Net wor k Wor ki ng Group W Prue

Request for Comments: 1016 J. Poste
| SI
July 1987

Sonet hing a Host Could Do with Source Quench
The Source Quench I ntroduced Del ay (SQul D)
Status of this Meno

This menmp is intended to explore the issue of what a host could do
with a source quench. The proposal is for each source host |P nodule
to introduce sonme del ay between datagrans sent to the same
destination host. This is an "crazy idea paper” and discussion is
essential. Distribution of this meno is unlinted.

| nt roducti on

A gateway may discard Internet datagrans if it does not have the
buf f er space needed to queue the datagranms for output to the next
network on the route to the destination network. |f a gateway

di scards a datagram it may send a source quench nessage to the
Internet source host of the datagram A destination host nay al so
send a source quench nmessage if datagranms arrive too fast to be
processed. The source quench nmessage is a request to the host to cut
back the rate at which it is sending traffic to the Internet
destination. The gateway may send a source quench nessage for every
nessage that it discards. On receipt of a source quench nessage, the
source host should cut back the rate at which it is sending traffic
to the specified destination until it no |onger receives source
guench nessages fromthe gateway. The source host can then gradually
increase the rate at which it sends traffic to the destination unti

it again receives source quench nessages [1,2].

The gateway or host may send the source quench nmessage when it
approaches its capacity limt rather than waiting until the capacity
is exceeded. This means that the data datagram which triggered the
source gquench nessage nmay be delivered.

The SQul D Concept

Suppose the I P npodul e at the datagram source has a queue of datagrans
to send, and the I P nodule has a paraneter "D'. D is the introduced
del ay between sendi ng datagranms fromthe queue to the network. That
is, when the IP nodul e discovers a datagramwaiting to be sent to the
network, it sends it to the network then waits time D before even

| ooki ng at the datagram queue again. Normally, the value of Dis

Prue & Postel [Page 1]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

zZero.

| magi ne that when a source quench is received (or any other signal is
received that the host should slow down its transm ssions to the
network), the value of Dis increased. As time goes by, the val ue of
D is decreased.

The SQul D Al gorithm
on increase event:

D <-- maximum (D + K, 1|)
(where K = .020 second,
|

. 075 second)

on decrease event:

D <-- maximum (D - J, 0)
(where J = .001 second)

An increase event is receipt of one or nore source quenches in a
event period E, (where E is 2.000 seconds).

A decrease event is when S tine has passed since D was decreased and
there is a datagramto send (where S is 1.000 seconds).

A cache of Ds is kept for the last Mhosts comunicated with.
Not e that when no datagrams are sent to a destination for sone tine
the D for that destination is not decreased, but, if a destination is
not used for a long tinme that D for that destination may fall out of
the cache.

Possi bl e Refinenents

Keep a separate outgoi ng queue of datagrans for each destination
host, |ocal subnet, or network.

Keep the cache of D's per network or |ocal subnet, instead of per
host .

"I" could be based upon the basic speed of the slowest intervening
network (see Appendi x A).

"D' could be linted to never go below "I" if the above refinenent
wer e i npl enent ed.

"S" could be based upon the round trip tine.

Prue & Postel [Page 2]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

"D' coul d be adjusted datagram by dat agram based upon the | ength of
the datagrans. Wait |onger after a |ong datagram

The del ay al gorithm could be inplenmented such that if a source
doesn’t send a datagramwhen it is next allowed (the introduced del ay
interval) or for N such intervals that the source gets a credit for
one and only one free (no delay) datagram

| npl enent ati on | deas

Since | P does not normally keep much state information about things,
we want the default or idle P to have no state about these D val ues.
Since the default D value is zero, let us propose that the IP wll
keep a list of only those destinations with non zero D s.

VWen the IP wants to send a datagram it searches the D-list to see
if the destination is noted. |If it is not, the Dvalue is zero, so
the I P sends the datagramat once. |If the destination is |listed, the
IP nust wait D tinme indicated before sending that particul ar

datagram It could | ook at a datagram addressed to a different
destination, and possibly send it in the nean tine.

VWen the I P receives a source quench, it checks to see if the
destination in the datagramthat caused the source quench is on the
list. If so, it adds Kto the Dvalue. |If not, it appends the
destination to the list with the D value set to "I".

A Closer Look At the Probl em

Sone inmplenentations of | P send one SQ for every N datagrans they

di scard (for exanple, N=20) so the SQ nessages will not nmake the
congestion problem much worse [3]. In such situations any of the
sources of the 20 datagrans may get the SQ not necessarily the one
causing the nost traffic. However if a host continues to send
datagrans at a high rate it has a high probability of receiving a SQ

nessage sooner or later. It is much |ike a speeder on a hi ghway.
Not all speeders get speeding tickets but the ones who speed nost
often or nobst excessively are nost likely to be ticketed. In this

case they will get a ticket and their car may be destroyed.

