Net wor k Wor ki ng G oup C. Partridge
Request For Comment: 1022 BBN/ NNSC
G Trewitt

St anford

Oct ober 1987

THE H GH LEVEL ENTI TY MANAGEMENT PROTOCOL (HEMP)
STATUS OF TH S MEMO

An application protocol for managi ng network entities such as hosts,
gat eways and front-end nmachines, is presented. This protocol is a
conponent of the Hi gh-Level Entity Managenent System (HEMS) descri bed
in RFC-1021. Readers may want to consult RFC-1021 when reading this
meno. This nmeno al so assunes a know edge of the | SO data encodi ng
standard, ASN.1. Distribution of this menmo is unlinited.

PROTOCCL OVERVI EW

The Hi gh-Level Entity Management Protocol (HEMP) provides an
encapsul ati on system and set of services for communications between
applications and nanaged entities. HEMP is an application protoco
which relies on existing transport protocols to deliver HEMP nessages
to their destination(s).

The protocol is targeted for managenent interactions between
applications and entities. The protocol is believed to be suitable
for both nonitoring and control interactions.

HEMP provi des what the authors believe are the three essenti al
features of a managenent protocol: (1) a standard encapsul ation
schenme for all interactions, (2) an authentication facility which can
be used both to verify nessages and |limt access to nanaged systens,
and (3) the ability to encrypt nessages to protect sensitive
informati on. These features are discussed in detail in the follow ng
secti ons.

PROTOCOL OPERATI ON

HEMP i s designed to support nessages; where a nessage is an
arbitrarily | ong sequence of octets.

Five types of messages are currently defined: request, event, reply,
and protocol error, and application error nmessages. Reply, protoco
error and application error nessages are only sent in reaction to a
request nessage, and are referred to collectively as responses.

Partridge & Trewitt [Page 1]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

Two types of interaction are envisioned: a nessage exchange between
an application and an entity nmanaged by the application, and
unsolicited messages froman entity to the managenent centers
responsi ble for managing it.

When an application wants to retrieve information froman entity or
gives instructions to an entity, it sends a request nessage to the
entity. The entity replies with a response, either a reply nessage
if the request was valid, or an error nmessage if the request was
invalid (e.g., failed authentication). It is expected that there
will only be one response to a request nessage, although the protoco
does not preclude multiple responses to a single request.

Protocol error nessages are generated if errors are found when
processi ng the HEMP encapsul ati on of the nessage. The possible
protocol error nessages are described later in this document. Non-
HEMP errors (e.g., errors that occur during the processing of the
contents of the nessage) are application errors. The existence of
application error nmessages does not preclude the possibility that a
reply will have an error nessage init. It is expected that the
processi ng agent on the entity nay have already started sending a
reply message before an error in a request message is discovered. As
aresult, application errors found during processing may show up in
the reply nessage instead of a separate application error nessage.

Note that in certain situations, such as on secure networks,
returning error nmessages may be considered undesirable. As a result,
entities are not required to send error nmessages, although on
"friendly" networks the use of error nmessages i s encouraged.

Event nessages are unsolicited notices sent by an entity to an
address, which is expected to correspond to one or nore nanagenent
centers. (Note that a single address nay correspond to a multicast
address, and thus reach multiple hosts.) Event messages are
typically used to allow entities to alert nanagement centers of

i nportant changes in their state (for exanple, when an interface goes
down or the entity runs out of network buffers).

Partridge & Trewi tt [Page 2]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

STANDARD MESSACE FORMAT

Every HEMP nessage is put in the general formshown in Figure 1

o e e e e e e e e e e e e aa o s +
| eader
e +
encryption section

o +
reply encryption section

o e e e e e e e e e e e e aa o s +
aut hentication section

e +

conmon header
e +
data
o e e e e e e e e e e e e aa o s +

Figure 1. General Form of HEMP Messages

Each nessage has five components: (1) the | eader, which is sinply the
ASN. 1 tag and nmessage |l ength; (2) the encryption section, which

provi des whatever information the receiver may require to decrypt the
nmessage; (3) the reply encryption section, in which the requesting
application nmay specify the type of encryption to use in the reply;
(4) the authentication section, which allows the receiver to

aut henticate the nessage; (5) the common header, which identifies the
nmessage type, the HEMP version, and the nmessage id; and (6) the data
section. Al four sections followng the | eader are al so ASN. 1
encoded. The ASN. 1 format of the nessage is shown in Figure 2.

HenpMessage ::= [0] I MPLICIT SEQUENCE {
[0] IMPLICIT Encrypt Section OPTI ONAL
[1] IMPLICIT Repl yEncrypt Secti on OPTI ONAL
[2] IMPLICIT AuthenticateSecti on OPTI ONAL
[3] IMPLICIT CommonHeader
[4] IMPLICIT Data }

Figure 2: ASN.1 Format of HEMP Messages

The ordering of the sections is significant. The encryption section
cones first so that all succeeding sections (which may contain
sensitive information) nmay be encrypted. The authentication section
precedes the header so that nessages which fail authentication can be
di scarded without header processing.

