Net wor k Wor ki ng Group G Trewtt

Request for Comments: 1076 Stanford University
osol etes: RFC 1023 C. Partridge
BBN/ NNSC

Novenber 1988

HEMS Monitoring and Control Language

TABLE OF CONTENTS

1. Status of This Meno 1

I ntroducti on 2
2. Overvi ew and Scope 2
3. Overvi ew of Query Processor QOperation 4
4, Encodi ng of Queries and Responses 5
4.1 Notation Used in This Proposal 5
5. Dat a Organi zation 6
5.1 Exanple Data Tree 7
5.2 Arrays 8
6. Conponents of a Query 9
7. Reply to a Query 10
8. Query Language 12
8.1 Moving Around in the Data Tree 14
8.2 Retrieving Data 15
8.3 Data Attributes 16
8.4 Exam ning Menory 18
8.5 Control Qperations: Mdifying the Data Tree 19
8.6 Associative Data Access: Filters 21
8.7 Terminating a Query 26
9. Ext endi ng the Set of Val ues 27
10. Authori zation 27
11. FErrors 28
l. ASN. 1 Descriptions of Query Language Conponents 29
.1 Operation Codes 30
.2 Error Returns 31
.3 Filters 33
.4 Attributes 34
.5 VendorSpecific 36
I1. Inplenmentation Hnts 36
I11. Cbtaining a Copy of the ASN. 1 Specification 42

=

STATUS OF TH 'S MEMO
This RFC specifies a query |anguage for nonitoring and control of

network entities. This RFC supercedes RFC-1023, extending the query
| anguage and providi ng nore discussion of the underlying issues.

Trewitt & Partridge [Page 1]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

Thi s |l anguage is a component of the H gh-Level Entity Monitoring
System (HEMS) described in RFC-1021 and RFC-1022. Readers nay w sh
to consult these RFCs when reading this neno. RFC 1024 contains
det ai |l ed assi gnnents of numbers and structures used in this system
Portions of RFC- 1024 that define query |anguage structures are
superceded by definitions in this meno. This nmenbp assunes a

know edge of the | SO data encodi ng standard, ASN. 1.

Distribution of this menpo is unlimted.
| NTRODUCTI ON

This RFC specifies the design of a general -purpose, yet efficient,
noni toring and control | anguage for nanagi ng network entities. The
data in the entity is nodeled as a hierarchy and specific itens are
nanmed by giving the path fromthe root of the tree. Mst itens are
read-only, but some can be "set" in order to performcontro
operations. Both requests and responses are represented using the
| SO ASN. 1 data encodi ng rul es.

2. OVERVI EW AND SCOPE

The basi c nodel of nonitoring and control used in this meno is that a
query is sent to a nonitored entity and the entity sends back a
response. The termquery is used in the database sense -- it nmay
request information, nodify data, or both. W wll use gateway-
oriented exanples, but it should be understood that this query-
response mechanismis applicable to any IP entity.

In particular, there is no notion of an interactive "conversation" as
in SMIP [RFC-821] or FTP [RFC-959]. A query is a conplete request
that stands on its own and elicits a conplete response.

In order to design the query | anguage, we had to define a nodel for
the data to be retrieved by the queries, which required sone
under st andi ng of and assunptions to be nade about the data. W ended
up with a fairly flexible data nodel, which places fewlimts on the
type or size of the data

VWher ever possible, we give notivations for the design decisions or
assunptions that led to particular features or definitions. Sone of
the inportant gl obal considerations and assunptions are:

- The query processor should place as little conputationa
burden on the nonitored entity as possible.

- It should not be necessary for a nonitored entity to store
the complete query. Nothing in the query |anguage shoul d

Trewitt & Partridge [Page 2]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

preclude an inplenmentation frombeing able to process the
query on the fly, producing portions of the response while
the query is still being read and parsed. There may be
other constraints that require | arge anbunts of data to be
buf fered, but the query | anguage desi gn nmust not be one.

- It is assuned that there is some nechanismto transport a
sequence of octets to a query processor within the
nonitored entity and that there is some nechanismto return
a sequence of octets to the entity making the query. In
HEMS, this is provided by HEMP and its underlying transport
| ayer. The query | anguage design is independent of these
details, however, and could be grafted onto sone other
pr ot ocol

- The data nodel nust provide organization for the data, so
that it can be conveniently named.

- Much of the data to be nonitored will be contained in
tables. Sone tables nay contain other tables. The query
| anguage shoul d be able to deal with such tables.

- W& don't provide capabilities for data reduction in the
query language. W will provide for data selection, for
exanple, only retrieving certain table entries, but we wll
not provide general facilities for processing data, such as
conputi ng aver ages.

- Because one nonitoring center may be queryi ng nany
(possi bly hetrogenous) hosts, it nust be possible to wite
generic queries that can be sent to all hosts, and have the
query elicit as much information as is available from each
host. i.e., queries nmust not be aborted just because they
request ed non-exi stent data.

There were sonme assunptions that we specifically did not make:

- It is up to the inplenentation to choose what degree of

concurrency will be allowed when processing queries. By

| ocking only portions of the database, it should be
possi bl e to achi eve good concurrency while still preventing
deadl| ock.

- This specification makes no statenent about the use of the
"definite" and "indefinite" length forms in ASN.1. There
is currently sone debate about this usage in the |SO
conmuni ty; inplementors should note the reconmendations in
the ASN. 1 specification.

Trewitt & Partridge [Page 3]

RFC 1076

HEMS Monitoring and Control Language Noverber 1988

O her RFCs associated with HEMS are:

RFC- 1021
RFC- 1022
RFC- 1024

Overvi ew;
Transport protocol and message encapsul ati on;
Preci se data definitions.

The rest of this report is organized as foll ows:

Section 3

Sect i

Sect i

Sect i

Sect i

Sect i

Sect i

Sect i

Sect i

on

on

on

on

on

on

on

on

10

11

Appendi x |

Appendi x |

Gves a brief overview of the data nodel and the
operation of the query processor.

Descri bes the encodi ng used for queries and
responses, and the notation used to represent them
in this report.

Descri bes how the data is organized in the
nonitored entity, and the view provided of it by
the query processor.

Descri bes the basic data types that nmay be given
to the query processor as input.

Describes how a reply to a query is organized.

Descri bes the operations available in the query
| anguage.

Descri bes how the set of data in the tree may be
ext ended.

Descri bes how aut hori zation issues affect the
execution of a query.

Descri bes how errors are reported, and their
ef fect on the processing of the query.

G ves precise ASN. 1 definitions of the data types
used by the query processor

G ves extensive inplementation hints for the core
of the query processor

3. OVERVI EW OF QUERY PROCESSOR OPERATI ON

In this section,

processor,

we give an overview of the operation of the query
to provide a framework for the later sections.

The query | anguage nodel s the nanageabl e data as a tree, with each

Trewitt & Partridge

[Page 4]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

branch representing a different aspect of the entity, such as
different |ayers of protocols. Subtrees are further divided to
provi de additional structure to the data. The |eaves of the tree
contain the actual data.

G ven this data representation, the task of the query processor is to
traverse this tree and retrieve (or nodify) data specified in a
guery. A query consists of instructions to nove around in the tree
and to retrieve (or nodify) naned data. The result of a query is an
exact inmage of the parts of the tree that the query processor

vi si t ed.
The query processor is very sinple -- it only understands ei ght
comuands, nost of which share the same structure. It is helpful to

think of the query processor as an automaton that wal ks around in the
tree, directed by commands in the query. As it noves around, it
copies the tree structure it traverses to the query result. Data
that is requested by the query is copied into the result as well.
Data that is changed by a query is copied into the result after the
nodi fication i s nade.

4. ENCODI NG OF QUERI ES AND RESPONSES

Bot h queries and responses are encoded using the representation
defined in | SO Standard ASN. 1 (Abstract Syntax Notation 1). ASN. 1
represents data as sequences of <tag,|ength,contents> triples that
are encoded as a stream of octets. The data tuples may be
recursively nested to represent structured data such as arrays or
records. For a full description, see the |1SO standards IS 8824 and
IS 8825. See appendi x for information about obtaining these
docunent s.

4.1 Notation Used in This Proposa

The notation used in this nmenb is simlar to that used in ASN. 1, but

|l ess formal, snmaller, and (hopefully) easier to read. We wll refer
to a <tag,length,contents> tuple as a "data object". |In this RFC, we
will not be concerned with the details of the object Iengths. They
exist in the actual ASN. 1 encoding, but will be onitted in the

exanpl es here.

Dat a objects that have no internal ASN. 1 structure such as integer or
octet string are referred to as "sinple types" or "sinple objects".
Obj ects which are constructed out of other ASN. 1 data objects will be
referred to as "conposite types" or "conposite objects".

