Net wor k Wor ki ng Group Sun M crosystens, |Inc.
Request for Comments: 1094 March 1989

NFS: Network File System Protocol Specification
STATUS OF THI S MEMO

Thi s RFC describes a protocol that Sun M crosystens, Inc., and others
are using. A new version of the protocol is under devel oprment, but
others nay benefit fromthe descriptions of the current protocol, and
di scussi on of sonme of the design issues. Distribution of this meno
is unlimted.

1. 1 NTRODUCTI ON

The Sun Network Filesystem (NFS) protocol provides transparent renote
access to shared files across networks. The NFS protocol is designed
to be portable across different machi nes, operating systens, network
architectures, and transport protocols. This portability is achieved
through the use of Renote Procedure Call (RPC) primtives built on
top of an eXternal Data Representation (XDR). |Inplenentations

al ready exist for a variety of machines, from personal conputers to
super conput ers.

The supporting mount protocol allows the server to hand out renpte
access privileges to a restricted set of clients. It performnms the
operating systemspecific functions that allow, for exanple, to
attach renote directory trees to sone local file system

1.1. Renote Procedure Cal

Sun’s Renote Procedure Call specification provides a procedure-
oriented interface to renote services. Each server supplies a
"progranf that is a set of procedures. NFS is one such program The
conbi nati on of host address, program nunber, and procedure numnber
specifies one renpte procedure. A goal of NFS was to not require any
specific level of reliability fromits lower levels, so it could
potentially be used on many underlying transport protocols, or even
anot her renote procedure call inplenentation. For ease of

di scussion, the rest of this docunent will assunme NFS is inpl enented
on top of Sun RPC, described in RFC 1057, "RPC. Renote Procedure
Call Protocol Specification".

1.2. External Data Representation

The eXternal Data Representation (XDR) standard provides a conmon way
of representing a set of data types over a network. The NFS Protoco

Sun M crosystens, |Inc. [Page 1]

RFC 1094 NFS: Network File System March 1989

Specification is witten using the RPC data description |anguage.

For nore information, see RFC 1014, "XDR External Data
Representati on Standard". Although automated RPC/ XDR conpil ers exi st
to generate server and client "stubs", NFS does not require their
use. Any software that provides equivalent functionality can be
used, and if the encoding is exactly the sane it can interoperate
with ot her inplenentations of NFS.

1.3. Stateless Servers

The NFS protocol was intended to be as statel ess as possible. That
is, a server should not need to nmmintain any protocol state

i nformati on about any of its clients in order to function correctly.
Statel ess servers have a distinct advantage over stateful servers in
the event of a failure. Wth stateless servers, a client need only
retry a request until the server responds; it does not even need to
know t hat the server has crashed, or the network tenporarily went
down. The client of a stateful server, on the other hand, needs to
either detect a server failure and rebuild the server’'s state when it
cones back up, or cause client operations to fail

This may not sound |ike an inmportant issue, but it affects the
protocol in some unexpected ways. W feel that it may be worth a bit
of extra conmplexity in the protocol to be able to wite very sinple
servers that do not require fancy crash recovery. Note that even if
a so-called "reliable" transport protocol such as TCP is used, the
client nust still be able to handle interruptions of service by re-
openi ng connections when they time out. Thus, a stateless protoco
may actually sinplify the inplementation

On the other hand, NFS deals with objects such as files and

directories that inherently have state -- what good would a file be
if it did not keep its contents intact? The goal was to not
i ntroduce any extra state in the protocol itself. Inherently

stateful operations such as file or record | ocking, and renote
execution, were inplenented as separate services, not described in
thi s docunent.

The basic way to sinplify recovery was to make operations as
"idenpotent" as possible (so that they can potentially be repeated).
Sone operations in this version of the protocol did not attain this
goal ; luckily nmost of the operations (such as Read and Wite) are

i dempotent. Al so, npbst server failures occur between operations, not
bet ween the receipt of an operation and the response. Finally,

al t hough actual server failures may be rare, in conplex networks,
failures of any network, router, or bridge may be indistinguishable
froma server failure

Sun M crosystens, Inc. [Page 2]

RFC 1094 NFS: Network File System March 1989

2. NFS PROTOCCL DEFI NI TION

Servers change over tinme, and so can the protocol that they use. RPC
provi des a version nunber with each RPC request. This RFC describes
version two of the NFS protocol. Even in the second version, there
are a few obsol ete procedures and paraneters, which will be renopved
in later versions. An RFC for version three of the NFS protocol is
currently under preparation

2.1. File System Mde

NFS assunes a file systemthat is hierarchical, with directories as
all but the bottomlevel of files. Each entry in a directory (file,
directory, device, etc.) has a string name. Different operating
systens may have restrictions on the depth of the tree or the nanes
used, as well as using different syntax to represent the "pathnanme",
which is the concatenation of all the "conmponents" (directory and
file names) in the nane. A "file system is a tree on a single
server (usually a single disk or physical partition) with a specified
"root". Some operating systens provide a "nount" operation to make
all file systens appear as a single tree, while others nmaintain a
"forest" of file systens. Files are unstructured streans of
uninterpreted bytes. Version 3 of NFS uses slightly nore genera
file system nodel.