Partridge & Trewi tt [Page 3]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

THE ENCRYPTI ON SECTI ON
Need For Encryption

Encrypti on must be supported in any nanagement schenme. In
particular, a certain anount of nonitoring information is potentially
sensitive. For exanple, imagine that an entity naintains a traffic
matri x, which shows the nunber of packets it sent to other entities.
Such a traffic matrix can reveal conmunications patterns in an
organi zation (e.g., a corporation or a government agency).

Organi zati ons concerned with privacy may wi sh to enpl oy encryption to
protect such infornmation. Access control ensures that only people
entitled to request the data are able to retrieve it, but does not
protect from eavesdroppers reading the nessages. Encryption protects
agai nst eavesdr oppi ng.

Note that encryption in HEMP does not protect against traffic
analysis. It is expected that HEMP interactions will have distinct
signatures such that a party which can observe traffic patterns may
guess at the sort of interactions being perforned, even if the data
being sent is encrypted. Organizations concerned with security at
this level should additionally consider |ink-level encryption.

Format of the Encryption Section

The encryption section contains any data required to decrypt the
nmessage. The ASN.1 format of this section is shown in Figure 3.

Encrypt Section :: = I MPLICI T SEQUENCE {
encrypt Type | NTEGER
encrypt Data ANY

Figure 3: ASN.1 Format of Encryption Section

If the section is omtted, then no decryption is required. |If the
section is present, then the encrypt Type field contains a nunber
defining the encryption method in use and encryptData contains
what ever data, for exanple a key, which the receiver must have to
decrypt the remai nder of the message using the type of encryption
speci fi ed.

Currently no encryption types are assigned.

If the message has been encrypted, data is encrypted starting with
the first octet after the encryption section.

Partridge & Trewi tt [Page 4]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

THE REPLY ENCRYPTI ON SECTI ON
Need for Reply Encryption
The reasons for encrypting nessages have al ready been di scussed.

The reply encryption section provides the ability for managenent
agents to request that responses be encrypted even though the
requests are not encrypted, or that responses be encrypted using a
different key or even a different schene fromthat used to encrypt
the request. A good exanple is a public key encryption system where
the requesting application needs to pass its public key to the
processi ng agent.

Format of the Reply Encryption Section

The reply encryption section contains any data required to encrypt
the reply nmessage. The ASN.1 format of this section is shown in
Fi gure 4.

Repl yEncrypt Section :: = I MPLICI T SEQUENCE {
repl yEncrypt Type | NTEGER
repl yEncrypt Dat a ANY

Figure 4. ASN.1 Format of Reply Encryption Section

If the section is onmitted, then the reply should be encrypted in the
manner specified by the encryption section. |If the section is
present, then the replyEncrypt Type field contains a nunber defining
the encryption nmethod to use and repl yEncrypt Data cont ai ns what ever
data, for exanple a key, which the receiver nmust have to encrypt the
reply message.

If the reply encryption section is present, then the reply nessage
nmust contain an appropriate encryption section, which indicates the
encryption nmethod requested in the reply encryption section is in
use. The reply message should be encrypted starting with the first
octet after the encryption section

If the reply encryption nethod requested is not supported by the
entity, the entity may not send a reply. It may, at the discretion
of the inplenentor, send a protocol error nessage. (See below for
descriptions of protocol error nmessages.)

Currently no encryption types are assigned.

Partridge & Trewi tt [Page 5]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

THE AUTHENTI CATI ON SECTI ON
Need for Authentication

It is often useful for an application to be able to confirmeither
that a nmessage is indeed fromthe entity it clains to have origi nated
at, or that the sender of the nessage is accredited to nake a
nonitoring request, or both. An exanple may be useful here.

Consider the situation in which an entity sends a event nessage to a
nmoni toring center which indicates that a trunk link is unstable.
Before the monitoring center personnel take actions to re-route
traffic around the bad link (or nakes a service call to get the link
fixed), it would be nice to confirmthat the event was indeed sent by
the entity, and not by a prankster. Authentication provides this
facility by allowing entities to authenticate their event nessages.

Anot her use of the authentication section is to provide access
control. Requests denmand processing time fromthe entity. |In cases
where the entity is a critical node, such as a gateway, we would like
to be able to Iimt requests to authorized applications. W can use
the authentication section to provide access control, by only

al l owi ng specially authenticated applications to request processing
time.

