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Abstract

   This document provides an overview of operational networking and
   transport protocol issues that pertain to the quality of experience
   (QoE) when streaming video and other high-bitrate media over the
   Internet.

   This document explains the characteristics of streaming media
   delivery that have surprised network designers or transport experts
   who lack specific media expertise, since streaming media highlights
   key differences between common assumptions in existing networking
   practices and observations of media delivery issues encountered when
   streaming media over those existing networks.
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1.  Introduction

   This document provides an overview of operational networking and
   transport protocol issues that pertain to the quality of experience
   (QoE) when streaming video and other high-bitrate media over the
   Internet.

   This document is intended to explain the characteristics of streaming
   media delivery that have surprised network designers or transport
   experts who lack specific media expertise, since streaming media
   highlights key differences between common assumptions in existing
   networking practices and observations of media delivery issues
   encountered when streaming media over those existing networks.

1.1.  Key Definitions

   This document defines "high-bitrate streaming media over the
   Internet" as follows:

   *  "High-bitrate" is a context-sensitive term broadly intended to
      capture rates that can be sustained over some but not all of the
      target audience’s network connections.  A snapshot of values
      commonly qualifying as high-bitrate on today’s Internet is given
      by the higher-value entries in Section 3.1.1.

   *  "Streaming" means the continuous transmission of media segments
      from a server to a client and its simultaneous consumption by the
      client.

      -  The term "simultaneous" is critical, as media segment
         transmission is not considered "streaming" if one downloads a



         media file and plays it after the download is completed.
         Instead, this would be called "download and play".

      -  This has two implications.  First, the sending rate for media
         segments must match the client’s consumption rate (whether
         loosely or tightly) to provide uninterrupted playback.  That
         is, the client must not run out of media segments (buffer
         underrun) and must not accept more media segments than it can
         buffer before playback (buffer overrun).

      -  Second, the client’s media segment consumption rate is limited
         not only by the path’s available bandwidth but also by media
         segment availability.  The client cannot fetch media segments
         that a media server cannot provide (yet).

   *  "Media" refers to any type of media and associated streams, such
      as video, audio, metadata, etc.

   *  "Over the Internet" means that a single operator does not have
      control of the entire path between media servers and media
      clients, so it is not a "walled garden".

   This document uses these terms to describe the streaming media
   ecosystem:

   Streaming Media Operator:  an entity that provides streaming media
      servers

   Media Server:  a server that provides streaming media to a media
      player, which is also referred to as a streaming media server, or
      simply a server

   Intermediary:  an entity that is on-path, between the streaming media
      operator and the ultimate media consumer, and that is media aware

      When the streaming media is encrypted, an intermediary must have
      credentials that allow the intermediary to decrypt the media in
      order to be media aware.

      An intermediary can be one of many specialized subtypes that meet
      this definition.

   Media Player:  an endpoint that requests streaming media from a media
      server for an ultimate media consumer, which is also referred to
      as a streaming media client, or simply a client

   Ultimate Media Consumer:  a human or machine using a media player

1.2.  Document Scope

   A full review of all streaming media considerations for all types of
   media over all types of network paths is too broad a topic to cover
   comprehensively in a single document.

   This document focuses chiefly on the large-scale delivery of
   streaming high-bitrate media to end users.  It is primarily intended
   for those controlling endpoints involved in delivering streaming
   media traffic.  This can include origin servers publishing content,
   intermediaries like content delivery networks (CDNs), and providers
   for client devices and media players.

   Most of the considerations covered in this document apply to both
   "live media" (created and streamed as an event is in progress) and
   "media on demand" (previously recorded media that is streamed from
   storage), except where noted.

   Most of the considerations covered in this document apply to both
   media that is consumed by a media player, for viewing by a human, and
   media that is consumed by a machine, such as a media recorder that is
   executing an adaptive bitrate (ABR) streaming algorithm, except where
   noted.



   This document contains

   *  a short description of streaming video characteristics in
      Section 2 to set the stage for the rest of the document,

   *  general guidance on bandwidth provisioning (Section 3) and latency
      considerations (Section 4) for streaming media delivery,

   *  a description of adaptive encoding and adaptive delivery
      techniques in common use for streaming video, along with a
      description of the challenges media senders face in detecting the
      bitrate available between the media sender and media receiver, and
      a collection of measurements by a third party for use in analytics
      (Section 5),

   *  a description of existing transport protocols used for media
      streaming and the issues encountered when using those protocols,
      along with a description of the QUIC transport protocol [RFC9000]
      more recently used for streaming media (Section 6),

   *  a description of implications when streaming encrypted media
      (Section 7), and

   *  a pointer to additional resources for further reading on this
      rapidly changing subject (Section 8).

   Topics outside this scope include the following:

   *  an in-depth examination of real-time, two-way interactive media,
      such as videoconferencing; although this document touches lightly
      on topics related to this space, the intent is to let readers know
      that for more in-depth coverage they should look to other
      documents, since the techniques and issues for interactive real-
      time, two-way media differ so dramatically from those in large-
      scale, one-way delivery of streaming media.

   *  specific recommendations on operational practices to mitigate
      issues described in this document; although some known mitigations
      are mentioned in passing, the primary intent is to provide a point
      of reference for future solution proposals to describe how new
      technologies address or avoid existing problems.

   *  generalized network performance techniques; while considerations,
      such as data center design, transit network design, and "walled
      garden" optimizations, can be crucial components of a performant
      streaming media service, these are considered independent topics
      that are better addressed by other documents.

   *  transparent tunnels; while tunnels can have an impact on streaming
      media via issues like the round-trip time and the maximum
      transmission unit (MTU) of packets carried over tunnels, for the
      purposes of this document, these issues are considered as part of
      the set of network path properties.

