Requests For Comments Summary
Notes: 800-899

Status of this Memo

This RFC is a slightly annotated list of the 100 RFCs from RFC 800 through RFC 899. This is a status report on these RFCs.

<table>
<thead>
<tr>
<th>RFC</th>
<th>Author</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>899</td>
<td>Postel</td>
<td>Apr 84</td>
<td>Requests For Comments Summary</td>
</tr>
</tbody>
</table>

This memo.

898 Hinden Apr 84 Gateway Special Interest Group Meeting Notes

This memo is a report on the Gateway Special Interest Group Meeting that was held at ISI on 28 and 29 February 1984. Robert Hinden of BBNCC chaired, and Jon Postel of ISI hosted the meeting. Approximately 35 gateway designers and implementors attended. These notes are based on the recollections of Jon Postel and Mike Muuss. Under each topic area are Jon Postel’s brief notes, and additional details from Mike Muuss. This memo is a report on a meeting. No conclusions, decisions, or policy statements are documented in this note.

897 Postel Feb 84 Domain Name System Implementation Schedule

This memo is a policy statement on the implementation of the Domain Style Naming System in the Internet. This memo is a partial update of RFC 881. The intent of this memo is to detail the schedule for the implementation for the Domain Style Naming System. The names of hosts will be changed to domain style names. Hosts will begin to use domain style names on 14-Mar-84, and the use of old style names will be completely phased out before 2-May-84. This applies to both the ARPA research hosts and the DDN operational hosts. This is an official policy statement of the ICCB and the DARPA.
This memo discusses some aspects of congestion control in IP/TCP Internetworks. It is intended to stimulate thought and further discussion of this topic. While some specific suggestions are made for improved congestion control implementation, this memo does not specify any standards.

This RFC specifies a standard method of encapsulating Internet Protocol (IP) datagrams on an Experimental Ethernet. This RFC specifies a standard protocol for the ARPA Internet community.

This RFC specifies a standard method of encapsulating Internet Protocol (IP) datagrams on an Ethernet. This RFC specifies a standard protocol for the ARPA-Internet community.

This RFC discusses the motivation for use of "trailer encapsulations" on local-area networks and describes the implementation of such an encapsulation on various media. This document is for information only. This is NOT an official protocol for the ARPA Internet community.

This is a draft version of the transport protocol being standardized by the ISO. This version also appeared in the ACM SIGCOMM Computer Communication Review (V.12, N.3-4) July-October 1982. This version is now out of date.

This RFC provides a description of the DCN protocols for maintaining connectivity, routing, and clock information in a local network. These procedures may be of interest to the designers and implementers of other local networks.
This memo is a policy statement on the implementation of the Exterior Gateway Protocol in the Internet. This is an official policy statement of ICCB and DARPA. After 1-Aug-84 there shall be no dumb gateways in the Internet. Every gateway must be a member of some autonomous system. Some gateway of each autonomous system must exchange routing information with some gateway of the core autonomous system using the Exterior Gateway Protocol.

This memo reports on some measurements of round-trip times in the Internet and suggests some possible improvements to the TCP retransmission timeout calculation. This memo is both a status report on the Internet and advice to TCP implementers.

This RFC describes the Exterior Gateway Protocol used to connect Stub Gateways to an Autonomous System of core Gateways. This document specifies the working protocol, and defines an ARPA official protocol. All implementers of Gateways should carefully review this document.

This RFC specifies a draft standard for the ARPA Internet community. It describes a resource location protocol for use in the ARPA Internet. It is most useful on networks employing technologies which support some method of broadcast addressing, however it may also be used on other types of networks. For maximum benefit, all hosts which provide significant resources or services to other hosts on the Internet should implement this protocol. Hosts failing to implement the Resource Location Protocol risk being ignored by other hosts which are attempting to locate resources on the Internet.

This RFC specifies a draft standard for the ARPA Internet community. It describes the rules to be used when transforming mail from the conventions of one message system to those of another message system. In particular, the treatment of header fields, and recipient addresses is specified.
This RFC specifies a standard for the ARPA Internet community. It specifies a method for marking the end of records in data transmitted on Telnet connections.

