriptions
edential managenent calls
GSS Acquire_cred call
GSS Release cred call
GSS Inquire_cred call
ntext-level calls
GSS Init_sec_context call
GSS Accept _sec_context call
GSS Del ete_sec_context call
GSS Process_context _token call
GSS Context _time call
r-message calls
GSS Sign call
GSS Verify call
GSS_Seal call
GSS Unseal call
pport calls
GSS Display status call
GSS Indicate _nmechs call
GSS Compare _nanme call
GSS_Display_nanme call
GSS Inmport_name call
GSS Release nane call
GSS Rel ease _buffer call
GSS Release oid set call
ni sm Speci fic Exanple Scenarios
rberos V5, single-TGI
rberos V5, double-TGT
509 Authentication Framework
ed Activities
Acknowl edgnent s
ity Considerations
r's Address,

Generic Security Interface

B o
C o

Characteristics and Concepts

Sept ember 1993

............ 15
............ 17
............ 17
............ 19
............ 20
............ 21
............ 21
............ 26
............ 29
............ 30
............ 31
............ 32
............ 32
............ 33
............ 35
............ 36
............ 37
............ 37
............ 38
............ 38
............ 39
............ 40
............ 41
............ 41
............ 42
............ 42
............ 43
............ 43
............ 44
............ 45
............ 46
............ 46
............ 46
............ 47
............ 48
............ 49

ational paradigmin which GSS-APlI operates is as follows. A
GSS- APl caller is itself a comunications protocol, calling

cation, integrity, and/or confidentiality security services.

cal l er accepts tokens provided to it by its |ocal GSS-API

i mpl enentation and transfers the tokens to a peer on a renote system

that pee

i mpl enent ati on for

t hr ough

Li nn

r passes the received tokens to its |loca
processi ng. The security services avail able

GSS- API

GSS-APl in this fashion are inplenentable (and have been

[Page 2]

RFC 1508 Generic Security Interface Sept ember 1993

i mpl enent ed) over a range of underlying nmechani sns based on secret-
key and public-key cryptographic technol ogi es.

The GSS- APl separates the operations of initializing a security

cont ext between peers, achieving peer entity authentication (This
security service definition, and other definitions used in this
docunent, corresponds to that provided in International Standard | SO
7498-2-1988(E), Security Architecture.) (GSS Init_sec_context() and
GSS _Accept _sec_context() calls), fromthe operations of providing
per-message data origin authentication and data integrity protection
(GSS_Sign() and GSS Verify() calls) for messages subsequently
transferred in conjunction with that context. Per-nessage GSS Seal ()
and GSS Unseal () calls provide the data origin authentication and
data integrity services which GSS Sign() and GSS Verify() offer, and
al so support selection of confidentiality services as a caller
option. Additional calls provide supportive functions to the GSS-
APl’ s users.

The foll owi ng paragraphs provide an exanple illustrating the

dat afl ows involved in use of the GSS-APlI by a client and server in a
nmechani sm i ndependent fashion, establishing a security context and
transferring a protected nessage. The exanpl e assunes that credentia
acqui sition has already been completed. The exanple assunmes that the
under | yi ng aut hentication technol ogy is capable of authenticating a
client to a server using elenents carried within a single token, and
of authenticating the server to the client (mutual authentication)
with a single returned token; this assunption holds for presently-
docunent ed CAT nechani snms but is not necessarily true for other

crypt ographi c technol ogi es and associ at ed protocols.

The client calls GSS Init_sec _context() to establish a security
context to the server identified by targ nane, and elects to set the
mutual _req_flag so that mutual authentication is perforned in the
course of context establishment. GSS Init_sec_context() returns an
out put _token to be passed to the server, and indicates

GSS_CONTI NUE_NEEDED st at us pendi ng conpl etion of the nutua

aut henti cation sequence. Had nmutual _req flag not been set, the
initial call to GSS Init_sec_context() would have returned
GSS_COWPLETE status. The client sends the output_token to the server.

The server passes the received token as the input_token paranmeter to

GSS Accept _sec_context(). GSS Accept_sec_context indicates

GSS _COWPLETE status, provides the client’s authenticated identity in

the src_nanme result, and provides an output_token to be passed to the
client. The server sends the output_token to the client.

The client passes the received token as the input_token paranmeter to
a successor call to GSS_Init_sec_context(), which processes data

Li nn [Page 3]

RFC 1508 Generic Security Interface Sept ember 1993

included in the token in order to achi eve nutual authentication from
the client’s viewpoint. This call to GSS Init_sec_context() returns
GSS_COWPLETE status, indicating successful nutual authentication and
the conpl etion of context establishment for this exanple.

The client generates a data nessage and passes it to GSS Seal ().

GSS Seal () perforns data origin authentication, data integrity, and
(optionally) confidentiality processing on the nessage and

encapsul ates the result into output_nessage, indicating GSS COVPLETE
status. The client sends the output_message to the server.

The server passes the received nessage to GSS Unseal (). GSS Unsea
inverts the encapsul ati on performed by GSS Seal (), deciphers the
nessage if the optional confidentiality feature was applied, and

val idates the data origin authentication and data integrity checking
guantities. GSS Unseal () indicates successful validation by
returni ng GSS_COVPLETE status along with the resultant

out put _nessage.

For purposes of this exanple, we assunme that the server knows by

out - of - band means that this context will have no further use after
one protected message is transferred fromclient to server. Gven
this prem se, the server now calls GSS Del ete_sec_context() to flush
context-level information. GSS Del ete _sec_context() returns a
context _token for the server to pass to the client.

The client passes the returned context_token to
GSS _Process_context _token(), which returns GSS COWLETE status after
del eting context-level information at the client system

The GSS- APl design assunes and addresses several basic goals,
i ncl udi ng:

Mechani sm i ndependence: The GSS- APl defines an interface to
cryptographically inplenented strong authentication and ot her
security services at a generic |level which is independent of
particul ar underlying nmechani sns. For exanple, GSS-API-provided
servi ces can be inplenented by secret-key technol ogies (e.g.

Ker beros) or public-key approaches (e.g., X 509).

Prot ocol environnment independence: The GSS-API is independent of
the conmmuni cati ons protocol suites with which it is enployed,
permtting use in a broad range of protocol environments. In
appropriate environments, an internmediate inplenmentation "veneer"
which is oriented to a particul ar comunication protocol (e.g.
Renote Procedure Call (RPC)) may be interposed between
applications which call that protocol and the GSS-API, thereby

i nvoki ng GSS-API facilities in conjunction with that protocol’s

Li nn [Page 4]

RFC 1508 Generic Security Interface Sept ember 1993

conmmuni cati ons i nvocati ons.

Prot ocol association independence: The GSS-API’s security context
construct is independent of commruni cations protocol association
constructs. This characteristic allows a single GSS-API

i npl enentation to be utilized by a variety of invoking protoco
nodul es on behal f of those nodul es’ calling applications. GSS-API
services can al so be invoked directly by applications, wholly

i ndependent of protocol associations.

Suitability to a range of inplementation placenents: GSS-API
clients are not constrained to reside within any Trusted Conputing
Base (TCB) perineter defined on a systemwhere the GSS-API is

i mpl enent ed; security services are specified in a nmanner suitable
to both intra-TCB and extra-TCB call ers.

1.1. GSS-API Constructs
This section describes the basic el enents conprising the GSS-API.
1.1.1. Credentials

Credentials structures provide the prerequisites enabling peers to
establish security contexts with each other. A caller may designate
that its default credential be used for context establishnent calls
wi t hout presenting an explicit handle to that credenti al

Alternately, those GSS-API callers which need to nake explicit

sel ection of particular credentials structures may make references to
those credentials through GSS-API - provi ded credential handl es
("cred_handl es").

A single credential structure may be used for initiation of outbound
contexts and acceptance of inbound contexts. Callers needing to
operate in only one of these nodes may designate this fact when
credentials are acquired for use, allow ng underlying nechanisns to
optim ze their processing and storage requirenments. The credentia

el ements defined by a particular nechanismnmay contain nultiple
cryptographic keys, e.g., to enable authentication and nessage
encryption to be perforned with different algorithns.

A single credential structure may accomodate credential information
associated with nmultiple underlying nechani sns (nmech_types); a
credential structure’'s contents will vary depending on the set of
nmech_types supported by a particular GSS-APlI inplenmentation
Commonly, a single nech_type will be used for all security contexts
established by a particular initiator to a particular target; the
primary notivation for supporting credential sets representing
multiple mech types is to allowinitiators on systenms which are

Li nn [Page 5]

RFC 1508 Generic Security Interface Sept ember 1993

equi pped to handle multiple types to initiate contexts to targets on
ot her systens which can acconmobdate only a subset of the set
supported at the initiator’s system

It is the responsibility of underlying system specific nechani sns and
CS functions below the GSS-API to ensure that the ability to acquire
and use credentials associated with a given identity is constrained
to appropriate processes within a system This responsibility should
be taken seriously by inplementors, as the ability for an entity to
utilize a principal’s credentials is equivalent to the entity’'s
ability to successfully assert that principal’s identity.

Once a set of GSS-API credentials is established, the transferability
of that credentials set to other processes or anal ogous constructs
within a systemis a local matter, not defined by the GSS-API. An
exanpl e 1 ocal policy would be one in which any credentials received
as aresult of login to a given user account, or of del egation of
rights to that account, are accessible by, or transferable to,
processes runni ng under that account.

The credential establishnent process (particularly when performed on
behal f of users rather than server processes) is likely to require
access to passwords or other quantities which should be protected

| ocal ly and exposed for the shortest tine possible. As a result, it
will often be appropriate for prelimnary credential establishnment to
be performed through | ocal neans at user login tine, with the
result(s) cached for subsequent reference. These prelimnary
credentials would be set aside (in a systemspecific fashion) for
subsequent use, either:

to be accessed by an invocation of the GSS-API GSS Acquire_cred()
call, returning an explicit handle to reference that credentia

as the default credentials installed on behalf of a process
1.1.2. Tokens

Tokens are data el ements transferred between GSS-API callers, and are
divided into two classes. Context-level tokens are exchanged in order
to establish and manage a security context between peers. Per-nessage
tokens are exchanged in conjunction with an established context to
provi de protective security services for correspondi ng data nessages.
The internal contents of both classes of tokens are specific to the
particul ar underlying nmechani smused to support the GSS-API; Appendi x
B of this docunment provides a uniformrecomendation for designers of
GSS- APl support mechani sms, encapsul ati ng mechani smspecific
information along with a globally-interpretable mechanismidentifier

Li nn [Page 6]

RFC 1508 Generic Security Interface Sept ember 1993

Tokens are opaque fromthe vi ewpoint of GSS-API callers. They are
generated within the GSS-API inplenmentation at an end system
provided to a GSS-API caller to be transferred to the peer GSS-API
caller at a renmpte end system and processed by the GSS-API

i mpl enentation at that renmpte end system Tokens nmay be out put by
GSS-APlI primtives (and are to be transferred to GSS-API peers)

i ndependent of the status indications which those prinmtives

i ndi cate. Token transfer may take place in an in-band nmanner
integrated into the same protocol streamused by the GSS-API callers
for other data transfers, or in an out-of-band nanner across a

| ogi cal | y separate channel

Devel opnent of GSS-API support prinitives based on a particul ar
under | yi ng cryptographic techni que and protocol does not necessarily
imply that GSS-API callers invoking that GSS-APlI nechanismtype wll
be able to interoperate with peers invoking the same techni que and
prot ocol outside the GSS-APlI paradigm For exanple, the format of
GSS- APl tokens defined in conjunction with a particul ar nmechani sm
and the techniques used to integrate those tokens into callers’
protocols, may not be the sane as those used by non-GSS-API callers
of the sanme underlying technique.