NFS | ooks up one conponent of a pathnanme at a tinme. |t may not be
obvious why it does not just take the whol e pat hname, trai pse down
the directories, and return a file handle when it is done. There are
several good reasons not to do this. First, pathnanes need
separators between the directory conponents, and different operating
systens use different separators. W could define a Network Standard
Pat hname Representation, but then every pat hname woul d have to be
parsed and converted at each end. Qher issues are discussed in
section 3, NFS Inplenmentation |Issues.

Al though files and directories are sinlar objects in many ways,

di fferent procedures are used to read directories and files. This
provi des a network standard format for representing directories. The
same argunent as above could have been used to justify a procedure
that returns only one directory entry per call. The problemis
efficiency. Directories can contain many entries, and a renote cal
to return each would be just too slow.

2.2. Server Procedures
The protocol definition is given as a set of procedures with

argunents and results defined using the RPC | anguage (XDR | anguage
extended with program version, and procedure declarations). A brief

Sun M crosystens, Inc. [Page 3]

RFC 1094 NFS: Network File System March 1989

description of the function of each procedure should provi de enough
information to allow inplenmentation. Section 2.3 describes the basic
data types in nore detail

Al'l of the procedures in the NFS protocol are assuned to be
synchronous. Wen a procedure returns to the client, the client can
assune that the operation has conpleted and any data associated with
the request is now on stable storage. For exanple, a client WRITE
request may cause the server to update data bl ocks, filesystem

i nformation bl ocks (such as indirect blocks), and file attribute
information (size and nodify tines). Wien the WRITE returns to the
client, it can assune that the wite is safe, even in case of a
server crash, and it can discard the data witten. This is a very

i mportant part of the statel essness of the server. |If the server
waited to flush data fromrenote requests, the client would have to
save those requests so that it could resend themin case of a server
crash.

/*
* Remote file service routines
*/
program NFS_PROGRAM {
versi on NFS_VERSI ON {

voi d

NFSPROC NULL(voi d) = 0;
attrstat

NFSPROC_GETATTR(f handl e) =1
attrstat

NFSPROC SETATTR(sattrargs) = 2;
voi d

NFSPROC_ROOT(voi d) = 3;
di ropres

NFSPROC _LOOKUP(di r opar gs) = 4;
readl i nkres

NFSPROC_READLI NK(f handl e) = 5;
readres

NFSPROC_READ(r eadar gs) = 6;
voi d

NFSPROC_W\RI TECACHE(voi d) =7

Sun M crosystens, Inc. [Page 4]

RFC 1094 NFS: Network File System March 1989

attrstat

NFSPROC WRI TE(wr i t ear gs) = §;
di ropres

NFSPROC_CREATE(cr eat ear gs) = 9;
st at

NFSPROC REMOVE(di r opar gs) = 10;
st at

NFSPROC_RENAME(r enamear gs) = 11;
st at

NFSPROC_LI NK(Ii nkar gs) = 12;
st at

NFSPROC_SYMLI NK(sym i nkar gs) = 13;
di ropres

NFSPROC MKDI R(cr eat ear gs) = 14;
st at

NFSPROC_RVDI R(di r opar gs) = 15;
readdirres

NFSPROC READDI R(r eaddi r ar gs) = 16;
statfsres

NFSPROC_STATFS(f handl e) = 17;

} =2
} = 100003;

2.2.1. Do Nothing

voi d
NFSPROC _NULL(void) = 0;

Thi s procedure does no work. It is nmade available in all RPC
services to allow server response testing and tim ng.

2.2.2. Get File Attributes

attrstat
NFSPROC_GETATTR (fhandle) = 1;

If the reply status is NFS OK, then the reply attributes contains the
attributes for the file given by the input fhandle.

Sun M crosystens, Inc. [Page 5]

RFC 1094 NFS: Network File System March 1989

2.2.3. Set File Attributes

struct sattrargs {
fhandle fil e;
sattr attributes;

b

attrstat
NFSPROC _SETATTR (sattrargs) = 2;

The "attributes” argument contains fields which are either -1 or are
the new value for the attributes of "file". |If the reply status is
NFS OK, then the reply attributes have the attributes of the file
after the "SETATTR' operation has conpl et ed

Notes: The use of -1 to indicate an unused field in "attributes" is
changed in the next version of the protocol

2.2.4. Get Filesystem Root

voi d
NFSPRCC _ROOT(void) = 3;

obsol ete. This procedure is no |onger used because finding the root
file handl e of a fil esystemrequires noving pathnanes between client
and server. To do this right, we would have to define a network
standard representati on of pathnames. Instead, the function of

| ooking up the root file handle is done by the MNTPROC MNT procedure.
(See Appendi x A, "Munt Protocol Definition", for details).

