Leighton-Micali Hash-Based Signatures

Abstract

This note describes a digital-signature system based on cryptographic hash functions, following the seminal work in this area of Lamport, Diffie, Winternitz, and Merkle, as adapted by Leighton and Micali in 1995. It specifies a one-time signature scheme and a general signature scheme. These systems provide asymmetric authentication without using large integer mathematics and can achieve a high security level. They are suitable for compact implementations, are relatively simple to implement, and are naturally resistant to side-channel attacks. Unlike many other signature systems, hash-based signatures would still be secure even if it proves feasible for an attacker to build a quantum computer.

This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF. This has been reviewed by many researchers, both in the research group and outside of it. The Acknowledgements section lists many of them.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational purposes.

This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-related research and development activities. These results might not be suitable for deployment. This RFC represents the consensus of the Crypto Forum Research Group of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are not candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8554.
One-time signature systems, and general-purpose signature systems built out of one-time signature systems, have been known since 1979 [Merkle79], were well studied in the 1990s [USPTO5432852], and have benefited from renewed attention in the last decade. The characteristics of these signature systems are small private and public keys and fast signature generation and verification, but large signatures and moderately slow key generation (in comparison with RSA and ECDSA (Elliptic Curve Digital Signature Algorithm)). Private keys can be made very small by appropriate key generation, for example, as described in Appendix A. In recent years, there has been interest in these systems because of their post-quantum security and their suitability for compact verifier implementations.

This note describes the Leighton and Micali adaptation [USPTO5432852] of the original Lamport-Diffie-Winternitz-Merkle one-time signature system [Merkle79] [C:Merkle87] [C:Merkle89a] [C:Merkle89b] and general signature system [Merkle79] with enough specificity to ensure interoperability between implementations.

A signature system provides asymmetric message authentication. The key-generation algorithm produces a public/private key pair. A message is signed by a private key, producing a signature, and a message/signature pair can be verified by a public key. A One-Time Signature (OTS) system can be used to sign one message securely but will become insecure if more than one is signed with the same public/
private key pair. An N-time signature system can be used to sign N or fewer messages securely. A Merkle-tree signature scheme is an N-time signature system that uses an OTS system as a component.

In the Merkle scheme, a binary tree of height h is used to hold 2^h OTS key pairs. Each interior node of the tree holds a value that is the hash of the values of its two child nodes. The public key of the tree is the value of the root node (a recursive hash of the OTS public keys), while the private key of the tree is the collection of all the OTS private keys, together with the index of the next OTS private key to sign the next message with.

In this note, we describe the Leighton-Micali Signature (LMS) system (a variant of the Merkle scheme) with the Hierarchical Signature System (HSS) built on top of it that allows it to efficiently scale to larger numbers of signatures. In order to support signing a large number of messages on resource-constrained systems, the Merkle tree can be subdivided into a number of smaller trees. Only the bottommost tree is used to sign messages, while trees above that are used to sign the public keys of their children. For example, in the simplest case with two levels with both levels consisting of height h trees, the root tree is used to sign 2^h trees with 2^h OTS key pairs, and each second-level tree has 2^h OTS key pairs, for a total of $2^h(2^h)$ bottom-level key pairs, and so can sign $2^h(2^h)$ messages. The advantage of this scheme is that only the active trees need to be instantiated, which saves both time (for key generation) and space (for key storage). On the other hand, using a multilevel signature scheme increases the size of the signature as well as the signature verification time.

This note is structured as follows. Notes on post-quantum cryptography are discussed in Section 1.1. Intellectual property issues are discussed in Section 1.2. The notation used within this note is defined in Section 3, and the public formats are described in Section 3.3. The Leighton-Micali One-Time Signature (LM-OTS) system is described in Section 4, and the LMS and HSS N-time signature systems are described in Sections 5 and 6, respectively. Sufficient detail is provided to ensure interoperability. The rationale for the design decisions is given in Section 7. The IANA registry for these signature systems is described in Section 8. Security considerations are presented in Section 9. Comparison with another hash-based signature algorithm (eXtended Merkle Signature Scheme (XMSS)) is in Section 10.

This document represents the rough consensus of the CFRG.
1.1. CFRG Note on Post-Quantum Cryptography

All post-quantum algorithms documented by the Crypto Forum Research Group (CFRG) are today considered ready for experimentation and further engineering development (e.g., to establish the impact of performance and sizes on IETF protocols). However, at the time of writing, we do not have significant deployment experience with such algorithms.

Many of these algorithms come with specific restrictions, e.g., change of classical interface or less cryptanalysis of proposed parameters than established schemes. The CFRG has consensus that all documents describing post-quantum technologies include the above paragraph and a clear additional warning about any specific restrictions, especially as those might affect use or deployment of the specific scheme. That guidance may be changed over time via document updates.

Additionally, for LMS:

CFRG consensus is that we are confident in the cryptographic security of the signature schemes described in this document against quantum computers, given the current state of the research community's knowledge about quantum algorithms. Indeed, we are confident that the security of a significant part of the Internet could be made dependent on the signature schemes defined in this document, if developers take care of the following.

In contrast to traditional signature schemes, the signature schemes described in this document are stateful, meaning the secret key changes over time. If a secret key state is used twice, no cryptographic security guarantees remain. In consequence, it becomes feasible to forge a signature on a new message. This is a new property that most developers will not be familiar with and requires careful handling of secret keys. Developers should not use the schemes described here except in systems that prevent the reuse of secret key states.

Note that the fact that the schemes described in this document are stateful also implies that classical APIs for digital signatures cannot be used without modification. The API MUST be able to handle a dynamic secret key state; that is, the API MUST allow the signature-generation algorithm to update the secret key state.
1.2. Intellectual Property

This document is based on U.S. Patent 5,432,852, which was issued over twenty years ago and is thus expired.

1.2.1. Disclaimer

This document is not intended as legal advice. Readers are advised to consult with their own legal advisers if they would like a legal interpretation of their rights.

The IETF policies and processes regarding intellectual property and patents are outlined in [RFC8179] and at <https://datatracker.ietf.org/ipr/about>.

1.3. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Interface

The LMS signing algorithm is stateful; it modifies and updates the private key as a side effect of generating a signature. Once a particular value of the private key is used to sign one message, it MUST NOT be used to sign another.

The key-generation algorithm takes as input an indication of the parameters for the signature system. If it is successful, it returns both a private key and a public key. Otherwise, it returns an indication of failure.

The signing algorithm takes as input the message to be signed and the current value of the private key. If successful, it returns a signature and the next value of the private key, if there is such a value. After the private key of an N-time signature system has signed N messages, the signing algorithm returns the signature and an indication that there is no next value of the private key that can be used for signing. If unsuccessful, it returns an indication of failure.

The verification algorithm takes as input the public key, a message, and a signature; it returns an indication of whether or not the signature-and-message pair is valid.
A message/signature pair is valid if the signature was returned by the signing algorithm upon input of the message and the private key corresponding to the public key; otherwise, the signature and message pair is not valid with probability very close to one.

3. Notation

3.1. Data Types

Bytes and byte strings are the fundamental data types. A single byte is denoted as a pair of hexadecimal digits with a leading "0x". A byte string is an ordered sequence of zero or more bytes and is denoted as an ordered sequence of hexadecimal characters with a leading "0x". For example, 0xe534f0 is a byte string with a length of three. An array of byte strings is an ordered set, indexed starting at zero, in which all strings have the same length.

Unsigned integers are converted into byte strings by representing them in network byte order. To make the number of bytes in the representation explicit, we define the functions u8str(X), u16str(X), and u32str(X), which take a nonnegative integer X as input and return one-, two-, and four-byte strings, respectively. We also make use of the function strTou32(S), which takes a four-byte string S as input and returns a nonnegative integer; the identity u32str(strTou32(S)) = S holds for any four-byte string S.

3.1.1. Operators

When a and b are real numbers, mathematical operators are defined as follows:

- $^a^b$ denotes the result of a raised to the power of b
- $a * b$ denotes the product of a multiplied by b
- a / b denotes the quotient of a divided by b
- $a \% b$ denotes the remainder of the integer division of a by b (with a and b being restricted to integers in this case)
- $a + b$ denotes the sum of a and b
- $a - b$ denotes the difference of a and b

AND : a AND b denotes the bitwise AND of the two nonnegative integers a and b (represented in binary notation)
The standard order of operations is used when evaluating arithmetic expressions.

When B is a byte and i is an integer, then B >> i denotes the logical right-shift operation by i bit positions. Similarly, B << i denotes the logical left-shift operation.

If S and T are byte strings, then S || T denotes the concatenation of S and T. If S and T are equal-length byte strings, then S AND T denotes the bitwise logical and operation.

The i-th element in an array A is denoted as A[i].

3.1.2. Functions

If r is a nonnegative real number, then we define the following functions:

- ceil(r) : returns the smallest integer greater than or equal to r
- floor(r) : returns the largest integer less than or equal to r
- lg(r) : returns the base-2 logarithm of r

3.1.3. Strings of w-Bit Elements

If S is a byte string, then byte(S, i) denotes its i-th byte, where the index starts at 0 at the left. Hence, byte(S, 0) is the leftmost byte of S, byte(S, 1) is the second byte from the left, and (assuming S is n bytes long) byte(S, n-1) is the rightmost byte of S. In addition, bytes(S, i, j) denotes the range of bytes from the i-th to the j-th byte, inclusive. For example, if S = 0x02040608, then byte(S, 0) is 0x02 and bytes(S, 1, 2) is 0x0406.

A byte string can be considered to be a string of w-bit unsigned integers; the correspondence is defined by the function coef(S, i, w) as follows:

If S is a string, i is a positive integer, and w is a member of the set { 1, 2, 4, 8 }, then coef(S, i, w) is the i-th, w-bit value, if S is interpreted as a sequence of w-bit values. That is,

\[
\text{coef}(S, i, w) = (2^w - 1) \times \text{byte}(S, \text{floor}(i \times w / 8)) \gg (8 - (w \times (i \% (8 / w)) + w))
\]
For example, if \(S \) is the string 0x1234, then \(\text{coef}(S, 7, 1) \) is 0 and \(\text{coef}(S, 0, 4) \) is 1.

\[
\begin{align*}
\text{coef}(S, 7, 1) &= 0 \\
\text{coef}(S, 0, 4) &= 1
\end{align*}
\]

The return value of \(\text{coef} \) is an unsigned integer. If \(i \) is larger than the number of \(w \)-bit values in \(S \), then \(\text{coef}(S, i, w) \) is undefined, and an attempt to compute that value MUST raise an error.

3.2. Typecodes

A typecode is an unsigned integer that is associated with a particular data format. The format of the LM-OTS, LMS, and HSS signatures and public keys all begin with a typecode that indicates the precise details used in that format. These typecodes are represented as four-byte unsigned integers in network byte order; equivalently, they are External Data Representation (XDR) enumerations (see Section 3.3).