1.1.3. Security Contexts

Security contexts are established between peers, using credentials
established locally in conjunction with each peer or received by
peers via delegation. Miultiple contexts may exi st sinultaneously
between a pair of peers, using the same or different sets of
credential s. Coexistence of nultiple contexts using different
credentials allows graceful rollover when credentials expire.

Di stinction anong nultiple contexts based on the sanme credentials
serves applications by distinguishing different nessage streans in a
security sense

The GSS- APl is independent of underlying protocols and addressing
structure, and depends on its callers to transport GSS-API-provided
data elements. As a result of these factors, it is a caller
responsibility to parse conmuni cat ed nessages, separating GSS-API -
rel ated data elements fromcaller-provided data. The GSS-API is

i ndependent of connection vs. connectionless orientation of the
under | yi ng conmuni cati ons servi ce.

No correl ati on between security context and comruni cations protoco
association is dictated. (The optional channel binding facility,

di scussed in Section 1.1.6 of this docunent, represents an

i ntentional exception to this rule, supporting additional protection
features within GSS-APlI supporting mechani snms.) This separation
allows the GSS-API to be used in a wide range of comuni cations

Li nn [Page 7]

RFC 1508 Generic Security Interface Sept ember 1993

1

1

environnents, and also sinplifies the calling sequences of the

i ndividual calls. In many cases (depending on underlying security
protocol, associated nmechanism and availability of cached
information), the state information required for context setup can be
sent concurrently with initial signed user data, w thout interposing
addi ti onal nmessage exchanges.

4. Mechani sm Types

In order to successfully establish a security context with a target
peer, it is necessary to identify an appropriate underlying nechani sm
type (mech_type) which both initiator and target peers support. The
definition of a nmechani sm enbodi es not only the use of a particular
crypt ographi c technology (or a hybrid or choice anbng alternative
crypt ographi c technol ogi es), but also definition of the syntax and
semantics of data el ement exchanges which that mechanismw || enpl oy
in order to support security services.

It is recomended that callers initiating contexts specify the
"default" mech_type value, allow ng systemspecific functions within
or invoked by the GSS-API inplenentation to select the appropriate
mech_type, but callers may direct that a particular nech_type be
enpl oyed when necessary.

The neans for identifying a shared nech_type to establish a security
context with a peer will vary in different environments and
ci rcunst ances; exanples include (but are not limted to):

use of a fixed nech_type, defined by configuration, within an
envi ronnent

syntactic convention on a target-specific basis, through
exam nation of a target’s nane

| ookup of a target’s nane in a nam ng service or other database in
order to identify mech_types supported by that target

explicit negotiation between GSS-API callers in advance of
security context setup

VWhen transferred between GSS- APl peers, mech_type specifiers (per
Appendi x B, represented as Ohject Identifiers (O Ds)) serve to
qualify the interpretation of associated tokens. (The structure and
encodi ng of Object lIdentifiers is defined in | SO |EC 8824,
"Specification of Abstract Syntax Notation One (ASN. 1)" and in

| SO' | EC 8825, "Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1)".) Use of hierarchically structured O Ds
serves to preclude anbi guous interpretation of nmech_type specifiers.

Li nn [Page 8]

RFC 1508 Generic Security Interface Sept ember 1993

The A D representing the DASS MechType, for example, is
1.3.12.2.1011.7.5.

1.1.5. Nam ng

The GSS- APl avoi ds prescription of nami ng structures, treating the
nanmes transferred across the interface in order to initiate and
accept security contexts as opaque octet string quantities. This
approach supports the GSS-API’'s goal of inplenmentability atop a range
of underlying security nmechani sms, recognizing the fact that

di fferent mechani sms process and authenticate nanes which are
presented in different forns. Generalized services offering
translation functions anong arbitrary sets of nam ng environnents are
outsi de the scope of the GSS-API; availability and use of |oca
conversion functions to translate anong the nam ng formats supported
within a given end systemis anticipated.

Two distinct classes of name representations are used in conjunction
with different GSS-API paraneters:

a printable form (denoted by OCTET STRING, for acceptance from
and presentation to users; printable name forms are acconpani ed by
O D tags identifying the nanespace to which they correspond

an internal form (denoted by | NTERNAL NAME), opaque to callers and
defined by individual GSS-API inplenentations; GSS-API

i mpl enent ati ons supporting multiple namespace types are
responsi ble for maintaining internal tags to di sanbi guate the
interpretation of particul ar nanes

Taggi ng of printable nanes allows GSS-API callers and underlying
GSS- APl nmechani sns to di sanbi guate nanme types and to determ ne
whet her an associ ated nane’s type is one which they are capabl e of
processi ng, avoiding aliasing problens which could result from

m sinterpreting a nane of one type as a name of another type.

In addition to providing neans for nanes to be tagged with types,
this specification defines primtives to support a |level of nam ng
envi ronnent i ndependence for certain calling applications. To provide
basi ¢ services oriented towards the requirements of callers which
need not thenselves interpret the internal syntax and semantics of
nanes, GSS-APl calls for nane conparison (GSS Conpare_nane()),
human-r eadabl e di splay (GSS Display nanme()), input conversion

(GSS I mport_nanme()), and internal nane deal |l ocation

(GSS_Rel ease_nane()) functions are defined. (It is anticipated that
these proposed GSS-API calls will be inplenented in nmany end systens
based on system specific name mani pulation primtives already extant
within those end systens; inclusion within the GSS-APl is intended to

Li nn [Page 9]

RFC 1508 Generic Security Interface Sept ember 1993

of fer GSS-API callers a portable neans to performspecific
operations, supportive of authorization and audit requirenments, on
aut henti cated names.)

GSS I mport _name() inplenmentations can, where appropriate, support
nore than one printable syntax corresponding to a given nanmespace
(e.g., alternative printable representations for X 500 Distinguished
Nanes), allowing flexibility for their callers to sel ect anpbng
alternative representations. GSS Display_nanme() inplenmentations
output a printable syntax selected as appropriate to their
operational environments; this selection is a |local matter. Callers
desiring portability across alternative printable syntaxes shoul d
refrain frominpl enenting conpari sons based on printable name forns
and shoul d instead use the GSS Conpare _nane() call to determ ne
whet her or not one internal-format nane matches anot her

1.1.6. Channel Bindings

The GSS- APl accommopdat es the concept of caller-provided channe

bi ndi ng ("chan_bi ndi ng") information, used by GSS-API callers to bind
the establishnent of a security context to relevant characteristics
(e.g., addresses, transformed representations of encryption keys) of
the underlying communi cati ons channel and of protection nmechani sns
applied to that communi cati ons channel. Verification by one peer of
chan_binding i nformati on provi ded by the other peer to a context
serves to protect against various active attacks. The caller
initiating a security context nust determ ne the chan_bi nding val ues
bef ore making the GSS I nit_sec_context() call, and consistent val ues
must be provided by both peers to a context. Callers should not
assune that underlying mechani sns provide confidentiality protection
for channel binding information.

Use or non-use of the GSS-API channel binding facility is a caller
option, and GSS-API supporting nmechani sms can support operation in an
envi ronnent where NULL channel bindings are presented. Wen non- NULL
channel bindings are used, certain mechanisnms will offer enhanced
security value by interpreting the bindings’ content (rather than
sinmply representing those bindings, or signatures conputed on them
within tokens) and will therefore depend on presentation of specific
data in a defined format. To this end, agreenents anong mechani sm

i mpl enentors are defining conventional interpretations for the
contents of channel binding argunments, including address specifiers
(with content dependent on conmunications protocol environnent) for
context initiators and acceptors. (These conventions are being
incorporated into related docunents.) In order for GSS-APlI callers to
be portable across multiple nechanisns and achieve the full security
functionality available fromeach nechanism it is strongly
recommended that GSS-API callers provide channel bindi ngs consi stent

Li nn [Page 10]

RFC 1508

Generic Security Interface

Sept ember 1993

wi th these conventions and those of the networking environnent in

whi ch they operate

1. 2. GSS- APl Features and | ssues

This section describes aspects of GSS- APl operations, of the security

servi ces which the GSS-API
desi gn i ssues.

1.2.1. Status Reporting

provi des, and provides comentary on

Each GSS-API call provides two status return val ues. Major_status

val ues provide a nmechani smi ndependent indication of call status
(e.g., GSS_COWLETE, GSS_FAI LURE, GSS_CONTI NUE_NEEDED), sufficient to
drive normal control flowwithin the caller in a generic fashion
Table 1 summari zes the defined major_status return codes in tabul ar

f ashi on.

Table 1: GSS-API Mjor Status Codes

FATAL ERROR CODES

GSS_BAD_BI NDI NGS
GSS_BAD_MECH
GSS_BAD_NAME
GSS_BAD_NAMETYPE
GSS_BAD_STATUS

GSS_BAD _SI G
GSS_CONTEXT_EXPI RED
GSS_CREDENTI ALS_EXPI RED
GSS_DEFECTI VE_CREDENTI AL
GSS_DEFECTI VE_TOKEN
GSS_FAI LURE

GSS_NO_CONTEXT
GSS_NO_CRED

| NFORVATORY STATUS CODES

GSS_COWPLETE
GSS_CONTI NUE_NEEDED

GSS_DUPLI CATE_TOKEN
GSS_OLD_TOKEN

GSS_UNSEQ TOKEN

Li nn

channel binding m smatch
unsupport ed nmechani smrequest ed

i nval id nane provi ded

nane of unsupported type provided
invalid input status selector
token had invalid signature
specified security context expired
expired credential s detected

def ective credential detected

def ecti ve token detected

failure, unspecified at GSS-API

| eve

no valid security context specified
no valid credentials provided

normal conpl etion

continuation call to routine
required

dupl i cat e per-nessage token
det ect ed

ti med- out per-nessage token
det ect ed

out - of - order per-nessage token
det ect ed

[Page 11]

RFC 1508 Generic Security Interface Sept ember 1993

M nor _status provides nore detailed status information which may
i nclude status codes specific to the underlying security nechani sm
M nor _status val ues are not specified in this docunment.