Wth nmenory becom ng so inexpensive many |P nodes put an artificially
low limt on the size of their queues so that through node delay wl|
not be excessive [4]. For exanple, if one negabyte of data is
buffered to be sent over a 56 kb/s line the last datagramwi ||l wait
over 2 mnutes before being sent.

One problemwith SQis that the IP or |ICWMP specification does not
have a well|l defined event to indicate receipt of SQto higher |eve

Prue & Postel [Page 3]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

protocols. Therefore many TCP i npl enentati ons do not get notified
about SQ events and thus do not react to SQ TCP is not the only
source of | P datagranms either. Qher protocols should al so respond
to SQ events in sone appropriate way. TCP and ot her protocols at
that |evel should do something about a source quench, however,

di scussion of their behavior is beyond the scope of this nmenb. Note
that inplenmentation of SQ processing at one |evel of protocol should
not interfere with the behavior of higher level protocols. This
however, is difficult to do.

For protocols using IP which are trying to transfer |arge amunts of
data the data flowis nost typically very bursty. TCP for exanple
m ght send 5-10 segnents into a wi ndow of 5-10 K bytes then wait for
t he acknowl edgnment of the data which opens the wi ndow again. NETBLT
as defined by RFC-998 is a rate based protocol which has paraneters
for burst size and burst rate.

One purpose of the bursts is to allow the source conputer to generate
several datagrans at once to provide nore efficient scheduling. An
other reason is to keep the network busy accepting data to naxim ze
ef fective throughput in spite of a potentially |large network round
trip delay. To send a datagramthen wait for an acknow edgnment is a
simple but not efficient protocol on a | arge w de area network.

The reasons for efficiencies obtained at the source node by
generating many datagrans at once are not as applicable in an
internediate I P node. Since each datagramis potentially froma
di fferent node they nust all be treated individually. Datagrans
received in a burst may al so overload the queue of an internediate

node | osi ng datagrans and causing SQ to be generated. |f the queue
is near a threshold and a burst cones, possibly all of the datagrans
will be lost. When datagrans arrive evenly spaced, |ess datagrans

are likely to be |ost because the inter-arrival time allows the queue
alittle time to enpty out. Therefore datagrans spaced with some
del ay between them may be better for intermediate |IP nodes.

Congestion is nost likely to occur at |IP nodes which are gateways

bet ween a sl ower network and a faster one. The congestion will be in
the send queue fromthe slow network to the fast network. An SQ
being returned to the sender will return on the faster network. (See

di agr am bel ow.)

A Gateway Source Quench Concept
In order for the SQuID algorithmto work we rely upon the gateways to
send S to us to tell us how we are doing. Because the loss of a

singl e datagram affects data flow so much (see | ost datagram
di scussion in Cbserved Results below) it would be much better for the

Prue & Postel [Page 4]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

source IP node if it got a warning before datagrans were di scarded.

We propose gateway | P nodes start SQ ng before the node is flooded at
a level we call SQ Keep (SQX) but forward the datagram |If the queue
| evel reaches a critical level, SQ Toss level (SQI), the gateway
shoul d toss datagrans to resolve the probl emunless the datagramis
an | CMP nessage. Even |ICWP nessages will be tossed if the MaxQ | eve
is reached. Once the gateway starts sending SQ it should continue
to do so until the queue |evel goes below a | ow water mark | eve
(SQW as shown below. This is anal ogous to methods sonme operating
systens use to handl e nenory space nanagenent.

The gateway should try to send SQto as nany of the contributors of
the congestion as possible but only once per contributor per second
or two.

Source Quench Queue Levels

R LR + MaxQ | eve

| | > datagrams tossed & SQed (but not | CMP nsgs.)
R L + SQT |l evel (95%

| |\

| | > datagrans SQed but forwarded

| |/

R LR + SXK |l evel (70%

I |\

| | \ datagrans SQed but forwarded if SQK | eve
| | / exceeded & SQ.Wor |ower not yet reached
I |/

I + SQLW I evel (50%

[\

| \

\

\ datagrans forwarded

|
|
|
|/
|
|

Description of the Test Mode

We needed sone way of testing our algorithmand its various
paranmeters. It was inportant to check the interaction between |IP
with the SQuID algorithmand TCP. W also wanted to try various
conbi nati ons of retransm ssion strategy and source quench strategy
which required control of the entire test network. W therefore
decided to build an Internet nodel.