Trewitt & Partridge [Page 5]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

The notation

| D(val ue)
represents a sinple object whose tag is "ID'" with the given value. A
conposite object is represented as

ID{ ... contents ... }
where contents is a sequence of data objects. The contents nmay
i nclude both sinple and structured types, so the structure is fully
recursive.

The difference between sinple and conmposite types is close to the
meani ng of the "constructor” bit in ASN.1. For the uses here, the
di stinction is nade based upon the semantics of the data, not the
representation. Therefore, even though an CctetString can be
represented in ASN. 1 using either constructed or non-constructed
fornms, it is conceptually a sinple type, with no internal structure,

and will always be witten as
I D("sonme arbitrary string")
inthis RFC

There are situations where it is necessary to specify a type but give
no val ue, such as when referring to the nane of the data. |In this
situation, the sane notation is used, but with the value omtted:

ID or 1D() or I O{}
Such obj ects have zero length and no contents. The latter two forms
are used when a distinction is being made between sinple and
conposite data, but the difference is just notation -- the
representation is the samne.

ASN. 1 di stingui shes between four "classes" of tags: universal
application-specific, context-dependent, and reserved. HEMS and this
guery |l anguage use the first three. Universal tags are assigned in
the ASN. 1 standard and its addenduns for comon types, and are
under st ood by any application using ASN. 1. Application-specific tags
are limted in scope to a particular application. These are used for
"wel | -known" identifiers that nust be recognizable in any context,
such as derived data types. Finally, context-dependent tags are used
for objects whose neaning is dependent upon where they are
encountered. Mst tags that identify data are context-dependent.

5. DATA ORGANI ZATI ON

Data in a nonitored entity is nodeled as a hierarchy.

| mpl enentations are not required to organize the data internally as a
hi erarchy, but they nust provide this view of the data through the
qguery language. A hierarchy offers useful structure for the
fol |l owi ng operati ons:

Trewitt & Partridge [Page 6]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

Organi zati on A hierarchy allows related data to be grouped
together in a natural way.

Nam ng The nane of a piece of data is just the path fromthe
root to the data of interest.

Mappi ng onto ASN. 1
ASN. 1 can easily represent a hierarchy by using a
"constructor" type as an envel ope for an entire
subtree.

Effici ent Representation
Hi erarchi cal structures are conpact and can be
traversed quickly.

Saf e Locki ng If it is necessary to | ock part of the hierarchy (for
exanpl e, when doing an update), |ocking an entire
subtree can be done efficiently and safely, with no
danger of deadl ock.

W will use the term"data tree" to refer to this entire structure
Note that this internal nmodel is conpletely independent of the
external ASN. 1 representation -- any other suitable representation

woul d do. For the sake of efficiency, we do nake a one-to-one
mappi ng between ASN. 1 tags and the (internal) nanmes of the nodes.
The sane coul d be done for any other external representation

Each node in the hierarchy nmust have nanes for its conmponent parts.

Al t hough we woul d normally think of names as being ASCI| strings such
as "input errors", the actual name is just an ASN.1 tag. Such names
are small integers (typically, less than 30) and so can easily be
mapped by the nonitored entity onto its internal representation

We use the term"dictionary" to nean an internal node in the
hi erarchy. Leaf nodes contain the actual data. A dictionary nmay
contain both | eaf nodes and other dictionaries.

5.1 Exanpl e Data Tree
Here is a possible organization of the hierarchy in an entity that

has several network interfaces and does IP routing. The exact
organi zation of data in entities is specified in RFC-1024. This

skel etal data tree will be used throughout this RFC in query
exanpl es.
System {
name -- host nane
cl ock- nsec -- nsec since boot

Trewitt & Partridge [Page 7]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

interfaces -- # of interfaces
nmenory

Interfaces { -- one per interface
InterfaceData{ address, ntu, netMask, ARP{...}, ... }
InterfaceData{ address, ntu, netMask, ARP{...}, ... }

3

| PRout i ng {

Entry{ ip-addr, interface, cost, ... }

Entry{ ip-addr, interface, cost, ... }

}

There are three top-level dictionaries in this hierarchy (System
Interfaces, and | PRouting) and three other dictionary types
(I'nterfaceData, Entry, and ARP), each with nultiple instances.

The "name" of the clock in this entity would be:
system{ cl ock-nsec }

and the name of a routing table entry’s I P address woul d be:
| PRouting{ Entry{ ip-addr } }.

More than one piece of data can be nanmed by a single ASN. 1 object.
The entire collection of systeminformation is naned by:

system
and the nane of a routing table’'s | P address and cost woul d be:

| PRouti ng{ Entry{ ip-addr, cost } }.

5.2 Arrays

There is one sub-type of a dictionary that is used as the basis for
tables of objects with identical types. W call these dictionaries
arrays. In the exanple above, the dictionaries for interfaces,
routing tables, and ARP tables are all arrays.

In the exanpl es above, the "ip-addr"” and "cost" fields are naned. In
fact, these names refer to the field values for ALL of the routing
table entries -- the nanme doesn’t (and can’'t) specify which routing
table entry is intended. This anbiguity is a problem wherever data
is organized in tables. |If there was a neaningful index for such
tables (e.g., "routing table entry #1"), there would be no probl em
Unfortunately, there usually isn't such an index. The solution to
this problemrequires that the data be accessed on the basis of sone
of its content. Filters, discussed in section 8.6, provide this
mechani sm

The primary difference between arrays and plain dictionaries is that

Trewitt & Partridge [Page 8]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

arrays nay contain only one type of item while dictionaries, in
general, will contain many different types of itens. For exanple,
the dictionary | PRouting (which is an array) will contain only itens
of type Entry.

The fact that these objects are viewed externally as arrays or tables
does not nean that they are represented in an inplenentation as
linear lists of objects. Any collection of sane-typed objects is
viewed as an array, even though it might be stored internally in some
other format, for exanple, as a hash table.

6. COVMPONENTS OF A QUERY

A HEMS query consists of a sequence of ASN. 1 objects, interpreted by
a sinple stack-based interpreter. [Although we define the query

| anguage in terns of the operations of a stack machi ne, the | anguage
does not require an inplenentation to use a stack machine. This is a
wel | -under st ood nodel, and is easy to inplenent.] One ASN.1 tag is
reserved for operation codes; all other tags indicate data that wll
eventual |y be used by an operation. These objects are pushed onto
the stack when received. Opcodes are i medi ately executed and nay
renove or add items to the stack. Because ASN. 1 itself provides
tags, very little needs to be done to the incomng ASN. 1 objects to
nmake them suitable for use by the query interpreter.

Each ASN. 1 object in a query will fit into one of the follow ng
cat egori es:

Opcode An opcode tells the query interpreter to performan action
They are described in detail in section 8. Qpcodes are
represented by an application-specific type whose val ue
det erm nes the operation

Tenmpl ate These are objects that nane one or nore itens in the data
tree. Named itens may be either sinmple itenms (leaf nodes)
or entire dictionaries, in which case the entire subtree
"underneath" the dictionary is understood. Tenplates are
used to select specific data to be retrieved fromthe data
tree. Atenplate may be either sinple or structured,
dependi ng upon what it is naming. A tenplate only nanes

the data -- there are no values contained in it. Therefore
the leaf objects in a tenplate will all have a | ength of
zero.

Exanpl es of very sinple tenplates are:
nane() or Systen}

Each of these is just one ASN. 1 data object, with zero
length. The first nanes a single data itemin the "Systent

Trewitt & Partridge [Page 9]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

dictionary (and nust appear in that context), and the
second nanes the entire "Systeni dictionary. A nore
conpl ex tenpl ate such as:

Interfaces{ InterfaceData{ address, netMsk, ARP } }
nanes two sinple data itens and a dictionary, iterated over
all occurrences of "InterfaceData" within the Interfaces

array.
Pat h A path is a special case of a tenplate that nanmes only a
single node in the tree. It specifies a path down into the

dictionary tree and nanes exactly one node in the
dictionary tree.

Val ue These are used to give data val ues when needed in a query,
for exanple, when changing a value in the data tree. A
val ue can be thought of as either a filled-in tenplate or
as the ASN. 1 representation sone part of the data tree

Filter A bool ean expression that can be executed in the context of
a particular dictionary that is used to select or not
select itens in the dictionary. The expressions consist of

the primtives "equal", "greater-or-equal"”
"l ess-or-equal”, and "present" possibly joined by "and"
"or", and "not". (See section 8.6.)

Val ues, Paths, and Tenpl ates usually have nanes in the context-
dependent cl ass, except for a few special cases, which are in the
application-specific class.