This RFC specifies a standard for the ARPA Internet community. It specifies a method for exchanging terminal type information in the Telnet protocol.

This RFC discusses the implementation of domain name servers and resolvers, specifies the format of transactions, and discusses the use of domain names in the context of existing mail systems and other network software.

This RFC introduces domain style names, their use for ARPA Internet mail and host address support, and the protocol and servers used to implement domain name facilities.

This RFC outlines a plan and schedule for the implementation of domain style names throughout the DDN/ARPA Internet community. The introduction of domain style names will impact all hosts on the DDN/ARPA Internet.

This RFC identifies the documents specifying the official protocols used in the ARPA Internet. Annotations identify any revisions or changes planned. Obsoletes RFC 840.

This RFC discusses the TCP Maximum Segment Size Option and related topics. The purposes is to clarify some aspects of TCP and its interaction with IP. This memo is a clarification to the TCP specification, and contains information that may be considered as "advice to implementers".
This RFC specifies the ARPANET 1822L Host Access Protocol, which is a successor to the existing 1822 Host Access Protocol. The 1822L procedure allows ARPANET hosts to use logical identifiers as well as 1822 physical interface identifiers to address each other.

This RFC specifies a standard adopted by CSNET, the VAN gateway, and other organizations for the transmission of IP datagrams over the X.25-based public data networks.

This RFC is a survey of implementation status. It does not specify an official protocol, but rather notes the status of implementation of aspects of a protocol. It is expected that the status of the hosts reported on will change. This information must be treated as a snapshot of the state of these implementations.

This RFC is a discussion about the role of gateways in an internetwork, especially the problems of translating or mapping protocols between different protocol suites. The discussion notes possible functionality mis-matches, undesirable routing "singularity points", flow control issues, and high cost of translating gateways. Originally published as M82-51 by the MITRE Corporation, Bedford, Massachusetts.

This RFC is an analysis of X.25 pointing out some problems in the conceptual model, particularly the conflict between the interface aspects and the end-to-end aspects. The memo also touches on security, and implementation issues. Originally published as M82-50 by the MITRE Corporation, Bedford, Massachusetts.

This memo takes issue with the claim that international standards in computer protocols presently provide a basis for low cost vendor supported protocol implementations. Originally published as M82-49 by the MITRE Corporation, Bedford, Massachusetts.
This memo attacks the notion that TCP cannot be appropriate for use on a Local Area Network. Originally published as M82-48 by the MITRE Corporation, Bedford Massachusetts.

This RFC is primarily intended as a perspective on the ARM and points out some of the differences between the ARM and the ISORM which were expressed by members in NWG general meetings, NWG protocol design committee meetings, the ARPA Internet Working Group, and private conversations over the intervening years. Originally published as M82-47 by the MITRE Corporation, Bedford, Massachusetts.

This RFC documents the list of numbers assigned for networks, protocols, etc. Obsoletes RFCs 820, 790, 776, 770, 762, 758, 755, 750, 739, 604.

This RFC specifies the Host Monitoring Protocol used to collect information from various types of hosts in the Internet. Designers of Internet communications software are encouraged to consider this protocol as a means of monitoring the behavior of their creations.

This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet that choose to implement a Time Protocol are expected to adopt and implement this standard. This protocol provides a site-independent, machine readable date and time. The Time service sends back to the originating source the time in seconds since midnight on January first 1900.

This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet that choose to implement a Daytime Protocol are expected to adopt and implement this standard. The Daytime service simply sends the current date and time as a character string without regard to the input.
This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet that choose to implement an Active Users Protocol are expected to adopt and implement this standard. The Active Users service simply sends a list of the currently active users on the host without regard to the input.

This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet that choose to implement a Quote of the Day Protocol are expected to adopt and implement this standard. The Quote of the Day service simply sends a short message without regard to the input.

This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet that choose to implement a Character Generator Protocol are expected to adopt and implement this standard. The Character Generator service simply sends data without regard to the input.