3.3. Notation and Formats

The signature and public key formats are formally defined in XDR to provide an unambiguous, machine-readable definition [RFC4506]. The private key format is not included as it is not needed for interoperability and an implementation MAY use any private key format. However, for clarity, we include an example of private key data in Test Case 2 of Appendix F. Though XDR is used, these formats...
are simple and easy to parse without any special tools. An illustration of the layout of data in these objects is provided below. The definitions are as follows:

/* one-time signatures */

enum lmots_algorithm_type {
 lmots_reserved = 0,
 lmots_sha256_n32_w1 = 1,
 lmots_sha256_n32_w2 = 2,
 lmots_sha256_n32_w4 = 3,
 lmots_sha256_n32_w8 = 4
};

typedef opaque bytestring32[32];

struct lmots_signature_n32_p265 {
 bytestring32 C;
 bytestring32 y[265];
};

struct lmots_signature_n32_p133 {
 bytestring32 C;
 bytestring32 y[133];
};

struct lmots_signature_n32_p67 {
 bytestring32 C;
 bytestring32 y[67];
};

struct lmots_signature_n32_p34 {
 bytestring32 C;
 bytestring32 y[34];
};

union lmots_signature switch (lmots_algorithm_type type) {
 case lmots_sha256_n32_w1:
 lmots_signature_n32_p265 sig_n32_p265;
 case lmots_sha256_n32_w2:
 lmots_signature_n32_p133 sig_n32_p133;
 case lmots_sha256_n32_w4:
 lmots_signature_n32_p67 sig_n32_p67;
 case lmots_sha256_n32_w8:
 lmots_signature_n32_p34 sig_n32_p34;
 default:
 void; /* error condition */
};
/* hash-based signatures (hbs) */

enum lms_algorithm_type {
 lms_reserved = 0,
 lms_sha256_n32_h5 = 5,
 lms_sha256_n32_h10 = 6,
 lms_sha256_n32_h15 = 7,
 lms_sha256_n32_h20 = 8,
 lms_sha256_n32_h25 = 9
};

/* leighton-micali signatures (lms) */

union lms_path switch (lms_algorithm_type type) {
 case lms_sha256_n32_h5:
 bytestring32 path_n32_h5[5];
 case lms_sha256_n32_h10:
 bytestring32 path_n32_h10[10];
 case lms_sha256_n32_h15:
 bytestring32 path_n32_h15[15];
 case lms_sha256_n32_h20:
 bytestring32 path_n32_h20[20];
 case lms_sha256_n32_h25:
 bytestring32 path_n32_h25[25];
 default:
 void; /* error condition */
}

struct lms_signature {
 unsigned int q;
 lmots_signature lmots_sig;
 lms_path nodes;
};

struct lms_key_n32 {
 lmots_algorithm_type ots_alg_type;
 opaque I[16];
 opaque K[32];
};

union lms_public_key switch (lms_algorithm_type type) {
 case lms_sha256_n32_h5:
 case lms_sha256_n32_h10:
 case lms_sha256_n32_h15:
 case lms_sha256_n32_h20:
 case lms_sha256_n32_h25:
 lms_key_n32 z_n32;
default:
 void; /* error condition */
};

/* hierarchical signature system (hss) */

struct hss_public_key {
 unsigned int L;
 lms_public_key pub;
};

struct signed_public_key {
 lms_signature sig;
 lms_public_key pub;
};

struct hss_signature {
 signed_public_key signed_keys<7>;
 lms_signature sig_of_message;
};

4. LM-OTS One-Time Signatures

This section defines LM-OTS signatures. The signature is used to validate the authenticity of a message by associating a secret private key with a shared public key. These are one-time signatures; each private key MUST be used at most one time to sign any given message.

As part of the signing process, a digest of the original message is computed using the cryptographic hash function \(H \) (see Section 4.1), and the resulting digest is signed.

In order to facilitate its use in an N-time signature system, the LM-OTS key generation, signing, and verification algorithms all take as input parameters \(I \) and \(q \). The parameter \(I \) is a 16-byte string that indicates which Merkle tree this LM-OTS is used with. The parameter \(q \) is a 32-bit integer that indicates the leaf of the Merkle tree where the OTS public key appears. These parameters are used as part of the security string, as listed in Section 7.1. When the LM-OTS signature system is used outside of an N-time signature system, the value \(I \) MAY be used to differentiate this one-time signature from others; however, the value \(q \) MUST be set to the all-zero value.
4.1. Parameters

The signature system uses the parameters n and w, which are both positive integers. The algorithm description also makes use of the internal parameters p and ls, which are dependent on n and w. These parameters are summarized as follows:

- n: the number of bytes of the output of the hash function.
- w: the width (in bits) of the Winternitz coefficients; that is, the number of bits from the hash or checksum that is used with a single Winternitz chain. It is a member of the set \{1, 2, 4, 8\}.
- p: the number of n-byte string elements that make up the LM-OTS signature. This is a function of n and w; the values for the defined parameter sets are listed in Table 1; it can also be computed by the algorithm given in Appendix B.
- ls: the number of left-shift bits used in the checksum function $Cksm$ (defined in Section 4.4).
- H: a second-preimage-resistant cryptographic hash function that accepts byte strings of any length and returns an n-byte string.

For more background on the cryptographic security requirements for H, see Section 9.

The value of n is determined by the hash function selected for use as part of the LM-OTS algorithm; the choice of this value has a strong effect on the security of the system. The parameter w determines the length of the Winternitz chains computed as a part of the OTS signature (which involve $2^w - 1$ invocations of the hash function); it has little effect on security. Increasing w will shorten the signature, but at a cost of a larger computation to generate and verify a signature. The values of p and ls are dependent on the choices of the parameters n and w, as described in Appendix B. Table 1 illustrates various combinations of n, w, p and ls, along with the resulting signature length.

The value of w describes a space/time trade-off; increasing the value of w will cause the signature to shrink (by decreasing the value of p) while increasing the amount of time needed to perform operations with it: generate the public key and generate and verify the signature. In general, the LM-OTS signature is $4+n\times(p+1)$ bytes long, and public key generation will take $p\times(2^w - 1) + 1$ hash computations (and signature generation and verification will take approximately half that on average).
Table 1

<table>
<thead>
<tr>
<th>Parameter Set Name</th>
<th>H</th>
<th>n</th>
<th>w</th>
<th>p</th>
<th>ls</th>
<th>sig_len</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMOTS_SHA256_N32_W1</td>
<td>SHA256</td>
<td>32</td>
<td>1</td>
<td>265</td>
<td>7</td>
<td>8516</td>
</tr>
<tr>
<td>LMOTS_SHA256_N32_W2</td>
<td>SHA256</td>
<td>32</td>
<td>2</td>
<td>133</td>
<td>6</td>
<td>4292</td>
</tr>
<tr>
<td>LMOTS_SHA256_N32_W4</td>
<td>SHA256</td>
<td>32</td>
<td>4</td>
<td>67</td>
<td>4</td>
<td>2180</td>
</tr>
<tr>
<td>LMOTS_SHA256_N32_W8</td>
<td>SHA256</td>
<td>32</td>
<td>8</td>
<td>34</td>
<td>0</td>
<td>1124</td>
</tr>
</tbody>
</table>

Here SHA256 denotes the SHA-256 hash function defined in NIST standard [FIPS180].

4.2. Private Key

The format of the LM-OTS private key is an internal matter to the implementation, and this document does not attempt to define it. One possibility is that the private key may consist of a typecode indicating the particular LM-OTS algorithm, an array x[] containing p n-byte strings, and the 16-byte string I and the 4-byte string q. This private key MUST be used to sign (at most) one message. The following algorithm shows pseudocode for generating a private key.

Algorithm 0: Generating a Private Key

1. Retrieve the values of q and I (the 16-byte identifier of the LMS public/private key pair) from the LMS tree that this LM-OTS private key will be used with

2. Set type to the typecode of the algorithm

3. Set n and p according to the typecode and Table 1

4. Compute the array x as follows:
 for (i = 0; i < p; i = i + 1) {
 set x[i] to a uniformly random n-byte string
 }

5. Return u32str(type) || I || u32str(q) || x[0] || x[1] || ... || x[p-1]

An implementation MAY use a pseudorandom method to compute x[i], as suggested in [Merkle79], page 46. The details of the pseudorandom method do not affect interoperability, but the cryptographic strength.
MUST match that of the LM-OTS algorithm. Appendix A provides an example of a pseudorandom method for computing the LM-OTS private key.

4.3. Public Key

The LM-OTS public key is generated from the private key by iteratively applying the function H to each individual element of \(x \), for \(2^w - 1 \) iterations, then hashing all of the resulting values.

The public key is generated from the private key using the following algorithm, or any equivalent process.

Algorithm 1: Generating a One-Time Signature Public Key From a Private Key

1. Set type to the typecode of the algorithm
2. Set the integers \(n \), \(p \), and \(w \) according to the typecode and Table 1
3. Determine \(x \), \(I \), and \(q \) from the private key
4. Compute the string \(K \) as follows:

   ```
   for ( i = 0; i < p; i = i + 1 ) {
     tmp = x[i]
     for ( j = 0; j < 2^w - 1; j = j + 1 ) {
       tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
     }
     y[i] = tmp
   }
   K = H(I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1])
   
   5. Return u32str(type) || I || u32str(q) || K
   ```

 where \(D_PBLC \) is the fixed two-byte value 0x8080, which is used to distinguish the last hash from every other hash in this system.

 The public key is the value returned by Algorithm 1.

4.4. Checksum

A checksum is used to ensure that any forgery attempt that manipulates the elements of an existing signature will be detected. This checksum is needed because an attacker can freely advance any of the Winternitz chains. That is, if this checksum were not present, then an attacker who could find a hash that has every digit larger than the valid hash could replace it (and adjust the Winternitz
chains). The security property that the checksum provides is detailed in Section 9. The checksum function \(\text{Cksm} \) is defined as follows, where \(S \) denotes the \(n \)-byte string that is input to that function, and the value \(\text{sum} \) is a 16-bit unsigned integer:

Algorithm 2: Checksum Calculation

\[
\text{sum} = 0 \\
\text{for } (i = 0; i < (n/8/w); i = i + 1) \{
\text{sum} = \text{sum} + (2^w - 1) - \text{coef}(S, i, w)
\}
\text{return } (\text{sum} << \text{ls})
\]

\(\text{ls} \) is the parameter that shifts the significant bits of the checksum into the positions that will actually be used by the \(\text{coef} \) function when encoding the digits of the checksum. The actual \(\text{ls} \) parameter is a function of the \(n \) and \(w \) parameters; the values for the currently defined parameter sets are shown in Table 1. It is calculated by the algorithm given in Appendix B.

Because of the left-shift operation, the rightmost bits of the result of \(\text{Cksm} \) will often be zeros. Due to the value of \(p \), these bits will not be used during signature generation or verification.

4.5. Signature Generation

The LM-OTS signature of a message is generated by doing the following in sequence: prepending the LMS key identifier \(I \), the LMS leaf identifier \(q \), the value D_MESG (0x8181), and the randomizer \(C \) to the message; computing the hash; concatenating the checksum of the hash to the hash itself; considering the resulting value as a sequence of \(w \)-bit values; and using each of the \(w \)-bit values to determine the number of times to apply the function \(H \) to the corresponding element of the private key. The outputs of the function \(H \) are concatenated together and returned as the signature. The pseudocode for this procedure is shown below.

Algorithm 3: Generating a One-Time Signature From a Private Key and a Message

1. Set \(\text{type} \) to the typecode of the algorithm
2. Set \(n \), \(p \), and \(w \) according to the typecode and Table 1
3. Determine \(x \), \(I \), and \(q \) from the private key
4. Set \(C \) to a uniformly random \(n \)-byte string
5. Compute the array y as follows:
 \[Q = H(I \mid u32str(q) \mid u16str(D_MESG) \mid C \mid message) \]
 for (i = 0; i < p; i = i + 1) {
 a = coef(Q || Cksm(Q), i, w)
 tmp = x[i]
 for (j = 0; j < a; j = j + 1) {
 tmp = H(I \mid u32str(q) \mid u16str(i) \mid u8str(j) \mid tmp)
 }
 y[i] = tmp
 }

6. Return u32str(type) \mid C \mid y[0] \mid ... \mid y[p-1]

Note that this algorithm results in a signature whose elements are intermediate values of the elements computed by the public key algorithm in Section 4.3.

The signature is the string returned by Algorithm 3. Section 3.3 formally defines the structure of the string as the lmots_signature union.

4.6. Signature Verification

In order to verify a message with its signature (an array of n-byte strings, denoted as y), the receiver must "complete" the chain of iterations of H using the w-bit coefficients of the string resulting from the concatenation of the message hash and its checksum. This computation should result in a value that matches the provided public key.

Algorithm 4a: Verifying a Signature and Message Using a Public Key

1. If the public key is not at least four bytes long, return INVALID.

2. Parse pubtype, I, q, and K from the public key as follows:
 a. pubtype = strTou32(first 4 bytes of public key)
 b. Set n according to the pubkey and Table 1; if the public key is not exactly 24 + n bytes long, return INVALID.
 c. I = next 16 bytes of public key
 d. q = strTou32(next 4 bytes of public key)
 e. K = next n bytes of public key
3. Compute the public key candidate K_c from the signature, message, pubtype, and the identifiers I and q obtained from the public key, using Algorithm 4b. If Algorithm 4b returns INVALID, then return INVALID.