GSS_CONTI NUE_NEEDED mmj or _status returns, and optional nessage
outputs, are provided in GSS Init_sec_context() and

GSS Accept _sec_context() calls so that different nmechani sns’

enpl oyment of different nunbers of nessages within their

aut henti cati on sequences need not be reflected in separate code paths
within calling applications. Instead, such cases are acconpdated with
sequences of continuation calls to GSS_ Init_sec_context() and

GSS Accept _sec_context(). The sane nmechanismis used to encapsul ate
mut ual authentication within the GSS-API’'s context initiation calls.

For mech_types which require interactions with third-party servers in
order to establish a security context, GSS-APlI context establishnent
calls may bl ock pending completion of such third-party interactions.
On the other hand, no GSS-API calls pend on serialized interactions
with GSS-API peer entities. As a result, local GSS-APlI status
returns cannot reflect unpredictable or asynchronous exceptions
occurring at renote peers, and reflection of such status information
is acaller responsibility outside the GSS-API.

1.2.2. Per-Message Security Service Availability

When a context is established, two flags are returned to indicate the
set of per-nessage protection security services which will be
avail abl e on the context:

the integ avail flag indicates whether per-nessage integrity and
data origin authentication services are avail abl e

the conf_avail flag indicates whether per-nessage confidentiality
services are available, and will never be returned TRUE unl ess the
integ_avail flag is also returned TRUE

GSS- APl callers desiring per-nessage security services should
check the values of these flags at context establishnment tine, and
nmust be aware that a returned FALSE value for integ_avail means
that invocation of GSS Sign() or GSS Seal () primtives on the
associ ated context will apply no cryptographic protection to user
dat a nessages.

The GSS- APl per-nessage protection service printives, as the
category name inplies, are oriented to operation at the granularity
of protocol data units. They perform cryptographic operations on the
data units, transfer cryptographic control information in tokens,
and, in the case of GSS Seal (), encapsul ate the protected data unit.

Li nn [Page 12]

RFC 1508 Generic Security Interface Sept ember 1993

As such, these primtives are not oriented to efficient data
protection for stream paradi gmprotocols (e.g., Telnet) if
crypt ography must be applied on an octet-by-octet basis.

1.2.3. Per-Message Replay Detection and Sequenci ng

Certai n underlying mech_types are expected to offer support for
repl ay detection and/ or sequencing of nessages transferred on the
contexts they support. These optionally-selectable protection
features are distinct fromreplay detection and sequencing features
applied to the context establishment operation itself; the presence
or absence of context-level replay or sequencing features is wholly a
function of the underlying mech _type's capabilities, and is not

sel ected or omitted as a caller option

The caller initiating a context provides flags (replay_det_req_flag
and sequence_req_flag) to specify whether the use of per-nessage
repl ay detection and sequencing features is desired on the context
bei ng established. The GSS-API inplenentation at the initiator system
can determ ne whether these features are supported (and whet her they
are optionally selectable) as a function of mech_type, w thout need
for bilateral negotiation with the target. Wen enabl ed, these
features provide recipients with indicators as a result of GSS-API
processi ng of incom ng nessages, identifying whether those nmessages
were detected as duplicates or out-of-sequence. Detection of such
events does not prevent a suspect nessage from being provided to a
reci pient; the appropriate course of action on a suspect nessage is a
matter of caller policy.

The semantics of the replay detection and sequenci ng services applied
to received nessages, as visible across the interface which the GSS-
APl provides to its clients, are as follows:

VWhen replay_det _state is TRUE, the possible major_status returns for
wel | -fornmed and correctly signed nessages are as foll ows:

1. GSS COWPLETE indicates that the nessage was within the w ndow
(of time or sequence space) allow ng replay events to be detected,
and that the nmessage was not a replay of a previously-processed
message within that w ndow.

2. GSS DUPLI CATE _TOKEN i ndi cates that the signature on the
recei ved nmessage was correct, but that the nmessage was recogni zed
as a duplicate of a previously-processed nessage.

3. GSS O.D TOKEN indicates that the signature on the received

nmessage was correct, but that the nessage is too old to be checked
for duplication.

Li nn [Page 13]

RFC 1508 Generic Security Interface Sept ember 1993

When sequence_state is TRUE, the possible najor_status returns for
wel | -fornmed and correctly signed nessages are as foll ows:

1. GSS _COWPLETE indicates that the nmessage was within the w ndow
(of time or sequence space) allow ng replay events to be detected,
and that the nessage was not a replay of a previously-processed
nessage wWithin that w ndow.

2. GSS_DUPLI CATE_TCKEN i ndi cates that the signature on the
recei ved nmessage was correct, but that the message was recogni zed
as a duplicate of a previously-processed nessage.

3. GSS OLD TOKEN indicates that the signature on the received
nessage was correct, but that the token is too old to be checked
for duplication.

4. GSS_UNSEQ TOKEN i ndicates that the signature on the received
nessage was correct, but that it is earlier in a sequenced stream
than a nessage al ready processed on the context. [Note:
Mechani sns can be architected to provide a stricter form of
sequenci ng service, delivering particular nmessages to recipients
only after all predecessor nessages in an ordered stream have been
delivered. This type of support is inconpatible with the GSS-API
paradi gmin which recipients receive all nessages, whether in
order or not, and provide them (one at a tinme, wthout intra-GSS
APl nmessage buffering) to GSS-API routines for validation. GSS-
APl facilities provide supportive functions, aiding clients to
achi eve strict nessage streamintegrity in an efficient manner in
conjunction wi th sequencing provisions in conmunications
protocols, but the GSS-API does not offer this |evel of nessage
streamintegrity service by itself.]

As the nmessage streamintegrity features (especially sequencing) may
interfere with certain applications’ intended comunications

par adi gns, and since support for such features is likely to be
resource intensive, it is highly recommended that mech_types
supporting these features allow themto be activated sel ectively on
initiator request when a context is established. A context initiator
and target are provided with correspondi ng indicators

(replay_det _state and sequence_state), signifying whether these
features are active on a given context.

An exanpl e nech_type supporting per-nmessage replay detection could
(when replay_det _state is TRUE) inplenment the feature as follows: The
under|yi ng mechani smwould insert tinestanps in data el enents out put
by GSS Sign() and GSS Seal (), and would maintain (within a time-
[imted window) a cache (qualified by originator-recipient pair)
identifying received data el ements processed by GSS Verify() and

Li nn [Page 14]

RFC 1508 Generic Security Interface Sept ember 1993

GSS Unseal (). Wien this feature is active, exception status returns
(GSS_DUPLI CATE TOKEN, GSS OLD TOKEN) wi |l be provi ded when

GSS Verify() or GSS Unseal () is presented with a nessage which is
either a detected duplicate of a prior message or which is too old to
val i dat e agai nst a cache of recently received nmessages.

1.2.4. Quality of Protection

Sone mech_types will provide their users with fine granularity
control over the neans used to provi de per-nessage protection,
allowing callers to trade off security processing overhead

dynam cal | y agai nst the protection requirenents of particular
nessages. A per-nessage quality-of-protection paranmeter (anal ogous to
quality-of -service, or QOS) selects anong di fferent QOP options
supported by that mechanism On context establishment for a multi-QOP
mech_type, context-level data provides the prerequisite data for a
range of protection qualities.

It is expected that the najority of callers will not wish to exert
explicit mechani smspecific QOP control and will therefore request
selection of a default QOP. Definitions of, and choi ces anpbng, non-
default QOP val ues are nechani smspecific, and no ordered sequences
of QOP val ues can be assuned equival ent across different mechani sns.
Meani ngf ul use of non-default QOP val ues demands that callers be
famliar with the QOP definitions of an underlying nmechani sm or
nmechani sns, and is therefore a non-portable construct.

2. Interface Descriptions

This section describes the GSS-API’'s service interface, dividing the
set of calls offered into four groups. Credential nanagenent calls
are related to the acquisition and rel ease of credentials by
principals. Context-level calls are related to the management of
security contexts between principals. Per-nessage calls are related
to the protection of individual nessages on established security
contexts. Support calls provide ancillary functions useful to GSS-API
callers. Table 2 groups and summari zes the calls in tabular fashion

Li nn [Page 15]

RFC 1508 Generic Security Interface Sept ember 1993

Table 2: GSS-APlI Calls

CREDENTI AL MANAGEMENT

Li nn

GSS_Acquire_cred
GSS_Rel ease_cred
GSS Inquire_cred
CONTEXT- LEVEL CALLS

GSS Init_sec_context

GSS_Accept _sec_cont ext
GSS Del et e_sec_cont ext
GSS_Process_cont ext _t oken

GSS_Context _tinme

PER- MESSAGE CALLS

acquire credentials for use
rel ease credentials after use
di splay i nfornmation about
credential s

initiate outbound security context
accept inbound security context
flush context when no | onger needed
process received control token on
cont ext

indicate validity time remai ning on
cont ext

GSS_Sign apply signature, receive as token
separate from nessage

GSS Verify val i date signature token along with
nessage

GSS_Seal sign, optionally encrypt,
encapsul ate

GSS_Unseal decapsul ate, decrypt if needed,

SUPPORT CALLS

GSS _Di spl ay_status
GSS_| ndi cate_nechs
GSS_Conpar e_nane
GSS _Di spl ay_nane
GSS_| nport _name

GSS_Rel ease_nane

GSS_Rel ease_buffer
GSS _Rel ease_oi d_set

val i dat e signature

transl ate status codes to printable
form

i ndi cate mech_types supported on
| ocal system

conpare two nanmes for equality
translate nane to printable form
convert printable name to
normal i zed form

free storage of normalized-form
name

free storage of printable nane
free storage of O D set object

[Page 16]

RFC 1508 Generic Security Interface Sept ember 1993

2.

2.

1

1

Credential managenent calls

These GSS- APl calls provide functions related to the managenment of
credentials. Their characterization with regard to whet her or not
they may bl ock pendi ng exchanges with other network entities (e.g.
directories or authentication servers) depends in part on OS-specific
(extra-GSS-APl) issues, so is not specified in this docunent.

The GSS_Acquire_cred() call is defined within the GSS-API in support
of application portability, with a particular orientation towards
support of portable server applications. It is recognized that (for
certain systens and nechani sns) credentials for interactive users may
be managed differently fromcredentials for server processes; in such
environnents, it is the GSS-APlI inplenentation’s responsibility to

di stingui sh these cases and the procedures for making this
distinction are a local matter. The GSS_Rel ease_cred() call provides
a neans for callers to indicate to the GSS-API that use of a
credentials structure is no longer required. The GSS |Inquire_cred()
call allows callers to determ ne information about a credentials
structure.