Prue & Postel [Page 5]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

Using this exanple configuration for illustration
LAN WAN LAN
| 1 | 2 | | 3 | | 4 |
| TCP/IP |---10 Mo/s--|] P |---56 kb/s--|] IP |---10 Md/s--|TCP/IP

A programwas witten in C which created queues and structures to put
on the queues representing datagranms carrying data, acknow edgnents
and S@. The program noved datagrams from one queue to the next
based upon rul es defined bel ow

Aclient fed the TCP in node 1 data at the rate it would accept. The
TCP function in node 1 would chop the data up into fixed 512 byte
datagrans for transmission to the IP in node 1. Wen the datagrans
were given to IP for transmi ssion, a timestanp was put on it and a
copy of it was put on a TCP ack-wait queue (data sent but not yet
acknow edged). In particular TCP assuned that once it handed data to
I P, the data was sent i mediately for purposes of retransm ssion

ti meouts even though our algorithmhas |IP add del ay before

transm ssion.

Each I P node had one queue in each direction (left and right). For
each IP in the nodel IP would forward datagrans at the rate of the
conmuni cations line going to the next node. Thus the fifth datagram
on IP 2's queue going right would take 5 X 73 msec or 365 nmsec before
it woul d appear at the end of IP 3 s queue. The time to process each
dat agram was considered to be less than the tine it took for the data
to be sent over the 56 kb/s lines and therefore done during those
transm ssion tinmes and not included in the nodel. For the LAN
conmuni cations this is not the case but since they were not at the
bottl eneck of the path this processing tinme was ignored. However
because LAN comunications are typically shared band wi dth, the LAN
band wi dth available to each IP instance was considered to be 1 M/s,
a crude approxi mati on.

When the data arrived at node 4 the data was i nmedi ately given to the
TCP receive function which validated the sequence nunber. |If the

dat agram was i n sequence the datagramwas turned into an ack datagram
and sent back to the source. An ack datagram carries no data and
will nove the right edge of the wi ndow, the wi ndow size past the just
acked data sequence nunber. The ack datagramis assumed to be 1/8 of
the length of a data datagram and thus can be transnmitted from one
node to the next 8 tines faster. |If the sequence nunber is |ess than
expected (a retransm ssion due to a nissed ack) then it too is turned
into an ack. A larger sequence nunber datagramis queued
indefinitely until the m ssing datagranms are received.

Prue & Postel [Page 6]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

We al so nodel ed the gateway source quench algorithm Wen a datagram
was put on an | P queue the nunber on the queue was conpared to an SQ
keep level (SQK). |If it was greater, an SQ was generated and
returned to the sender. If it was larger than the SQ toss (SQI) |eve
it was al so discarded. Once S were generated they woul d continue
to be sent until the queue |evel went bel ow SQ Low Water (SQW | eve
whi ch was bel ow the original SQK |l evel. These percentages were
nodi fi abl e as were many paraneters. An SQ could be lost if it
exceeded the maxi mum queue size (MaxQ, but a source quench was never
sent about tossing a source quench

Upon each transition fromone node to the next, the datagram was
vul nerabl e to datagram |l oss due to errors. The |loss rate could be
set as M| osses out of N datagrans sent, thus the nodel allowed for
mul ti-datagram | oss bursts or single datagram|osses. W used a
singl e datagram |l oss rate of 1 |ost datagram per 300 datagrams sent
for much of our testing. Wile this may seem|ow for Internet
simul ati on, renenber it does not include | osses due to congestion

Sone network paraneters we used were a maxi mum queue | ength of 15
datagrans per IP direction left and right. W started sending SQif
the queue was 70% full, SK level, tossed data datagrans, but not SQ
dat agrans, if 95% of the queue was reached, SQrT |evel, and stopped
SQ ng when a 50% SQW I evel was reached (see above).

We ignored additional SQ for 2 seconds after receipt of one SQ
Thi s was done because sone Internet nodes only send one SQ for every
20 datagranms they di scard even though our nodel sent SQ@ for every
dat agram di scarded. O her |P node may send one SQ per discarded
packet. The SQuID al gorithm needed a way to handl e both types of SQ
generation. W therefore treated one or a burst of SQ as a single
event and increnented our D by a |arger anpunt than woul d be
appropriate for responding individually to the multiple S@& of the
ver bose nodes.

The sinmulation did not do any fragmenting of datagrans. Silly w ndow
syndrone was avoi ded. The nodel did not inplenent nor sinulate the
TTL (time-to-live) function

The nodel allowed for a flexible topology definition with many TCP
source/ destination pairs on host |IP nodes or gateway |P nodes wth
various wi ndows allowed. An IP node could have any nunber of TCPs
assigned to it. Each line could have an individually set speed. Any
TCP coul d send to any other TCP. The routing fromone |location to
anot her was fixed. Therefore datagranms did not arrive out of
sequence. However, datagrans arrived in ascending order, but not
consecutively, on a regul ar basis because of datagram | osses.