4. If K_c is equal to K, return VALID; otherwise, return INVALID.

Algorithm 4b: Computing a Public Key Candidate K_c from a Signature, Message, Signature Typecode pubtype, and Identifiers I, q

1. If the signature is not at least four bytes long, return INVALID.

2. Parse sigtype, C, and y from the signature as follows:
 a. $\text{sigtype} = \text{strTou32}($first 4 bytes of signature$)$
 b. If sigtype is not equal to pubtype, return INVALID.
 c. Set n and p according to the pubtype and Table 1; if the signature is not exactly $4 + n \times (p+1)$ bytes long, return INVALID.
 d. $C =$ next n bytes of signature
 e. $y[0] =$ next n bytes of signature
 $y[1] =$ next n bytes of signature
 ...
 $y[p-1] =$ next n bytes of signature

3. Compute the string K_c as follows:
 $Q = H(I \mid \mid u32str(q) \mid \mid u16str(D_MESG) \mid C \mid \mid \text{message})$
 for ($i = 0; i < p; i = i + 1$) {
 $a = \text{coef}(Q \mid \mid Cksm(Q), i, w)$
 $\text{tmp} = y[i]$
 for ($j = a; j < 2^w - 1; j = j + 1$) {
 $\text{tmp} = H(I \mid \mid u32str(q) \mid \mid u16str(i) \mid \mid u8str(j) \mid \mid \text{tmp})$
 }
 $z[i] = \text{tmp}$
 }
 $K_c = H(I \mid \mid u32str(q) \mid \mid u16str(D_PBLC) \mid$
 $z[0] \mid z[1] \mid ... \mid z[p-1])$

4. Return K_c.

5. Leighton-Micali Signatures

The Leighton-Micali Signature (LMS) method can sign a potentially large but fixed number of messages. An LMS system uses two cryptographic components: a one-time signature method and a hash function. Each LMS public/private key pair is associated with a perfect binary tree, each node of which contains an \(m\)-byte value, where \(m\) is the output length of the hash function. Each leaf of the tree contains the value of the public key of an LM-OTS public/private key pair. The value contained by the root of the tree is the LMS public key. Each interior node is computed by applying the hash function to the concatenation of the values of its children nodes.

Each node of the tree is associated with a node number, an unsigned integer that is denoted as node_num in the algorithms below, which is computed as follows. The root node has node number 1; for each node with node number \(N < 2^h\) (where \(h\) is the height of the tree), its left child has node number \(2N\), while its right child has node number \(2N + 1\). The result of this is that each node within the tree will have a unique node number, and the leaves will have node numbers \(2^h, (2^h)+1, (2^h)+2, ..., (2^h)+(2^h)-1\). In general, the \(j\)-th node at level \(i\) has node number \(2^i + j\). The node number can conveniently be computed when it is needed in the LMS algorithms, as described in those algorithms.

5.1. Parameters

An LMS system has the following parameters:

- \(h\) : the height of the tree
- \(m\) : the number of bytes associated with each node
- \(H\) : a second-preimage-resistant cryptographic hash function that accepts byte strings of any length and returns an \(m\)-byte string.

There are \(2^h\) leaves in the tree.

The overall strength of LMS signatures is governed by the weaker of the hash function used within the LM-OTS and the hash function used within the LMS system. In order to minimize the risk, these two hash functions SHOULD be the same (so that an attacker could not take advantage of the weaker hash function choice).
Table 2

<table>
<thead>
<tr>
<th>Name</th>
<th>H</th>
<th>m</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMS_SHA256_M32_H5</td>
<td>SHA256</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>LMS_SHA256_M32_H10</td>
<td>SHA256</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>LMS_SHA256_M32_H15</td>
<td>SHA256</td>
<td>32</td>
<td>15</td>
</tr>
<tr>
<td>LMS_SHA256_M32_H20</td>
<td>SHA256</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>LMS_SHA256_M32_H25</td>
<td>SHA256</td>
<td>32</td>
<td>25</td>
</tr>
</tbody>
</table>

5.2. LMS Private Key

The format of the LMS private key is an internal matter to the implementation, and this document does not attempt to define it. One possibility is that it may consist of an array OTS_PRIV[] of 2^h LM-OTS private keys and the leaf number q of the next LM-OTS private key that has not yet been used. The q-th element of OTS_PRIV[] is generated using Algorithm 0 with the identifiers I, q. The leaf number q is initialized to zero when the LMS private key is created. The process is as follows:

Algorithm 5: Computing an LMS Private Key.

1. Determine h and m from the typecode and Table 2.
2. Set I to a uniformly random 16-byte string.
3. Compute the array OTS_PRIV[] as follows:

 for ($q = 0; q < 2^h; q = q + 1$) {
 OTS_PRIV[q] = LM-OTS private key with identifiers I, q
 }

4. $q = 0$

An LMS private key MAY be generated pseudorandomly from a secret value; in this case, the secret value MUST be at least m bytes long and uniformly random and MUST NOT be used for any other purpose than the generation of the LMS private key. The details of how this process is done do not affect interoperability; that is, the public key verification operation is independent of these details. Appendix A provides an example of a pseudorandom method for computing an LMS private key.
The signature-generation logic uses q as the next leaf to use; hence, step 4 starts it off at the leftmost leaf. Because the signature process increments q after the signature operation, the first signature will have q=0.

5.3. LMS Public Key

An LMS public key is defined as follows, where we denote the public key final hash value (namely, the K value computed in Algorithm 1) associated with the i-th LM-OTS private key as OTS_PUB_HASH[i], with i ranging from 0 to (2^h)-1. Each instance of an LMS public/private key pair is associated with a balanced binary tree, and the nodes of that tree are indexed from 1 to 2^(h+1)-1. Each node is associated with an m-byte string. The string for the r-th node is denoted as T[r] and defined as

\[
\begin{align*}
\text{if } r &\geq 2^h: \\
&\quad H(I \| u32str(r) \| u16str(D_{LEAF}) \| OTS_PUB_HASH[r-2^h]) \\
\text{else } &\quad H(I \| u32str(r) \| u16str(D_{INTR}) \| T[2*r] \| T[2*r+1])
\end{align*}
\]

where D_LEAF is the fixed two-byte value 0x8282 and D_INTR is the fixed two-byte value 0x8383, both of which are used to distinguish this hash from every other hash in this system.

When we have r >= 2^h, then we are processing a leaf node (and thus hashing only a single LM-OTS public key). When we have r < 2^h, then we are processing an internal node -- that is, a node with two child nodes that we need to combine.

The LMS public key can be represented as the byte string

\[
u32str(type) \| u32str(otstype) \| I \| T[1]
\]

Section 3.3 specifies the format of the type variable. The value otstype is the parameter set for the LM-OTS public/private key pairs used. The value I is the private key identifier and is the value used for all computations for the same LMS tree. The value T[1] can be computed via recursive application of the above equation or by any equivalent method. An iterative procedure is outlined in Appendix C.
5.4. LMS Signature

An LMS signature consists of

- the number q of the leaf associated with the LM-OTS signature, as a four-byte unsigned integer in network byte order, an LM-OTS signature,
- a typecode indicating the particular LMS algorithm,
- an array of h m-byte values that is associated with the path through the tree from the leaf associated with the LM-OTS signature to the root.

Symbolically, the signature can be represented as

\[
\text{u32str}(q) \ || \ \text{lmots_signature} \ || \ \text{u32str(type)} \ || \ \text{path}[0] \ || \ \text{path}[1] \ || \ \text{path}[2] \ || \ ... \ || \ \text{path}[h-1]
\]

Section 3.3 formally defines the format of the signature as the lms_signature structure. The array for a tree with height h will have h values and contains the values of the siblings of (that is, is adjacent to) the nodes on the path from the leaf to the root, where the sibling to node A is the other node that shares node A’s parent. In the signature, 0 is counted from the bottom level of the tree, and so path[0] is the value of the node adjacent to leaf node q; path[1] is the second-level node that is adjacent to leaf node q’s parent, and so on up the tree until we get to path[h-1], which is the value of the next-to-the-top-level node whose branch the leaf node q does not reside in.

Below is a simple example of the authentication path for h=3 and q=2. The leaf marked OTS is the one-time signature that is used to sign the actual message. The nodes on the path from the OTS public key to the root are marked with a *, while the nodes that are used within the path array are marked with **. The values in the path array are those nodes that are siblings of the nodes on the path; path[0] is the leaf** node that is adjacent to the OTS public key (which is the start of the path); path[1] is the T[4]** node that is the sibling of the second node T[5]* on the path, and path[2] is the T[3]** node that is the sibling of the third node T[2]* on the path.
The idea behind this authentication path is that it allows us to validate the OTS hash with using h path array values and hash computations. What the verifier does is recompute the hashes up the path; first, it hashes the given OTS and path[0] value, giving a tentative T[5]' value. Then, it hashes its path[1] and tentative T[5]' value to get a tentative T[2]' value. Then, it hashes that and the path[2] value to get a tentative Root' value. If that value is the known public key of the Merkle tree, then we can assume that the value T[2]' it got was the correct T[2] value in the original tree, and so the T[5]' value it got was the correct T[5] value in the original tree, and so the OTS public key is the same as in the original and, hence, is correct.

5.4.1. LMS Signature Generation

To compute the LMS signature of a message with an LMS private key, the signer first computes the LM-OTS signature of the message using the leaf number of the next unused LM-OTS private key. The leaf number q in the signature is set to the leaf number of the LMS private key that was used in the signature. Before releasing the signature, the leaf number q in the LMS private key MUST be incremented to prevent the LM-OTS private key from being used again. If the LMS private key is maintained in nonvolatile memory, then the implementation MUST ensure that the incremented value has been stored before releasing the signature. The issue this tries to prevent is a scenario where a) we generate a signature using one LM-OTS private key and release it to the application, b) before we update the nonvolatile memory, we crash, and c) we reboot and generate a second signature using the same LM-OTS private key. With two different signatures using the same LM-OTS private key, an attacker could potentially generate a forged signature of a third message.
The array of node values in the signature MAY be computed in any way. There are many potential time/storage trade-offs that can be applied. The fastest alternative is to store all of the nodes of the tree and set the array in the signature by copying them; pseudocode to do so appears in Appendix D. The least storage-intensive alternative is to recompute all of the nodes for each signature. Note that the details of this procedure are not important for interoperability; it is not necessary to know any of these details in order to perform the signature-verification operation. The internal nodes of the tree need not be kept secret, and thus a node-caching scheme that stores only internal nodes can sidestep the need for strong protections.

Several useful time/storage trade-offs are described in the "Small-Memory LM Schemes" section of [USPTO5432852].

5.4.2. LMS Signature Verification

An LMS signature is verified by first using the LM-OTS signature verification algorithm (Algorithm 4b) to compute the LM-OTS public key from the LM-OTS signature and the message. The value of that public key is then assigned to the associated leaf of the LMS tree, and then the root of the tree is computed from the leaf value and the array path[] as described in Algorithm 6 below. If the root value matches the public key, then the signature is valid; otherwise, the signature verification fails.

Algorithm 6: LMS Signature Verification

1. If the public key is not at least eight bytes long, return INVALID.

2. Parse pubtype, I, and T[1] from the public key as follows:
 a. pubtype = strTou32(first 4 bytes of public key)
 b. ots_typecode = strTou32(next 4 bytes of public key)
 c. Set m according to pubtype, based on Table 2.
 d. If the public key is not exactly 24 + m bytes long, return INVALID.
 e. I = next 16 bytes of the public key
 f. T[1] = next m bytes of the public key
3. Compute the LMS Public Key Candidate T_c from the signature, message, identifier, pubtype, and ots_typecode, using Algorithm 6a.