1. GSS Acquire_cred cal
| nput s:

o desired name | NTERNAL NAME, -NULL requests |ocally-determ ned
def aul t

o lifetinme_req |INTEGER, -in seconds; 0 requests default

o desired _mechs SET OF OBJECT | DENTI FI ER, -enpty set requests
system sel ected default

0 cred_usage | NTEGER-O=I NI TI ATE- AND- ACCEPT, 1=I NI Tl ATE- ONLY,
2=ACCEPT- ONLY

Qut put s:

0 major_status | NTEGER,

0 mnor_status | NTEGER

o output_cred _handl e OCTET STRI NG,

o actual _nmechs SET OF OBJECT | DENTI FI ER

o lifetinme_rec INTEGER -in seconds, or reserved value for
| NDEFI NI TE

Li nn [Page 17]

RFC 1508 Generic Security Interface Sept ember 1993

Return maj or _status codes:

o GSS _COWLETE indicates that requested credentials were
successfully established, for the duration indicated in
l[ifetime_rec, suitable for the usage requested in cred_usage, for
the set of nech_types indicated in actual _nechs, and that those
credentials can be referenced for subsequent use with the handl e
returned in output_cred_handl e.

0 GSS BAD MECH indicates that a nech_type unsupported by the GSS-API
i mpl enentati on type was requested, causing the credentia
est abl i shnent operation to fail

0 GSS BAD NAMETYPE indicates that the provided desired nanme is
uninterpretable or of a type unsupported by the supporting GSS-API
i mpl enentati on, so no credentials could be established for the
acconpanyi ng desired_nane.

0 GSS BAD NAME indicates that the provided desired nane is
inconsistent in ternms of internally-incorporated type specifier
i nformati on, so no credentials could be established for the
acconpanyi ng desired_nane.

o0 GSS FAILURE indicates that credential establishnment failed for
reasons unspecified at the GSS-APlI |evel, including | ack of
aut horization to establish and use credentials associated with the
identity named in the input desired_name argunent.

GSS Acquire_cred() is used to acquire credentials so that a
principal can (as a function of the input cred _usage paraneter)
initiate and/or accept security contexts under the identity
represented by the desired_name i nput argunment. On successfu

conpl etion, the returned output_cred_handle result provides a handle
for subsequent references to the acquired credentials. Typically,
singl e-user client processes using only default credentials for
context establishnent purposes will have no need to invoke this call

A caller may provide the value NULL for desired_nane, signifying a
request for credentials corresponding to a default principa
identity. The procedures used by GSS-API inplenentations to select
the appropriate principal identity in response to this form of
request are local nmatters. It is possible that nultiple pre-
establ i shed credentials may exist for the sane principal identity
(for exanple, as a result of nmultiple user |ogin sessions) when

GSS Acquire_cred() is called; the nmeans used in such cases to sel ect
a specific credential are local matters. The input lifetinme_req
argunent to GSS_Acquire_cred() may provide useful information for

| ocal GSS-API inplenmentations to enploy in making this di sambi guation

Li nn [Page 18]

RFC 1508 Generic Security Interface Sept ember 1993

in a nmanner which will best satisfy a caller’s intent.

The lifetine_rec result indicates the length of tine for which the

acquired credentials will be valid, as an offset fromthe present. A
mechani smmay return a reserved value indicating INDEFINITE i f no
constraints on credential lifetime are inposed. A caller of

GSS Acquire_cred() can request a length of tine for which acquired
credentials are to be valid (lifetine_req argument), beginning at the
present, or can request credentials with a default validity interval.
(Requests for postdated credentials are not supported within the

GSS- APl .) Certain mechani snms and i npl enentations may bind in
credential validity period specifiers at a point prelinmnary to

i nvocation of the GSS Acquire cred() call (e.g., in conjunction with
user login procedures). As a result, callers requesting non-default
values for lifetime_req nust recogni ze that such requests cannot

al ways be honored and nust be prepared to acconmpdate the use of
returned credentials with different lifetinmes as indicated in
lifetinme_rec.

The caller of GSS Acquire cred() can explicitly specify a set of
mech_t ypes which are to be acconmmpdated in the returned credentials
(desired_nechs argunent), or can request credentials for a system
defined default set of nmech_types. Selection of the systemspecified
default set is recomended in the interests of application
portability. The actual nmechs return value nmay be interrogated by the
caller to determne the set of nechanisns with which the returned
credential s may be used.

2.1.2. GSS _Rel ease_cred cal
I nput :
o cred_handl e OCTET STRI NG NULL specifies default credentials
Cut put s:
o nmmjor_status | NTEGER,
o mnor_status | NTEGER
Return maj or _status codes:
0 GSS COWPLETE indicates that the credentials referenced by the
i nput cred_handl e were rel eased for purposes of subsequent access

by the caller. The effect on other processes which may be
aut hori zed shared access to such credentials is a |local matter.

Li nn [Page 19]

RFC 1508 Generic Security Interface Sept ember 1993

0 GSS NO CRED indicates that no rel ease operati on was perforned,
ei t her because the input cred _handl e was invalid or because the
caller lacks authorization to access the referenced credenti al s.

0 GSS FAILURE indicates that the rel ease operation failed for
reasons unspecified at the GSS-API |evel.

Provides a nmeans for a caller to explicitly request that credentials
be rel eased when their use is no longer required. Note that system
specific credential managenment functions are also likely to exist,
for exanple to assure that credentials shared anbng processes are
properly del eted when all affected processes termnate, even if no
explicit release requests are issued by those processes. Gven the
fact that multiple callers are not precluded from gai ni ng authorized
access to the same credentials, invocation of GSS _Rel ease_cred()
cannot be assunmed to delete a particular set of credentials on a
system w de basi s.

2.1.3. GSS Inquire_cred cal
I nput :
o cred_handl e OCTET STRING -NULL specifies default credentials
Qut put s:
0 major_status | NTEGER,
0 mnor_status | NTEGER
o cred_nanme | NTERNAL NAME

o lifetime_rec INTEGER -in seconds, or reserved value for
| NDEFI NI TE

0 cred_usage | NTEGER, -0=I N TI ATE- AND- ACCEPT, 1=I N TI ATE- O\LY,
2=ACCEPT- ONLY

o mech_set SET OF OBJECT | DENTI FI ER
Return maj or _status codes:

0 GSS COWPLETE indicates that the credentials referenced by the
i nput cred_handl e argunment were valid, and that the output
cred_nane, lifetine_rec, and cred_usage val ues represent,
respectively, the credentials’ associated principal nane,
remaining lifetime, suitable usage nodes, and supported
nmechani sm t ypes.

Li nn [Page 20]

RFC 1508 Generic Security Interface Sept ember 1993

0 GSS NO CRED indicates that no information could be returned
about the referenced credentials, either because the input
cred_handl e was invalid or because the caller |acks
authorization to access the referenced credenti al s.

0 GSS FAILURE indicates that the rel ease operation failed for
reasons unspecified at the GSS-API |evel.

The GSS Inquire_cred() call is defined primarily for the use of
those callers which make use of default credentials rather than
acquiring credentials explicitly with GSS_Acquire_cred(). It enables

callers to determne a credential structure’'s associated principa
nane, remaining validity period, usability for security context
initiation and/ or acceptance, and supported nechani sns.

2.2. Context-level calls

This group of calls is devoted to the establishment and nmanagenent of
security contexts between peers. A context’'s initiator calls

GSS Init_sec_context(), resulting in generation of a token which the
caller passes to the target. At the target, that token is passed to
GSS _Accept _sec_context(). Depending on the underlying mech_type and
specified options, additional token exchanges may be performed in the
course of context establishnment; such exchanges are accomobdat ed by
GSS_CONTI NUE_NEEDED status returns fromGSS Init_sec_context() and
GSS Accept _sec_context(). Either party to an established context may
i nvoke GSS Del ete_sec_context() to flush context infornmation when a
context is no longer required. GSS Process_context_token() is used
to process received tokens carrying context-level contro

information. GSS Context tinme() allows a caller to determ ne the
length of time for which an established context will remain valid.

2.2.1. GSS Init_sec_context cal
| nput s:

o clainmant_cred _handl e OCTET STRING -NULL specifies "use
defaul t"

o 1input_context_handl e | NTEGER, -0 specifies "none assigned
yet"

o targ_name | NTERNAL NAME

o mech_type OBJECT | DENTI FI ER, -NULL paraneter specifies "use
defaul t"

o deleg req_flag BOOLEAN,

Li nn [Page 21]

RFC 1508 Generic Security Interface Sept ember 1993

o mutual _req_flag BOOLEAN,

o replay_det_req_flag BOOLEAN,

0 sequence_req_flag BOOLEAN,

o lifetine_req |INTEGER -0 specifies default lifetine

o chan_bi ndi ngs OCTET STRI NG,

0 input_token OCTET STRI NG NULL or token received fromtarget
Qut put s:

0 major_status | NTEGER,

0 mnor_status | NTEGER,

0 output_context handl e | NTEGER,

o mech_type OBJECT | DENTI FI ER, -actual mechani sm al ways
i ndi cat ed, never NULL

0 output_token OCTET STRING -NULL or token to pass to context
t ar get

o del eg_state BOOLEAN,

0 nutual _state BOOLEAN,

o replay_det state BOOLEAN,
0 sequence_state BOOLEAN,
o conf_avail BOOLEAN,

o integ avail BOOLEAN,

o lifetime_rec INTEGER - in seconds, or reserved value for
| NDEFI NI TE

This call may bl ock pending network interactions for those mech_types
in which an authentication server or other network entity nust be
consulted on behalf of a context initiator in order to generate an
out put _token suitable for presentation to a specified target.

Return maj or _status codes:

Li nn [Page 22]

RFC 1508 Generic Security Interface Sept ember 1993

Li nn

GSS_COWPLETE i ndi cates that context-level information was
successfully initialized, and that the returned output_token will
provide sufficient information for the target to perform per-
nmessage processing on the new y-established context.

GSS_CONTI NUE_NEEDED i ndi cates that control information in the
returned output_token nmust be sent to the target, and that a reply
nust be received and passed as the input _token argunment to a
continuation call to GSS Init_sec_context(), before per-nessage
processi ng can be performed in conjunction with this context.

GSS_DEFECTI VE_TOKEN i ndi cates that consistency checks perforned on
the i nput _token failed, preventing further processing from being
performed based on that token

GSS_DEFECTI VE_CREDENTI AL i ndi cates that consistency checks
performed on the credential structure referenced by
claimant _cred handl e failed, preventing further processing from
bei ng perfornmed using that credential structure.

GSS BAD SIG indicates that the received input_token contains an
i ncorrect signature, so context setup cannot be acconpli shed.

GSS NO CRED indicates that no context was established, either
because the input cred _handl e was invalid, because the referenced
credentials are valid for context acceptor use only, or because
the caller lacks authorization to access the referenced
credenti al s.

GSS_CREDENTI ALS EXPI RED i ndi cates that the credentials provided
through the input claimnt_cred_handl e argunment are no | onger
valid, so context establishnment cannot be conpl et ed.

GSS _BAD BI NDI NGS i ndicates that a m smatch between the caller-
provi ded chan_bi ndi ngs and those extracted fromthe input_token
was detected, signifying a security-rel evant event and preventing
context establishnent. (This result will be returned by

GSS Init_sec_context only for contexts where mutual _state is
TRUE.)

GSS_NO _CONTEXT indicates that no valid context was recogni zed for
the i nput context handl e provided; this major status will be
returned only for successor calls foll owi ng GSS _CONTI NUE _NEEDED
status returns.