2.2.5. Look Up File Nane

di ropres
NFSPROC _LOOKUP(di ropargs) = 4;

If the reply "status" is NFS OK, then the reply "file" and reply
"attributes" are the file handle and attributes for the file "name"
in the directory given by "dir" in the argunent.

2.2.6. Read From Synbolic Link

union readlinkres switch (stat status) {
case NFS X
pat h data
defaul t:
voi d;
3

Sun M crosystens, Inc. [Page 6]

RFC 1094 NFS: Network File System March 1989

readl i nkres
NFSPROC _READLI NK(f handl e) = 5;

If "status" has the value NFS_OK, then the reply "data" is the data
in the synmbolic link given by the file referred to by the fhandle
argument .

Notes: Since NFS al ways parses pat hnames on the client, the pathnane
in a synbolic link may nean sonething different (or be neaningl ess)
on a different client or on the server if a different pathname syntax
i s used.

2.2.7. Read FromFile

struct readargs {
fhandle file;
unsi gned of f set;
unsi gned count;
unsi gned total count;

b

uni on readres switch (stat status) {
case NFS_ K

fattr attributes;

nfsdata data
defaul t:

b

readr es
NFSPROC READ(r eadar gs) = 6;

voi d;

Returns up to "count" bytes of "data" fromthe file given by "file",
starting at "offset" bytes fromthe beginning of the file. The first
byte of the file is at offset zero. The file attributes after the
read takes place are returned in "attributes".

Notes: The argument "total count” is unused, and is renoved in the
next protocol revision

2.2.8. Wite to Cache

voi d
NFSPROC_WRI TECACHE(voi d) = 7;

To be used in the next protocol revision.

Sun M crosystens, Inc. [Page 7]

RFC 1094 NFS: Network File System March 1989

2.2.9. Wite to File

struct witeargs {
fhandle file;
unsi gned begi nof f set ;
unsi gned of fset;
unsi gned total count;
nf sdata data

b

attrstat
NFSPROC WRI TE(wri teargs) = 8;

Wites "data" beginning "of fset" bytes fromthe beginning of "file".
The first byte of the file is at offset zero. |If the reply "status"
is NFS OK, then the reply "attributes" contains the attributes of the
file after the wite has conpleted. The wite operation is atomc.
Data fromthis "WRITE" will not be mixed with data from anot her
client’s "WRI TE".

Notes: The argunments "begi noffset" and "total count"” are ignored and
are renmoved in the next protocol revision.

2.2.10. Create File

struct createargs {
di ropargs where;
sattr attributes;

b

di ropres
NFSPROC CREATE(createargs) = 9;

The file "name" is created in the directory given by "dir". The
initial attributes of the newfile are given by "attributes". A
reply "status" of NFS K indicates that the file was created, and
reply "file" and reply "attributes" are its file handl e and

attributes. Any other reply "status" neans that the operation failed
and no file was created.

Notes: This routine should pass an exclusive create flag, meaning
"create the file only if it is not already there"

2.2.11. Renove File

st at
NFSPROC_REMOVE(di r opargs) = 10;

Sun M crosystens, Inc. [Page 8]

RFC 1094 NFS: Network File System March 1989

The file "nane" is renoved fromthe directory given by "dir". A
reply of NFS OK nmeans the directory entry was renoved.

Not es: possi bly non-idenpotent operation.
2.2.12. Renane File

struct renameargs {
di ropargs from
di ropargs to;

b

st at
NFSPROC RENAME(r enaneargs) = 11;

The existing file "fromnanme" in the directory given by "fromdir" is
renamed to "to.nanme" in the directory given by "to.dir". If the
reply is NFS OK, the file was renamed. The RENAME operation is
atomic on the server; it cannot be interrupted in the mddle.

Not es: possi bly non-idenpotent operation.
2.2.13. Create Link to File
Procedure 12, Version 2.

struct linkargs {
fhandl e from
di ropargs to;

b

st at
NFSPROC_LI NK(1i nkargs) = 12;

Creates the file "to.name” in the directory given by "to.dir", which
is ahard link to the existing file given by "fronf. |[If the return
value is NFS OK, a link was created. Any other return val ue

i ndicates an error, and the |link was not created.

A hard link should have the property that changes to either of the
linked files are reflected in both files. When a hard link is made
to afile, the attributes for the file should have a val ue for
"nlink" that is one greater than the value before the |ink.

Not es: possi bly non-idenpotent operation.

Sun M crosystens, Inc. [Page 9]

RFC 1094 NFS: Network File System March 1989

2.2.14. Create Synbolic Link

struct syminkargs {
di ropargs from
path to;
sattr attributes;

b

st at
NFSPROC_SYMLI NK(sym i nkargs) = 13;

Creates the file "fromnane" with ftype NFLNK in the directory given
by "fromdir". The new file contains the pathnanme "to" and has
initial attributes given by "attributes". |If the return value is
NFS_OK, a link was created. Any other return value indicates an
error, and the link was not created.