This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet that choose to implement a Discard Protocol are expected to adopt and implement this standard. The Discard service simply throws away any data it receives.

This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet that choose to implement an Echo Protocol are expected to adopt and implement this standard. The Echo service simply sends back to the originating source any data it receives.

This Telnet Option provides a mechanism for extending the set of possible options. This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet are expected to adopt and implement this standard. Obsoletes NIC 16239.
This Telnet Option provides a way to check the roundtrip path between two Telnet modules. This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet are expected to adopt and implement this standard. Obsoletes NIC 16238.

This Telnet Option provides a way to determine the other Telnet module’s view of the status of options. This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet are expected to adopt and implement this standard. Obsoletes RFC 651 (NIC 31154).

This Telnet Option disables the exchange of go-ahead signals between the Telnet modules. This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet are expected to adopt and implement this standard. Obsoletes NIC 15392.

This Telnet Option enables remote echoing by the other Telnet module. This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet are expected to adopt and implement this standard. Obsoletes NIC 15390.

This Telnet Option enables a binary data mode between the Telnet modules. This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet are expected to adopt and implement this standard. Obsoletes NIC 15389.

This memo specifies the general form for Telnet options and the directions for their specification. This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet are expected to adopt and implement this standard. Obsoletes RFC 651, NIC 18640.
This is the specification of the Telnet protocol used for remote terminal access in the ARPA Internet. The purpose of the TELNET Protocol is to provide a fairly general, bi-directional, eight-bit byte oriented communications facility. Its primary goal is to allow a standard method of interfacing terminal devices and terminal-oriented processes to each other. It is envisioned that the protocol may also be used for terminal-terminal communication ("linking") and process-process communication (distributed computation). This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet are expected to adopt and implement this standard. Obsoletes NIC 18639.

This RFC specifies the ARPANET Short Blocking Feature, which will allow ARPANET hosts to optionally shorten the IMP’s host blocking timer. This Feature is a replacement of the ARPANET non-blocking host interface, which was never implemented, and will be available to hosts using either the 1822 or 1822L Host Access Protocol. This RFC is also being presented as a solicitation of comments on the Short Blocking Feature, especially from host network software implementers and maintainers.

This RFC specifies the ARPANET 1822L Host Access Protocol, which is a successor to the existing 1822 Host Access Protocol. 1822L allows ARPANET hosts to use logical names as well as 1822’s physical port locations to address each other. This RFC is also being presented as a solicitation of comments on 1822L, especially from host network software implementers and maintainers. Obsoletes RFC 802.

This memo is distributed as an RFC only to make this information easily accessible to researchers in the ARPA community. It does not specify an Internet standard. This RFC defines the standard format for interchange of Network News articles among USENET sites. It describes the format for articles themselves, and gives partial standards for transmission of news. The news transmission is not entirely standardized in order to give a good deal of flexibility to the individual hosts to choose transmission hardware and software, whether to batch news and so on.
This RFC actually is a request for comments. The issue dealt with is that of a naming registry update procedure, both as exists currently and what could exist in the future. None of the proposed solutions are intended as standards at this time; rather it is hoped that a general consensus will emerge as the appropriate solution, leaving eventually to the adoption of standards.

This RFC lists those hosts which provide any of these "little" TCP services: The list of hosts were taken from the NIC hostname table of 24-Feb-83. The tests were run on February 23 and 24, and March 3 and 5 from ISI-VAXA.ARPA.

This is a summary of the surveys of Telnet, FTP and Mail (SMTP) servers conducted by David Smallberg in December 1982, January and February 1983 as reported in RFC 832-843, 845-846. This memo extracts the number of hosts that accepted the connection to their server for each of Telnet, FTP, and SMTP, and compares it to the total host in the Internet (not counting TACs or ECHOS).