4. If T_c is equal to $T[1]$, return VALID; otherwise, return INVALID.

Algorithm 6a: Computing an LMS Public Key Candidate from a Signature, Message, Identifier, and Algorithm Typecodes

1. If the signature is not at least eight bytes long, return INVALID.

2. Parse sigtype, q, lmots_signature, and path from the signature as follows:
 a. $q = \text{strToU32(first 4 bytes of signature)}$
 b. $\text{otssigtype} = \text{strToU32(next 4 bytes of signature)}$
 c. If otssigtype is not the OTS typecode from the public key, return INVALID.
 d. Set n, p according to otssigtype and Table 1; if the signature is not at least $12 + n \times (p + 1)$ bytes long, return INVALID.
 e. $\text{lmots_signature} = \text{bytes 4 through 7 + n \times (p + 1)}$ of signature
 f. $\text{sigtype} = \text{strToU32(bytes 8 + n \times (p + 1)) through 11 + n \times (p + 1)}$ of signature
 g. If sigtype is not the LM typecode from the public key, return INVALID.
 h. Set m, h according to sigtype and Table 2.
 i. If $q \geq 2^h$ or the signature is not exactly $12 + n \times (p + 1) + m \times h$ bytes long, return INVALID.
 j. Set path as follows:
 path[0] = next m bytes of signature
 path[1] = next m bytes of signature
 ... path[h-1] = next m bytes of signature
3. Kc = candidate public key computed by applying Algorithm 4b
to the signature lmots_signature, the message, and the
identifiers I, q

4. Compute the candidate LMS root value Tc as follows:

 node_num = \(2^h + q\)

 tmp = \(H(I \|| u32str(node_num) || u16str(D_LEAF) || Kc)\)

 i = 0

 while (node_num > 1) {

 if (node_num is odd):
 tmp = \(H(I||u32str(node_num/2)||u16str(D_INTR)||path[i]||tmp)\)

 else:
 tmp = \(H(I||u32str(node_num/2)||u16str(D_INTR)||tmp||path[i])\)

 node_num = node_num/2

 i = i + 1
 }

 Tc = tmp

5. Return Tc.

6. Hierarchical Signatures

 In scenarios where it is necessary to minimize the time taken by the
 public key generation process, the Hierarchical Signature System
 (HSS) can be used. This hierarchical scheme, which we describe in
 this section, uses the LMS scheme as a component. In HSS, we have a
 sequence of L LMS trees, where the public key for the first LMS tree
 is included in the public key of the HSS system, each LMS private key
 signs the next LMS public key, and the last LMS private key signs the
 actual message. For example, if we have a three-level hierarchy
 (L=3), then to sign a message, we would have:

 The first LMS private key (level 0) signs a level 1 LMS public
 key.

 The second LMS private key (level 1) signs a level 2 LMS public
 key.

 The third LMS private key (level 2) signs the message.

 The root of the level 0 LMS tree is contained in the HSS public key.

 To verify the LMS signature, we would verify all the signatures:

 We would verify that the level 1 LMS public key is correctly
 signed by the level 0 signature.
We would verify that the level 2 LMS public key is correctly signed by the level 1 signature.

We would verify that the message is correctly signed by the level 2 signature.

We would accept the HSS signature only if all the signatures validated.

During the signature-generation process, we sign messages with the lowest (level L-1) LMS tree. Once we have used all the leaves in that tree to sign messages, we would discard it, generate a fresh LMS tree, and sign it with the next (level L-2) LMS tree (and when that is used up, recursively generate and sign a fresh level L-2 LMS tree).

HSS, in essence, utilizes a tree of LMS trees. There is a single LMS tree at level 0 (the root). Each LMS tree (actually, the private key corresponding to the LMS tree) at level i is used to sign 2^h objects (where h is the height of trees at level i). If $i < L-1$, then each object will be another LMS tree (actually, the public key) at level $i+1$; if $i = L-1$, we’ve reached the bottom of the HSS tree, and so each object will be a message from the application. The HSS public key contains the public key of the LMS tree at the root, and an HSS signature is associated with a path from the root of the HSS tree to the leaf.

Compared to LMS, HSS has a much reduced public key generation time, as only the root tree needs to be generated prior to the distribution of the HSS public key. For example, an $L=3$ tree (with $h=10$ at each level) would have one level 0 LMS tree, 2^{10} level 1 LMS trees (with each such level 1 public key signed by one of the 1024 level 0 OTS public keys), and 2^{20} level 2 LMS trees. Only 1024 OTS public keys need to be computed to generate the HSS public key (as you need to compute only the level 0 LMS tree to compute that value; you can, of course, decide to compute the initial level 1 and level 2 LMS trees). In addition, the 2^{20} level 2 LMS trees can jointly sign a total of over a billion messages. In contrast, a single LMS tree that could sign a billion messages would require a billion OTS public keys to be computed first (if $h=30$ were allowed in a supported parameter set).

Each LMS tree within the hierarchy is associated with a distinct LMS public key, private key, signature, and identifier. The number of levels is denoted as L and is between one and eight, inclusive. The following notation is used, where i is an integer between 0 and $L-1$ inclusive, and the root of the hierarchy is level 0:

prv[i] is the current LMS private key of the i-th level.
pub[i] is the current LMS public key of the i-th level, as described in Section 5.3.

sig[i] is the LMS signature of public key pub[i+1] generated using the private key prv[i].

It is expected that the above arrays are maintained for the course of the HSS key. The contents of the prv[] array MUST be kept private; the pub[] and sig[] array may be revealed should the implementation find that convenient.

In this section, we say that an N-time private key is exhausted when it has generated N signatures; thus, it can no longer be used for signing.

For i > 0, the values prv[i], pub[i], and (for all values of i) sig[i] will be updated over time as private keys are exhausted and replaced by newer keys.

When these key pairs are updated (or initially generated before the first message is signed), then the LMS key generation processes outlined in Sections 5.2 and 5.3 are performed. If the generated key pairs are for level i of the HSS hierarchy, then we store the public key in pub[i] and the private key in prv[i]. In addition, if i > 0, then we sign the generated public key with the LMS private key at level i-1, placing the signature into sig[i-1]. When the LMS key pair is generated, the key pair and the corresponding identifier MUST be generated independently of all other key pairs.

HSS allows L=1, in which case the HSS public key and signature formats are essentially the LMS public key and signature formats, prepended by a fixed field. Since HSS with L=1 has very little overhead compared to LMS, all implementations MUST support HSS in order to maximize interoperability.

We specifically allow different LMS levels to use different parameter sets. For example, the 0-th LMS public key (the root) may use the LMS_SHA256_M32_H15 parameter set, while the 1-th public key may use LMS_SHA256_M32_H10. There are practical reasons to allow this; for one, the signer may decide to store parts of the 0-th LMS tree (that it needs to construct while computing the public key) to accelerate later operations. As the 0-th tree is never updated, these internal nodes will never need to be recomputed. In addition, during the signature-generation operation, almost all the operations involved with updating the authentication path occur with the bottom (L-1th) LMS public key; hence, it may be useful to select the parameter set for that public key to have a shorter LMS tree.
A close reading of the HSS verification pseudocode shows that it would allow the parameters of the nontop LMS public keys to change over time; for example, the signer might initially have the 1-th LMS public key use the LMS_SHA256_M32_H10 parameter set, but when that tree is exhausted, the signer might replace it with an LMS public key that uses the LMS_SHA256_M32_H15 parameter set. While this would work with the example verification pseudocode, the signer MUST NOT change the parameter sets for a specific level. This prohibition is to support verifiers that may keep state over the course of several signature verifications.

6.1. Key Generation

The public key of the HSS scheme consists of the number of levels \(L \), followed by \(\text{pub}[0] \), the public key of the top level.

The HSS private key consists of \(\text{prv}[0], \ldots, \text{prv}[L-1] \), along with the associated \(\text{pub}[0], \ldots, \text{pub}[L-1] \) and \(\text{sig}[0], \ldots, \text{sig}[L-2] \) values. As stated earlier, the values of the \(\text{pub}[] \) and \(\text{sig}[] \) arrays need not be kept secret and may be revealed. The value of \(\text{pub}[0] \) does not change (and, except for the index \(q \), the value of \(\text{prv}[0] \) need not change); however, the values of \(\text{pub}[i] \) and \(\text{prv}[i] \) are dynamic for \(i > 0 \) and are changed by the signature-generation algorithm.

During the key generation, the public and private keys are initialized. Here is some pseudocode that explains the key-generation logic:

Algorithm 7: Generating an HSS Key Pair

1. Generate an LMS key pair, as specified in Sections 5.2 and 5.3, placing the private key into \(\text{priv}[0] \), and the public key into \(\text{pub}[0] \).

2. For \(i = 1 \) to \(L-1 \) do {
 generate an LMS key pair, placing the private key into \(\text{priv}[i] \)
 and the public key into \(\text{pub}[i] \)
 \(\text{sig}[i-1] = \text{lms_signature}(\text{pub}[i], \text{priv}[i-1]) \)
}

3. Return \(\text{u32str}(L) \ || \ \text{pub}[0] \) as the public key and the \(\text{priv}[] \), \(\text{pub}[] \), and \(\text{sig}[] \) arrays as the private key

In the above algorithm, each LMS public/private key pair generated MUST be generated independently.
Note that the value of the public key does not depend on the execution of step 2. As a result, an implementation may decide to delay step 2 until later -- for example, during the initial signature-generation operation.

6.2. Signature Generation

To sign a message using an HSS key pair, the following steps are performed:

1. If prv[L-1] is exhausted, then determine the smallest integer d such that all of the private keys prv[d], prv[d+1], ..., prv[L-1] are exhausted. If d is equal to zero, then the HSS key pair is exhausted, and it MUST NOT generate any more signatures. Otherwise, the key pairs for levels d through L-1 must be regenerated during the signature-generation process, as follows. For i from d to L-1, a new LMS public and private key pair with a new identifier is generated, pub[i] and prv[i] are set to those values, then the public key pub[i] is signed with prv[i-1], and sig[i-1] is set to the resulting value.

The message is signed with prv[L-1], and the value sig[L-1] is set to that result.

The value of the HSS signature is set as follows. We let signed_pub_key denote an array of octet strings, where signed_pub_key[i] = sig[i] || pub[i+1], for i between 0 and Nspk-1, inclusive, where Nspk = L-1 denotes the number of signed public keys. Then the HSS signature is u32str(Nspk) || signed_pub_key[0] || ... || signed_pub_key[Nspk-1] || sig[Nspk].

Note that the number of signed_pub_key elements in the signature is indicated by the value Nspk that appears in the initial four bytes of the signature.

Here is some pseudocode of the above logic:

Algorithm 8: Generating an HSS signature

1. If the message-signing key prv[L-1] is exhausted, regenerate that key pair, together with any parent key pairs that might be necessary.

 If the root key pair is exhausted, then the HSS key pair is exhausted and MUST NOT generate any more signatures.
d = L
while (prv[d-1].q == 2^(prv[d-1].h)) {
 d = d - 1
 if (d == 0)
 return FAILURE
}
while (d < L) {
 create lms key pair pub[d], prv[d]
 sig[d-1] = lms_signature(pub[d], prv[d-1])
 d = d + 1
}

2. Sign the message.
 sig[L-1] = lms_signature(msg, prv[L-1])

3. Create the list of signed public keys.
 i = 0;
 while (i < L-1) {
 signed_pub_key[i] = sig[i] || pub[i+1]
 i = i + 1
 }

4. Return u32str(L-1) || signed_pub_key[0] || ...
 || signed_pub_key[L-2] || sig[L-1]

In the specific case of L=1, the format of an HSS signature is
 u32str(0) || sig[0]

In the general case, the format of an HSS signature is
 u32str(Nspk) || signed_pub_key[0] || ...
 || signed_pub_key[Nspk-1] || sig[Nspk]

which is equivalent to
 u32str(Nspk) || sig[0] || pub[1] || ...
6.3. Signature Verification

To verify a signature \(S \) and message using the public key \(pub \), perform the following steps:

The signature \(S \) is parsed into its components as follows:

\[
\text{Nsapk} = \text{strToU32}(\text{first four bytes of } S) \\
\text{if } \text{Nsapk}+1 \text{ is not equal to the number of levels } L \text{ in } pub: \\
\quad \text{return INVALID} \\
\text{for } (i = 0; i < \text{Nsapk}; i = i + 1) \{ \\
\quad \text{siglist}[i] = \text{next LMS signature parsed from } S \\
\quad \text{publist}[i] = \text{next LMS public key parsed from } S \\
\} \\
\text{siglist}[\text{Nsapk}] = \text{next LMS signature parsed from } S \\
\text{key} = pub \\
\text{for } (i = 0; i < \text{Nsapk}; i = i + 1) \{ \\
\quad \text{sig} = \text{siglist}[i] \\
\quad \text{msg} = \text{publist}[i] \\
\quad \text{if } (\text{lms_verify}(\text{msg}, \text{key}, \text{sig}) \neq \text{VALID}): \\
\quad \quad \text{return INVALID} \\
\quad \text{key} = \text{msg} \\
\} \\
\text{return lms_verify(\text{message}, \text{key}, \text{siglist}[\text{Nsapk}])}
\]

Since the length of an LMS signature cannot be known without parsing it, the HSS signature verification algorithm makes use of an LMS signature parsing routine that takes as input a string consisting of an LMS signature with an arbitrary string appended to it and returns both the LMS signature and the appended string. The latter is passed on for further processing.