A synbolic link is a pointer to another file. The nane given in "to"
is not interpreted by the server, only stored in the newmy created
file. Wien the client references a file that is a synbolic link, the
contents of the synbolic link are normally transparently
reinterpreted as a pathname to substitute. A READLINK operation
returns the data to the client for interpretation

Notes: On UNI X servers the attributes are never used, since synbolic
i nks al ways have node 0777.

2.2.15. Create Directory

di ropres
NFSPROC MKDI R (createargs) = 14;

The new directory "where.nane" is created in the directory given by
"where.dir". The initial attributes of the new directory are given
by "attributes”. A reply "status" of NFS OK indicates that the new
directory was created, and reply "file" and reply "attributes" are
its file handle and attributes. Any other reply "status" neans that
the operation failed and no directory was created.

Not es: possi bly non-idenpotent operation.
2.2.16. Renove Directory

st at
NFSPROC _RMDI R(di ropargs) = 15;

Sun M crosystens, Inc. [Page 10]

RFC 1094 NFS: Network File System March 1989

The existing enpty directory "nane" in the directory given by "dir"
is renoved. If the reply is NFS K, the directory was renoved.

Not es: possi bly non-idenpotent operation.
2.2.17. Read FromDirectory

struct readdirargs {
fhandl e dir;
nf scooki e cooki e;
unsi gned count;

b

struct entry {
unsi gned fil eid;
fil enane nane;
nf scooki e cooki e;
entry *nextentry;

b

union readdirres switch (stat status) {
case NFS K
struct {
entry *entries;
bool eof;
} readdirok;
defaul t:

b

readdirres
NFSPROC READDI R (readdirargs) = 16;

voi d;

Returns a variabl e nunber of directory entries, with a total size of
up to "count” bytes, fromthe directory given by "dir". If the
returned value of "status" is NFS OK then it is followed by a

vari abl e nunber of "entry"s. Each "entry" contains a "fileid" which
consi sts of a unique nunber to identify the file within a fil esystem
the "name" of the file, and a "cookie" which is an opaque pointer to
the next entry in the directory. The cookie is used in the next
READDI R call to get nore entries starting at a given point in the
directory. The special cookie zero (all bits zero) can be used to
get the entries starting at the beginning of the directory. The
"fileid" field should be the sane nunmber as the "fileid" in the the
attributes of the file. (See section "2.3.5. fattr" under "Basic
Data Types".) The "eof" flag has a value of TRUE if there are no
nore entries in the directory.

Sun M crosystens, Inc. [Page 11]

RFC 1094 NFS: Network File System March 1989

2.2.18. GCet FilesystemAttributes

uni on statfsres (stat status) {
case NFS K
struct {
unsi gned tsi ze;
unsi gned bsi ze;
unsi gned bl ocks;
unsi gned bfree;
unsi gned bavai |
} info;
def aul t:

b

statfsres
NFSPROC_STATFS(f handl e) = 17;

voi d;

If the reply "status" is NFS OK, then the reply "info" gives the
attributes for the filesystemthat contains file referred to by the
i nput fhandle. The attribute fields contain the follow ng val ues:
tsize The optimumtransfer size of the server in bytes. This is
the nunber of bytes the server would |ike to have in the
data part of READ and WRI TE requests.
bsi ze The bl ock size in bytes of the fil esystem
bl ocks The total nunber of "bsize" bl ocks on the fil esystem

bfree The nunber of free "bsize" bl ocks on the filesystem

bavail The nunber of "bsize" bl ocks available to non-privil eged
users.
Notes: This call does not work well if a filesystemhas variable

si ze bl ocks.
2.3. Basic Data Types

The following XDR definitions are basic structures and types used in
ot her structures described further on

2.3.1. stat
enum st at {

NFS OK = 0,
NFSERR PERMEL,

Sun M crosystens, Inc. [Page 12]

RFC 1094 NFS: Network File System March 1989

NFSERR _NOENT=2,
NFSERR | O=5,
NFSERR_NXI O=6,
NFSERR_ACCES=13,
NFSERR_EXI ST=17,
NFSERR_NODEV=19,
NFSERR_NOTDI R=20,
NFSERR_| SDI R=21,
NFSERR_FBI G=27,
NFSERR_NOSPC=28,
NFSERR_ROFS=30,
NFSERR_NAMETOOLONG=63,
NFSERR_NOTEMPTY=66,
NFSERR_DQUOT=69,
NFSERR_STALE=70,
NFSERR_WFLUSH=99

b

The "stat" type is returned with every procedure’s results. A value
of NFS OK indicates that the call conpleted successfully and the
results are valid. The other values indicate some kind of error
occurred on the server side during the servicing of the procedure.
The error values are derived from UN X error nunbers.

NFSERR_PERM
Not owner. The caller does not have correct ownership to perform
the requested operation.

NFSERR_NCENT
No such file or directory. The file or directory specified does
not exi st.

NFSERR | O
Sone sort of hard error occurred when the operation was in
progress. This could be a disk error, for exanple.

NFSERR_NXI O
No such devi ce or address.

NFSERR _ACCES
Perm ssion denied. The caller does not have the correct
perm ssion to performthe requested operation.