Dat agrans going "left" through a node did not affect the queue size,

Prue & Postel [Page 7]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

or SQ chances, of data going "right" through the node.

The TCP retransmi ssion tinmer algorithmused an Al pha of .15 and a
Beta of 1.5. The test was run wi thout the benefit of the nore
sophi sticated retransm ssion tinmer algorithm proposed by Van Jacobson

[5].

The program woul d di splay either the queue sizes of the various IP
nodes and the TCP under test as tine passed or do a crude plot of
various paraneters of interest including SRTT, perceived round trip
time, throughput, and the critical queue size.

As we observed the effects of various algorithns for responding to SQ
we adapted our nodel to better react to SQ Initial tests showed if
we increnented slowy and decrenented qui ckly we observed
oscillations around the correct value but nore of the tinme was spent
over driving the network, thus | osing datagrans, than at a val ue

whi ch hel ped the congestion situation

A significant problemis the delay between when some intermnediate
node starts droppi ng datagranms and sendi ng source quenches to the
time when the source quenches arrive at the source host and can begin
to effect the behavior at the data source. Because of this and the
possibility that a IP mght send only one SQ for each 20 dat agrans

| ost, we decided that the increase in D per source quench should be
substantial (for exanmple, D should increase by 20 nsec for every
source quench), and the decrease with time should be very slow (for
exanpl e, D should decrease 1 nsec every second). Note that this is
the opposite behavior than suggested in an early draft by one of the
aut hors.

However, when many source quenches are received (for exanple, when a
source quench is received for every datagramdropped) in a short tine
period the D value is increased excessively. To prevent D from
growing too | arge, we decided to ignore subsequent source quenches
for atinme (for exanple, 2 seconds) once we had increased D

Tests were run with only one TCP sending data to | earn as much as
possi bl e how an unperturbed session mght run. Qher test runs would
i ntroduce and elimnate conpeting traffic dynam cally between ot her
TCP instances on the various nodes to see how the al gorithns reacted
to changes in network | oad. A potential flawin the nodel is that
the defined TCPs with open wi ndows always tried to forward data.
Their clients feeding them data never paused to think what they were
going to type nor got swapped out in favor of other applications nor
turned the session around logically to listen to the other end for
nore user commands. In other words all of the sinulated TCP sessions
were doing file transfers.

Prue & Postel [Page 8]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

The nodel was defined to allow many m xes of conpeting algorithnms for
responding to SQ It allowed conparing effective throughput between
TCPs with small wi ndows and | arge wi ndows and t hose whose | P would

i ntroduce inter-datagram del ays and those who totally ignored SQ It
al so all owed conparisons with various inter-datagramincrenent
amounts and decrenent anounts. Because of the nunber of possible
configurations and paraneter conbinations only a few conbi nati ons of
paranmeters were tested. It is hoped they were the npbst appropriate
ones upon which to concentrate.

onserved Results
Al of our algorithns oscillate, sonme worse than others.

If we put in just the right anpbunt of introduced delay we seemto get
the best throughput. But finding the right anobunt is not easy.

Thr oughput is adversely affected, heavily, by a single | ost datagram
at least for the short tine. Exam ne what happens when a wi ndow is
35 datagrans wide with an average round trip delay of 2500 nmsec using
512 byte datagranms when a single datagramis |ost at the begi nning.
Thirty five datagrans are given by TCP to IP and a tiner is started
on the first datagram Since the first datagramis mssing, the

receiving TCP will not sent an acknow edgnent but will buffer all 34
of the out-of-sequence datagrans. After 1.5 X 2500 nsec, or 3750
nsec, have el apsed the datagramtines out and is resent. It arrives

and is acked, along with the other 34, 2500 nmsec later. Before the
| ost datagram we m ght have been sending at the average rate a 56
kb/s line could accept, about one every 75 nmsec. After |oss of the
datagram we send at the rate of one in 6250 nsec over 83 tines

sl ower .

If the | ost datagramin the above exanple is other than the first
dat agram t he situation becones the same when all of the datagrans
before the | ost datagram are acknow edged. The exanple holds true
then for any single |lost datagramin the w ndow.