6.4. Parameter Set Recommendations

As for guidance as to the number of LMS levels and the size of each, any discussion of performance is implementation specific. In general, the sole drawback for a single LMS tree is the time it takes to generate the public key; as every LM-OTS public key needs to be generated, the time this takes can be substantial. For a two-level tree, only the top-level LMS tree and the initial bottom-level LMS tree need to be generated initially (before the first signature is generated); this will in general be significantly quicker.

To give a general idea of the trade-offs available, we include some measurements taken with the LMS implementation available at <https://github.com/cisco/hash-sigs>, taken on a 3.3 GHz Xeon processor with threading enabled. We tried various parameter sets,
all with W=8 (which minimizes signature size, while increasing time). These are here to give a guideline as to what’s possible; for the computational time, your mileage may vary, depending on the computing resources you have. The machine these tests were performed on does not have the SHA-256 extensions; you could possibly do significantly better.

<table>
<thead>
<tr>
<th>ParmSet</th>
<th>KeyGenTime</th>
<th>SigSize</th>
<th>KeyLifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6 sec</td>
<td>1616</td>
<td>30 seconds</td>
</tr>
<tr>
<td>20</td>
<td>3 min</td>
<td>1776</td>
<td>16 minutes</td>
</tr>
<tr>
<td>25</td>
<td>1.5 hour</td>
<td>1936</td>
<td>9 hours</td>
</tr>
<tr>
<td>15/10</td>
<td>6 sec</td>
<td>3172</td>
<td>9 hours</td>
</tr>
<tr>
<td>15/15</td>
<td>6 sec</td>
<td>3332</td>
<td>12 days</td>
</tr>
<tr>
<td>20/10</td>
<td>3 min</td>
<td>3332</td>
<td>12 days</td>
</tr>
<tr>
<td>20/15</td>
<td>3 min</td>
<td>3492</td>
<td>1 year</td>
</tr>
<tr>
<td>25/10</td>
<td>1.5 hour</td>
<td>3492</td>
<td>1 year</td>
</tr>
<tr>
<td>25/15</td>
<td>1.5 hour</td>
<td>3652</td>
<td>34 years</td>
</tr>
</tbody>
</table>

Table 3

ParmSet: this is the height of the Merkle tree(s); parameter sets listed as a single integer have L=1 and consist of a single Merkle tree of that height; parameter sets with L=2 are listed as x/y, with x being the height of the top-level Merkle tree and y being the bottom level.

KeyGenTime: the measured key-generation time; that is, the time needed to generate the public/private key pair.

SigSize: the size of a signature (in bytes)

KeyLifetime: the lifetime of a key, assuming we generated 1000 signatures per second. In practice, we’re not likely to get anywhere close to 1000 signatures per second sustained; if you have a more appropriate figure for your scenario, this column is easy to recompute.
As for signature generation or verification times, those are moderately insensitive to the above parameter settings (except for the Winternitz setting and the number of Merkle trees for verification). Tests on the same machine (without multithreading) gave approximately 4 msec to sign a short message, 2.6 msec to verify; these tests used a two-level ParmSet; a single level would approximately halve the verification time. All times can be significantly improved (by perhaps a factor of 8) by using a parameter set with $W=4$; however, that also about doubles the signature size.

7. Rationale

The goal of this note is to describe the LM-OTS, LMS, and HSS algorithms following the original references and present the modern security analysis of those algorithms. Other signature methods are out of scope and may be interesting follow-on work.

We adopt the techniques described by Leighton and Micali to mitigate attacks that amortize their work over multiple invocations of the hash function.

The values taken by the identifier I across different LMS public/private key pairs are chosen randomly in order to improve security. The analysis of this method in [Fluhrer17] shows that we do not need uniqueness to ensure security; we do need to ensure that we don’t have a large number of private keys that use the same I value. By randomly selecting 16-byte I values, the chance that, out of 2^{64} private keys, 4 or more of them will use the same I value is negligible (that is, has probability less than 2^{-128}).

The reason 16-byte I values were selected was to optimize the Winternitz hash-chain operation. With the current settings, the value being hashed is exactly 55 bytes long (for a 32-byte hash function), which SHA-256 can hash in a single hash-compression operation. Other hash functions may be used in future specifications; all the ones that we will be likely to support (SHA-512/256 and the various SHA-3 hashes) would work well with a 16-byte I value.

The signature and public key formats are designed so that they are relatively easy to parse. Each format starts with a 32-bit enumeration value that indicates the details of the signature algorithm and provides all of the information that is needed in order to parse the format.
The Checksum (Section 4.4) is calculated using a nonnegative integer "sum" whose width was chosen to be an integer number of w-bit fields such that it is capable of holding the difference of the total possible number of applications of the function H (as defined in the signing algorithm of Section 4.5) and the total actual number. In the case that the number of times H is applied is 0, the sum is \((2^w - 1) \times (8^n/w)\). Thus, for the purposes of this document, which describes signature methods based on \(H = SHA256\ (n = 32\ \text{bytes})\) and \(w = \{1, 2, 4, 8\}\), the sum variable is a 16-bit nonnegative integer for all combinations of n and w. The calculation uses the parameter \(ls\) defined in Section 4.1 and calculated in Appendix B, which indicates the number of bits used in the left-shift operation.

7.1. Security String

To improve security against attacks that amortize their effort against multiple invocations of the hash function, Leighton and Micali introduced a "security string" that is distinct for each invocation of that function. Whenever this process computes a hash, the string being hashed will start with a string formed from the fields below. These fields will appear in fixed locations in the value we compute the hash of, and so we list where in the hash these fields would be present. The fields that make up this string are as follows:

- **I**: A 16-byte identifier for the LMS public/private key pair. It MUST be chosen uniformly at random, or via a pseudorandom process, at the time that a key pair is generated, in order to minimize the probability that any specific value of I be used for a large number of different LMS private keys. This is always bytes 0-15 of the value being hashed.

- **r**: In the LMS N-time signature scheme, the node number r associated with a particular node of a hash tree is used as an input to the hash used to compute that node. This value is represented as a 32-bit (four byte) unsigned integer in network byte order. Either r or q (depending on the domain-separation parameter) will be bytes 16-19 of the value being hashed.

- **q**: In the LMS N-time signature scheme, each LM-OTS signature is associated with the leaf of a hash tree, and q is set to the leaf number. This ensures that a distinct value of q is used for each distinct LM-OTS public/private key pair. This value is represented as a 32-bit (four byte) unsigned integer in network byte order. Either r or q (depending on the domain-separation parameter) will be bytes 16-19 of the value being hashed.
D A domain-separation parameter, which is a two-byte identifier that takes on different values in the different contexts in which the hash function is invoked. D occurs in bytes 20 and 21 of the value being hashed and takes on the following values:

D_PBLC = 0x8080 when computing the hash of all of the iterates in the LM-OTS algorithm

D_MESG = 0x8181 when computing the hash of the message in the LM-OTS algorithms

D_LEAF = 0x8282 when computing the hash of the leaf of an LMS tree

D_INTR = 0x8383 when computing the hash of an interior node of an LMS tree

i A value between 0 and 264; this is used in the LM-OTS scheme when either computing the iterations of the Winternitz chain or using the suggested LM-OTS private key generation process. It is represented as a 16-bit (two-byte) unsigned integer in network byte order. If present, it occurs at bytes 20 and 21 of the value being hashed.

j In the LM-OTS scheme, j is the iteration number used when the private key element is being iteratively hashed. It is represented as an 8-bit (one byte) unsigned integer and is present if i is a value between 0 and 264. If present, it occurs at bytes 22 to 21+n of the value being hashed.

C An n-byte randomizer that is included with the message whenever it is being hashed to improve security. C MUST be chosen uniformly at random or via another unpredictable process. It is present if D=D_MESG, and it occurs at bytes 22 to 21+n of the value being hashed.

8. IANA Considerations

IANA has created two registries: "LM-OTS Signatures", which includes all of the LM-OTS signatures as defined in Section 4, and "Leighton-Micali Signatures (LMS)" for LMS as defined in Section 5.

Additions to these registries require that a specification be documented in an RFC or another permanent and readily available reference in sufficient detail that interoperability between independent implementations is possible [RFC8126]. IANA MUST verify that all applications for additions to these registries have first been reviewed by the IRTF Crypto Forum Research Group (CFRG).
Each entry in either of the registries contains the following elements:

- a short name (Name), such as "LMS_SHA256_M32_H10",
- a positive number (Numeric Identifier), and
- a Reference to a specification that completely defines the signature-method test cases that can be used to verify the correctness of an implementation.

The numbers between 0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF (decimal 4,294,967,295), inclusive, will not be assigned by IANA and are reserved for private use; no attempt will be made to prevent multiple sites from using the same value in different (and incompatible) ways [RFC8126].

The initial contents of the "LM-OTS Signatures" registry are as follows.

<table>
<thead>
<tr>
<th>Name</th>
<th>Reference</th>
<th>Numeric Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td></td>
<td>0x00000000</td>
</tr>
<tr>
<td>LMOTS_SHA256_N32_W1</td>
<td>Section 4</td>
<td>0x00000001</td>
</tr>
<tr>
<td>LMOTS_SHA256_N32_W2</td>
<td>Section 4</td>
<td>0x00000002</td>
</tr>
<tr>
<td>LMOTS_SHA256_N32_W4</td>
<td>Section 4</td>
<td>0x00000003</td>
</tr>
<tr>
<td>LMOTS_SHA256_N32_W8</td>
<td>Section 4</td>
<td>0x00000004</td>
</tr>
<tr>
<td>Unassigned</td>
<td></td>
<td>0x00000005 - 0xDDDDDDDC</td>
</tr>
<tr>
<td>Reserved for Private Use</td>
<td></td>
<td>0xDDDDDDDD - 0xFFFFFFFF</td>
</tr>
</tbody>
</table>

Table 4
The initial contents of the "Leighton Micali Signatures (LMS)" registry are as follows.

<table>
<thead>
<tr>
<th>Name</th>
<th>Reference</th>
<th>Numeric Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td></td>
<td>0x0 - 0x4</td>
</tr>
<tr>
<td>LMS_SHA256_M32_H5</td>
<td>Section 5</td>
<td>0x00000005</td>
</tr>
<tr>
<td>LMS_SHA256_M32_H10</td>
<td>Section 5</td>
<td>0x00000006</td>
</tr>
<tr>
<td>LMS_SHA256_M32_H15</td>
<td>Section 5</td>
<td>0x00000007</td>
</tr>
<tr>
<td>LMS_SHA256_M32_H20</td>
<td>Section 5</td>
<td>0x00000008</td>
</tr>
<tr>
<td>LMS_SHA256_M32_H25</td>
<td>Section 5</td>
<td>0x00000009</td>
</tr>
<tr>
<td>Unassigned</td>
<td></td>
<td>0x0000000A - 0xDDDDDDDDC</td>
</tr>
<tr>
<td>Reserved for Private Use</td>
<td></td>
<td>0xDDDDDDDD - 0xFFFFFFFF</td>
</tr>
</tbody>
</table>

Table 5

An IANA registration of a signature system does not constitute an endorsement of that system or its security.

Currently, the two registries assign a disjoint set of values to the defined parameter sets. This coincidence is a historical accident; the correctness of the system does not depend on this. IANA is not required to maintain this situation.

9. Security Considerations

The hash function H MUST have second preimage resistance: it must be computationally infeasible for an attacker that is given one message M to be able to find a second message M' such that H(M) = H(M').

The security goal of a signature system is to prevent forgeries. A successful forgery occurs when an attacker who does not know the private key associated with a public key can find a message (distinct from all previously signed ones) and signature that is valid with that public key (that is, the Signature Verification algorithm applied to that signature and message and public key will return VALID). Such an attacker, in the strongest case, may have the ability to forge valid signatures for an arbitrary number of other messages.
LMS is provably secure in the random oracle model, as shown by [Katz16]. In addition, further analysis is done by [Fluhrer17], where the hash compression function (rather than the entire hash function) is considered to be a random oracle. Corollary 1 of the latter paper states:

If we have no more than 2^{64} randomly chosen LMS private keys, allow the attacker access to a signing oracle and a SHA-256 hash compression oracle, and allow a maximum of 2^{120} hash compression computations, then the probability of an attacker being able to generate a single forgery against any of those LMS keys is less than 2^{-129}.