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 18-Feb-83. The tests were run on 22-Feb-83 from ISI-VAXA.ARPA.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 3-Feb-83. The tests were run on 15-Feb-83 from ISI-VAXA.ARPA.
This survey determines how many hosts are able to respond to TELNET connections from a user at a class C site. This requires, in addition to IP and TCP, participation in gateway routing via ICMP and handling of Class C addresses. The list of hosts was taken from RFC 843, extracting only those hosts which are listed there as accepting TELNET connection. The tests were run on 18-Feb-83.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 3-Feb-83. The tests were run on 8-Feb-83 and on 9-Feb-83 from ISI-VAXA.ARPA.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 28-Jan-83. The tests were run on 1-Feb-83 and on 2-Feb-83 ISI-VAXA.ARPA.

This RFC is FIPS 98. The purpose of distributing this document as an RFC is to make it easily accessible to the ARPA research community. This RFC does not specify a standard for the ARPA Internet. Obsoletes RFC 806.

This RFC has been revised, see RFC 880.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 31-Dec-82. The tests were run on 25-Jan-83.
This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 31-Dec-82. The tests were run on 18-Jan-83.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 31-Dec-82. The tests were run on 11-Jan-83.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 20-Dec-82. The tests were run on 4-Jan-83 through 5-Jan-83.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 2-Dec-82. The tests were run on 28-Dec-82 through 5-Jan-83.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 2-Dec-82. The tests were run on 22-Dec-82.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 2-Dec-82. The tests were run on 14-Dec-82.

This RFC is a survey of hosts to identify the implementation status of Telnet, FTP, and Mail on TCP. The list of hosts was taken from the NIC hostname table of 2-Dec-82. The tests were run on 7-Dec-82.
The purpose of this RFC is to focus discussion on a particular Internet problem: a backup path for software maintenance of the European sector of the Internet, for use when SATNET is partitioned. We propose a mechanism, based upon the Source Routing option of IP, to reach European Internet sites via the VAN Gateway and UCL. This proposal is not intended as a standard at this time.

This RFC proposes a distributed name service for DARPA Internet. Its purpose is to focus discussion on the subject. It is hoped that a general consensus will emerge leading eventually to the adoption of standards.

This RFC describes briefly the packet satellite technology developed by the Defense Advanced Research Projects Agency and several other participating organizations in the U.K. and Norway and provides a bibliography of relevant papers for researchers interested in experimental and operational experience with this dynamic satellite-sharing technique.

This RFC is distributed to inform the ARPA Internet community of the activities of the IFIP technical committee on Data Communications, and to encourage participation in those activities.

This RFC is proposed to establish a standard for Gateway to Gateway procedures that allow the Gateways to be mutually suspicious. This document is a DRAFT for that standard. Your comments are strongly encouraged.

The purpose of this RFC is to present a method of Converting Protocol Addresses (e.g., IP addresses) to Local Network Addresses (e.g., Ethernet addresses). This is an issue of general concern in the ARPA Internet Community at this time. The method proposed here is presented for your consideration and comment. This is not the specification of an Internet Standard.
This RFC is intended to clarify the status of RFCs and to provide some guidance for the authors of RFCs in the future. It is in a sense a specification for RFCs.

The purpose of this note is to describe the CRONUS Virtual Local Network, especially the addressing related features. These features include a method for mapping between Internet Addresses and Local Network addresses. This is a topic of current concern in the ARPA Internet community. This note is intended to stimulate discussion. This is not a specification of an Internet Standard.

This RFC is a status report on the Internet Gateway developed by BBN. It describes the Internet Gateway as of September 1982. This memo presents detailed descriptions of message formats and gateway procedures, however, this is not an implementation specification, and such details are subject to change.

This document revises the specifications in RFC 733, in order to serve the needs of the larger and more complex ARPA Internet. Some of RFC 733’s features failed to gain adequate acceptance. In order to simplify the standard and the software that follows it, these features have been removed. A different addressing scheme is used, to handle the case of internetwork mail; and the concept of re-transmission has been introduced. Obsoletes RFC 733, NIC 41952.