NFSERR_EXI ST
File exists. The file specified al ready exists.

NFSERR_NODEV
No such devi ce.

Sun M crosystens, Inc. [Page 13]

RFC 1094 NFS: Network File System March 1989

NFSERR_NOTDI R
Not a directory. The caller specified a non-directory in a
directory operation.

NFSERR | SDI R
Is a directory. The caller specified a directory in a non-
directory operation.

NFSERR_FBI G
File too large. The operation caused a file to grow beyond the
server’'s limt.

NFSERR_NOSPC
No space left on device. The operation caused the server’s
filesystemto reach its limt.

NFSERR_RCFS
Read-only filesystem Wite attenpted on a read-only fil esystem

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too |ong.

NFSERR_NOTEMPTY
Directory not enpty. Attenpted to renpve a directory that was not

enpty.
NFSERR _DQUOT

Di sk quota exceeded. The client’s disk quota on the server has
been exceeded.

NFSERR_STALE
The "fhandle" given in the arguments was invalid. That is, the
file referred to by that file handle no | onger exists, or access
to it has been revoked.

NFSERR_WFLUSH

The server’'s wite cache used in the "WRI TECACHE" call got flushed
to disk.

Sun M crosystens, Inc. [Page 14]

RFC 1094 NFS: Network File System March 1989

2.

2.

2.3.4.

2.

3.

3.

3.

2.

3.

5.

ftype

enum ftype {
NFNON
NFREG
NFDI R
NFBLK
NFCHR
NFLNK

LI T e | I T
abhwOWNEFO

b

The enuneration "ftype" gives the type of a file. The type NFNON
indicates a non-file, NFREGis a regular file, NFDIR is a
directory, NFBLK is a bl ock-special device, NFCHR is a character-
speci al device, and NFLNK is a synbolic link

f handl e
typedef opaque fhandl e[FHSI ZE] ;

The "fhandle" is the file handl e passed between the server and the
client. Al file operations are done using file handles to refer
to afile or directory. The file handl e can contain whatever

i nformati on the server needs to distinguish an individual file.

ti nmeval

struct tinmeval {
unsi gned int seconds;
unsi gned i nt useconds;

b

The "timeval " structure is the nunber of seconds and nicroseconds
since m dni ght January 1, 1970, G eenwich Mean Time. It is used
to pass time and date information

fattr
struct fattr {

ftype type;
unsi gned i nt node;
unsi gned int nlink
unsi gned int uid;
unsi gned int gid,;
unsi gned int size;
unsi gned int bl ocksi ze;
unsi gned int rdev;
unsi gned int bl ocks;

Sun M crosystens, Inc. [Page 15]

RFC 1094 NFS: Network File System March 1989

unsi gned int fsid;
unsigned int fileid;

ti neval ati me;
ti meval ninme;
ti nmeval ctine;

b

The "fattr" structure contains the attributes of a file; "type" is
the type of the file; "nlink" is the nunber of hard links to the
file (the nunber of different nanes for the same file); "uid" is
the user identification nunber of the owner of the file; "gid" is
the group identification nunber of the group of the file; "size"
is the size in bytes of the file; "blocksize" is the size in bytes
of a block of the file; "rdev" is the device nunber of the file if
it is type NFCHR or NFBLK; "blocks" is the number of blocks the
file takes up on disk; "fsid" is the file systemidentifier for
the filesystemcontaining the file; "fileid" is a nunmber that
uniquely identifies the file withinits filesystem "atime" is the
time when the file was | ast accessed for either read or wite;
"mime" is the time when the file data was last nodified
(witten); and "ctine" is the time when the status of the file was
| ast changed. Witing to the file also changes "ctine" if the
size of the file changes.

"Modde" is the access node encoded as a set of bits. Notice that
the file type is specified both in the node bits and in the file
type. This is really a bug in the protocol and will be fixed in
future versions. The descriptions given bel ow specify the bit
posi tions using octal nunbers.

0040000 This is a directory; "type" field should be NFD R

0020000 This is a character special file; "type" field should
be NFCHR

0060000 This is a block special file; "type" field should be
NFBLK.

0100000 This is a regular file; "type" field should be NFREG

0120000 This is a synbolic link file; "type" field should be
NFLNK.

0140000 This is a named socket; "type" field shoul d be NFNON.

0004000 Set wuser id on execution

0002000 Set group id on execution

0001000 Save swapped text even after use.

0000400 Read perm ssion for owner.

0000200 Wite perm ssion for owner.

0000100 Execute and search perm ssion for owner.

0000040 Read perm ssion for group

0000020 Wite perm ssion for group

0000010 Execute and search pernission for group

Sun M crosystens, Inc. [Page 16]

RFC 1094 NFS: Network File System March 1989

0000004 Read perm ssion for others.
0000002 Wite pernission for others.
0000001 Execute and search pernission for others.

Notes: The bits are the same as the node bits returned by the
stat(2) systemcall in UNIX. The file type is specified both in
the node bits and in the file type. This is fixed in future
versi ons.