GSS _BAD NAMETYPE indicates that the provided targ_nane is of a

type uninterpretable or unsupported by the supporting GSS-API
i npl enentati on, so context establishnent cannot be conpl et ed.

[Page 23]

RFC 1508 Generic Security Interface Sept ember 1993

0 GSS BAD NAME indicates that the provided targ nane is inconsistent
internms of internally-incorporated type specifier information, so
context establishment cannot be acconpli shed.

0 GSS FAILURE indicates that context setup could not be acconplished
for reasons unspecified at the GSS-API |evel, and that no
i nterface-defined recovery action is avail able.

This routine is used by a context initiator, and ordinarily enits one
(or, for the case of a multi-step exchange, nore than one)

out put _token suitable for use by the target within the sel ected
mech_type's protocol. Using information in the credentials structure
referenced by clainant_cred handle, GSS |nit_sec_context()
initializes the data structures required to establish a security
context with target targ _name. The cl ai mant _cred_handl e nust
correspond to the sane valid credentials structure on the initia

call to GSS Init_sec_context() and on any successor calls resulting
from GSS_CONTI NUE_NEEDED status returns; different protocol sequences
nodel ed by the GSS_CONTI NUE_NEEDED nechanismw || require access to
credentials at different points in the context establishnent

sequence.

The i nput _context _handl e argunment is 0, specifying "not yet
assigned”, on the first GSS Init_sec _context() call relating to a
gi ven context. That call returns an output _context handle for future
references to this context. Wen continuation attenpts to

GSS Init_sec_context() are needed to perform context establishment,
the previously-returned non-zero handle value is entered into the

i nput _cont ext _handl e argunment and will be echoed in the returned

out put _context _handl e argunent. On such continuation attenpts (and
only on continuation attenpts) the input_token value is used, to
provide the token returned fromthe context’s target.

The chan_bi ndi ngs argunent is used by the caller to provide

i nformation binding the security context to security-rel ated
characteristics (e.g., addresses, cryptographic keys) of the
under | yi ng conmuni cati ons channel. See Section 1.1.6 of this docunent
for nore discussion of this argunent’s usage.

The i nput _token argument contains a nmessage received fromthe target,
and is significant only on a call to GSS Init_sec_context() which
follows a previous return indicating GSS _CONTI NUE NEEDED

nmaj or _st at us.

It is the caller’'s responsibility to establish a comruni cati ons path
to the target, and to transmt any returned output_token (independent
of the acconpanying returned major_status value) to the target over
that path. The output_token can, however, be transmtted along with

Li nn [Page 24]

RFC 1508 Generic Security Interface Sept ember 1993

the first application-provided i nput nessage to be processed by
GSS Sign() or GSS Seal () in conjunction with a successfully-
est abl i shed cont ext.

The initiator may request various context-level functions through

i nput flags: the deleg req flag requests del egati on of access rights,
the nmutual _req flag requests nutual authentication, the
replay_det _req flag requests that replay detection features be
applied to messages transferred on the established context, and the
sequence_req_flag requests that sequencing be enforced. (See Section
1.2.3 for nore information on replay detection and sequenci ng
features.)

Not all of the optionally-requestable features will be available in
all underlying nech_types; the corresponding return state val ues
(del eg_state, nmutual state, replay_det_state, sequence_state)

i ndicate, as a function of mech_type processing capabilities and
initiator-provided i nput flags, the set of features which will be
active on the context. These state indicators’ values are undefined
unl ess the routine’'s najor_status indicates COWPLETE. Failure to
provide the precise set of features requested by the caller does not
cause context establishment to fail; it is the caller’s prerogative
to delete the context if the feature set provided is unsuitable for
the caller’s use. The returned nech_type val ue indicates the

speci fic nechani sm enpl oyed on the context, and will never indicate
the value for "default".

The conf_avail return value indicates whether the context supports
per - message confidentiality services, and so infornms the caller
whet her or not a request for encryption through the conf _req_flag
input to GSS Seal () can be honored. In simlar fashion, the
integ_avail return val ue indicates whether per-nessage integrity
services are available (through either GSS Sign() or GSS Seal ()) on
the established context.

The lifetinme_req input specifies a desired upper bound for the
lifetime of the context to be established, with a value of 0 used to
request a default lifetime. The lifetime_rec return val ue indicates

the length of tine for which the context will be valid, expressed as
an offset fromthe present; depending on nechani sm capabilities,
credential lifetines, and | ocal policy, it nmay not correspond to the
val ue requested in lifetinme_req. |If no constraints on context

lifetinme are inposed, this may be indicated by returning a reserved
val ue representing INDEFINITE lifetine_req. The val ues of conf_avail
integ_avail, and lifetime_rec are undefined unless the routine’s

maj or _status indi cates COVPLETE.

If the nmutual _state is TRUE, this fact will be reflected within the

Li nn [Page 25]

RFC 1508 Generic Security Interface Sept ember 1993

out put _token. A call to GSS Accept _sec_context() at the target in
conjunction with such a context will return a token, to be processed
by a continuation call to GSS Init_sec_context(), in order to achieve
mut ual aut henti cati on.

2.2.2. GSS Accept _sec_context call
| nput s:

o acceptor_cred_handl e OCTET STRI NG - NULL specifies "use
defaul t"

0o input_context handl e | NTEGER, -0 specifies "not yet assigned"
o chan_bi ndi ngs OCTET STRI NG,

0 input_token OCTET STRI NG

Qut put s:

0 major_status | NTEGER,

0 mnor_status | NTEGER,

0 src_name | NTERNAL NANE,

o mech_type OBJECT | DENTI Fl ER,

0 output_context_handl e | NTEGER,
o del eg _state BOOLEAN,

o rmutual _state BOOLEAN,

o replay_det_state BOOLEAN,

0 sequence_state BOOLEAN,

o conf_avail BOOLEAN,

o integ_avail BOOLEAN,

o lifetinme_rec INTEGER, - in seconds, or reserved value for
| NDEFI NI TE

o del egated_cred_handl e OCTET STRI NG,

0 output_token OCTET STRING -NULL or token to pass to context

Li nn [Page 26]

RFC 1508 Generic Security Interface Sept ember 1993

initiator

This call may bl ock pending network interactions for those nech_types
in which a directory service or other network entity nust be

consul ted on behal f of a context acceptor in order to validate a
recei ved input _token

Return maj or _status codes:

(0]

Li nn

GSS_COVPLETE indicates that context-level data structures were
successfully initialized, and that per-nmessage processing can now
be performed in conjunction with this context.

GSS_CONTI NUE_NEEDED i ndi cates that control information in the
returned output_token rmust be sent to the initiator, and that a
response must be received and passed as the input_token argunent
to a continuation call to GSS_Accept_sec_context(), before per-
nessage processing can be perfornmed in conjunction with this
cont ext .

GSS_DEFECTI VE_TOKEN i ndi cates that consistency checks performed on
the i nput _token failed, preventing further processing from being
performed based on that token

GSS_DEFECTI VE_CREDENTI AL i ndi cates that consistency checks
performed on the credential structure referenced by
acceptor_cred_handl e failed, preventing further processing from
bei ng performed using that credential structure.

GSS BAD SIG indicates that the received i nput_token contains an
i ncorrect signature, so context setup cannot be acconpli shed.

GSS_DUPLI CATE_TOKEN i ndi cates that the signature on the received

i nput _t oken was correct, but that the input_token was recognized
as a duplicate of an input_token already processed. No new cont ext
i s established.

GSS OLD TOKEN i ndicates that the signature on the received

i nput _token was correct, but that the input_token is too old to be
checked for duplication against previously-processed input_tokens.
No new context is established.

GSS _NO CRED indicates that no context was established, either
because the input cred _handl e was invalid, because the referenced
credentials are valid for context initiator use only, or because
the caller lacks authorization to access the referenced
credenti al s.

[Page 27]

RFC 1508 Generic Security Interface Sept ember 1993

0 GSS CREDENTI ALS EXPI RED i ndicates that the credentials provided
through the input acceptor_cred_handl e argunment are no | onger
valid, so context establishnment cannot be conpl et ed.

0 GSS BAD BINDINGS indicates that a m smatch between the caller-
provi ded chan_bi ndi ngs and those extracted fromthe input_token
was detected, signifying a security-rel evant event and preventing
cont ext establishnent.

0 GSS_NO CONTEXT indicates that no valid context was recogni zed for
the i nput context_handl e provided; this major status will be
returned only for successor calls foll owi ng GSS_CONTI NUE NEEDED
status returns.

0 GSS FAILURE indicates that context setup could not be acconplished
for reasons unspecified at the GSS-API |evel, and that no
i nterface-defined recovery action is avail able.

The GSS Accept _sec _context() routine is used by a context target.
Using information in the credentials structure referenced by the

i nput acceptor_cred_handle, it verifies the incom ng input_token and
(followi ng the successful conpletion of a context establishnent
sequence) returns the authenticated src_nanme and the nech_type used.
The acceptor_cred_handl e nust correspond to the sane valid
credentials structure on the initial call to GSS Accept _sec_context()
and on any successor calls resulting from GSS _CONTI NUE_NEEDED st at us
returns; different protocol sequences nodel ed by the

GSS_CONTI NUE_NEEDED nechanismwi ||l require access to credentials at
different points in the context establishnent sequence.

The i nput _context handl e argurment is 0, specifying "not yet
assigned", on the first GSS Accept _sec_context() call relating to a
gi ven context. That call returns an output_context _handle for future
references to this context; when continuation attenpts to

GSS _Accept _sec_context() are needed to perform context
establishment, that handle value will be entered into the

i nput _context _handl e argunent.

The chan_bi ndi ngs argunent is used by the caller to provide

i nformation binding the security context to security-rel ated
characteristics (e.g., addresses, cryptographic keys) of the
under | yi ng conmuni cati ons channel. See Section 1.1.6 of this docunent
for nore discussion of this argunent’s usage.

The returned state results (del eg_state, mutual _state,

repl ay_det _state, and sequence_state) reflect the sane context state
values as returned to GSS Init_sec_context()'s caller at the
initiator system

Li nn [Page 28]

RFC 1508 Generic Security Interface Sept ember 1993

The conf_avail return value indicates whether the context supports
per - message confidentiality services, and so infornms the caller

whet her or not a request for encryption through the conf_req_flag
input to GSS Seal () can be honored. In simlar fashion, the
integ_avail return val ue indicates whether per-nmessage integrity
services are available (through either GSS Sign() or GSS Seal()) on
the established context.

The lifetine_rec return value indicates the length of time for which

the context will be valid, expressed as an offset fromthe present.
The val ues of deleg_state, nutual state, replay_det_state,
sequence_state, conf_avail, integ avail, and lifetine rec are

undefined unl ess the acconmpanyi ng naj or_status indi cates COWLETE

The del egated_cred_handl e result is significant only when del eg_state
is TRUE, and provides a means for the target to reference the

del egated credentials. The output_token result, when non- NULL
provides a context-level token to be returned to the context
initiator to continue a nmulti-step context establishnent sequence. As
noted with GSS Init_sec_context(), any returned token should be
transferred to the context’s peer (in this case, the context
initiator), independent of the value of the acconpanying returned

maj or _st at us.