7. REPLY TO A QUERY

The data returned to the nonitoring entity is a sequence of ASN. 1
data items. Conceptually, the reply is a subset of the data tree,
where the query selects which portions are to be included. This is
exactly true for data retrieval requests, and essentially true for
data nodification requests -- the reply contains the data after it
has been nodified. The key point is that the data in a reply
represents the state of the data tree inmedi ately after the query was
execut ed.

The sequence of the data is determ ned by the sequence of query

| anguage operations and the order of data itens within Tenpl ates and
Val ues given as input to these operations. |If a query requests data
fromtwo of the top-level dictionaries in the data tree, by giving
two tenpl ates such as:

Systen{ nane, interfaces }
I nterfaces{

Trewitt & Partridge [Page 10]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

InterfaceData { address, netMask, ntu }
}

then the response will consist of two ASN. 1 data objects, as foll ows:

System {
nane("system nane"),
i nterfaces(2)

Interfaces {
InterfaceData { address(36.8.0.1),
net Mask(FFFF0O000) ,
nt u(1500)

}

InterfaceData { address(10.1.0.1),
mt u(1008),
net Mask(FFO00000)
}

}

Wth few exceptions, each of the data itens in the hierarchy is named
in the context-specific ASN. 1 type space. Because of this, the
returned objects nmust be fully qualified. For example, the nane of
the entity nust always be returned encapsul ated inside an ASN. 1
object for "Systeni. |If it were not, there would be no way to tel

if the object that was returned was "name" inside the "Systent
dictionary or "address" inside the "interfaces" dictionary (assum ng
in this case that "nanme" and "address" were assigned the sanme integer
as their ASN. 1 tags).

Having fully-qualified data sinplifies decoding of the data at the
receiving end and allows the tags to be locally chosen. Definitions
for tags within routing tables won't conflict with definitions for
tags within interfaces. Therefore, the people doing the name
assignments are |less constrained. In addition, nost of the
identifiers will be fairly small integers, which is an advant age
because ASN. 1 can fit tag nunbers up to 30 in a one-octet tag field.
Larger nunbers require a second octet.

If data is requested that doesn’'t exist, either because the tag is
not defined, or because an inplementation doesn’t provide that data
(such as when the data is optional), the response will contain an
ASN. 1 object that is enmpty. The tag will be the same as in the
guery, and the object will have a |l ength of zero.

The sane response is given if the requested data does exist, but the

i nvoker of the query does not have authorization to access it. See
section 10 for nore discussion of authorization mechanisns.

Trewitt & Partridge [Page 11]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

This all ows conpletely generic queries to be conposed w thout regard
to whether the data is defined or inplenented at all of the entities
that will receive the query. Al of the available data will be
returned, wi thout generating errors that m ght otherw se term nate
the processing of the query.

8. QUERY LANGUAGE

The query | anguage is designed to be expressive enough to wite
useful queries with, yet sinple enough to be easy to inplement. The
guery processor should be as sinmple and fast as possible, in order to
avoid placing a burden on the nonitored entity, which nay be a
critical node such as a gateway.

Al 't hough queries are formed in a flexible way using what we terma
"l anguage", this is not a programm ng | anguage. There are operations
that operate on data, but nobst other features of progranm ng
| anguages are not present. In particular
- Prograns are not stored in the query processor

- The only formof tenporary storage is a stack, of linmted
dept h.

- There are no subroutines.

- There are no explicit control structures defined in the

| anguage.
The central elenment of the |anguage is the stack. It may contain
tenmpl ates, (and therefore paths), values, and filters taken fromthe
gquery. In addition, it can contain dictionaries (and therefore

arrays) fromthe data tree. At the beginning of a query, it contains
one item the root dictionary.

The overall operation consists of reading ASN. 1 objects fromthe

i nput stream Al objects that aren’t opcodes are pushed onto the
stack as soon as they are read. Each opcode is executed inmredi ately
and may renove itens fromthe stack, may generate ASN. 1 objects and
send themto the output stream and may | eave itenms on the stack
Because each input object is dealt with i mediately, portions of the
response may be generated while the query is still being received.

In the descriptions bel ow, operator nanmes are in capital letters,

preceded by the argunents used fromthe stack and followed by results
left on the stack. For exanple:

Trewitt & Partridge [Page 12]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

oP ab oP at
neans that the OP operator takes <a> and off of the
stack and |l eaves <t> on the stack. Most of the operators
in the query | anguage | eave the first operand (<a> in this
exanpl e) on the stack for future use.

If both <a> and were received as part of the query (as opposed to
bei ng cal cul ated by previous operations), then this part of the query
woul d have consi sted of the sequence:

<a>
<pb>
oP
So, like other stack-based | anguages, the argunents and operators
nmust be presented in postfix order, with an operator following its
oper ands.

Here is a summary of all of the operators defined in the query

| anguage. Most of the operators can take several different sets of
operands and behave differently based upon the operand types.
Detail s and exanples are given |ater.

BEA N dictl path BEGAN dictl dict
array path filter BEG N array dict
Move down in the data tree, establishing a context for
future operations.

END di ct END - -
Undo the nobst recent BEG N

CGET di ct CGET di ct
dict tenplate CGET dict
array tenplate filter GET array

Retrieve data fromthe data tree.

GET- ATTRI BUTES
di ct GET- ATTRI BUTES di ct
dict tenplate CET- ATTRI BUTES di ct
array tenplate filter CET- ATTRIBUTES array
Retrieve attribute information about data in the data tree.

GET-RANGE dict path start length GET- RANGE di ct
Retrieve a subrange of an CctetString. Used for reading
menory.

SET di ct val ue SET dict
array value filter SET array
Change values in the data tree, possibly performng control
functions.

Trewitt & Partridge [Page 13]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

CREATE array val ue CREATE di ct
Create new table entries.

DELETE array filter DELETE array
Del ete table entries.

These operators are defined so that it is inpossible to generate an
invalid query response. Since a response is supposed to be a
snapshot of a portion (or portions) of the data tree, it is inportant
that only data that is actually in the tree be put in the response.
Two features of the |anguage hel p guarantee this:

- Data is put in the response directly fromthe tree (by
CET-*). Data does not go fromthe tree to the stack and
then into the response.

- Dictionaries on the stack are all derived fromthe initial,
root dictionary. The operations that manipul ate
dictionaries (BEG N and END) al so update the response with
the new | ocation in the tree.

8.1 Moving Around in the Data Tree

The initial point of reference in the data tree is the root. That
is, operators name data starting at the root of the tree. It is
useful to be able to nmove to sone other dictionary in the tree and
then nanme data fromthat point. The BEG N operator noves down in the
tree and END undoes the | ast unmatched BEGQ N.

BEA N is used for two purposes:

- By noving to a dictionary closer to the data of interest,
the name of the data can be shorter than if the full nane
(fromthe root) were given.

- It is used to establish a context for filtered operations
to operate in. Filters are discussed in section 8.6.

BEA N dictl path BEA N dictl dict
Fol | ow <pat h> down the dictionary starting from <di ct 1>.
Push the final dictionary named by <path> onto the stack.
<pat h> nust nane a dictionary (not a |leaf node). At the
sanme tinme, produce the beginning octets of an ASN. 1 object
corresponding to the new dictionary. It is up to the
i mpl ementati on to choose between using the "indefinite
l ength" representation or the "definite I ength" form and
goi ng back and filling the length in later.

Trewitt & Partridge [Page 14]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

END di ct END --
Pop <dict> off of the stack and terninate the open ASN. 1
object(s) started by the matching BEG N. Mist be paired
with a BEGN. |If an END operation pops the root dictionary
of f of the stack, the query is term nated.

<path> nust point to a regular dictionary. |If any part of it refers
to a non-existent node, if it points to a |eaf node, or if it refers
to a node inside an array-type dictionary, then it is in error, and
the query is termnated i medi ately.

An additional formof BEG@ N, which takes a filter argunment, is
described | ater.

8.2 Retrieving Data

The basic nodel that all of the data retrieval operations followis
that they take a tenplate and fill in the | eaf nodes of the tenplate
with the appropriate data val ues.

GET dict tenplate GET dict
Emit an ASN. 1 object with the same "shape" as the given
tenpl ate, except with values filled in for each node. The
first ASN.1 tag of <tenplate> should refer to an object in
<dict> If a dictionary tag is supplied anywhere in
<tenplate> the entire dictionary contents are emtted to
the response. Any itenms in the tenplate that are not in
<dictionary> (or its conponents) are represented as objects
with a length of zero.

di ct GET dict
If there is no tenplate, get all of the itenms in the
dictionary. This is equivalent to providing a tenplate
that lists all of the items in the dictionary.

An additional formof GET, which takes a filter argunment, is
described | ater.