When SQ doesn’t al ways cause datagram | oss the sender continues to
send too fast (queue size oscillates a lot). It is inportant for the
SQ to cause feed-back into the sending system as soon as possibl e,
therefore when the source host IP receives an SQ it must nmake
adjustrments to the send rate for the datagrans still on the send
gueue not just datagrans IP is requested to send after the SQ

Thr ough network delay goes up as the network queue | engths go up

W ndow si ze affect the chance of getting SQed. Look at our node
above using a queue |evel of 15 for node 2 before SQ@ are generated

Prue & Postel [Page 9]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

and a wi ndow size of 20 datagrans. W assuned that we could send
data over the LAN at a sustained average rate of 1 Md/s or about 18
times as fast as over the WAN. \When TCP sends a burst of 20
datagrans to node 1 they nake it to node 2 in 81 nsec. The
transition tine fromnode 2 to node 3 is 73 nsec, therefore, in 81
nsec, only one datagramis forwarded to node 3. Thus the 17th, 18th,
19th, and 20th datagramare |ost every tine we send a whol e wi ndow.
More are | ost when the queue is not enpty. |If a sequence of acks
cone back in response to the sent data, the acks tend to return at
the rate at which data can traverse the net thus pacing new send data
by opening the wi ndow at the rate which the network can accept it.
However as soon as one datagramis lost all of the subsequent acks
are deferred and batched until receipt of the m ssing data bl ock

whi ch acks all of the datagrans and opens the wi ndow to 20 again
Thi s causes the max queue size to be exceeded again

If we assume a wi ndow small er than the max queue size in the

bottl eneck node, any tine we send a window s worth of data, it is
done i ndependently of the current size of the queue. The larger the
send wi ndow, the larger a percentage of the stressed queue we send.

If we send 50% of the stressed queue size any tine that queue is nore
than 50% we threaten to overflow the queue. Evenly spaced single

dat agram bursts have the | east chance of overflow ng the queue since
they represent the m ni mum percentage of the nax queue one nmy send.

When a big wi ndow opens up (that is, a mssing datagram at the head
of a 40 datagram send queue gets retransmitted and acked), the
perceived round trip tine for datagrams subsequently sent hits a

m ni mum val ue then goes up linearly. The SRTT goes down then back up
in anice smooth curve. This is caused by the fact IP will not add
delay if the queue is enpty and | P has not sent any datagrans to the
destination for our introduced delay tinme. But as nany datagrans are
added to the I P pre-staged send queue in bursts all have the same
send time as far as TCP is concerned. |IP will delay each datagram on
the head of the queue by the introduced delay ambunt. The first may
be undel ayed as just described but all of the others are del ayed by
their ordinal nunber on the queue tinmes the introduced del ay anount.

It seens as though in a race between a TCP sessi on which del ays

sending to | P and one who does not, the delayer will get better
t hroughput because | ess datagranms are | ost. The send wi ndow may al so
be increased to keep the pipeline full. |[If however the non del ayer

uses wi ndowi ng to reduce the chance of SQ datagram | oss his
t hroughput nay possibly be better because no fair queuing al gorithm
is in place.

If gateways send SQs early and don’t toss data until its critical and
keep sending S@ until a low water mark is hit, effective throughput

Prue & Postel [Page 10]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

seens to go up.

At the startup of our tests throughput was very high, then dropped
of f quickly as the last of the w ndow got clobbered. Qur node

shoul d have used a slow start up algorithmto mnimze the startup
shock. However the learning curve to estimate the proper value for D
was probably quicker.

A large part of the perceived RIT is due to the delay getting off the
TCP2I P (TCP transitional) queue when we used | arge wi ndows. |If IP
woul d i nvoke some back-pressure to TCP in a real inplenmentation this
can be significantly reduced. Reducing the wi ndow would do this for
us at the expense of throughput.

After an SQ burst which tosses datagranms the sender gets in a node
where TCP may only send one or two datagrans per RTT until the queued
but not acked segnments fall into sequence and are acked. This
assunes only the head of the retransni ssion queue is retransmtted on
a tineout. W can send one datagram upon tinmeout. Wen the ack for
the retransnission is received the w ndow opens all owi ng sending a
second. W then wait for the next |ost datagramto tine out.

If we stop sending data for a while but allow D to be decreased, our
al gorithm causes the introduced delay to dwi ndle away. W would thus
go through a new startup | earning curve and network oscillation
sequence.

One thing not observed often was TCP timng out a segnent before the
source I P even sent the datagramthe first time. As discussed above
the first datagramon the queue of a large burst is delayed mninmally
and succeedi ng datagrans have linearly increasing delays. The

snoot hed round trip delay algorithmhas a chance to adapt to the
percei ved increasing round trip tines.

Unstructured Thoughts and Coments

The further down a route a datagramtraverses before being cl obbered
the greater the waste of network resources. S@ which do not destroy
the datagramreferred to are better than ones that do if return path
resources are avail abl e.

Any fix nmust be inplenentable pieceneal. A fix can not be installed
in all or nost nodes at one tinme. The SQuID algorithmfulfills this
requirenment. |t could be inplenented, installed in one |ocation, and

used effectively.

If it can be shown that by using the new al gorithmeffective
t hroughput can be increased over inplenentations which do not

Prue & Postel [Page 11]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

implenent it that nmay well be effective inpetus to get vendors to
i mpl ement it.