Note: A target nust be able to distinguish a context-I|eve
i nput _token, which is passed to GSS Accept _sec_context(), fromthe
per - message data el enents passed to GSS Verify() or GSS Unseal ().
These data elenents may arrive in a single application nessage, and
GSS_Accept _sec_context() must be performed before per-nessage
processi ng can be performed successfully.

2.2.3. GSS Del ete_sec_context cal
I nput :
o context_handl e | NTEGER
Qut put s:
0 major_status | NTEGER
0 mnor_status | NTEGER
0 output_context token OCTET STRI NG

Return maj or _status codes:

Li nn [Page 29]

RFC 1508 Generic Security Interface Sept ember 1993

o GSS COWPLETE indicates that the context was recogni zed, that
rel evant context-specific informati on was flushed, and that the
returned output_context_token is ready for transfer to the
context’'s peer.

0 GSS NO CONTEXT indicates that no valid context was recogni zed for
the i nput context handl e provide, so no del etion was perforned.

0 GSS FAILURE indicates that the context is recognized, but that the
GSS Del ete_sec_context() operation could not be performed for
reasons unspecified at the GSS-API |evel.

This call may bl ock pending network interactions for nech _types in

whi ch active notification must be made to a central server when a

security context is to be del eted.

This call can be nmade by either peer in a security context, to flush

context-specific information and to return an output context token

whi ch can be passed to the context’s peer informing it that the

peer’s correspondi ng context information can also be flushed. (Once a

context is established, the peers involved are expected to retain

cached credential and context-related information until the

information's expiration time is reached or until a

GSS Del ete_sec_context() call is nade.) Attenpts to perform per-

nessage processing on a deleted context will result in error returns.

2.2.4. GSS Process_context_token cal

| nput s:

o context_handl e | NTEGER

0 input_context_token OCTET STRI NG

Cut put s:

o nmmjor_status | NTEGER,

o mnor_status | NTEGER

Return maj or _status codes:

0 GSS COWVPLETE indicates that the input_context token was
successfully processed in conjunction with the context referenced
by cont ext _handl e.

0 GSS _DEFECTI VE_TOKEN i ndi cates that consistency checks performed on
the received context token failed, preventing further processing

Li nn [Page 30]

RFC 1508 Generic Security Interface Sept ember 1993

frombeing perfornmed with that token

0 GSS_NO CONTEXT indicates that no valid context was recogni zed for
the i nput context _handl e provided.

0 GSS FAILURE indicates that the context is recognized, but that the
GSS _Process_context _token() operation could not be perforned for
reasons unspecified at the GSS-API |evel.

This call is used to process context_tokens received froma peer once

a context has been established, with correspondi ng i mpact on
context-level state information. One use for this facility is
processi ng of the context tokens generated by

GSS Del ete _sec_context(); GSS Process_context token() will not block
pendi ng network interactions for that purpose. Another use is to
process tokens indicating renote-peer context establishnent failures
after the point where the | ocal GSS-API inplenmentation has already

i ndi cated GSS_COWVPLETE st at us.

2.2.5. GSS_ Context_tinme call
I nput :
o context_handl e | NTEGER
Qut put s:
0 major_status | NTEGER
0 mnor_status | NTEGER
o lifetime_rec INTEGER - in seconds, or reserved value for
| NDEFI NI TE

Return maj or _status codes:

o

Li nn

GSS _COWPLETE i ndi cates that the referenced context is valid, and
will remain valid for the anmount of tinme indicated in
lifetime_rec.

GSS_CONTEXT_EXPI RED i ndi cates that data itens related to the
ref erenced context have expired.

GSS _CREDENTI ALS EXPI RED i ndi cates that the context is recognized,
but that its associated credentials have expired.

GSS_NO _CONTEXT indicates that no valid context was recogni zed for
the i nput context handl e provided.

[Page 31]

RFC 1508 Generic Security Interface Sept ember 1993

2.

2.

3.

3.

0 GSS FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-API |evel.

This call is used to determ ne the amount of tine for which a
currently established context will remain valid.
Per - message call s

This group of calls is used to perform per-nessage protection
processi ng on an established security context. None of these calls
bl ock pending network interactions. These calls may be invoked by a
context’s initiator or by the context’s target. The four nmenbers of
this group should be considered as two pairs; the output from

GSS Sign() is properly input to GSS Verify(), and the output from
GSS Seal () is properly input to GSS Unseal ().

GSS Sign() and GSS Verify() support data origin authentication and
data integrity services. Wen GSS Sign() is invoked on an input
nessage, it yields a per-nessage token containing data itens which
al | ow under!yi ng nechani sns to provide the specified security
services. The original nmessage, along with the generated per-nessage
token, is passed to the renpte peer; these two data el enents are
processed by GSS Verify(), which validates the nmessage in
conjunction with the separate token

GSS Seal () and GSS Unseal () support caller-requested confidentiality
in addition to the data origin authentication and data integrity
services offered by GSS Sign() and GSS Verify(). GSS Seal () outputs
a single data el enent, encapsul ating optionally enci phered user data
as well as associated token data itens. The data el ement output from
GSS Seal () is passed to the renpte peer and processed by

GSS Unseal () at that system GSS Unseal () conbi nes deci phernment (as
required) with validation of data itens related to authentication and
integrity.

1. GSS Sign cal

| nput s:

0 context _handl e | NTEGER

0 gqgop_req INTEGER, -0 specifies default QOP

0 nessage OCTET STRI NG

CQut put s:

o nmmjor_status | NTEGER,

Li nn [Page 32]

RFC 1508 Generic Security Interface Sept ember 1993

o mnor_status | NTEGER
o per_nsg_token OCTET STRI NG
Return maj or _status codes:

o0 GSS COWPLETE indicates that a signature, suitable for an
established security context, was successfully applied and that
the nmessage and correspondi ng per_nsg_t oken are ready for
transm ssi on.

0 GSS CONTEXT _EXPI RED i ndi cates that context-related data itens have
expired, so that the requested operation cannot be perforned.

0 GSS _CREDENTI ALS EXPI RED i ndicates that the context is recognized,
but that its associated credentials have expired, so that the
request ed operation cannot be perforned.

0 GSS NO CONTEXT indicates that no valid context was recogni zed for
the i nput context handl e provided.

0 GSS FAILURE indicates that the context is recognized, but that the
request ed operation could not be perforned for reasons unspecified
at the GSS-API |evel.

Using the security context referenced by context handle, apply a
signature to the input nmessage (along with tinestanps and/ or other
data included in support of nech_type-specific mechani snms) and return
the result in per_nsg_token. The gqop_req paraneter allows quality-

of -protection control. The caller passes the nessage and the

per _nmsg _token to the target.

The GSS_Sign() function conpletes before the nessage and
per_msg_token is sent to the peer; successful application of
GSS _Sign() does not guarantee that a corresponding GSS Verify() has
been (or can necessarily be) perfornmed successfully when the nessage
arrives at the destination.

2.3.2. GSS_ Verify cal
| nput s:
o context_handl e | NTEGER
0 nessage OCTET STRI NG

o per_nsg_token OCTET STRI NG

Li nn [Page 33]

RFC 1508 Generic Security Interface Sept ember 1993

Qut put s:

0 qop_state | NTEGER

0 major_status | NTEGER,
o mnor_status | NTEGER

Return maj or _status codes:

o

o

GSS_COWPLETE i ndi cates that the nmessage was successfully verified.

GSS _DEFECTI VE_TOKEN i ndi cates that consistency checks perfornmed on
the received per_nsg token failed, preventing further processing
frombeing performed with that token

GSS BAD SIG indicates that the received per_nsg_token contains an
i ncorrect signature for the nessage.

GSS DUPLI CATE_TOKEN, GSS OLD TOKEN, and GSS UNSEQ TOKEN val ues
appear in conjunction with the optional per-nessage replay
detection features described in Section 1.2.3; their semantics are
described in that section

GSS_CONTEXT_EXPI RED i ndi cates that context-related data itens have
expired, so that the requested operation cannot be perforned.

GSS_CREDENTI ALS EXPI RED i ndi cates that the context is recognized,
but that its associated credentials have expired, so that the
request ed operation cannot be perforned.

GSS _NO CONTEXT i ndicates that no valid context was recogni zed for
the i nput context _handl e provided.

GSS _FAILURE indicates that the context is recognized, but that the
GSS Verify() operation could not be perforned for reasons
unspecified at the GSS-API |evel.

Using the security context referenced by context handl e, verify that
the i nput per_mnsg_token contains an appropriate signature for the

i nput message, and apply any active replay detection or sequencing
features. Return an indication of the quality-of-protection applied
to the processed nessage in the qop_state result.

Li nn

[Page 34]

RFC 1508 Generic Security Interface Sept ember 1993

2.3.3. GSS _Seal cal
[nputs:
0 context_handl e | NTEGER
o conf_req_flag BOOLEAN
0 gqgop_req I NTEGER -0 specifies default QOP
0 input_nessage OCTET STRI NG
Qut put s:
0 major_status | NTEGER,
0 mnor_status | NTEGER
o conf_state BOOLEAN
0 out put _nessage OCTET STRI NG
Return maj or _status codes:

0o GSS COWPLETE indicates that the input_nessage was successfully
processed and that the output_nessage is ready for transm ssion

0 GSS CONTEXT _EXPI RED i ndicates that context-related data itens have
expired, so that the requested operation cannot be performned.

0 GSS CREDENTI ALS EXPI RED i ndicates that the context is recognized,
but that its associated credentials have expired, so that the
requested operation cannot be perforned.

0 GSS _NO CONTEXT indicates that no valid context was recogni zed for
the i nput context handl e provided.

0 GSS FAILURE indicates that the context is recognized, but that the
GSS _Seal () operation could not be perforned for reasons
unspeci fied at the GSS-API |evel.

Perforns the data origin authentication and data integrity functions
of GSS Sign(). |If the input conf req flag is TRUE, requests that
confidentiality be applied to the i nput_nmessage. Confidentiality may
not be supported in all mech_types or by all inplenentations; the
returned conf_state flag indicates whether confidentiality was
provided for the input_nessage. The qop_req paraneter allows

qual ity-of -protection control

Li nn [Page 35]

RFC 1508 Generic Security Interface Sept ember 1993

In all cases, the GSS Seal () call yields a single output_nessage
data el ement containing (optionally enciphered) user data as well as
control information.

2.3.4. GSS Unseal cal

| nput s:

o context_handl e | NTEGER

0 input_nessage OCTET STRI NG
Qut put s:

o conf_state BOOLEAN,

0 qop_state | NTEGER

o nmmjor_status | NTEGER,

o mnor_status | NTEGER

0 out put_nmessage OCTET STRI NG

Return maj or _status codes:

o

Li nn

GSS_COWPLETE i ndi cates that the input_nessage was successfully
processed and that the resulting output_mnessage is avail abl e.