Here is an exanple of using the BEG N operator to nove down the data
tree to the TCP dictionary and then using the GET operator to
retrieve 5 data values fromthe TCP Stats dictionary:

| PTransport{ TCP } BEA N

Stats{ octetsln, octetsQut, inputPkts, outputPkts, badtag } GET
END

Trewitt & Partridge [Page 15]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

This mght return:

| PTransport{ TCP
Stats{ octetsln(13255), octetsQut(82323),
i nput Pkt s(9213), out put Pkts(12425), badtag() }

}

"badtag" is a tag value that is undefined. No value is returned for
it, indicating that there is no data value associated with it.

8.3 Data Attributes

Al t hough ASN. 1 "sel f-describes" the structure and syntax of the data,
it gives no information about what the data neans. For exanple, by

| ooking at the raw data, it is possible to tell that an itemis of
type [context 5] and is 4 octets long. That does not tell howto
interpret the data (is this an integer, an |IP address, or a 4-
character string?) or what the data neans (IP address of what?).

Even if the data were "tagged", in ASN. 1 parlance, that would only

gi ve the base type (e.g., |P-address or counter) and not the neaning.

Most of the time, this information will come from RFC- 1024, which

defines the ASN.1 tags and their precise neaning. Wen extensions
have been nade, it nmay not be possible to get docunentation on the
extensions. (Extensions are discussed in section 9.)

The GET- ATTRI BUTES operator is simlar to the GET operator, but
returns a set of attributes describing the data rather than the data
itself. This information is intended to be sufficient to let a human
understand the neaning of the data and to | et a sophisticated
application treat the data appropriately. Such an application could
use the attribute information to fornat the data on a display and
deci de whether it is appropriate to subtract one sanple from anot her

Sone of the attributes are textual descriptions to help a human
understand the nature of the data and provide neani ngful |abels for
it. Extensive descriptions of standard data are optional, since they
are defined in RFC-1024. Conpl ete descriptions of extensions nust be

avail abl e, even if they are docurmented in a user’s nmanual. Network
firefighters may not have a current manual handy when the network is
br oken.

The format of the attributes is not as sinple as the fornat of the
data itself. It isn't possible to use the data's tag, since that
woul d | ook exactly like the data itself. The format is:

Attributes ::= [APPLI CATION 3] | MPLICI T SEQUENCE {
t agASNL [0] I MPLICIT I NTEGER

Trewitt & Partridge [Page 16]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

val ueFor mat [1] I'MPLICIT | NTECER,

| ongDesc [2] IMPLICIT 1 A5String OPTI ONAL,

short Desc [3] IMPLICIT | A5String OPTI ONAL,

uni t sDesc [4] IMPLICIT I A5String OPTI ONAL,

preci si on [5] IMPLICIT | NTEGER OPTI ONAL,
properties [6] IMPLICIT BI TSTRI NG OPTI ONAL,

val ueSet [7] IMPLICIT SET OF val ueDesc OPTI ONAL
}

The GET- ATTRI BUTES operator is simlar to the GET operator. The
maj or difference is that dictionaries named in the tenplate do not
elicit data for the entire subtree.

CET- ATTRI BUTES
dict tenplate GET- ATTRI BUTES di ct

Emit a single ASN.1 Attributes object for each of the
objects nanmed in <tenplate> For each of these, the
tagASNL field will be set to the corresponding tag fromthe
tenmplate. The rest of the fields are set as appropriate
for the data object. Any itens in the tenplate that are
not in <dictionary> (or its conmponents) elicit an
Attributes object with a val ueFormat of NULL, and no ot her
descriptive informtion.

or
di ct CET- ATTRI BUTES di ct
If there is no tenplate, emt Attribute objects for all of
the items in the dictionary. This is equivalent to
providing a tenplate that lists all of the items in the
dictionary. This allows a conplete list of a dictionary's
contents to be obtained.

An addi tional form of GET- ATTRI BUTES, which takes a filter argunent,
is described | ater.

Here is an exanpl e of using the GET- ATTRI BUTES operator to request
attributes for three objects in the Systemdictionary:

System{ nane, badtag, clock-nsec } GET- ATTRI BUTES

"badtag" is some unknown tag. The result m ght be:

Syst en{
Attributes{
t agASN1(nane) ,
val ueFor mat (1 A5Stri ng),
| ongDesc(" The primary hostnane."),

Trewitt & Partridge [Page 17]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

short Desc(" host nane")
} H
Attributes{
t agASN1(badt ag), val ueFor mat (NULL)

}

Attributes{
t agASN1(cl ock- nsec),
val ueFor mat (| nt eger),
| ongDesc("m | liseconds since boot"),
short Desc("uptime"), unitsDesc("nms"
preci si on(4294967296) ,
properties(1)

}

Note that in this exanple "nane" and "cl ock-nsec" are integer val ues
for the ASN.1 tags for the two data itens. "badtag" is an integer
val ue that has no corresponding nane in this context.

There will always be exactly as nmany Attributes itens in the result
as there are objects in the tenplate. Attributes objects for itens
whi ch do not exist in the entity will have a valueFormat of NULL and
none of the optional elements will appear

[A much cleaner method would be to store the attributes as
sub- conponents of the data itemof interest. For exanple,
requesting
Systenm{ clock-nsec } GET
woul d normal Iy just get the value of the data. Asking for an
addi tional |ayer down the tree would now get its attributes:
Systen{ cl ock-nmsec{ shortDesc, unitsDesc } GET
woul d get the naned attributes. (The attributes would be
named with application-specific tags.) Unfortunately, ASN. 1
doesn’t provide a notation to describe this type of
organi zation. So, we're stuck with the GET- ATTRI BUTES
operator. However, if a cleaner organization were possible,
this decision would have been nmade differently.]

8.4 Exami ni ng Menory

Even with the ability to synbolically access all of this informtion
in an entity, there will still be tines when it is necessary to get
to very low |l evel s and exam ne nmenory, as in renote debuggi ng
operations. The building blocks outlined so far can easily be
extended to allow nmenory to be exani ned.

Menory is nodel ed as an ordinary object in the data tree, with an

ASN. 1 representation of OctetString. Because of the variety of
addressing architectures in existence, the conversion fromthe

Trewitt & Partridge [Page 18]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

internal nmenory nodel to CctetString is very machi ne-dependent. The
only sinple case is for byte-addressed machines with 8 bits per byte.

Each address space in an entity is represented by one "nenory" data
item In a one-address-space situation, this dictionary wll
probably be in "Systenl dictionary. |f each process has its own
address space, then one "nenory" item m ght exist for each process.
Again, this is very machi ne-dependent.

Al t hough the GET- RANGE operator is provided primarily for the purpose
of retrieving the contents of nenory, it can be used on any object
whose base type is COctetString.

GET-RANGE dict path start length GET- RANGE di ct
Get <length> elenments of the CctetString, starting at
<start>. <start> and <length> are both ASN. 1 | NTEGER type.
<path>, starting from<dict> nust specify a node
representing nenory, or sone other COctetString.

The returned data nmay not be <length> octets long, since it may take
nore than one octet to represent one menory | ocation

Menory itens in the data tree are special in that they will not
automatically be returned when the entire contents of a dictionary
are requested. e.g., If nenory is part of the "Systen' dictionary,
then the query

System GET
will emit the entire contents of the Systemdictionary, but not the

menory item
8.5 Control Operations: Mdifying the Data Tree

Al of the operators defined so far only allow data in an entity to
be retrieved. By replacing the tenplate argument used in the GET
operators with a value, data in the entity can be changed. Very few
itens in the data tree can be changed; those that can are noted in
RFC- 1024.

Values in the data tree can nodified in order to change configuration
parameters, patch routing tables, etc. Control functions, such as
bringing an interface "down" or "up", do not usually map directly to
changing a value. |In such cases, an itemin the tree can be defined
to have arbitrary side-effects when a value is assigned to it.

Control operations then consist of "setting" this itemto an
appropriate command code. Reading the value of such an item m ght
return the current status. Again, details of such data tree itens
are given in RFC 1024.

Trewitt & Partridge [Page 19]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

This "virtual comuand-and-status register” nodel is very powerful,
and can be extended by an inplenentation to provide whatever controls
are needed. It has the advantage that the control function is
associated with the controlled object in the data tree. |In addition,
no additional |anguage features are required to support contro
functions, and the sane operations used to |locate data for retrieva
are used to describe what is being controll ed.

For all of the control and data nodification operations, the fill-

i n-the-bl ank nodel used for data retrieval is extended: the response
to an operation is the affected part of the data tree, after the
operation has been executed. Therefore, for normal execution, SET
and CREATE will return the object given as an argunent, and DELETE

will return nothing (because the affected portion was del eted).