Once a source host has an established average m ni mum i nter-dat agram
delay to a destination (see Appendix A), this information should be
stored across systemrestarts. This value nmight be used each tine
data is sent to the given host as a ninimum i nter-datagram del ay

val ue.

W ndow cl osi ng al gorithms reduce the average inter-datagram delay and
the burst size but do not affect the m nimuminter-datagram spaci ng
by TCP

Currently an | P gateway node can know if it is in a critical path
because its queues stay high or keep building up. [Its optinmm queue
size is one because it always has something to do and the through
node delay is at a mninum It is very inportant that the gateway at
the critical path not so discourage data flow that its queue size
drops to zero. |If the gateway tosses datagrans this stops data flow
for TCP for a while (as described in Observed Results above). This
argues for the gateway al gorithm described above which SQ but does
not toss datagrams unl ess necessary. Optimally we should try to have
a queue size sonewhat |arger than 1 but |less than say 50% of the max
gueue size. Large queues |lead to |arge del ay.

TCP's SRTT is nade artificially large by introducing delay at |P but
the perceived round trip time variance is probably smaller allow ng a
smal | er Beta value for the tinmeout val ue.

So that a decrease tinmer is not needed for the "D' decrease function
upon the next sent datagramto a del ayed destination just decrease
the delay by the amobunt of tine since we last did this divided by the
decrease timer interval. An alternate algorithmwould be to decrease
it by only one decrease unit anmount if nore than the tiner interva
has gone by. This elimnates the problem caused by the delay, "D',
dwi ndling away if we stop sending for a while. The |Ionger we send
using this "D', the nore likely it is that it is too |large a del ay
and the nmore we shoul d decrease it.

It is better for the network and the sender for our introduced del ay
to be alittle on the high side. It mnimzes the chances of getting
a datagram cl obbered by sending it into a congested gateway. A |ost
dat agram scenari o descri bed above showed t hat one | ost datagram can
reduce our effective delay by one to two orders of magnitude
temporarily. Also if the delay is a little high, the net is less
stressed and the queues get smaller, reducing through network del ay.

The RTT experienced at a given time verses the mninum RTT possible

Prue & Postel [Page 12]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

for the given route does give a good neasure of congestion. If we
ever get congestion control working RTT may have little to do with
the anobunt of congestion. Effective throughput when conpared wth
the possible throughput (or some other neasure) is the only rea
nmeasur e of congestion.

Sl ow startup of TCP is a good thing and shoul d be encouraged as an
additional nechanismfor alleviating network overl oad.

The network dynami cs tends to bunch datagrans. |If we properly space
data instead of bunching it |ike w ndowi ng techniques to contro
overfl ow of queues then greater throughput is acconplished because
the absolute rate we can send is pacing our sending not the RTT. W
elimnate "stochastic bunching" [6].

The | onger the RTT the nore network resources the data takes to
traverse the net.

Shoul d "fair queuing" say that a | onger route data transfer should
get less band width than a shorter one (since it consunes nore of the
net)? Being fair locally on each node may be unfair overall to

dat agrans traversi ng many nodes.

If we solve congestion problens today, we will start |oading up the
net with nore data tonorrow. When this causes congestion in a year
will that type of congestion be harder to solve than todays or is it
not our problen? John Nagle suggests "In a |arge net, we may well
try to force congestion out to the fringes and keep the interior of
the net uncongested by controlling entry to the net. The | MP-based
systens work that way, or at least used to. This has the effect of
concentrating congestion at the entrance to the |ong-haul system
That’'s where we want it; the Source Quench / congestion wi ndow / fair
gueui ng set of strategies are able to handl e congestion at the LAN to
WAN bottleneck [7]. Qur algorithmshould try to push the network
congestion out to the extremties and keep the interior network
congestion free.

Use of the algorithmis aesthetically appealing because the data is
sitting in our |ocal queue instead of consum ng resources inside the
net. W give data to the network only when it is ready to accept it.

An averaged mininmuminter-datagramarrival value will give a neasure
of the network bottleneck speed at the receiver. |f the receiver
does not defer or batch together acks the same would be | earned from
the inter-datagramarrival tine of the acks. A problemis that IP
doesn’t have know edge of the datagram contents. However |P does
know from whi ch host a datagram cones.

Prue & Postel [Page 13]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

If SQuIDIlinmts the size of its pre-net buffering properly (causes
back-pressure to TCP) then artificially high RTT neasurenents woul d
not occur.