GSS_DEFECTI VE_TOKEN i ndi cates that consistency checks perforned on
the per_nsg_token extracted fromthe input_nessage failed,
preventing further processing from being performed.

GSS BAD SIG indicates that an incorrect signature was detected for
the message.

GSS DUPLI CATE_TOKEN, GSS OLD TOKEN, and GSS _UNSEQ TOKEN val ues
appear in conjunction with the optional per-nessage replay
detection features described in Section 1.2.3; their senmantics are
described in that section.

GSS_CONTEXT_EXPI RED i ndi cates that context-related data itens have
expired, so that the requested operation cannot be perforned.

GSS_CREDENTI ALS EXPI RED i ndi cates that the context is recognized,

but that its associated credentials have expired, so that the
request ed operation cannot be perforned.

[Page 36]

RFC 1508 Generic Security Interface Sept ember 1993

0 GSS _NO CONTEXT indicates that no valid context was recogni zed for
the i nput context handl e provided.

0 GSS FAILURE indicates that the context is recognized, but that the
GSS Unseal () operation could not be perforned for reasons
unspecified at the GSS-API |evel.

Processes a data el enent generated (and optionally enciphered) by

GSS _Seal (), provided as input_mnessage. The returned conf_state val ue

i ndi cates whet her confidentiality was applied to the input_nessage.

If conf_state is TRUE, GSS Unseal () deciphers the input_nessage.

Returns an indication of the quality-of-protection applied to the

processed nessage in the qop_state result. GSS Seal () perfornms the

data integrity and data origin authentication checking functions of

GSS Verify() on the plaintext data. Plaintext data is returned in

out put _nessage.

2.4. Support calls

This group of calls provides support functions useful to GSS-API

callers, independent of the state of established contexts. Their

characterization with regard to bl ocking or non-bl ocking status in
terns of network interactions is unspecified.

2.4.1. GSS Display_status call
[nputs:

o status_value | NTEGER, - GSS- APl nmmj or _status or mi nor_status
return val ue

0o status type INTECER -1 if mmjor_status, 2 if mnor_status

o mech_type OBJECT | DENTI FI ER-nmech_type to be used for mnor_
status translation

Qut put s:

0 major_status | NTEGER,

0 mnor_status | NTEGER

0o status_string set SET OF OCTET STRI NG
Return maj or _status codes:

0 GSS COWPLETE indicates that a valid printable status
representation (possibly representing nore than one status event

Li nn [Page 37]

RFC 1508 Generic Security Interface Sept ember 1993
encoded within the status_value) is available in the returned
status_string_set.

0o GSS BAD MECH indicates that translation in accordance with an
unsupported mech_type was requested, so translation could not be
per f or med.

0 GSS BAD STATUS indicates that the input status _value was invalid,
or that the input status_type carried a value other than 1 or 2,

so transl ation could not be performed.

0 GSS FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API |evel.

Provides a neans for callers to translate GSS-API-returned nmaj or and
m nor status codes into printable string representations.

2.4.2. GSS Indicate_nechs cal
I nput :
o (none)
Qut put s:
0o nmmjor_status | NTEGER,
0o mnor_status | NTEGER
o nech_set SET OF OBJECT | DENTI FI ER
Return maj or _status codes:

0 GSS COVPLETE indicates that a set of avail able mechani sms has
been returned in nech_set.

0 GSS FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.

Allows callers to determne the set of mechanismtypes avail able on

the Il ocal system This call is intended for support of specialized

call ers who need to request non-default mech_type sets from

GSS_Acquire_cred(), and should not be needed by other callers.
2.4.3. GSS _Comnpare_nane cal

| nput s:

Li nn [Page 38]

RFC 1508 Generic Security Interface Sept ember 1993

o namel | NTERNAL NAME
0 nane2 | NTERNAL NANE
Cut put s:

o nmmjor_status | NTEGER,
o mnor_status | NTEGER
o name_equal BOOLEAN

Return maj or _status codes:

o

GSS_COWPLETE i ndi cates that nanel and nanme2 were conparabl e, and
that the nane_equal result indicates whether nanel and nane2 were
equal or unequal

GSS _BAD NAMETYPE i ndicates that one or both of namel and nane2
contai ned internal type specifiers uninterpretable by the
supporting GSS-API inplenentation, or that the two nanes’ types
are different and inconparable, so the equality conparison could
not be conpl et ed.

GSS BAD NAME i ndi cates that one or both of the input nanmes was
ill-formed in terms of its internal type specifier, so the
equal ity conparison could not be conpleted.

GSS _FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API |evel.

Allows callers to conpare two internal nanme representations for

equality.
2.4.4. GSS Display_nane cal
| nput s:
o name | NTERNAL NAME
Cut put s:
o nmmjor_status | NTEGER,
o mnor_status | NTEGER
o name_string OCTET STRI NG
Li nn [Page 39]

RFC 1508 Generic Security Interface Sept ember 1993

o

name_t ype OBJECT | DENTI FI ER

Return maj or _status codes:

o

GSS_COVWPLETE i ndicates that a valid printable name representation
is available in the returned nane_string.

GSS BAD NAMETYPE i ndicates that the provided name was of a type
uni nterpretable by the supporting GSS-API inplenentation, so no
printable representation could be generated.

GSS BAD NAME indicates that the contents of the provided nane were
i nconsistent with the internally-indicated nane type, so no
printable representation could be generated.

GSS _FAILURE indicates that the requested operation could not be
performed for reasons unspecified at the GSS-API |evel.

Allows callers to translate an internal nane representation into a
printable formw th associ ated nanespace type descriptor. The syntax
of the printable formis a local matter.

2. 4. GSS I mport _name cal
| nput s:
o input_name_string OCTET STRI NG
0 input_nanme_type OBJECT | DENTIFI ER
Qut put s:
0 major_status | NTEGER,
0 mnor_status | NTEGER
0 out put _nanme | NTERNAL NANME

Return maj or _status codes:

o

Li nn

GSS_COWPLETE indicates that a valid nane representation is output
i n output_nanme and described by the type value in
out put _name_t ype.

GSS_BAD NAMETYPE i ndicates that the input_name_type is unsupported

by the GSS-API inplenentation, so the inport operation could not
be conpl et ed.

[Page 40]

RFC 1508 Generic Security Interface Sept ember 1993

0 GSS BAD NAME indicates that the provided i nput_nanme_string is
ill-formed in terms of the input_name_type, so the inport
operation could not be conpleted.

0 GSS FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API |evel.

Allows callers to provide a printable nane representation, designate
the type of namespace in conjunction with which it shoul d be parsed,
and convert that printable representation to an internal form
suitable for input to other GSS-API routines. The syntax of the
input_nanme is a local matter.

2.4.6. GSS_Rel ease_nane cal
I nput s:
o name | NTERNAL NAME
Qut put s:
0 major_status | NTEGER
0 mnor_status | NTEGER

Return maj or _status codes:

0 GSS _COWPLETE indicates that the storage associated with the input
nane was successfully rel eased.

0 GSS BAD NAME indicates that the input nane argunent did not
contain a valid namne.

0 GSS FAILURE indicates that the requested operation could not be
performed for reasons unspecified at the GSS-API |evel.

Allows callers to rel ease the storage associated with an interna
name representation.

2.4.7. GSS Rel ease buffer cal
| nput s:
o buffer OCTET STRI NG
CQut put s:

o nmmjor_status | NTEGER,

Li nn [Page 41]

RFC 1508 Generic Security Interface Sept ember 1993

o mnor_status | NTEGER
Return maj or _status codes:

0 GSS _COWPLETE indicates that the storage associated with the input
buf fer was successfully rel eased.

0 GSS FAILURE indicates that the requested operation could not be
performed for reasons unspecified at the GSS-API |evel.

Allows callers to rel ease the storage associated with an OCTET STRI NG
buf fer allocated by another GSS-API call

2.4.8. GSS Rel ease_oi d_set cal
I nput s:
o buffer SET OF OBJECT | DENTIFI ER
Qut put s:
0 major_status | NTEGER
0 mnor_status | NTEGER
Return maj or _status codes:

0 GSS _COWPLETE indicates that the storage associated with the input
object identifier set was successfully rel eased.

0 GSS FAILURE indicates that the requested operation could not be
performed for reasons unspecified at the GSS-API |evel.

Allows callers to rel ease the storage associated with an object
identifier set object allocated by another GSS-API call

3. Mechani sm Speci fic Exanpl e Scenari os

This section provides illustrative overviews of the use of various
candi dat e nmechani smtypes to support the GSS-API. These di scussions
are intended primarily for readers famliar with specific security
technol ogi es, denobnstrating how GSS-API functions can be used and

i mpl enent ed by candi date underlyi ng nechani sns. They shoul d not be
regarded as constrictive to inplenmentations or as defining the only
nmeans through whi ch GSS-API functions can be realized with a
particul ar underlying technol ogy, and do not denonstrate all GSS-API
features with each technol ogy.

Li nn [Page 42]

RFC 1508 Generic Security Interface Sept ember 1993

3.1. Kerberos V5, single-TGI

OS-specific login functions yield a TGT to the | ocal real m Kerberos
server; TGT is placed in a credentials structure for the client.
Client calls GSS Acquire_cred() to acquire a cred_handle in order to
reference the credentials for use in establishing security contexts.

Client calls GSS Init_sec_context(). |If the requested service is
located in a different realm GSS_Init_sec_context() gets the
necessary TGI/key pairs needed to traverse the path fromlocal to
target realm these data are placed in the owner’s TGI cache. After
any needed renpte real mresolution, GSS Init_sec context() yields a
service ticket to the requested service with a correspondi ng session
key; these data are stored in conjunction with the context. GSS-API
code sends KRB TGS _REQ request(s) and receives KRB TGS _REP
response(s) (in the successful case) or KRB _ERROR

Assum ng success, GSS Init_sec _context() builds a Kerberos-formatted
KRB _AP_REQ nmessage, and returns it in output_token. The client sends
the out put_token to the service.

The service passes the received token as the input_token argunent to
GSS _Accept _sec_context(), which verifies the authenticator, provides
the service with the client’s authenticated name, and returns an

out put _cont ext _handl e.

Both parties now hold the session key associated with the service
ticket, and can use this key in subsequent GSS Sign(), GSS Verify(),
GSS _Seal (), and GSS Unseal () operations.