Many of the objects within the public key and the signature start with a typecode. A verifier MUST check each of these typecodes, and a verification operation on a signature with an unknown type, or a type that does not correspond to the type within the public key, MUST return INVALID. The expected length of a variable-length object can be determined from its typecode; if an object has a different length, then any signature computed from the object is INVALID.

9.1. Hash Formats

The format of the inputs to the hash function H has the property that each invocation of that function has an input that is repeated by a small bounded number of other inputs (due to potential repeats of the I value). In particular, it will vary somewhere in the first 23 bytes of the value being hashed. This property is important for a proof of security in the random oracle model.

The formats used during key generation and signing (including the recommended pseudorandom key-generation procedure in Appendix A) are as follows:

```
I | u32str(q) | u16str(i) | u8str(j) | tmp
I | u32str(q) | u16str(D_PBLC) | y[0] | ... | y[p-1]
I | u32str(q) | u16str(D_MESG) | C | message
I | u32str(r) | u16str(D_LEAF) | OTS_PUB_HASH[r-2^h]
I | u32str(r) | u16str(D_INTR) | T[2*r] | T[2*r+1]
I | u32str(q) | u16str(i) | u8str(0xff) | SEED
```

Each hash type listed is distinct; at locations 20 and 21 of the value being hashed, there exists either a fixed value D_PBLC, D_MESG, D_LEAF, D_INTR, or a 16-bit value i. These fixed values are distinct from each other and are large (over 32768), while the 16-bit values of i are small (currently no more than 265; possibly being slightly larger if larger hash functions are supported); hence, the range of possible values of i will not collide any of the D_PBLC, D_MESG,
D_LEAF, D_INTR identifiers. The only other collision possibility is the Winternitz chain hash colliding with the recommended pseudorandom key-generation process; here, at location 22 of the value being hashed, the Winternitz chain function has the value u8str(j), where j is a value between 0 and 254, while location 22 of the recommended pseudorandom key-generation process has value 255.

For the Winternitz chaining function, D_PBLC, and D_MESG, the value of I || u32str(q) is distinct for each LMS leaf (or equivalently, for each q value). For the Winternitz chaining function, the value of u16str(i) || u8str(j) is distinct for each invocation of H for a given leaf. For D_PBLC and D_MESG, the input format is used only once for each value of q and, thus, distinctness is assured. The formats for D_INTR and D_LEAF are used exactly once for each value of r, which ensures their distinctness. For the recommended pseudorandom key-generation process, for a given value of I, q and j are distinct for each invocation of H.

The value of I is chosen uniformly at random from the set of all 128-bit strings. If 2^64 public keys are generated (and, hence, 2^64 random I values), there is a nontrivial probability of a duplicate (which would imply duplicate prefixes). However, there will be an extremely high probability there will not be a four-way collision (that is, any I value used for four distinct LMS keys; probability < 2^-132), and, hence, the number of repeats for any specific prefix will be limited to at most three. This is shown (in [Fluhrer17]) to have only a limited effect on the security of the system.

9.2. Stateful Signature Algorithm

The LMS signature system, like all N-time signature systems, requires that the signer maintain state across different invocations of the signing algorithm to ensure that none of the component one-time signature systems are used more than once. This section calls out some important practical considerations around this statefulness. These issues are discussed in greater detail in [STMGMT].

In a typical computing environment, a private key will be stored in nonvolatile media such as on a hard drive. Before it is used to sign a message, it will be read into an application’s Random-Access Memory (RAM). After a signature is generated, the value of the private key will need to be updated by writing the new value of the private key into nonvolatile storage. It is essential for security that the application ensures that this value is actually written into that storage, yet there may be one or more memory caches between it and the application. Memory caching is commonly done in the file system and in a physical memory unit on the hard disk that is dedicated to that purpose. To ensure that the updated value is written to...
physical media, the application may need to take several special steps. In a POSIX environment, for instance, the O_SYNC flag (for the open() system call) will cause invocations of the write() system call to block the calling process until the data has been written to the underlying hardware. However, if that hardware has its own memory cache, it must be separately dealt with using an operating system or device-specific tool such as hdparm to flush the on-drive cache or turn off write caching for that drive. Because these details vary across different operating systems and devices, this note does not attempt to provide complete guidance; instead, we call the implementor’s attention to these issues.

When hierarchical signatures are used, an easy way to minimize the private key synchronization issues is to have the private key for the second-level resident in RAM only and never write that value into nonvolatile memory. A new second-level public/private key pair will be generated whenever the application (re)starts; thus, failures such as a power outage or application crash are automatically accommodated. Implementations SHOULD use this approach wherever possible.

9.3. Security of LM-OTS Checksum

To show the security of LM-OTS checksum, we consider the signature \(y \) of a message with a private key \(x \) and let \(h = H(\text{message}) \) and \(c = Cksm(H(\text{message})) \) (see Section 4.5). To attempt a forgery, an attacker may try to change the values of \(h \) and \(c \). Let \(h' \) and \(c' \) denote the values used in the forgery attempt. If for some integer \(j \) in the range 0 to \(u \), where \(u = \text{ceil}(8*n/w) \) is the size of the range that the checksum value can cover, inclusive,

\[
a' = \text{coef}(h', j, w),
\]

\[
a = \text{coef}(h, j, w), \text{ and}
\]

\[
a' > a
\]
then the attacker can compute $F^{a'}(x[j])$ from $F^a(x[j]) = y[j]$ by iteratively applying function F to the j-th term of the signature an additional $(a' - a)$ times. However, as a result of the increased number of hashing iterations, the checksum value c' will decrease from its original value of c. Thus, a valid signature’s checksum will have, for some number k in the range u to $(p-1)$, inclusive,

\[b' = \text{coef}(c', k, w), \]

\[b = \text{coef}(c, k, w), \]

\[b' < b \]

Due to the one-way property of F, the attacker cannot easily compute $F^{b'}(x[k])$ from $F^b(x[k]) = y[k]$.

10. Comparison with Other Work

The eXtended Merkle Signature Scheme (XMSS) is similar to HSS in several ways [XMSS][RFC8391]. Both are stateful hash-based signature schemes, and both use a hierarchical approach, with a Merkle tree at each level of the hierarchy. XMSS signatures are slightly shorter than HSS signatures, for equivalent security and an equal number of signatures.

HSS has several advantages over XMSS. HSS operations are roughly four times faster than the comparable XMSS ones, when SHA256 is used as the underlying hash. This occurs because the hash operation done as a part of the Winternitz iterations dominates performance, and XMSS performs four compression-function invocations (two for the PRF, two for the F function) where HSS only needs to perform one. Additionally, HSS is somewhat simpler (as each hash invocation is just a prefix followed by the data being hashed).
11. References

11.1. Normative References

11.2. Informative References

[C:Merkle89a]

[C:Merkle89b]

[Fluhrer17]

[Katz16]

[Merkle79]

[RFC8391]

[STMGMT]

[XMSS]
Appendix A. Pseudorandom Key Generation

An implementation MAY use the following pseudorandom process for generating an LMS private key.

SEED is an m-byte value that is generated uniformly at random at the start of the process,

I is the LMS key pair identifier,

q denotes the LMS leaf number of an LM-OTS private key,

x_q denotes the x array of private elements in the LM-OTS private key with leaf number q,

i is the index of the private key element, and

H is the hash function used in LM-OTS.

The elements of the LM-OTS private keys are computed as:

\[
x_q[i] = H(I \ || \ u32str(q) \ || \ u16str(i) \ || \ u8str(0xff) \ || \ SEED).
\]

This process stretches the m-byte random value SEED into a (much larger) set of pseudorandom values, using a unique counter in each invocation of H. The format of the inputs to H are chosen so that they are distinct from all other uses of H in LMS and LM-OTS. A careful reader will note that this is similar to the hash we perform when iterating through the Winternitz chain; however, in that chain, the iteration index will vary between 0 and 254 maximum (for W=8), while the corresponding value in this formula is 255. This algorithm is included in the proof of security in [Fluhrer17] and hence this method is safe when used within the LMS system; however, any other cryptographically secure method of generating private keys would also be safe.

Appendix B. LM-OTS Parameter Options

The LM-OTS one-time signature method uses several internal parameters, which are a function of the selected parameter set. These internal parameters include the following:

p This is the number of independent Winternitz chains used in the signature; it will be the number of w-bit digits needed to hold the n-bit hash (u in the below equations), along with the number of digits needed to hold the checksum (v in the below equations)
ls is the size of the shift needed to move the checksum so that it appears in the checksum digits.

ls is needed because, while we express the checksum internally as a 16-bit value, we don’t always express all 16 bits in the signature; for example, if w=4, we might use only the top 12 bits. Because we read the checksum in network order, this means that, without the shift, we’ll use the higher-order bits (which may be always 0) and omit the lower-order bits (where the checksum value actually resides). This shift is here to ensure that the parts of the checksum we need to express (for security) actually contribute to the signature; when multiple such shifts are possible, we take the minimal value.

The parameters ls and p are computed as follows:

\[u = \text{ceil}(8*n/w) \]
\[v = \text{ceil}((\text{floor}(\text{lg}((2^w - 1) * u)) + 1) / w) \]
\[ls = 16 - (v * w) \]
\[p = u + v \]

Here, u and v represent the number of w-bit fields required to contain the hash of the message and the checksum byte strings, respectively. And as the value of p is the number of w-bit elements of \((\text{H(message)} \ || \ \text{Cksm(H(message))}) \), it is also equivalently the number of byte strings that form the private key and the number of byte strings in the signature. The value 16 in the ls computation of ls corresponds to the 16-bit value used for the sum variable in Algorithm 2 in Section 4.4.

A table illustrating various combinations of n and w with the associated values of u, v, ls, and p is provided in Table 6.
Table 6

Appendix C. An Iterative Algorithm for Computing an LMS Public Key

The LMS public key can be computed using the following algorithm or any equivalent method. The algorithm uses a stack of hashes for data. It also makes use of a hash function with the typical init/update/final interface to hash functions; the result of the invocations `hash_init()`, `hash_update(N[1])`, `hash_update(N[2])`, ..., `hash_update(N[n])`, `v = hash_final()`, in that order, is identical to that of the invocation of `H(N[1] || N[2] || ... || N[n])`.

Generating an LMS Public Key from an LMS Private Key

```plaintext
for ( i = 0; i < 2^h; i = i + 1 ) {
    r = i + num_lmots_keys;
    temp = H(I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[i])
    j = i;
    while (j % 2 == 1) {
        r = (r - 1)/2;
        j = (j-1) / 2;
        left_side = pop(data stack);
        temp = H(I || u32str(r) || u16str(D_INTR) || left_side || temp)
    }
    push temp onto the data stack
}
public_key = pop(data stack)
```

<table>
<thead>
<tr>
<th>Hash Length in Bytes (n)</th>
<th>Winternitz Parameter (w)</th>
<th>w-bit Elements in Hash (u)</th>
<th>w-bit Elements in Checksum (v)</th>
<th>Left Shift (ls)</th>
<th>Total Number of w-bit Elements (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1</td>
<td>256</td>
<td>9</td>
<td>7</td>
<td>265</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>128</td>
<td>5</td>
<td>6</td>
<td>133</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>64</td>
<td>3</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>32</td>
<td>2</td>
<td>0</td>
<td>34</td>
</tr>
</tbody>
</table>
Note that this pseudocode expects that all 2^h leaves of the tree have equal depth -- that is, it expects num_lmots_keys to be a power of 2. The maximum depth of the stack will be $h-1$ elements -- that is, a total of $(h-1)\times n$ bytes; for the currently defined parameter sets, this will never be more than 768 bytes of data.