TCP might, in the future, get a way to query IP for the current
i ntroduced delay, D, for a given destination and if the value is too
excessi ve abort or not start a session

Wth the new al gorithm TCP coul d have an arbitrarily [arge wi ndow to
send into without fear of over running queue sizes in internediate
nodes (not that any TCP ever considered having this fear before).
Thus it could have a wi ndow size which would allow it to al ways be
sendi ng; keeping the pipe full and seldomgetting in the stop-and-
wait node of sending. This presupposes that the local IPis able to
cause some sort of back pressure so that the local |Ps queues are not
over run. TCP would still be operating in the burst nmode of sending
but the local I P would be sending a datagram for the TCP as often as
the network could accept it keeping the data fl ow continuous though
potentially slow.

Experience inpl enmenting protocols suggests avoiding tinmers in

prot ocol s whenever possible. [P, as currently defined, does not use
timers. The SQuID algorithmuses two at the IP level. A way to
elimnate the introduced del ay decrease tiner is to decrease the D
val ue when we check the send queue for data to send. W would
decrease "D' by one "J" unit if "S" tine, or nore, has el apsed. The
other timer is not so easily elimnated. |If the IP inplenentation is
peri odi cal |y awakened to check for work to do, it could check the
time stanps of the head of the queues to see if any datagrans have
wai ted | ong enough. This would nean we woul d necessarily wait too

| ong before sending, but it nmay not be too large of a variance from
our desired rates. The additional delay would help congestion and
reduce our chances of SQ Another option is setting a real tiner
which is say 25-50%too | arge and hope that our periodic work in IP
will allowus to notice a datagramis del ayed enough, and send it.
Upon sendi ng the datagram we woul d cancel the tinmer, avoiding the
timer interrupt and environnment swap. |In other inplenentations the
conmuni cations interface or the link level protocol nmay be able to
provide the timng needed without interrupts to the nmain processor

Background tasks like some file transfers could query IP for the

| atest delay characteristics for a given destination to deternmine if
it is appropriate to consune network resources now or if it would be
better to wait until later.

We shoul d consi der what would happen if IP, using the SQlID

algorithm and TCP both introduced del ay between the datagrams. |If
TCPs del ay was greater than IP's, then when | P got the datagrans it

Prue & Postel [Page 14]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

woul d forward them i mediately as described in the al gorithm above.
This is because when the I P send queue is enpty and it has been at

| east as long as | P wants the higher |evel protocol, TCP, gets one
free (no delay) send. Note also that IP will be decreasing the
amount of delay it wants introduced because of the successfu
transm ssions without SQs. This would affect other protocols who
m ght al so send to the sane destination. |If TCP sends too quickly
then IP will protect the network fromits indiscretion as described
in the basic algorithmhowever TCPs round trip time estimates will be
much closer to reality. A lost datagramw |l thus be detected nore
quickly. If TCP also uses windowing to limt its sending rate, it
m ght, because of its success with a smaller w ndow, increase the
wi ndow si ze increasing TCPs efficiency.

As this algorithmis inplenented everywhere, the SQ Keep (SXK) and SQ
Low Water (SQLW queue | evel percentages shoul d be dropped to reduce
gueue sizes and thus the through net delay. The percentage we | ower
SQK and SQLWto shoul d be adjusted based upon the percentage of tine
the queue is enpty. The nore the queue is enpty the nore likely it

is that the node is discouraging data flow too nmuch. The nore tine
the queue is not enpty but not too full, the nore likely it is the
node i s not excessively discouraging data flow. How uniformthe
gueue size is, is a neasure of how well the network citizens are
behaved.

As the congestion is pushed to the sources, gateways which are

bottl enecks can nore easily detect someone not playing by the rules
(sendi ng datagrans in bursts) and deal with the offender

Prue & Postel [Page 15]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

Appendi x A -- Determination of the Value for the Paraneter "I"

To get to the correct value for the delay needed qui ckly, when an
event occurred and the currently used delay was mnimal, the

transm ssion time for an average sized datagram across the sl owest
comuni cations link was used for a first value. How a real |P node
is to guess this value is discussed below. In our exanple the
transition between node 2 and node 3 is the bottleneck. Using the 56
kb/s line, a 512 byte datagram would take 73 nmsec with no queuing or
processing tine is considered. This value is defined to be the

m ni muminter-datagramarrival time (MAT). Assuming a perfect
network, ignoring factors other than transm ssion speed, this is the
mnimumtine one could expect between recei pt of datagrans at the
destinati on, because of the slowed data rate through the bottl eneck
This won’t hold true if the datagrans do not follow the sane path.

The M AT, mininuminter-datagramarrival tinme, may be guessed at by
conparing the arrival timestanps of consecutive datagrans froma
source of data. Each value to be considered needs to be adjusted up
or down based upon the size between the second datagramrecei ved and
the typical datagramsize. Mre sinply stated, a datagramwhich is
hal f the size of the average datagram can be transmitted across a
line in half the time. Therefore, double its | AT before considering
it for an MAT. |If the tinestanp of a datagranms is taken based upon
an event caused by the start of the datagramarriving, not the

conpl etion of the datagramarriving, then the first datagranis size
is the limting | ength and should be used to adjust its [AT. In
order to keep the algorithmsinple, arrival tines for short datagram
could be ignored as could I ATs which were orders of magnitude too

| arge (see bel ow).