3.2. Kerberos V5, doubl e-TGI
TGT acqui sition as above.

Note: To avoi d unnecessary frequent invocations of error paths when
i npl enenting the GSS-API atop Kerberos V5, it seens appropriate to
represent "single-TGI K-V5" and "doubl e-TGT K-V5" with separate
nmech_types, and this discussion nmakes that assunption

Based on the (specified or defaulted) mech_type,

GSS Init_sec_context() determnes that the doubl e-TGI protoco

shoul d be enpl oyed for the specified target. GSS Init_sec_context()
returns GSS_CONTI NUE_NEEDED nmj or _status, and its returned

out put _token contains a request to the service for the service's TGI.
(I'f a service TGT with suitably long remaining lifetime already
exists in a cache, it my be usable, obviating the need for this
step.) The client passes the output_token to the service. Note: this
scenario illustrates a different use for the GSS_CONTI NUE NEEDED

Li nn [Page 43]

RFC 1508 Generic Security Interface Sept ember 1993

status return facility than for support of nutual authentication
note that both uses can coexi st as successive operations within a
si ngl e context establishnment operation

The service passes the received token as the input_token argunent to
GSS Accept _sec_context(), which recognizes it as a request for TGI.
(Note that current Kerberos V5 defines no intra-protocol mechanismto
represent such a request.) GSS Accept _sec_context() returns
GSS_CONTI NUE_NEEDED nmj or _status and provides the service's TGT in
its output_token. The service sends the output_token to the client.

The client passes the received token as the input_token argunment to a
continuation of GSS Init_sec _context(). GSS Init_sec_context() caches
the received service TGI and uses it as part of a service ticket
request to the Kerberos authentication server, storing the returned
service ticket and session key in conjunction with the context.

GSS Init_sec_context() builds a Kerberos-formatted authenticator,
and returns it in output_token along with GSS COVPLETE return

nmaj or _status. The client sends the output_token to the service.

Servi ce passes the received token as the input_token argunent to a
continuation call to GSS Accept_sec_context().

GSS _Accept _sec_context() verifies the authenticator, provides the
service with the client’s authenticated nane, and returns

nmaj or _status GSS_COVPLETE

GSS _Sign(), GSS Verify(), GSS_Seal (), and GSS Unseal () as above.
3.3. X. 509 Authentication Franework

This exanple illustrates use of the GSS-API in conjunction with
publ i c-key mechani snms, consistent with the X 509 Directory
Aut henti cati on FraneworKk.

The GSS _Acquire_cred() call establishes a credentials structure,
maki ng the client’s private key accessible for use on behalf of the
client.

The client calls GSS Init_sec_context(), which interrogates the
Directory to acquire (and validate) a chain of public-key
certificates, thereby collecting the public key of the service. The
certificate validation operation determ nes that suitable signatures
were applied by trusted authorities and that those certificates have
not expired. GSS Init_sec_context() generates a secret key for use
i n per-nessage protection operations on the context, and enciphers
that secret key under the service' s public key.

The enci phered secret key, along with an authenticator quantity

Li nn [Page 44]

RFC 1508 Generic Security Interface Sept ember 1993

signed with the client’s private key, is included in the output_token
fromGSS Init_sec _context(). The output token also carries a
certification path, consisting of a certificate chain | eading from
the service to the client; a variant approach would defer this path
resolution to be perforned by the service instead of being asserted
by the client. The client application sends the output_token to the
servi ce.

The service passes the received token as the input_token argunent to
GSS _Accept _sec_context(). GSS Accept_sec_context() validates the
certification path, and as a result determ nes a certified binding
between the client’s distinguished name and the client’s public key.
G ven that public key, GSS Accept_sec_context() can process the

i nput _token's authenticator quantity and verify that the client’s
private key was used to sign the input_token. At this point, the
client is authenticated to the service. The service uses its private
key to deci pher the enci phered secret key provided to it for per-
nessage protection operations on the context.

The client calls GSS Sign() or GSS Seal () on a data nessage, which
causes per-nessage authentication, integrity, and (optional)
confidentiality facilities to be applied to that nessage. The service
uses the context’s shared secret key to perform correspondi ng

GSS Verify() and GSS Unseal () calls.

4., Related Activities

In order to inplement the GSS-APlI atop existing, energing, and future
security nmechani sns:

object identifiers nmust be assigned to candi date GSS- API
nmechani sns and the nane types whi ch they support

concrete data el ement fornats nust be defined for candi date
mechani sns

Calling applications nmust inmplenment formatting conventions which wll
enabl e themto distinguish GSS-API tokens fromother data carried in
their application protocols.

Concrete | anguage bindings are required for the progranm ng

environnents in which the GSS-APlI is to be enpl oyed; such bindings
for the C language are available in an associ ated RFC

Li nn [Page 45]

RFC 1508 Generic Security Interface Sept ember 1993

5.

7.

Acknowl edgnent s

This proposal is the result of a collaborative effort.

Acknowl edgrments are due to the many menbers of the | ETF Security Area
Advi sory Group (SAAG and the Common Aut henticati on Technol ogy (CAT)
Working Group for their contributions at nmeetings and by el ectronic
mai | . Acknow edgnments are al so due to Kannan Al agappan, Doug Barl ow,
Bill Brown, diff Kahn, Charlie Kaufnman, Butler Lanpson, Richard
Pitkin, Joe Tardo, and John Way of Digital Equipnent Corporation
and John Carr, John Kohl, Jon Rochlis, Jeff Schiller, and Ted T so of
M T and Project Athena. Joe Pato and Bill Sommerfeld of HP/ Apoll o,
Wal't Tuvell of OSF, and Bill Giffith and Mke Merritt of AT&T,

provi ded inputs which helped to focus and clarify directions.
Precursor work by Richard Pitkin, presented to neetings of the
Trusted Systens Interoperability Goup (TSIG, helped to denpnstrate
the value of a generic, nechani smindependent security service API.

Security Considerations

Security issues are discussed throughout this neno.
Aut hor’ s Address

John Linn

Geer Zol ot Associ ates

One Main St

Canbridge, MA 02142 USA

Phone: +1 617.374.3700
Emai | : Li nn@za. com

Li nn [Page 46]

RFC 1508 Generic Security Interface Sept ember 1993

APPENDI X A
PACS AND AUTHORI ZATI ON SERVI CES

Consi derati on has been given to nodi fying the GSS-APlI service
interface to recogni ze and nmani pul ate Privilege Attribute
Certificates (PACs) as in ECVA 138, carrying authorization data as a
side effect of establishing a security context, but no such
nodi fi cati ons have been incorporated at this tinme. This appendi x
provides rationale for this decision and di scusses conpatibility
alternatives between PACs and the GSS- APl which do not require that
PACs be nade visible to GSS-API callers.

Exi sting candi date nmechani smtypes such as Kerberos and X. 509 do not
i ncor porate PAC nani pul ati on features, and exclusion of such
mechani snms fromthe set of candidates equipped to fully support the
GSS- APl seens inappropriate. Inclusion (and GSS-APlI visibility) of a
feature supported by only a limted nunber of mechanisnms could
encour age the devel opnent of ostensibly portable applications which
woul d in fact have only linmted portability.

The status quo, in which PACs are not visible across the GSS-API
interface, does not preclude inplenentations in which PACs are
carried transparently, within the tokens defined and used for certain
nmech_types, and stored within peers’ credentials and context-I|eve
data structures. Wile invisible to APl callers, such PACs coul d be
used by operating systemor other local functions as inputs in the
course of nmediating access requests nmade by callers. This course of
action allows dynam c sel ection of PAC contents, if such selection is
adm nistratively-directed rather than caller-directed

In a distributed conputing environnent, authentication nust span
different systens; the need for such authentication provides
notivation for GSS-API definition and usage. Heterogeneous systens in
a network can intercomunicate, with globally authenticated nanes
conpri sing the comobn bond between |ocally defined access contro
policies. Access control policies to which authentication provides
inputs are often local, or specific to particular operating systens
or environnents. If the GSS-API made particul ar authorization nodels
visible across its service interface, its scope of application would
beconme | ess general. The current GSS-API paradigmis consistent with
the precedent set by Kerberos, neither defining the interpretation of
aut hori zation-rel ated data nor enforcing access controls based on
such data

The GSS-APlI is a general interface, whose callers may reside inside

or outside any defined TCB or NTCB boundaries. Gven this
characteristic, it appears nore realistic to provide facilities which

Li nn [Page 47]

RFC 1508 Generic Security Interface Sept ember 1993

provi de "val ue-added" security services to its callers than to offer
facilities which enforce restrictions on those callers. Authorization
deci si ons nmust often be nedi ated bel ow the GSS-API level in a loca
manner against (or in spite of) applications, and cannot be

sel ectively invoked or omtted at those applications’ discretion

G ven that the GSS-API’s placenent prevents it fromproviding a
conprehensive solution to the authorization issue, the value of a
partial contribution specific to particular authorization nodels is
debat abl e.

APPENDI X B
VECHANI SM- | NDEPENDENT TOKEN FORNVAT

Thi s appendi x specifies a nechani smindependent |evel of
encapsul ati ng representation for the initial token of a GSS-API

cont ext establishnent sequence, incorporating an identifier of the
mechani smtype to be used on that context. Use of this format (wth
ASN. 1- encoded data el ements represented in BER, constrained in the
interests of parsing sinplicity to the D stinguished Encodi ng Rul e
(DER) BER subset defined in X 509, clause 8.7) is reconmended to the
desi gners of GSS-API inplementations based on various nechani sns, so
that tokens can be interpreted unanbi guously at GSS-APlI peers. There
is no requirenent that the nmechani smspecific innerContextToken

i nner MsgToken, and seal edUserData data el ements be encoded in ASN. 1
BER.

-- optional top-level token definitions to
-- franme different nechani sns

GSS-API DEFINITIONS :: =
BEG N

MechType ::= OBJECT | DENTI FI ER
-- data structure definitions

-- callers nust be able to distinguish anmong

-- I nitial Context Token, Subsequent Cont ext Token
-- PerMsgToken, and Seal edMessage data el ements
-- based on the usage in which they occur

I ni tial ContextToken ::=
-- option indication (delegation, etc.) indicated within
-- mechani smspecific token
[APPLI CATI ON O] I MPLICI T SEQUENCE {
thi sMech MechType
i nner Cont ext Token ANY DEFI NED BY t hi sMech

Li nn [Page 48]

RFC 1508 Generic Security Interface Sept ember 1993

-- contents nechani smspecific

}

Subsequent Cont ext Token :: = i nner Cont ext Token ANY
-- interpretation based on predecessor Initial ContextToken

Per MsgToken :: =
-- as entted by GSS Sign and processed by GSS Verify
i nner MsgToken ANY

Seal edMessage :: =
-- as entted by GSS Seal and processed by GSS Unsea
-- includes internal, nechani smdefined indicator
-- of whether or not encrypted
seal edUser Dat a ANY

END
APPENDI X C
MECHANI SM DESI GN CONSTRAI NTS

The foll owi ng constraints on GSS-API nechani sm designs are adopted in
response to observed caller protocol requirenents, and adherence
thereto is anticipated in subsequent descriptions of GSS-API

mechani sns to be documented in standards-track |nternet

speci fications.

Use of the approach defined in Appendix B of this specification,
appl ying a mechanismtype tag to the Initial ContextToken, is
required.

It is strongly reconmended that nechani sns of fering per-nessage
protection services also offer at |east one of the replay detection
and sequenci ng services, as nechanisns offering neither of the latter
will fail to satisfy recognized requirenents of certain candi date
cal l er protocols.

Li nn [Page 49]