Appendix D. Method for Deriving Authentication Path for a Signature

The LMS signature consists of $\text{u32str}(q) \mid \mid \text{lmots_signature} \mid \mid \text{u32str}(\text{type}) \mid \mid \text{path}[0] \mid \mid \text{path}[1] \mid \mid \ldots \mid \mid \text{path}[h-1]$. This appendix shows one method of constructing this signature, assuming that the implementation has stored the $T[]$ array that was used to construct the public key. Note that this is not the only possible method; other methods exist that don’t assume that you have the entire $T[]$ array in memory. To construct a signature, you perform the following algorithm:

Generating an LMS Signature

1. Set type to the typecode of the LMS algorithm.
2. Extract h from the typecode, according to Table 2.
3. Create the LM-OTS signature for the message:
 \[
 \text{ots_signature} = \text{lmots_sign}(\text{message, LMS_PRIV}[q])
 \]
4. Compute the array path as follows:
 \[
 i = 0
 r = 2^h + q
 \text{while} \ (i < h) \ {
 \begin{aligned}
 \text{temp} &= (r \div 2^i) \text{ xor } 1 \\
 \text{path}[i] &= T[\text{temp}] \\
 i &= i + 1
 \end{aligned}
 }
 \]
5. $S = \text{u32str}(q) \mid \mid \text{ots_signature} \mid \mid \text{u32str}(\text{type}) \mid \mid \text{path}[0] \mid \mid \text{path}[1] \mid \mid \ldots \mid \mid \text{path}[h-1]$
6. $q = q + 1$
7. Return S.

Here "xor" is the bitwise exclusive-or operation, and \div is integer division (that is, rounded down to an integer value).
Appendix E. Example Implementation

An example implementation can be found online at <https://github.com/cisco/hash-sigs>.

Appendix F. Test Cases

This section provides test cases that can be used to verify or debug an implementation. This data is formatted with the name of the elements on the left and the hexadecimal value of the elements on the right. The concatenation of all of the values within a public key or signature produces that public key or signature, and values that do not fit within a single line are listed across successive lines.

Test Case 1 Public Key

```
HSS public key
levels 00000002

LMS type 00000005 # LM_SHA256_M32_H5
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
I 61a5d57d37f5e46bfb7520806b07a1b8
K 50650e3b31fe4a773ea29a07f09cf2ea
30e579f0df58ef8e298da0434cb2b878
```

Test Case 1 Message

```
Message 54686520706f77657273206e6f742064656c656761746420746f20746520556e697465642053746174657320627920697420746f207465205374617465732c2061726520726573706563746976656c792c206f722074652070656f706c652e0a
```

The powers not delegated to the United States by the Constitution, nor prohibited by it to the States, are reserved to the States respectively, or to the people.
Test Case 1 Signature

HSS signature
Nspk 00000001
sig[0]:

LMS signature
q 00000005

LMOTS signature
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
C d32b56671d7eb98833c49b433c272586
 bc4a1c8a8970528ffa04b966f9426eb9
y[0] 965a25bdf37f196b9073f3d4a232feb6
 9128ec45146f86292f9dff9610a7bf95
y[1] a64c7f60f6261a62043f86c70324b770
 7f5b4a8a6e19c114c7be866d488778a0
y[2] e05fd5c6509a6e61d559cf1a77a970de
 927d60c70d3de31a7fa0100994e162a2
y[3] 582e8ff1b10cd99d4e8e413ef4e5959f
 7d7ed12c83b32f9b9c9683a4943d16
y[4] 81d84b15357ff48ca579f19f5e71f184
 66f2bafef4bf660c2518eb20de2f66e3b
y[5] 14784269fd7d876f5d353fbbfc7039a46
 2c716bb9f6891a7f41ad133e9ef6d95
y[6] 60b960e7777c5f060492f27c660e14
 71e07e7265562035abc9a701b473ecb
y[7] c3943c6b94f2405a3cb8bf8a691ca51
 d3f6ad2f428bab6f3a30f55dd9653
y[8] f0a75ee390e3853e3ae0b906961ecf41a
 e073a0590c2eb6204f44831c26dd768c
y[9] 35b167b28ce8dc988a3748255230ecf9
 9ebf14e730632f27414489808afab1d1
y[10] e783ed04516ed012496882212b078105
 79b250365941ff8c9a182da13609e9768
y[11] aaf65de7620dabec29eb82a17fde35af
 15ad238c73f81bd8dec2fc0e7f92370
y[12] 1099762b37f43c4a3c2001a3d72e2f6
 06be108d310e639f09ce7286800d9ef8
y[13] a1a40281cc5a7e9a82adc7c7400c2fe
 5a101552df4e3c6cfd0cbf2ddf5d6c77
y[14] 9cbec68fe0c3e1c4ec22b83a2ca3e4
 8e0809a0a750b73ccdcf3c79e6580c15
y[15] 4f8a58f7f24335ec5c5eb5e0cf01dcf
 439424095fceb77f66ded5bec773b27
y[16] c5b9f64a2a9af2f07c05e99e5cf80f00
 252e39db32f6c19674f190c9fbc506d8
LMS type 00000005 # LM_SHA256_M32_H5
path[0] d88b8112f9200a5e50c4a262165bd342c
d000b8496810bc716277435ac376728d
path[1] 129ac6eda839a6f357b5a04387c5ce97
382a78f2a4372917eeecfbbf9363bb591
path[2] 12f5dbe4bb4d49e4501e859f885f073
6e9a059b3a26bfac8c17b5991c157e
path[3] b5971115aa39ef8d8564aa6990282c316
8af2d30ef89d51bf14654510a12b8a14
path[4] 4cca1848cf7da59cc2b3d90692dd2a2
0ba3863480e25b1b85ee860c62bf5136

LMS public key
LMS type 00000005 # LM_SHA256_M32_H5
LMOTS type 00000004 # LMOTS_SHA256_N32_W8

I
d2f14ff6346af964569f7d6cb880a1b6
K
6c5004917da6eafe4d9ef6c6407b3db0
e5485b122d9ebe15cda93cfec582d7ab

final_signature:
--
LMS signature
q 0000000a
--
LMOTS signature
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
C
0703c491e7558b35011e9e3592eaa5da
4d918786771233e8353bc4f23223185c
y[0]
95caeeb0899e35df871705470620998
8ebdf639760bb5c38d7657e8bffeef
y[1]
9bc042da4b4525650485c66d0c19b31
7587c6a4bfffcc2325d08931e72dfb
y[2]
6a120c5612344258b85efdb7db1db9e1
865a73caf96557eb39ed33f426933ac
y[3]
9eeeddb03a1d2374af7bf771855774562
37f9de2d60113c23f846df26fa942008
y[4]
a698994c0827d90e86d43e0df7f4bfc0d
b09b86a373e882888b204ad81a0185ac
y[5]
100e4f2c5fc38c003c1ab6feaa479eb2f
5ebe48558d7159ba8da03856e65ad9c
y[6]
969f6ae45be44cf356b88a7b15a3ff07
4f7717b0f26f9c04884e1faa329bf4
y[7]
e61af23ae7fa5d4d9a5dfc43c4c26c
y[8]
e8ae2e8a2990d7ba7b57108b47dabf
y[9]
beadb2b53cac1ac06e346cb90fb
044bee4f2c6d0a424bdf7e50724a7b
y[10]
319c9944b156e89d431c79f1bccc8
690db59b2386b2315f3d36ef2ea3ac
y[11]
f30b2b51f48b71b003bf80249484201
043f65f5a3f66b61ddfee81aca9e6
y[12]
081262a000004d0cbb9a3da6ebef5c
1c0a55e48a0e729f9184fcb1407c352
y[13]
9b2db8f6fe50032a363c980136b37fa
fadbdf579d97e9e8d80db165e435d0e2
y[14]
dfd386a28b35402394b6b7e4b8c0b3
ed95eaa642d042f4d734c8dc26f3ac5
y[15]
91825daef01ea3c38e3328d00a77dc6
57034287cc10f0e1c97cb5828f627
y[16]
205e47378b458b5376551d44c12c3c215
c812a0970789c83de51d6ad78721963
y[16] 327f0a5fbb6b5907dec02c9a90934af5
 a1c63b72c82653605d1dcce51596b3c2
y[17] b45696689f2eb382007497557692caac
 4d57b5de9f5569bc2ad0137fd47fb47e
y[18] 664fcb6db4971f5b3e07aceda9ac130e
 9f38182de994cf192ec082fd6d4cb7
y[19] f3f00812589b7a7ce51544045643301
 6b84a59bec6619a1c6c0b37dd1450ed4
y[20] f2dbb584410ceda8025f5d2b8dd0d217
 6f1c1f2cc06fa8c82b2ed4d944e71339e
y[21] ce780fd025bd41ec34e6bf9d4270a322
 4e019fcb44474d482fd2d75ef2b03
y[22] 89ccc106d00abb54c47ede93e08c114e
 db04117d714dcd525e11bed8756192f
y[23] 929d15462939ff3f52f2252da2ed64d
 8f8e88818b1efa2c7b08c8794fb214
y[24] aa233db3162833141ea4383fa6f120b
 e1db82ce3630b3429114463157a64e91
y[25] 234d475e2f79cb05e4d6ba9407d79c6
 bff7d11985b4d6aaed2831db61274993
y[26] 715a0182c7dc8089e328531de4d474
 31c07c02195eba2ef91efb5613c37af7
y[27] ae0c066babc69369700e1d2d6edcc0d2
 16c781d56e4e47e3303fa73007ff7b9
y[28] 49ef23be2aa4d2f25206fe45c20d888
 395b252639172499a44156bea8082
y[29] 12858792bf8e74cb49de5e8812e019
 da8745abff9e847ed83b07a3137430
y[30] 82f880a278f682c2b0ad6887cb59f65
 2e155987d61bfb6a88d36ee93b6072e6
y[31] 6569cbbae3d655852e38dab3a2dcf8
 058c9cb6f2ab3d3b3539eb77b248a66
y[32] 109d05eb6e2f297774fe6053598457c
 c61908318de4b8260fc86d4bb117d33
y[33] e865aa805009cc291849c2f840c4da43
 a703dad9f55b806163d7161696b5a0adc
--
LMS type 00000005 # LM_SHA256_M32_H5
path[0] d5c0d1bebb06048ed66e2f26cebf305
 b36ed33941ebcb83bec973875ccdd60
path[1] e1920ada52f43d05b5031cee6192520
 d6a5151514851ce7fd48d4a39fae2ab
path[2] 2335b52f484e9b40d6a4a96939a84b3
 dcf6d14c48e8015e08ab92662c05c6e9
path[3] f90b65a7a6201689999f32bf368e5e3
 ec9cb70ac7b8399003f175c40885081a
path[4] 09a3034911fe125631051df0408b394
 6b0be790911ef8978ba07dd56c73e7ee
Test Case 2 Private Key

(note: procedure in Appendix A is used)

Top level LMS tree
SEED 558b8966c48ae9cb898b423c83443aae
 014a72f1b1ab5cc85cf1d892903b5439
I d08fabd4a2091ff0a8cb4ed834e74534

Second level LMS tree
SEED a1c4696e2608035a886100d05cd99945
 eb3370731884a8235e2fb3d4d71f2547
I 215f83b7ccbc9acbc08db97b0d04dc2b

Test Case 2 Public Key

HSS public key levels 00000002

LMS type 00000006 # LM_SHA256_M32_H10
LMOTS type 00000003 # LMOTS_SHA256_N32_W4
I d08fabd4a2091ff0a8cb4ed834e74534
K 32a58885cd9ba0431235466bff9651c6
c92124404d45fa53cf161c28f1ad5a8e

Test Case 2 Message

Message 54686520656e756d726174696f6e20 The enumeration |
 696f2074686520436f6e74657374696e20 in the Constitut |
 696f62c206f66206365726174696f6e20 ion, of certain |
 726967687432c207368616c6c206e6f rights, shall no |
 742062520636f6e7374727565642074 t be construed t |
 6f2064656e79206f72206469673706172 o deny or dispa |
 616765206f7468657273207265746169 rage others retai |
 6e6564206279207468652070656f706c ned by the peopl |
 652e0a e..