It should also be noted that, in certain cases, the encryption nethod

may also inplicitly authenticate a nmessage. |n such situations, the
aut hentication section should still be present, but uses a type code
whi ch indicates that authentication was provided by the encryption
met hod.

Format of the Authentication Section

The aut hentication section contains any data required to allow the
receiver to authenticate the message. The ASN.1 format of this
section is shown in Figure 5.

Aut henticateSection :: = IMPLICI T SEQUENCE ({
aut henti cat eType | NTEGER
aut henti cat eDat a ANY

}
Figure 5: ASN. 1 Format of Authentication Section
If the section is onitted, then the nmessage is not authenticated. |If
the section is present, then the authenticateType defines the type of

aut hentication used and the authenticateData contains the
aut henti cati ng data.

Partridge & Trewi tt [Page 6]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

This meno defines two types of authentication, a password schene and
aut hentication by encryption nethod. For the password schene, the
Aut henti cat eSection has the form shown in Figure 6.

Aut henticateSection :: = IMPLICI T SEQUENCE ({
aut henti cat eType | NTEGER { password(1) },
aut henti cat eDat a OCTETSTRI NG

}

Figure 6: ASN.1 Format of Password Authentication Section

The authenticateType is 1, and the password is an octet string of any
I ength. The systemis used to validate requests to an entity. Upon
receiving a request, an entity checks the password against an entity
speci fic password whi ch has been assigned to the entity. |If the
passwords match, the request is accepted for processing. The schemne
is a slightly nore powerful password schene than that currently used
for nmonitoring on the Internet.

For authentication by encryption, the AuthenticateSection has the
format shown in Figure 7.

Aut henticateSection :: = IMPLICI T SEQUENCE ({
aut henti cat eType I NTEGER { encryption(2) },
aut henti cat eDat a NULL

}

Figure 7: ASN.1 Format of Encryption Authentication Section

This section sinply indicates that authentication was inplicit in the
encryption nmethod. Recipients of such nmessages shoul d confirmthat
the encryption method does indeed provide authentication

No ot her authentication types are currently defined.

If a nessage fails authentication, it should be discarded. |If the
type of authentication used on the nmessage is unknown or the section
is omtted, the message may be di scarded or processed at the

di scretion of the inplenentation. It is recommended that requests
wi t h unknown aut hentication types be | ogged as potential intrusions,
but not processed.

THE COVMON HEADER
The common header contains generic infornmation about the nessage such

as the protocol version nunber and the type of request. The ASN. 1
format of the conmmon header is shown in Figure 8.

Partridge & Trewi tt [Page 7]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

ConmonHeader ::= | MPLICI' T SEQUENCE {
link I MPLICIT | NTEGER
messageType | MPLI CI T | NTEGER
messagel d | MPLI CI T | NTEGER,
resourceld ANY

Figure 8 ASN. 1 Format of Conmon Header
The |link indicates which version of HEMS is in use.

The nessageType is a value indicating whether the nessage is a
request (0), reply (1), event (2), protocol error (3) or application
error (4) nessage.

The nessageld is a unique bit identifier, which is set in the request
nessage, and echoed in the response. It allows applications to match
responses to their correspondi ng request. Applications should choose
nessagel ds such that a substantial period of tine el apses before a
nmessageld is re-used by a particular application (even across nmachi ne
crashes).

Event nessages al so use the nessageld field to indicate the nunber of
the current event nessage. By conparing nessageld fields fromevents
| ost, event values nmay be detected. The event nessageld should be
reset to 0 on every reboot, and by convention, the event nessage with
nmessagel d of O should always be a "reboot"” event. (Facilities should
be provided in the event nmessage definition to allow entities which
are capabl e of storing nessagelds across reboots to send the highest
nessagel d reached before the reboot.)

The resourceld is defined for |1SO conmpatibility and corresponds to
the resource ID used by the Comron Managenent |nformation Protocol to
identify the relevant |SO resource.

DATA SECTI ON

The data section contains the nessage specific data. The format of
the data section is shown in Figure 9.

Data ::= ANY
Figure 9: ASN. 1 Format of Data Section
The contents of the data section is application specific and, with

the exception of protocol error nessages, is outside the scope of
this meno.

Partridge & Trewi tt [Page 8]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

TRANSPORT PROTOCCL

There has been consi derabl e debate about the proper transport

protocol to use under HEMP. Part of the problemis that HEMP is
bei ng used for two different types of interactions: request-response
exchanges and event nessages. Request-response interactions my

i nvol ve arbitrary anmounts of data being sent in both directions, and
is believed to require a reliable transport nechanism Event
nessages are typically small and need not be reliably delivered.