SET di ct val ue SET di ct
Set the value(s) of data in the entity to the val ue(s)
given in <value> The result will be the value of the data

after the SET. Attenpting to set a non-settable itemwl]|
not produce an error, but will yield a result in the reply
di fferent from what was sent.

CREATE array val ue CREATE di ct
Insert a new entry into <array>. Dependi ng upon the
context, there nmay be severe restrictions about what
constitutes a valid <value>. The result will be the actua
item added to the <array>. Note that only one item can be
added per CREATE operati on.

DELETE array filter DELETE array
Del ete the entry(s) in <array> that match <filter>
Filters are described later in this docunent. Normally, no

data items will be produced in the response, but if any of
the items that matched the filter could not be del eted,
they will be returned in the response.

An additional form of SET, which takes a filter argunent, is
descri bed | ater.

Here is an exanple of attenpting to use SET to change the nunber of
interfaces in an entity:
Systen{ interfaces(5) } SET
Since that is not a settable paraneter, the result would be:
Systen{ interfaces(2) }
giving the old val ue.

Here is an exanpl e of how CREATE woul d be used to add a routing table
entry for net for 128.89.0.0.

Trewitt & Partridge [Page 20]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

| PRouti ng BEG N -- get dictionary
Entries{ DestAddr(128.89.0.0), ... } -- entry to insert
CREATE

END -- finished with dict

The result woul d be what was added:
| PRouting{ Entries{ DestAddr(128.89.0.0), ... } }

The results in the response of these operators is consistent of the
gl obal nodel of the response: it contains a subset of the data in
the tree imediately after the query is executed.

Not e t hat CREATE and DELETE only operate on arrays, and then only on
arrays that are specifically intended for it. For exanple, it is
quite reasonable to add and renove entries fromrouting tables or ARP
tables, both of which are arrays. However, it doesn’t nake sense to
add or renove entries in the "Interfaces" dictionary, since the
contents of that array is dictated by the hardware. For each array
in the data tree, RFC-1024 indicates whet her CREATE and DELETE are
val i d.

CREATE and DELETE are always invalid in non-array contexts. |If
DELETE were all owed on nonitored data, then the del eted data woul d
become unnonitorable to the entire world. Conversely, if it were
possi bl e to CREATE arbitrary dictionary entries, there would be no
way to give such entries any neaning. Even with the data in place,
there is nothing that woul d couple the data to the operation of the
nmonitored entity. [Creation and del eti on woul d al so add consi derabl e
conplication to an inplenmentation, because wi thout them all of the
data structures that represent the data tree are essentially static,
with the exception of dynam c tables such as the ones nentioned,

whi ch al ready have nmechanisns in place for adding and renoving
entries.]

8.6 Associ ative Data Access: Filters

One problemthat has not been dealt with was alluded to earlier: Wen
dealing with array data, how do you specify one or nore entries based
upon sone value in the array entries? Consider the situation where
there are several interfaces. The data might be organi zed as:

Interfaces { -- one per interface
InterfaceData { address, ntu, netMask, ARP{...}, ... }
InterfaceData { address, ntu, netMask, ARP{...}, ... }
}

If you only want informati on about one interface (perhaps because

Trewitt & Partridge [Page 21]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

there is an enornous anmpunt of data about each), then you have to
have sonme way to nanme it. One possibility would be to just nunber
the interfaces and refer to the desired interface as

I nterfaceDat a(3)
for the third one.

But this is not sufficient, because interface nunbers may change over
time, perhaps fromone reboot to the next. It is even worse when
dealing with arrays with nany el enents, such as routing tables, TCP
connections, etc. Large, changing arrays are probably the nore
common case, in fact. Because of the lack of utility of indexing in
this context, there is no general nechanism provided in the | anguage
for indexing.

A better schene is to select objects based upon sone val ue contai ned
in them such as the IP address. The query | anguage uses filters to
sel ect specific table entries that an operator will operate on. The
operators BEG N, GET, GET-ATTRI BUTES, SET, and DELETE can take a
filter argunent that restricts their operation to entries that nmatch
the filter.

A filter is a boolean expression that is executed for each elenent in
an array. |If an array entry "matches"” the filter (i.e., if the filter
produces a "true" result), then it is used by the operation. A
filter expression is very restricted: it can only conpare data
contained in the array el ement and the conparisons are only agai nst
constants. Conparisons may be connected by AND, OR and NOT

oper at ors.

The ASN. 1 definition of a filter is:

Filter ;= [APPLI CATI ON 2] CHO CE {
present [0] DataPath,
equal [1] DataVal ue,
greater OrEqual [2] DataVal ue
| essOr Equal [3] DataVval ue,
and [4] SEQUENCE OF Filter,
or [5] SEQUENCE OF Filter,
not [6] Filter
}
Dat aPat h D= ANY -- Path with no val ue
Dat aVal ue D= ANY -- Single data val ue

This definition is simlar to the filters used in the 1SO nonitoring
protocol (CMP) and was derived fromthat specification

Trewitt & Partridge [Page 22]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

"DataPath" is the nane of a single data item "DataValue" is the
value of a single data item The three conparisons are all of the
form"data OP constant", where "data" is the value fromthe tree
"constant" is the value fromthe filter expression, and "OP" is one
of equal, greater-than-or-equal, or |ess-than-or-equal. The |ast
operation, "present", tests to see if the naned itemexists in the
data tree. By its nature, it requires no value, so only a path needs
to be given.

Here is an exanple of a filter that nmatches an Interface whose IP
address is 10.1.0.1:

Filter{ equal { address(10.0.0.51) } }
Note that the name of the data to be conpared is relative to the
"I nterfaceData" dictionary.

Each operator, when given a filter argunent, takes an array
(dictionary containing only one type of iten) as its first argunent.
In the current exanple, this would be "Interfaces". The itenms in it
are all of type "InterfaceData". This tag is referred to as the
“iteration tag".

Before a filtered operation is used, BEG N rmust be used to put the
array (dictionary) on top of the stack, to establish it as the
context that the filter iterates over. The general operation of a
filtered operation is then:

1. Iterate over the itens in the array.
2. For each elenent in the array, execute the filter.

3. If the filter succeeds, do the requested operation
(CGET/ SET/etc.) on the matched el enent, using the
tenmpl ate/val ue/ path as input to the operation. At this
poi nt, the execution of the operation is the sane as in
the non-filtered case.

This is a nodel of operation; actual inplenmentations may take
advant age of whatever |ookup techniques are available for the
particul ar table (array) involved.
Therefore, there are three inputs to a filtered operation
1. The "current dictionary" on the stack. This is the
array-type dictionary to be searched, set by an earlier
BEG N.

2. Afilter, to test each itemin the array. Each path or
value nentioned in the filter nust be nanmed in the context

Trewitt & Partridge [Page 23]

RFC 1076

HEMS Monitoring and Control Language Noverber 1988

of an itemin the array, as if it was the current
dictionary. For exanple, in the case where a filtered
operation iterates over the set of "InterfaceData" itens
in the "Interfaces" array, each value or path in the
filter should nane an itemin the "InterfaceData"

di ctionary, such as "address".

A tenplate, path, or value associated with the operation
to be performed. The leading ASN. 1 tag in this must match
the iteration tag. |In the current exanple where the
filter is searching the "Interfaces"” dictionary, the first
tag in the tenplate/tag/val ue nust be "InterfaceData".

The operators which take filters as argunents are:

BEG N

GET

array path filter BEG N array dict
Find a dictionary in <array> that matches <filter>. Use
that as the starting point for <path> and push the
di ctionary corresponding to <path> onto the stack. If nore
than one dictionary matches <filter>, then any of the
mat ches may be used. This specification does not state how
the choice is made. At |east one dictionary nust match; it
is an error if there are no matches. (Perhaps it should be
an error for there to be nmultiple matches; actua
experience is needed to decide.)

array tenplate filter GET array
For each itemin <array> that matches <filter>, fill in the
tenplate with values fromthe data tree and enit the
result. The first tag of <tenplate> nust be equal to the
iteration tag. Selected parts of matched itens are enitted
based upon <tenplate> just as in a non-filtered GET
operation.

GET- ATTRI BUTES

SET

DELETE

array tenplate filter GET- ATTRIBUTES array
Sane as CET, except enit attributes rather than data
val ues.

array value filter SET array
Sane as CET, except set the values in <value> rather than
retrieving values. Several values in the data tree will be
changed if the filter matches nore than one itemin the
array.

array filter DELETE array
Delete the entry(s) in <array> that match <filter>

Trewitt & Partridge [Page 24]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

Not es about filter execution:
- Expressions are executed by inorder tree traversal

- Since the filter operations are all GETs and conpari sons,
there are no side-effects to filter execution, so an
i mpl enentation is free to execute only as much of the
filter as required to produce a result (e.g., don’t execute
the rest of an AND if the first conparison turns out to be
fal se).