Once a nmnimal value is found based upon | ooking for snmall val ues
over a mnute or nore, the value nmight be time averaged with a val ue
kept like TCP"s SRTT in order to reduce the effects of a false MAT.
We could assune the limting facility would be a 9.6 kb/s line, a
56-64 kb/s line, or a 1.5 Md/s line. These facilities would provide
a M AT of 427 nmsec, 73-64 nsec, or 3 nsec respectively, for a

dat agram 512 bytes long. These are al nost orders of magnitude in

differences. |If the MAT a node neasures is not in this range but
close, the value it is closest to may be used for its MAT fromthat
source.

One of the good things about this neasurenent is that it is an
entirely passive neasurement. No additional traffic is needed to
nmeasure it. |If a source is not sending data continuously then the
| onger neasured values won't be validated as mnimal values. The
assunption is that at |east sonetinmes the source will send nultiple
datagrans at a tine.

Prue & Postel [Page 16]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

The M AT neasurenent is totally unaffected by satellite del ay
characteristics of any intervening facilities. The chance of getting
a valid mnimal reading is affected by the nunmber of nodes traversed,
but the value measured if it is valid will not be affected by the
nunber of nodes traversed. Stated another way, when a pair of

dat agrans traverse fromone node to the next the datagrans are
susceptible to being separated by a datagram from anot her source.
Both of these factors affect SRTT. The val ue obtai ned requires no

t opol ogi cal know edge of the route.

A potential problemw th the neasurenent is, it will not be the
proper value for sonme forms of alternate routes. If a Tl link is the
bottl eneck route sone tines and other tines it is a 56 kb/s Iink our
first guess for inter-datagram delay would be too snmall for the 56
kb/s line route. Another problemis that if one datagram goes via
one route and the next goes via another, their inter-datagramarriva
difference could lead to a small false measurenent. |[If intervening
net wor ks fragnent datagranms then the measured | AT between segnents
could be msleading. A solution to this problemis to ignore
fragnment ed datagram | ATs.

Thi s number represents the m ni mum inter-datagram del ay the sending

| P should use to send to us, the measuring site, for the given
datagramsize. |If we assune that the return path will be through the
sane facilities or the sane type, then as described above this val ue
can be the first guess for inter-datagramintroduced delay, "D' (in
the algorithm. It represents the "I" paraneter.

These M ATs may be cached on a host, subnet, or network basis. The
last "n" hosts M ATs could be kept. For infrequent destinations an
entry per destination network would be applicable to many
destinations. |If the local net is in fact a subnet, then the other
| ocal subnet M ATs coul d be kept.

If a good algorithmis found for MAT, conparing it to the average

| AT (during data transfer) would give a good neasure of the anount of
network traffic load. Since |IP has no idea when the source of data
is sending as fast as possible, to get a valid average, upper |ayer
protocol s woul d have to figure this out for thenselves. |P could
however provide an interface to get the current MAT for a given
desti nati on.

Prue & Postel [Page 17]

RFC 1016 Source Quench Introduced Delay -- SQulID July 1987

Ref er ences

[1] Postel, Jon, "Internet Protocol - DARPA Internet Program
Prot ocol Specification", RFC 791, |1SI, Septenber 1981.

[2] Postel, Jon, "Internet Control Message Protocol - DARPA Internet
Program Prot ocol Specification", RFC 792, |SI, Septenber 1981.

[3] Karels, M, "Re: Source Quench", electronic mail nessage to J.
Post el and | NENG | NTEREST, Tue, 24 Feb 87.

[4] Nagle, John B., "On Packet Switches Wth Infinite Storage", RFC
970, FACC Pal o Alto, Decenber 1985.

[5] Jacobson, Van, "Re: interpacket arrival variance and nean",
el ectronic mail message to TCP-1P, Mn, 15 Jun 87 06:08: 01 PDT

[6] Jacobson, Van, "Re: Appropriate neasures of gateway perfornmance”
electronic mail nmessage to J. Noel Chiappa and | NENG | NTEREST, Sun,
22 Mar 87 15:04: 44 PST.

[7] Nagle, John B., "Source quench, and congestion generally",
el ectronic mail message to B. Braden and | NENG | NTEREST, Thu, 5 Mar
87 11:08:49 PST.

[8] Nagle, John B., "Congestion Control in |P/TCP Internetwrks", RFC
896, FACC Palo Alto, 6 January 1984.

Prue & Postel [Page 18]