Public opinion seens to | ean towards runni ng HEMP over a transaction
protocol (see RFC-955 for a general discussion). Unfortunately, the
conmunity is still experinenting with transaction protocols, and nmany
groups would like to be able to inplenment HEMP now. Accordingly,
this nmeno defines two transport protocols for use with HEMP

Groups interested in using an inplenentation of HEMP and the HEMS in
the near future should use a conbination of the Transm ssion Contro
Protocol (TCP) and the User Datagram Protocol (UDP) under HEMP. TCP
shoul d be used for all request-response interactions and UDP shoul d
be used to send event nmessages. Using UDP to support the request-
response interactions is strongly di scouraged.

More forward | ooki ng groups are encouraged to inplenment HEMP over a
transaction protocol, in particular, experinments are planned with the
Versatile Message Transaction Protocol (VMIP).

PROTOCOL ERROR MESSAGES

Protocol error nessages are so closely tied to the definition of HEMP
that it made sense to define the contents of the data section for
protocol error nessages in this menpo, even though the data section is
general |y consi dered application specific.

The data section of all protocol error messages has the sanme fornmat,
which is showmn in Figure 10. This format has been chosen to agree
with the error nmessage format and ASN. 1 type used for |anguage
processing errors in RFC-1024, and the error codes have been chosen
such that they do not overlap

Protocol Error ::= [APPLICATION O] inplicit sequence {
pr ot oErr or Code | NTEGER,

prot oError O fset | NTEGER
pr ot oError Descri bed | A5Stri ng,

Figure 10: Data Section For Protocol Error Messages

Partridge & Trewi tt [Page 9]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

The protoErrorCode is a number which specifies the particular type of
error encountered. The defined codes are:

0 - reserved <not used>

1 - ASN.1 format error. Sone error has been encountered
in parsing the nessage. Exanples of such an error are an
unknown type or a violation of the ASN. 1 syntax.

2 - Wong HEWMP version nunber. The version nunber in
the common header is invalid. Note that this may
be an indication of possible network intrusion and
shoul d be | ogged at sites concerned with security.

3 - Authentication error. Authentication has failed.

This error code is defined for conpl et eness, but

i mpl enent ati ons are *strongl y* di scouraged from using

it. Returning authentication failure information may

aid intruders in cracking the authentication system

It is recormended taht authentication errors be | ogged
as possible security probl ens.

4 - ReplyEncryption type not supported. The entity
does not support the encryption nmethod requested in the
Repl yEncryption section

5 - Decryption failed. The entity could not decrypt the
encrypted nessage. Note that this neans that the

entity could not read the ConmonHeader to find the
nessageld for the reply. 1In this case, the nessageld
field should be set to O.

6 - Application Failed. Some application failure nmade it
i mpossi ble to process the nessage.

The protoErrorOfset is the nunber of the octet in which the error
was di scovered. The first octet in the nmessage is octet nunber O.

The protoErrorDescribed field is a string which describes the

particular error. This description is expected to give a nore

detail ed description of the particular error encountered.
APPENDI X OF TYPES

This section lists all ASN. 1 types defined in this docunent.

Partridge & Trewi tt [Page 10]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

HEMP Types

HenpMessage ::= [0] I MPLICI T SEQUENCE {
[0] IMPLICIT Encrypt Secti on OPTI ONAL,
[1] IMPLICIT Repl yEncrypt Secti on OPTI ONAL,
[2] IMPLICIT AuthenticateSection OPTI ONAL,
[3] IMPLICIT CommonHeader,
[4] IMPLICIT Data }

Encrypt Section :: = I MPLICI T SEQUENCE {
encrypt Type | NTEGER,
encrypt Data ANY

Repl yEncrypt Section :: = I MPLICI T SEQUENCE {
repl yEncrypt Type | NTEGER,
repl yEncrypt Dat a ANY

Aut henticateSection :: = IMPLICI T SEQUENCE ({
aut henti cat eType | NTEGER,
aut henti cat eDat a ANY

}
CommonHeader ::= I MPLICI T SEQUENCE ({
[ink I MPLICIT | NTECGER,
messageType | MPLICIT | NTEGER ({
request (0), reply(1l), event(2),
protocol error (3), application error(4)
}
nmessagel d | MPLI CI T | NTEGER,
resourceld ANY
}
Data ::= ANY

Protocol Error Types

Protocol Error ::= [APPLICATION O] inplicit sequence {
pr ot oErr or Code | NTEGER,
prot oError O fset | NTEGER,
pr ot oError Descri bed OCTETSTRI NG

Partridge & Trewi tt [Page 11]

RFC 1022 HEMS Pr ot ocol Cct ober 1987

REFERENCES
| SO Standard ASN. 1 (Abstract Syntax Notation 1). It cones in two
parts:
I nternational Standard 8824 -- Specification (meaning, notation)
International Standard 8825 -- Encodi ng Rul es (representation)

The current VMIP specification is available from David Cheriton of
Stanford University.

Partridge & Trewi tt [Page 12]