- It is not an error for a filter to test a data itemthat
isn't in the data tree. In this situation, the conparison
just fails (is false). This nmeans that filters don’t need
to test for the existence of optional data before
attenpting to conpare it.

Here is an exanple of how filtering would be used to obtain the input
and out put packet counts for the interface with IP address 10.0.0.51

Interfaces BEG N -- dictionary

I nterfaceData{ pktsln, pktsQut } -- tenplate

Filter{ equal { address(10.0.0.51) } }

GET

END -- finished with dict

The returned val ue woul d be sonething Iike:

I nterfaces{ -- BEG N
I nterfaceData{ pktsln(1345134), pktsCQut(1023729) }
-- CGET
} -- END

The annot ati ons indicate which part of the response is generated by
the different operators in the query.

Here is an exanpl e of accessing a table contained within sone other
table. Suppose we want to get at the ARP table for the interface
with P address 36.8.0.1 and retrieve the entire ARP entry for the
host with IP address 36.8.0.23. In order to retrieve a single entry
inthe ARP table (using a filtered GET), a BEG N nust be used to get
down to the ARP table. Since the ARP table is contained within the
Interfaces dictionary (an array), a filtered BEG N nust be used

Interfaces BEG N -- dictionary
InterfaceData{ ARP } -- path

Filter{ equal { address(36.8.0.1) } } -- filter

BEG N -- filtered BEG N

Trewitt & Partridge [Page 25]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

-- Nowin ARP table for 38.0.0.1; get entry for 38.8.0.23.

addr Map -- whole entry
Filter{ equal { ipAddr(36.8.0.23) } } -- filter

GET -- filtered GET
END

END

The result woul d be:

I nterfaces{ -- first BEG N
I nterfaceDat a{l ARP{ -- second BEGA N
addr Map{ i pAddr(36.8.0.23), physAddr(..) } -- from GET
1} -- first END
} -- second END

Not e which parts of the output are generated by different parts of
the query.

Here is an exanple of how the SET operator would be used to shut down
the interface with ip-address 10.0.0.51 by changing its status to

"down".
Interfaces BEG N -- get dictionary
Interface{ Status(down) } -- value to set
Filter{ equal { I P-addr(10.0.0.51) } }
SET
END

If the SET is successful, the result would be:

I nterfaces{ -- BEG N
Interface{ Status(down) } -- from SET
} -- END

8.7 Term nating a Query

A query is inplicitly term nated when there are no nore ASN. 1 objects
to be processed by the interpreter. For a perfectly-formed query,
the interpreter would be back in the state it was when it started:
the stack would have only the root dictionary on it, and all of the
ASN. 1 objects in the result would be term nated.

If there are still "open" ASN. 1 objects in the result (caused by
| eaving ENDs off of the query), then these are closed, as if a
sufficient number of ENDs were provided. This condition would be
i ndi cated by the existence of dictionaries other than the root

di ctionary on the stack

Trewitt & Partridge [Page 26]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

10.

If an extra END is received that would pop the root dictionary off of
the stack, the query is ternminated i mMmediately. No error is
gener at ed.

EXTENDI NG THE SET OF VALUES

There are two ways to extend the set of val ues understood by the
query language. The first is to register the data and its neaning
and get an ASN. 1 tag assigned for it. This is the preferred nethod
because it makes that data specification available for everyone to
use.

The second nethod is to use the VendorSpecific application type to
"wrap" the vendor-specific data. Werever an inplenentation defines
data that is not in RFC 1024, the "VendorSpecific" tag should be used
to label a dictionary containing the vendor-specific data. For
exanple, if a vendor had sonme data associated with interfaces that
was too strange to get standard nunbers assigned for, they could,

i nstead represent the data like this:

i nterfaces {
interface {
i n-pkts, out-pkts, .
Vendor Speci fic { epheneris, declination }
}
}

In this case, epheneris and declination correspond to two context -
dependent tags assigned by the vendor for their non-standard data.

If the vendor-specific method is chosen, the private data MJUST have
descriptions avail abl e through the CGET- ATTRI BUTES operator. Even
with this descriptive ability, the preferred nethod is to get
standard nunbers assigned if possible.

AUTHCRI ZATI ON

Thi s specification does not state what type of authorization system
is used, if any. Different systens nay have needs for different
mechani sns (aut hori zation | evels, capability sets, etc.), and sone
systens may not care about authorization at all. The only effect
that an authorization systemhas on a query is to restrict what data
items in the tree nay be retrieved or nodified.

Therefore, there are no explicit query |language features that dea
with protection. |Instead, protection mechanisnms are inplicit and may
make sone of the data invisible (for GET) or non-witable (for SET):

Trewitt & Partridge [Page 27]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

- Each query runs with sone | evel of authorization or set of
capabilities, determined by its environment (HEMS and the
HEMP header) .

- Associated with each data itemin the data tree is some
sort of test to determine if a query’s authorization should
grant it access to the item

Aut hori zation tests are only applied to query | anguage operations
that retrieve informati on (GET, GET-ATTRI BUTES, and GET- RANGE) or
nodify it (SET, CREATE, DELETE). An authorization system must not

af fect the operation of BEG N and END. In particular, the

aut hori zation nmust not hide entire dictionaries, because that woul d
make a BEG N on such a dictionary fail, terminating the entire query.

11. ERRCRS

If sonme particular information is requested but is not available, it
will be returned as "no-value" by giving the ASN.1 | ength as 0.

When there is any other kind of error, such as having inproper
argunents on the top of the stack or trying to execute BEG N when t he
path doesn’t refer to a dictionary, an ERROR object is emtted.

The contents of this object identify the exact nature of the error

Error ::= [APPLI CATION 0] | MPLICI T SEQUENCE ({
err or Code | NTEGER
errorl nstance | NTEGER
error O f set | NTEGER
errorDescription | A5String,
errorQ | NTECER,
}

errorCode identifies what the error was, and errorlnstance is an

i npl enent ati on-dependent code that gives a nore precise indication of
where the error occured. errorOfset is the location within the
guery where the error occurred. |If an operation was bei ng executed,
errorQp contains its operation code, otherw se zero.

errorDescription is a text string that can be printed that gives sone
description of the error. It will at |east describe the errorCode,
but may al so give details inplied by errorlnstance. Detailed
definitions of all of the fields are given in appendix |.2.

Since there nay be several untermnated ASN.1 objects in progress at
the tine the error occurs, each one nust be term nated. Each

unterm nated object will be closed with a copy of the ERROR object.
Dependi ng upon the type of length encoding used for this object, this

Trewitt & Partridge [Page 28]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

will involve filling the value for the length (definite length form
or emtting two zero octets (indefinite length forn). After al
objects are ternminated, a final copy of the ERROR object will be
emtted. This structure guarantees that the error will be noticed at
every level of interpretation on the receiving end.

In summary, if there was an error before any ASN. 1 objects were
generated, then the result would sinply be:
error{...}

If a couple of ASN. 1 objects were unterm nated when the error
occurred, the result mght |ook like:
i nterfaces{
interface { name(...) type(...) error{...} }

error{...}
}
error{...}

It would be possible to define a "WARNING' object that has a simlar
(or sanme) format as ERROR, but that woul d be used to annotate
responses when a non-fatal "error" occurs, such as attenpting to
SET/ CREATE/ DELETE and the operation is denied. This would be an
addi tional complication, and we left it out in the interests of

sinmplicity.
I. ASN. 1 DESCRI PTI ONS OF QUERY LANGUAGE COVPONENTS

A query consists of a sequence of ASN. 1 objects, as foll ows:

Query := IMPLICI' T SEQUENCE of QueryEl enent;
QueryEl ement ::= CHO CE {
Qper ation,
Filter,
Tenpl at e,
Pat h,
| nput Val ue
}
Qperation and Filter are defined below. The others are:
Tenpl ate = any
Pat h = any
| nput Val ue = any

These three are all simlar, but have different restrictions on their
structure:

Trewitt & Partridge [Page 29]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

Tenpl ate Specifies a portion of the tree, nam ng one or nore
val ues, but not containing any val ues.

Pat h Specifies a single path fromone point in the tree to
anot her, nam ng exactly one val ue, but not containing
a val ue.

| nput Val ue G ves a value to be used by a query | anguage
operat or.

A query response consists of a sequence of ASN. 1 objects, as foll ows:

Response := I MPLICI T SEQUENCE of ResponseEl enent;
ResponseEl ement ::= CHO CE {

Resul t Val ue,

Error

}

Error is defined below. The others are:
Resul t Val ue ;1= any
ResultValue is simlar to Tenplate, above:

Resul t Val ue Specifies a portion of the tree, nam ng and
cont ai ni ng one or nore val ues.