The "rdev" field in the attributes structure is an operating
system speci fic device specifier. It will be renoved and
generalized in the next revision of the protocol

2.3.6. sattr

struct sattr {
unsi gned i nt node;
unsi gned int uid;
unsi gned int gid;
unsi gned int size;
ti meval ati ne;
ti meval ntime;

b
The "sattr" structure contains the file attributes which can be
set fromthe client. The fields are the sane as for "fattr"
above. A "size" of zero neans the file should be truncated. A
value of -1 indicates a field that should be ignored.
2.3.7. filenane
typedef string fil enane<MAXNAM_EN>

The type "filenanme" is used for passing file names or pathnane
conmponent s.

2.3.8. path
typedef string pat h<MAXPATHLEN>
The type "path" is a pathnane. The server considers it as a
string with no internal structure, but to the client it is the
nane of a node in a filesystemtree.

2.3.9. attrstat

union attrstat switch (stat status) {
case NFS_K

Sun M crosystens, Inc. [Page 17]

RFC 1094 NFS: Network File System March 1989

fattr attributes;
defaul t:

voi d;
}s

The "attrstat" structure is a comon procedure result. It
contains a "status" and, if the call succeeded, it al so contains
the attributes of the file on which the operation was done.

2.3.10. diropargs

struct diropargs {
fhandle dir;
fil enane nane;

H
The "diropargs" structure is used in directory operations. The
"fhandl e" "dir" is the directory in which to find the file "nane".
A directory operation is one in which the directory is affected.

2.3.11. diropres

union diropres switch (stat status) {

case NFS_K
struct {
fhandle file;
fattr attributes;
} diropok;
defaul t:
voi d;
b
The results of a directory operation are returned in a "diropres"”
structure. |If the call succeeded, a new file handle "file" and

the "attributes" associated with that file are returned along with
the "status".

3. NFS | MPLEMENTATI ON | SSUES
The NFS protocol was designed to allow different operating systenms to
share files. However, since it was designed in a UNI X environment,
many operations have senmantics simlar to the operations of the UN X
file system This section discusses sone of the inplenentation-
specific details and semantic issues.

3.1. Server/Cient Relationship

The NFS protocol is designed to allow servers to be as sinple and

Sun M crosystens, Inc. [Page 18]

RFC 1094 NFS: Network File System March 1989

general as possible. Sonetines the sinplicity of the server can be a
problem if the client wants to inplenent conplicated fil esystem
semanti cs.

For exanple, sone operating systenms allow renoval of open files. A
process can open a file and, while it is open, renove it fromthe
directory. The file can be read and witten as long as the process
keeps it open, even though the file has no name in the fil esystem

It is inpossible for a stateless server to inplenent these senantics.
The client can do some tricks such as renaming the file on renove,
and only renoving it on close. W believe that the server provides
enough functionality to inplenment nost file system semantics on the
client.

Every NFS client can also potentially be a server, and renote and

| ocal mounted fil esystens can be freely interm xed. This leads to
some interesting problems when a client travels down the directory
tree of a renpote filesystem and reaches the nmount point on the server
for another renpote filesystem Allowi ng the server to follow the
second renote nount would require | oop detection, server |ookup, and
user revalidation. Instead, we decided not to let clients cross a
server’s nount point. Wen a client does a LOOKUP on a directory on
whi ch the server has nounted a filesystem the client sees the
underlying directory instead of the nounted directory.

For exanple, if a server has a file systemcalled "/usr" and nounts

another file systemon "/usr/src", if a client nounts "/usr", it
does NOT see the mounted version of "/usr/src". A client could do
renote nounts that match the server’s nmount points to maintain the
server’'s view. In this exanple, the client would al so have to nount
“fusr/src" in addition to "/usr", even if they are fromthe sane
server.

3.2. Pathnanme Interpretation

There are a few conplications to the rule that pathnanes are al ways
parsed on the client. For exanple, synbolic |inks could have
different interpretations on different clients. Another conmon
problem for non-UN X i npl ementations is the special interpretation of
the pathname ".." to nean the parent of a given directory. The next
revi sion of the protocol uses an explicit flag to indicate the parent
i nst ead.

3.3. Permission |ssues
The NFS protocol, strictly speaking, does not define the perm ssion

checki ng used by servers. However, it is expected that a server wll
do normal operating system perm ssion checking using AUTH UNI X style

Sun M crosystens, Inc. [Page 19]

RFC 1094 NFS: Network File System March 1989

aut hentication as the basis of its protection nechanism The server
gets the client's effective "uid", effective "gid", and groups on
each call and uses themto check pernission. There are various
problems with this method that can been resolved in interesting ways.