The objective of Simple Mail Transfer Protocol (SMTP) is to transfer mail reliably and efficiently. SMTP is independent of the particular transmission subsystem and requires only a reliable ordered data stream channel. Obsoletes RFC 788, 780, and 772.

This RFC is an old version, see RFC 870.
This RFC is an attempt to clarify the generalization of the Domain Naming Convention, the Internet Naming Convention, and to explore the implications of its adoption for Internet name service and user applications.

This RFC is the specification of an application protocol. Any host that implements this application level service must follow this protocol.

This RFC will discuss some of the commonly encountered reasons why protocol implementations seem to run slowly.

This RFC describes the portion of fault isolation and recovery which is the responsibility of the host.

This RFC describes an alternate approach of dealing with reassembly which reduces the bookkeeping problem to a minimum, and requires only one buffer for storage equal in size to the final datagram being reassembled, which can reassemble a datagram from any number of fragments arriving in any order with any possible pattern of overlap and duplication, and which is appropriate for almost any sort of operating system.

This RFC gives suggestions and guidance for the design of the tables and algorithms necessary to keep track of these various sorts of identifiers inside a host implementation of TCP/IP.

This RFC describes implementation strategies to deal with two mechanisms in TCP, the window and the acknowledgement. It also presents a particular set of algorithms which have received testing in the field, and which appear to work properly with each other. With more experience, these algorithms may become part of the formal specification, until such time their use is recommended.
This RFC gives a description of what the NICNAME/WHOIS Server is and how to access it. This server together with the corresponding Identification Data Base provides online directory look-up equivalent to the ARPANET Directory.

This RFC gives a description of what the Hostnames Server is and how to access it. The function of this particular server is to deliver machine-readable name/address information describing networks, gateways, hosts, and eventually domains, within the internet environment.

This RFC specifies a new host table format applicable to both ARPANET and Internet needs. In addition to host name to host address translation and selected protocol information, we have also included network and gateway name to address correspondence, and host operating system information. This RFC obsoletes the host table described in RFC 608.

This RFC describes the features of the computerised facsimile system developed in the Department of Computer Science at UCL. First its functions are considered and the related experimental work are reported. Then the disciplines for system design are discussed. Finally, the implementation of the system are described, while detailed description are given as appendices.

This RFC is a very belated attempt to document a meeting that was held three years earlier to discuss the state of computer mail in the ARPA community and to reach some conclusions to guide the further development of computer mail systems such that a coherent total mail service would continue to be provided.

This RFC consists of notes from a meeting held at USC Information Sciences Institute on the 12th of January to discuss common interests in multimedia computer mail issues and to agree on some specific initial experiments.
This RFC deals with Computer Based Message systems which provides a basis for interaction between different CBMS by defining the format of messages passed between them. This RFC is replaced by RFC 841.

This RFC consists of notes from a meeting that was held at USC Information Sciences Institute on 11 January 1982, to discuss addressing issues in computer mail. The major conclusion reached at the meeting is to extend the "username@hostname" mailbox format to "username@host.domain", where the domain itself can be further structured.

This is the CCITT standard for group 3 facsimile encoding. This is useful for data compression of bit map data.

The first part of this RFC describes in detail the Dacom 450 data compression algorithms and is an update and correction to an earlier memorandum. The second part of this RFC describes briefly the Dacom 500 data compression algorithm as used by the INTELPOST electronic-mail network under development by the US Postal Service and several foreign administrators.

This document proposed two major changes to the current ARPANET host access protocol. The first change will allow hosts to use logical addressing (i.e., host addresses that are independent of their physical location on the ARPANET) to communicate with each other, and the second will allow a host to shorten the amount of time that it may be blocked by its IMP after it presents a message to the network (currently, the IMP can block further input from a host for up to 15 seconds). See RFCs 852 and 851.

This RFC discusses the conversion of hosts from NCP to TCP. And making available the principle services: Telnet, File Transfer, and Mail. These protocols allow all hosts in the ARPA community to share a common interprocess communication environment.
This RFC is a slightly annotated list of the 100 RFCs from RFC 700 through RFC 799. This is a status report on these RFCs.