The distinctions between these are el aborated in section 6.
.1 Operation Codes

Operation codes are all encoded in a single application-specific
type, whose val ue determ nes the operation to be perforned. The
definition is:

Operation ::= [APPLI CATION 1] IMPLICIT | NTEGER {
reserved(0),
begi n(1),
end(2),
get (3),
get-attributes(4),
get -range(5),
set (6),

Trewitt & Partridge [Page 30]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

create(7),
del et e(8)

}

I.2 Error Returns

An Error object is returned within a reply when an error is
encountered during the processing of a query. Note that the
definition this object is simlar to that of the HEMP protocol error
structure. The error codes have been selected to keep the code
spaces distinct between the two. This is intended to ease the
processi ng of error nessages. See section 11 for nore information.

Error ::= [APPLI CATION 0] | MPLICI T SEQUENCE ({
error Code | NTEGER
errorlnstance | NTEGER
errorOfset | NTEGER
errorDescription | A5String,
errorQ | NTEGER,

}

The fields are defined as foll ows:
error Code Identifies the general cause of the error

errorlnstance An i npl enent ati on- dependent code that gives a nore
preci se indication of where the error occured in the
qguery processor. This is nmost useful when interna
errors are reported.

errorf fset The location within the query where the error was
detected. The first octet of the query is nunbered
zero.

errorQ If an operation was being executed, this contains its

operation code, otherw se zero.

errorDescription
A text string that can be printed that gives sone
description of the error. It will at |east describe
the errorCode, but may also give details inplied by
errorlnstance.

Sonme errors are associated with the execution of specific operations,
and others with the overall operation of the query interpreter. The
errorCodes are split into two groups.

The first group deals with overall interpreter operation. Except for

Trewitt & Partridge [Page 31]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

"unknown operation", these do not set errorQp.

100 O her error.
Any error not |isted bel ow.

101 Format error.
An error has been detected in the fornmat of the input
stream preventing further interpretation of the

query.

102 Systemerror.
The query processor has failed in sonme way due to an
internal error.

103 Stack overfl ow.
Too many itens were pushed on the stack.

104 Unknown operati on.
The operation code is invalid. errorQp is set.

The second group is errors that are associated with the execution of

particul ar operations. errorOp will always be set for these.

200 Q her operation error.
Any error, associated with an operation, not |isted
bel ow.

201 St ack underfl ow.

An operation expected to see some nunber of operands
on the stack, and there were fewer itens on the
st ack.

202 Qperand error.
An operation expected to see certain operand types on
the stack, and something el se was there.

203 Invalid path for BEG N
A path given for BEG N was invalid, because some
element in the path didn't exist.

204 Non-di cti onary for BEGQ N
A path given for BEGA N was invalid, because the given
node was a | eaf node, not a dictionary.

205 BEG N on array el ement.
The path specified an array element. The path nust
point at a single, unique, node. A filtered BEG N
shoul d have been used.

Trewitt & Partridge [Page 32]

RFC 1076 HEMS Monitoring and Control Language Novemrber

206

207

208

209

This list is pro
ext ended, based

|.3 Filters

Many of the operations can take a filter argument to sel ect anong

el ements in an a

Filter

Dat aPat h

Dat aVal ue
Afilter is exec
The basic filter

pr esent

Trewitt & Partridge

Enpty filter for BEG N
The filter for a BEAN didn’t natch any array
el emrent .

Filtered operation on non-array.
A filtered operation was attenpted on a regul ar
dictionary. Filters can only be used on arrays.

| ndex out of bounds.

The starting address or length for a GET- RANGE
operation went outside the bounds for the given
obj ect.

Bad obj ect for GET- RANGE

1988

CGET- RANGE can only be applied to objects whose base

type is CctetString.

bably not quite conplete, and would need to be
upon i npl enent ati on experience.

rray. They are discussed in section 8.6.

.- = [APPLI CATI ON 2] CHO CE {

pr esent [0] DataPat h,
equal [1] DataVal ue,
greaterOr Equal [2] DataVal ue,
| essOr Equal [3] DataVal ue,
and [4] SEQUENCE OF Filter,
or [5] SEQUENCE OF Filter,
not [6] Filter
}
D= ANY -- Path with no val ue
D= ANY -- Single data val ue

uted by inorder traversal of its ASN. 1 structure.

operations are:

tests for the existence of a particular data itemin

the data tree

[Page 33]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

equal tests to see if the nanmed data itemis equal to the
gi ven val ue.

greaterOrEqual tests to see if the naned data itemis greater than
or equal to the given val ue.

| essOr Equal tests to see if the naned data itemis |ess than or
equal to the given val ue.

These may be conmbined with "and", "or", and "not" operators to form
arbitrary bool ean expressions. The "and" and "or" operators will
take any nunber of terns. Terns are only evaluated up to the point
where the outconme of the expression is determined (i.e., an "and"
terms value is false or an "or" terms value is true).

|.4 Attributes

One or nore Attributes structure is returned by the GET- ATTRI BUTES
operator. This structure provides descriptive information about
items in the data tree. See the discussion in section 8.3.

Attributes ::= [APPLI CATION 3] I MPLICI T SEQUENCE {
t agASNL [0] IMPLICIT | NTEGER,
val ueFor mat [1] IMPLICI T | NTEGER,
| ongDesc [2] IMPLICIT I A5String OPTI ONAL,
short Desc [3] IMPLICIT I A5String OPTI ONAL,
uni t sDesc [4] IMPLICIT I A5String OPTI ONAL,
pr eci si on [5] IMPLICIT | NTEGER OPTI ONAL,
properties [6] IMPLICIT BI TSTRI NG OPTI ONAL,
val ueSet [7] IMPLICIT SET OF val ueDesc OPTI ONAL
}
val ueDesc ::= I MPLICI T SEQUENCE ({
val ue [0] ANY, -- Single data val ue
desc [1] I A5String
}
The neani ngs of the various attributes are given bel ow
t agASN1 The ASN.1 tag for this object. This attribute is
required.
val ueFor mat The underlying ASN. 1 type of the object (e.g.,

SEQUENCE or OCTETSTRI NG or Counter). This is not
just the tag nunber, but the entire tag, as it would
appear in an ASN.1 object. As such, it includes the
cl ass, which should be either UN VERSAL or

APPLI CATION. Applications receiving this should

Trewitt & Partridge [Page 34]

RFC 1076

| ongDesc

short Desc

uni t sDesc

preci sion

properties

val ueSet

HEMS Monitoring and Control Language Noverber 1988

i gnore the constructor bit. This attribute is
required.

A potentially I engthy text description which fully
defines the object. This attribute is optional for
objects defined in this meno and required for
entity-specific objects.

A short mmenonic string of |ess than 15 characters,
suitable for labeling the value on a display. This
attribute is optional

A short string used for integer values to indicate
the units in which the value is neasured (e.g., "ms",
"sec", "pkts", etc.). This attribute is optional

For Counter objects, the value at which the Counter

will roll-over. Required for all Counter objects.

A bitstring of bool ean properties of the object. |If
the bit is on, it has the given property. This
attribute is optional. The bits currently defined
are:

0 If true, the difference between two val ues of

this object is significant. For exanple, the
changes of a packet count is always significant,
it always conveys information. |In this case, the
0O bit would be set. On the other hand, the

di fference between two readi ngs of a queue |ength
may be neani ngl ess.

1 If true, the value may be nodified with SET,
CREATE, and DELETE. Applicability of CREATE and
DELETE depends upon whether the object is in an
array.

2 If true, the object is a dictionary, and a BEG N
may be used on it. |If false, the object is |eaf
node in the data tree.

3 If true, the object is an array-type dictionary,
and filters nmay be used to traverse it. (Bit 2
will be true also.)

For data that is defined as an ASN.1 CHO CE type (an
enunerated type), this gives descriptions for each of
the possible values that the data object may assune.

Trewitt & Partridge [Page 35]

RFC 1076 HEMS Monitoring and Control Language Novemrber
Each val ueDesc is a <val ue,description> pair. Th
information is especially inmportant for contro
items, which are very likely to appear in
Vendor Speci fic dictionaries, exactly the situatio
where descriptive information i s needed.

I .5 Vendor Specific

See the discussion in section 9.
Vendor Speci fic ;.= [APPLI CATION 4] IMPLICI T SET
of ANY

1. | MPLEMENTATI ON HI NTS

Al t ho
i mpl e

ugh it is not normally in the spirit of RFCs to define an
ment ati on, the authors feel that some suggestions will be us

to inplenentors of the query language. This list is not neant to
ete, but nerely to give sonme hints about how the authors inmagi ne

conpl
t hat

Trew tt

the query processor might be inplenented efficiently.