Using "uid" and "gid" inplies that the client and server share the
same "uid" list. Every server and client pair nmust have the sane
mappi ng fromuser to "uid" and fromgroup to "gid". Since every
client can also be a server, this tends to inply that the whole
networ k shares the sanme "uid/gid' space. AUTH DES (and the next
revi sion of the NFS protocol) uses string nanes instead of nunbers,
but there are still conplex problens to be sol ved

Anot her problem arises due to the usually stateful open operation
Most operating systems check perm ssion at open tinme, and then check
that the file is open on each read and wite request. Wth statel ess
servers, the server has no idea that the file is open and nust do
perm ssi on checking on each read and wite call. On a loca
filesystem a user can open a file and then change the perm ssions so
that no one is allowed to touch it, but will still be able to wite
to the file because it is open. On a renote filesystem by contrast,
the wite would fail. To get around this problem the server’s

perm ssi on checking algorithmshould allow the ower of a file to
access it regardl ess of the perm ssion setting.

A simlar problemhas to do with paging in froma file over the
network. The operating system usually checks for execute permni ssion
before opening a file for demand pagi ng, and then reads bl ocks from
the open file. The file may not have read perm ssion, but after it
is opened it does not matter. An NFS server can not tell the

di fference between a normal file read and a denand page-in read. To
make this work, the server allows reading of files if the "uid" given
in the call has either execute or read pernission on the file.

In nost operating systems, a particular user (on UNI X, the user ID
zero) has access to all files no matter what pernission and ownership
they have. This "super-user" perm ssion may not be allowed on the
server, since anyone who can becone super-user on their workstation
could gain access to all renpte files. The UNI X server by default
maps user id O to -2 before doing its access checking. This works
except for NFS root filesystens, where super-user access cannot be
avoi ded.

3.4. RPC Information
Aut henti cati on

The NFS service uses AUTH UNI X; AUTH DES, or AUTH SHORT style
aut hentication, except in the NULL procedure where AUTH NONE is

Sun M crosystens, Inc. [Page 20]

RFC 1094 NFS: Network File System March 1989

al so al | owned.

Transport Protocols
NFS is supported normally on UDP

Port Nunber
The NFS protocol currently uses the UDP port nunber 2049. This is
not an officially assigned port, so later versions of the protoco
use the "Portmappi ng" facility of RPC

3.5. Sizes of XDR Structures

These are the sizes, given in deciml bytes, of various XDR
structures used in the protocol

/*

* The maxi mum nunmber of bytes of data in a READ or WRITE
* request.

*/

const MAXDATA = 8192

[* The maxi mum nunber of bytes in a pathnane argument. */
const MAXPATHLEN = 1024;

/* The maxi num nunber of bytes in a file name argunent. */
const MAXNAMLEN = 255

/* The size in bytes of the opaque "cookie" passed by READD R */
const COCKI ESI ZE = 4,

/* The size in bytes of the opaque file handle. */
const FHSI ZE = 32;

3.6. Setting RPC Paraneters

Various file system paraneters and opti ons should be set at nount
time. The nount protocol is described in the appendi x bel ow. For
exanpl e, "Soft" nmounts as well as "Hard" nounts are usually both
provided. Soft mounted file systens return errors when RPC
operations fail (after a given nunber of optional retransm ssions),
while hard nounted file systens continue to retransmt forever. The
maxi mumtransfer sizes are inplenentation dependent. For efficient
operation over a |local network, 8192 bytes of data are normally used.
This may result in |ower-level fragnentation (such as at the IP
level). Since some network interfaces may not allow such packets,
for operation over slower-speed networks or hosts, or through

gat eways, transfer sizes of 512 or 1024 bytes often provide better
results.

Sun M crosystens, Inc. [Page 21]

RFC 1094 NFS: Network File System March 1989

Clients and servers nay need to keep caches of recent operations to
hel p avoi d problenms with non-idenpotent operations. For exanple, if
the transport protocol drops the response for a Renpve File
operation, upon retransm ssion the server may return an error code of
NFSERR _NOENT instead of NFS OK. But if the server keeps around the

| ast operation requested and its result, it could return the proper
success code. O course, the server could be crashed and rebooted
bet ween retransm ssions, but a small cache (even a single entry)

woul d sol ve nost probl ens.

Sun M crosystens, Inc. [Page 22]

RFC 1094 NFS: Network File System March 1989

A 1.

A 2.

A 3.

Sun

Appendi x A. MOUNT PROTOCOL DEFI NI TI ON

I nt roducti on
The nount protocol is separate from but related to, the NFS
protocol. It provides operating systemspecific services to get the
NFS of f the ground -- |ooking up server path names, validating user

identity, and checking access perm ssions. Cients use the nount
protocol to get the first file handle, which allows thementry into a
renote fil esystem

The nount protocol is kept separate fromthe NFS protocol to nake it
easy to plug in new access checking and validati on nethods wi thout
changi ng the NFS server protocol

Notice that the protocol definition inplies stateful servers because
the server maintains a list of client’s nount requests. The nount
list information is not critical for the correct functioning of
either the client or the server. It is intended for advisory use
only, for exanple, to warn possible clients when a server is going
down.

Versi on one of the nount protocol is used with version two of the NFS
protocol. The only information conmuni cated between these two
protocols is the "fhandl e" structure.

RPC | nformati on

Aut hent i cati on
The nount service uses AUTH UNI X and AUTH NONE styl e
aut hentication only.