McGrew, et al. Informational [Page 54]
Test Case 2 Signature

--
HSS signature
Nspk 00000001
sig[0]:
--
LMS signature
q 00000003
--
LMOTS signature
LMOTS type 00000003 # LMOTS_SHA256_N32_W4
C 3d46bee8660f8f8f215d3f96408a7a64cf
 1c4da0263a55f62c666ef5707a914ce
y[0] 0674e8cb7a55f0c48d484f31f3aa4af9
 719a74f22cf823b94431d01c926e2a76
y[1] bb71226d279700ec81c9e95fb11a0d10
 d065279a5796e265ae17737c44eb8c59
y[2] 4508e126a9a7870bf4360820d9eb9a01
 d9693779e416828e75bdd7d8c70d50a
y[3] 0ac8ba39810909d445f44cb5bb58de73
 7e60cb4345302786ef2c6b14af212ca1
y[4] 9edeeaa3bcfcfe8ba6621ce88480df2b37
 1dd37add732c94e4a2ce0dffa53c926
y[5] 49a18d39a50788f4652987f226a1d481
 68205df6ae7c58e049a25d4907edc1aa
y[6] 90da8aa5ef7671773e941d805536021
 5c6b600d35463cf2240a906d6949ecb
y[7] 54eb7a1b1bf494d01a28c0d31acc7516
 1f4f485dfd3cb9578e836ec2dc722f37
y[8] ed30872e07f2b8bd0374eb57d22c614e
 09150f6c0d8774a39ae6168211035dc5
y[9] 2988ab46eaca9ec597f818b4936e66ef
 2f0df26e8de134da28cbb3af75231372
y[10] 0cf7b345434f72d65314328bb030d0f0
 f6d5e47b28ea91008fbb11b5017705a8
y[11] be3b2ad83c60a54f9d1d1b2f47f69e3
 93eb5695203d2ba6ad815e6a11ea293
y[12] dcc21033f9453d49c8e5a6387f588b1e
 a4f706217c151e05f55a6eb7997be09d
y[13] 56a3263a32f9cba1bfbe1c07bb49fa04ce
 cf9df1a1b815483c757a27c88ad1b1
y[14] 238e5ea98b6b53e087045723ce16187ed
 a22e33bb2c70709e53251025abdec8936
y[15] 45f8c0693e97763928f00b2e3c75af3
 942d8dadee81b59a6f1f67efa0ef81d
y[16] 11873b59137f67800b35e81b01563d18
 7c4a1575a1acb92d087b517a8833383f
y[17] 05d357ef4678de0c57ff9f1b2da61dfd
 e5d88318bcdde4d9061cc75c2de3cd47
y[18] 40dd7739ca3ef66f1930026f479e9baa
 713b07176f7f953e1c2e7ff8f271a6ca
y[19] 375dbf83d719b1635a7d8a138919579
 4b1c29bb101913e166e11bd5f34186f
y[20] a6c0a555c9026b256a6860f4866bd6d0
 b5bf90627086c614913df8282e6c9b3
y[21] 622442443d5eca959d6c14ca8389d12c
 4068b503e43c39b635bea245d9d05a2
y[22] 558f249c9661c0427d2e489ca5b5de2e
 20a90333f4862aec793223c7819973a9
y[23] 8266cd12c50ea2bb2c438e7a379eb10e6
 ca07fd6066e9bf612f3ea0454ba3bd
y[24] b76e8027992e60de01e9094fde03349
 883914fb17a9621ab929d970d101e45f
y[25] 8278c14b032bcab02bd15692d21b6c5c
 204abbf077d465553bd6eda645e6c306
y[26] 5d33b10d518a61e15edf092c322628
 1a29c8a0f50cde0a8c66236e29c2f310
y[27] a375cebda1dc6bb9a1a0da6c7aab8e
 bedc6371a7d52aacb955f83b66e4f84d
y[28] 2949dce198fbb77c7e5c6df60400b084fa
 f82808b9f895577f0a2aacf2ec7ed7c0b0
y[29] ae8a270e951743ff23e0b2dd12e9c3c8
 28fb5598a22461af94d568f29240ba28
y[30] 20c459f71c088f96e095dd9b894eae56
 579e2bb3af6d69ca2613d1c26eee4d8c
y[31] 73217ac5962b55f3147b492e8381597fd
 89b64aa7fde82e1974d2f6779504d21
y[32] 435eb3109307576b9fdabe1c6f368081
 bd40b27ebcb9819a75d7df8bb07bb05d
y[33] b1bab7054a4b7e37125186339464ad8fa
 aa4f502cc1272919fde3e025bb64aa8e
y[34] 0eb1fcbfccc25acb5f7f18ce4f7c2182fb
 393a1814b0e942490e52dd3bca817b2b
y[35] 6e90d4c9b0c38608a6cef5eb153af08
 58acc867c9922ed43bb67b33acc51
y[36] 9313d28d4a5c6fe6cf3595dd5e3f6f0
 a4c4065a083590b285788be7a875a7
y[37] f88dd73720708c6c60cecf1f43bbaada
 e6f208557fcd07bd4ed91f88ce4c0de8
y[38] 42761c70c186bdf1af9c444834bd3418
 be4253a7eaf41d718753ad07754ca3e
y[39] ffd5960b03369819795721426803599ed
 5b2b7516920efcbe32ada4bfc673cbd2
y[40] 9e3fa152d9adeca36020fdeee1b7395
 21d3ea8c0da497003df1513897b0f547
LMS type 00000006 # LM_SHA256_M32_H10
path[0] b326493313053ced3876db9d23714818
 1b7173bc7d042cefb4dbee94d2e58cd21
path[1] a769db4657a103279ba8ef3a629ca84e
 e836172a9c50e51f45581741cf808315
path[2] 0b491cb4ecbbabe1287c81a46e62a6
 7b57640a0a78be1cbbf7dd9d419a10cd8
path[3] 686d16621a8016bfdb5bdc56211d72c
 a70b81f1117d129529a7570cf79cf52a
path[4] 7028a48538edcd3b3d3d626262665
 95c4fb73a525a5ed2c30524ebb1d8ccc8
path[5] 2e0c19bc4977c689ff95fd3d310b0ba
 e71696cef936a552456bf96e9d075e3
path[6] 83bb7543c675842bafbc7cdd88483b3
 276c29d4f0a341c2d406e40d46537e4
path[7] d045851ac6a0a00a9c710b805cced46
 35ee8c10732f0fc8d80c4d0ca49c51
path[8] 6703d26d14752f34c1c0d2d2427581c1
 8c2cf4de48e9ce949be7c888e9caeb4
path[9] a415e291fd107d21d1f084b11582082
 49f28f7f7c931ba7b3b0d824a4570

LMS public key
LMS type 00000005 # LM_SHA256_M32_H5
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
I 215f83b7ccb9acbcd08db97b0d42c2b
K a1cd035833e0e90059603f26e07ad2a
 d152338e7a5e5984bcd5f7bb4eba40b7

final_signature:

LMS signature
q 00000000

LMOTS signature
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
C 0eb1ed54a2460d512388cad53138d24
 0534e97b1e82d33bd927d201dfc24ebb
y[0] 11b3649023696f851501b189e50c00e98
 850ac343a7b3638319c347d7310269d
y[1] 3b7714a406b8c35b021d54d4fada7b
 9ce5d4ba5b06719e72aaf585c5aae7aca
y[2] 057aa0e2e74e7dcd17a0823429db629
65bd7d563c57b4cec942cc865e29c1dad
y[3] 83cac8b4d61aaccc457f336e6a10b6632
3f5887bf3523dfcadf158503cfba89d
y[4] c6bf59daa82afdf2b5ebba29ca6572a60
67c7ee7c327e9309b3b6e6a1edc7fddc3
y[5] df927aade10c1c9f2d5ff446450d2a39
98d0ff9f6202b5e07c3f97d24586c9d3c
y[6] 8190643978d7a7f4d64e97e3f1ca04a8a
7c5bc03fd55682c017e2907eab07e5bb
y[7] 2f19014375a6043d5e6d5263471f4ee
ccf6e2575fbc6ff3edfa249d6cd1a09
y[8] f797fd5a3d53a066700f45863f04b6c
8a58cfdf341241e002d0d2c0217472bf1
y[9] 8b636ae547c171368d9f317835c9b0e
f430b3df4034f6af00d0da44f4af7800
y[10] bc7a5cf8a5abdb12dc718b559b74ca09
90e33cc58a955300981c420da4da8fdd
y[11] 67df540890a062fe40da8be2bc1c548ce
d22473219c534911d4ccaabfb71bc71
y[12] 862f4a24ebd376d288f4e6fb06ed870
5787c5f6dc813cd2697e5b1a01ced45
y[13] 76b14ce88409eaaeb601a93559aae89
3e1431c3395bc326ada821d79a9ed41dc
y[14] fbe54914f71c09f2e4f3ac522b5c572
9070650487bae9bb5671eccc9ccc2ce5
y[15] leadd7ac0198526852122f9057df7e
d4f10b5eef0df4f7c67368c90f5738b1a
y[16] c2ce956365ed38e893cc7b2fae15d36
85a3df2fa3d40c098fa57d6d0d29754
y[17] a8ade980ad0f936787075c3f680a2ba
1936e0c6d1af52ab7e21f416be09d2a
y[18] 8d64c3d3d852968c283902229f85ae
e297e717c094c8df4a23bbd5b658dd37
y[19] 7bf0f4f3ffdf8fba5e3f8a48574802ed
545bbe7a6b4753533353d73706076437
y[20] 1357ace517279cd68309747d218647c
86e097b0da2872d54bf8f3e508598762
y[21] 9547b830d818161b65079f7e7bca9a99
e9c3c7380e3e70b7138fe59d92b55150
y[22] 26b980d9ae1939f2f7d0f438eaa264a
0126e637d744ae492a6249fa103436d3
y[23] eb0d4029ac712bfc7aeacbbdd7518d6d
4af903a5ae65527cd65bb0d4e9925ca2
y[24] 4f7214dc617c150544e423f450c99ce
51ac8005d33ac74f1bed3b17b7266a4
y[25] a3bb86d7eba8b010e15c79b9e9a207
852cf91249ef480619ff2af8c8bca831
y[26] 25d1faa94cb0a03a906f683b3f47a97
 c871fd513e510a7a25f283b196075778
y[27] 496152a91c2bf9da76ebe089f4654877
 f2d586ae7149c406e663aeadeb2b5c7e8
y[28] 2429b9e8cb4834e349f47a97
 b3c8f5a72bb4b8c6f74b045dc6c1f79
y[29] 952c07420df525e37c15377b5f09843
 19c3993921e5cc097592064530d3
y[30] 496152a91c2bf9da76ebe089f4654877
 2efbf5a04755b0b3c997c4328463e84c
y[31] 982fb2e370c078db042c84db34ce36b
 97ec8075e82b393d542075134e2a17ee
 70a5e187075d03ae3853c9f0729ba4
--
LMS type 0000005 # LM_SHA256_M32_H5
path[0] 4de1f6965bdabc676c5a4dc7c35f97f8
 2cb0e31c68d04f1dad96314ff09e6b3d
path[1] e96aaee300d1f68bf1bca9fc5e40323
 36cd819aaf578744e50d1357a0e42867
path[2] 0ad34aa0a337b19fe4bc43c2e79964d
 4f351089f2e0e41c7c43ae0d497f404
path[3] b0f75e80e3aaf098c9752420a8ac0ea
 2bba1f4eebba057238af0d8ce63f0c6e5
path[4] e401df5398a6f7f3e0ee97cc1591849
 d4ed236338b147abde9f51ef9fd4e1c1

Acknowledgements

Thanks are due to Chirag Shroff, Andreas Huelsing, Burt Kaliski, Eric Osterweil, Ahmed Kosba, Russ Housley, Philip Lafrance, Alexander Truskovsky, Mark Peruzel, and Jim Schaad for constructive suggestions and valuable detailed review. We especially acknowledge Jerry Solinas, Laurie Law, and Kevin Igoe, who pointed out the security benefits of the approach of Leighton and Micali [USPTO5432852], Jonathan Katz, who gave us security guidance, and Bruno Couillard and Jim Goodman for an especially thorough review.
Authors’ Addresses

David McGrew
Cisco Systems
13600 Dulles Technology Drive
Herndon, VA 20171
United States of America
Email: mcgrew@cisco.com

Michael Curcio
Cisco Systems
7025-2 Kit Creek Road
Research Triangle Park, NC 27709-4987
United States of America
Email: micurcio@cisco.com

Scott Fluhrer
Cisco Systems
170 West Tasman Drive
San Jose, CA
United States of America
Email: sfluhrer@cisco.com