It should be understood that the stack is of very limted
depth. Because of the nature of the query |anguage, it can
get only about 4 entries (for argunents) plus the depth of
the tree (up to one BEG N per level in the tree). This
comes out to about a dozen entries in the stack, a npdest
requi renent.

The stack is an abstraction -- it should be inplenmented
with pointers, not by copying dictionaries, etc.

An obj ect-oriented approach shoul d nmake i npl enentation
fairly easy. Changes to the "shape" if the data itens
(which will certainly occur, early on) will also be easier
to make.

Only a few "nessages" need to be understood by objects. By
havi ng pointers to action routines for each basic operation
(CET, SET, ...) associated with each node in the tree, comon
routines (e.g., emt a long integer |ocated at address X)
can be shared, and special routines (e.g., set the interface
state for interface X) can be inplenented in a conmon
framewor k. Higher |evels need know nothi ng about what data
is being dealt with.

Most interesting objects are dictionaries, each of which

can be inplenented using pointers to the data and procedure
"hooks" to performspecific operations such as GET, SET,

& Partridge [Page

1988

is

n

ef ul
be

36]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

filtering, etc.

- The hardest part is actually extracting the data from
existing TCP/IP inplementations that weren't designed with
detailed nonitoring in mnd. Query processors interfacing
to a UNI X kernel will have to make many systemcalls in
order to extract sone of the nore intricate structures,
such as routing tables. This should be |ess of a problem
if a systemis designed with easy nonitoring as a goal

A Skel etal |nplenentation

This section gives a rather detail ed exanple of the core of a query
processor. This code has not been tested, and is intended only to
gi ve i nmplenentors ideas about how to tackle sone aspects of query
processor inplenentation with finesse, rather than brute force.

The suggested architecture is for each dictionary to have a
"traverse" routine associated with it, which is called when any sort
of operation has to be done on that dictionary. Most nodes wll

share the sanme traversal routine, but array dictionaries will usually
have routines that know about whatever special |ookup nechanisns are
required.

Non-di cti onary nodes woul d have two routines, "action", and
“conpare", which inplenent query | anguage operations and filter
conpari sons, respectively. Mst nodes woul d share these routines.

For exanple, there should be one "action" routine that does query
| anguage operations on 32-bit integers, and another that works on
16-bit integers, etc.

Any traversal procedure woul d take argunents |ike:

traverse(node, mask, op, filter)

Tr eenode node; /* generic node-in-tree */
ASN mask; /* internal ASN. 1 form*/
enum opset op; /* what to do */

Filter filter; /* zero if no filter */

enum opset { begin, get, set, create, delete, geta,
c le, c_ge, c_eq, c_exist };

The traversal procedure is called whenever anything rmust be done
within a dictionary. The argunments are:

node the current dictionary.

Trewitt & Partridge [Page 37]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

mask is either the tenplate, path, or value, depending
upon the operation being perforned. The top-I|eve
identifier of this object will be |ooked up in the

cont ext of <node>.

op is the operation to be perforned, either one of the
basi ¢ operations, or a filter operation

filter is the filter to be applied, or zero if none. There
will be no filter when <op> is a filter-conparison
operation.

The general idea is that the traversal proc associated with a node
has all of the know edge about how to get around in this subtree
encoded within it. Hopefully, this will be the only place this
know edge is coded. Here is a skeleton of the "standard" traversa
proc, witten nostly in C.

When the query processor needs to execute a "GET" operation, it would
just call:
traverse(current, tenplate, CGET, 0)

Not es about this exanple:

- This traversal routine handles either query |anguage
operations (GET, SET, etc.) or lowlevel filter operations.
Separate routines could be defined for the two cl asses of
operations, but they do much of the sane work.

- Dictionary nodes have a <traversal > proc defined.

- Leaf nodes have an <action> proc, which inplenent GET, SET,
GET- ATTRI BUTES, CREATE, and DELETE, and a <conpare> proc
whi ch perfornms |owlevel filter conparisons.

- In the generic routine, the filter argunent is unused,
because the generic routine isn't used for array
dictionaries, and only array dictionaries use filters.

- An ASN type contains the top level tag and a list of
sub- conponent s.

- size(nmask) takes an ASN. 1 object and tells how many
sub-items are in it. Zero means that this is a sinple
obj ect .

- | ookup(node, tag) |ooks up a tag in the given (tree)node,
returning a pointer to the node. If the tag doesn't exist

Trewitt & Partridge [Page 38]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

in that node, a pointer to a special node "Nullltent is
returned. Nullltemlooks Iike a | eaf node and has procs
that performthe correct action for non-existent data.

- This exanpl e does not do proper error handling, or ASN. 1
generation, both of which would require additional code in
this routine.

/*
* For op = GET/ SET/etc, return:
* true on error, otherw se fal se.
* \When op is a filter operation, return
* the result of the conparison
*/
int std_traverse(node, nask, op, filter)
Tr eenode node; /* current node */
ASN mask; /* internal ASN. 1 form*/
enum opset op; /* what to do */
Filter filter; /* unused in this routine */
{
ASN item
Tr eenode target;
bool ean rv = fal se

extern Treenode Nul | I tem

if (filter I'=null) {
error(...);
return true;

}

target = | ookup(node, mask.tag);

[* We are at the leaf of the tenplate/path/value. */
if (size(mask) == 0)

switch (op)
case BEG N:
/* non-exi stent node, or |eaf node */
if (target == Nullltem|]| target.traverse == 0) {

error(...);
return true;

}

el se {
begi n(node, nask.tag);
return fal se;

}
case CET: case SET: case CGETA:

Trewitt & Partridge [Page 39]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

case CGETR case CREATE: case DELETE
/* Aleaf in the mask specifies entire directory.
For CET, traverse the entire subtree. */
if (target.traverse)
if (op == CGET) {
foreach subnode in target
/* Need to test to not GET nenory. */
rv | = (*target.traverse)
(target, subnode.tag, op, 0);
return rv;

}

else if (op == SET) /* no-op */
return fal se;

else if (op !'= GETA) {
error(...);
return true

/* We're at a leaf in both the mask and the tree
Just execute the operation

*/
el se {
if (op==BEAN { /* Can't begin on |leaf */
error(...);
return true
el se

return (*target.action)(target, mask, op);

}

} /* else */

defaul t: /* Conparison ops. */
return (*target.conpare)(target, mask, op);
} /* switch */

/* We only get here if nmask has structure. */

/[* can’'t have multiple targets for BEGN */
if (op == BEA N && size(mask) !'= 1) {
error(...);
return true
}
[* or for a single filter operation. */
if (op is conparison &% size(mask) !'= 1) {
error(...);
return false;
}
/* lterate over the conponents in mask */
foreach itemin nmask

{

Trewitt & Partridge [Page 40]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

if (target.traverse) /* traverse subtree. */
rv | = (*conponent.traverse)(conponent, item op, 0);
el se /* leaf node, at last. */

if (op is comparison)
return (*target.conpare)(target, mask, op);
el se
return (*target.action)(target, mask, op);
} /* foreach */

return rv;
} /* std_traverse */

Here is a bare skeleton of an array-type dictionary' s traversal proc.

int array_traverse(node, mask, op, filter)

Tr eenode node; /* current node */

ASN mask; /* internal ASN.1 form */

enum opset op; /* what to do */

Filter filter; /* unused in this routine */
{

Tr eenode target;

bool ean rv = fal se

extern Treenode Nul | I tem

[* Didn’t find that key. */
if (mask.tag !'=this array’s iteration tag)
return fal se;

if (op == BEAN & filter == null) {
error(...);
return 1,

}

/[* The inmplenentation of this loop is the mgjor trick! */
/* Needs to stop after first filter success on BEGA N */
foreach target in node {

if (filter == null || [* if no filter, or */
ExecFilter(target, filter)) /* if it succeeds */
rv | = (target.traverse*)(target, mask, op, 0);

}

} /* array_traverse */

oj ect-oriented progranmm ng | anguages, such as C++, Modul a, and Ada,

are well suited to this style of inplenentation. There should be no
particular difficulty with using a conventional |anguage such as C or
Pascal , however.

Trewitt & Partridge [Page 41]

RFC 1076 HEMS Monitoring and Control Language Noverber 1988

[11. OBTAINING A COPY OF THE ASN. 1 SPECI FI CATI ON

Copies of 1SO Standard ASN. 1 (Abstract Syntax Notation 1) are
avail able fromthe follow ng source. It cones in tw parts; both are

needed:

IS 8824 -- Specification (neaning, notation)
'S 8825 -- Encoding Rules (representation)

They are avail able from
Omi com | nc.
115 Park St, S. E. (new address as of March, 1987)

Vi enna, VA 22180
(703) 281-1135

Trewitt & Partridge [Page 42]