Transport Protocol s
The nmount service is supported on both UDP and TCP

Port Nunber
Consult the server’s portnapper, described in RFC 1057, "RPC.
Renote Procedure Call Protocol Specification", to find the port
nunber on which the nount service is registered.

Si zes of XDR Structures

These are the sizes, given in deciml bytes, of various XDR
structures used in the protocol

[* The maxi mum nunber of bytes in a pathnane argument. */
const IMNTPATHLEN = 1024;

M crosystens, |nc. [Page 23]

RFC 1094 NFS: Network File System March 1989

A 4.

A 4.

A 4.

A 4.

A 4.

Sun

/* The maxi num nunber of bytes in a name argunent. */
const MNTNAMLEN = 255;

/* The size in bytes of the opaque file handle. */
const FHSIZE = 32;

Basi ¢ Data Types

This section presents the data types used by the nmount protocol. In
many cases they are simlar to the types used in NFS.

1. fhandle

typedef opaque fhandl e[FHSI ZE] ;
The type "fhandle" is the file handle that the server passes to the
client. Al file operations are done using file handles to refer to
afile or directory. The file handle can contai n whatever
i nformati on the server needs to distinguish an individual file.

This is the sane as the "fhandle" XDR definition in version 2 of the
NFS protocol; see section "2.3.3. fhandle" under "Basic Data Types".

2. fhstatus

union fhstatus switch (unsigned status) {

case O:
fhandl e directory;

defaul t:
voi d;

}

The type "fhstatus" is a union. |If a "status" of zero is returned,

the call conpleted successfully, and a file handle for the
"directory" follows. A non-zero status indicates some sort of error
In this case, the status is a UNI X error nunber.
3. dirpath

typedef string dirpat h<MNTPATHLEN>
The type "dirpath" is a server pathnane of a directory.
4. nane

typedef string nanme<MNTNAMLEN>

The type "name" is an arbitrary string used for various nanes.

M crosystens, |nc. [Page 24]

RFC 1094 NFS: Network File System March 1989

A 5. Server Procedures

The foll owi ng sections define the RPC procedures supplied by a nount

server.
/*
* Protocol description for the nount program
*/
pr ogr am MOUNTPROG {
/*
* Version 1 of the nount protocol used with
* version 2 of the NFS protocol.
*/
versi on MOUNTVERS {
voi d
MOUNTPROC_NULL(voi d) = 0;
f hst at us
MOUNTPROC_MNT(di rpath) = 1;
mount | i st
MOUNTPROC_DUMP(voi d) = 2;
voi d
MOUNTPROC_UMNT(di rpath) = 3;
voi d
MOUNTPROC_UMNTALL(void) = 4;
exportli st
MOUNTPROC_EXPORT(voi d) = 5;
P =L
} = 100005;
A.5.1. Do Nothing
voi d
MNTPROC_NULL(void) = 0;
Thi s procedure does no work. It is made available in all RPC

services to allow server response testing and tim ng.
A.5.2. Add Munt Entry

f hst at us
IMNTPROC_MNT(di rpath) = 1;

Sun M crosystens, Inc. [Page 25]

RFC 1094 NFS: Network File System March 1989

If the reply "status" is 0, then the reply "directory" contains the
file handle for the directory "dirnane". This file handle may be
used in the NFS protocol. This procedure also adds a new entry to
the mount list for this client nounting "dirname".

A.5.3. Return Mount Entries

struct *mountlist {
name host nane;
di rpath directory;
mount | i st nextentry;

b

mount | i st
MNTPROC _DUMP(voi d) = 2;

Returns the list of renote nmounted fil esystens. The "mountlist”
contains one entry for each "hostnane" and "directory" pair

A . 5.4. Renove Munt Entry

voi d
IMNTPROC_UMNT(di rpath) = 3;

Renoves the mount |ist entry for the input "dirpath".
A.5.5. Rermove Al Munt Entries

voi d
MNTPROC UMNTALL(voi d) = 4;

Rermoves all of the mount |list entries for this client.
A.5.6. Return Export List

struct *groups {
name grnane;
groups grnext;

b

struct *exportlist {
dirpath fil esys;
gr oups groups;
exportlist next;

b

exportli st
MNTPROC_EXPORT(voi d) = 5;

Sun M crosystens, Inc. [Page 26]

RFC 1094 NFS: Network File System March 1989

Returns a variabl e nunber of export list entries. Each entry
contains a filesystemnane and a |ist of groups that are allowed to
import it. The filesystemnanme is in "filesys", and the group nane
isinthe list "groups".

Not es: The exportlist should contain nmore infornmation about the
status of the filesystem such as a read-only flag.

Aut hor’ s Addr ess:
Bill Now cKki
Sun M crosystens, |Inc.
Mai |l Stop 1-40
2550 Garci a Avenue
Mount ai n Vi ew, CA 94043
Phone: (415) 336-7278

Emai | : now cki @SUN. COM

Sun M crosystens, Inc. [Page 27]