   Questions about whether this document also covers "Web Real-Time
   Communication (WebRTC)" have come up often.  It does not.  WebRTC’s
   principal media transport protocol [RFC8834] [RFC8835], the Real-time
   Transport Protocol (RTP), is mentioned in this document.  However, as
   noted in Section 2, it is difficult to give general guidance for
   unreliable media transport protocols used to carry interactive real-
   time media.

2.  Our Focus on Streaming Video

   As the Internet has grown, an increasingly large share of the traffic
   delivered to end users has become video.  The most recent available
   estimates found that 75% of the total traffic to end users was video
   in 2019 (as described in [RFC8404], such traffic surveys have since
   become impossible to conduct due to ubiquitous encryption).  At that
   time, the share of video traffic had been growing for years and was



   projected to continue growing (Appendix D of [CVNI]).

   A substantial part of this growth is due to the increased use of
   streaming video.  However, video traffic in real-time communications
   (for example, online videoconferencing) has also grown significantly.
   While both streaming video and videoconferencing have real-time
   delivery and latency requirements, these requirements vary from one
   application to another.  For additional discussion of latency
   requirements, see Section 4.

   In many contexts, media traffic can be handled transparently as
   generic application-level traffic.  However, as the volume of media
   traffic continues to grow, it is becoming increasingly important to
   consider the effects of network design decisions on application-level
   performance, with considerations for the impact on media delivery.

   Much of the focus of this document is on media streaming over HTTP.
   HTTP is widely used for media streaming because

   *  support for HTTP is widely available in a wide range of operating
      systems,

   *  HTTP is also used in a wide variety of other applications,

   *  HTTP has been demonstrated to provide acceptable performance over
      the open Internet,

   *  HTTP includes state-of-the-art standardized security mechanisms,
      and

   *  HTTP can use already-deployed caching infrastructure, such as
      CDNs, local proxies, and browser caches.

   Various HTTP versions have been used for media delivery.  HTTP/1.0,
   HTTP/1.1, and HTTP/2 are carried over TCP [RFC9293], and TCP’s
   transport behavior is described in Section 6.1.  HTTP/3 is carried
   over QUIC, and QUIC’s transport behavior is described in Section 6.3.

   Unreliable media delivery using RTP and other UDP-based protocols is
   also discussed in Sections 4.1, 6.2, and 7.2, but it is difficult to
   give general guidance for these applications.  For instance, when
   packet loss occurs, the most appropriate response may depend on the
   type of codec being used.

3.  Bandwidth Provisioning

3.1.  Scaling Requirements for Media Delivery

3.1.1.  Video Bitrates

   Video bitrate selection depends on many variables including the
   resolution (height and width), frame rate, color depth, codec,
   encoding parameters, scene complexity, and amount of motion.
   Generally speaking, as the resolution, frame rate, color depth, scene
   complexity, and amount of motion increase, the encoding bitrate
   increases.  As newer codecs with better compression tools are used,
   the encoding bitrate decreases.  Similarly, a multi-pass encoding
   generally produces better quality output compared to single-pass
   encoding at the same bitrate or delivers the same quality at a lower
   bitrate.

   Here are a few common resolutions used for video content, with
   typical ranges of bitrates for the two most popular video codecs
   [Encodings].

         +============+================+============+============+
         | Name       | Width x Height | H.264      | H.265      |
         +============+================+============+============+
         | DVD        | 720 x 480      | 1.0 Mbps   | 0.5 Mbps   |
         +------------+----------------+------------+------------+
         | 720p (1K)  | 1280 x 720     | 3-4.5 Mbps | 2-4 Mbps   |



         +------------+----------------+------------+------------+
         | 1080p (2K) | 1920 x 1080    | 6-8 Mbps   | 4.5-7 Mbps |
         +------------+----------------+------------+------------+
         | 2160p (4k) | 3840 x 2160    | N/A        | 10-20 Mbps |
         +------------+----------------+------------+------------+

            Table 1: Typical Resolutions and Bitrate Ranges Used
                             for Video Encoding

   *  Note that these codecs do not take the actual "available
      bandwidth" between media servers and media players into account
      when encoding because the codec does not have any idea what
      network paths and network path conditions will carry the encoded
      video at some point in the future.  It is common for codecs to
      offer a small number of resource variants, differing only in the
      bandwidth each variant targets.

   *  Note that media players attempting to receive encoded video across
      a network path with insufficient available path bandwidth might
      request the media server to provide video encoded for lower
      bitrates, at the cost of lower video quality, as described in
      Section 5.3.

   *  In order to provide multiple encodings for video resources, the
      codec must produce multiple variants (also called renditions) of
      the video resource encoded at various bitrates, as described in
      Section 5.2.

3.1.2.  Virtual Reality Bitrates

   The bitrates given in Section 3.1.1 describe video streams that
   provide the user with a single, fixed point of view -- therefore, the
   user has no "degrees of freedom", and the user sees all of the video
   image that is available.

   Even basic virtual reality (360-degree) videos that allow users to
   look around freely (referred to as "three degrees of freedom" or
   3DoF) require substantially larger bitrates when they are captured
   and encoded, as such videos require multiple fields of view of the
   scene.  Yet, due to smart delivery methods, such as viewport-based or
   tile-based streaming, there is no need to send the whole scene to the
   user.  Instead, the user needs only the portion corresponding to its
   viewpoint at any given time [Survey360].

   In more immersive applications, where limited user movement ("three
   degrees of freedom plus" or 3DoF+) or full user movement ("six
   degrees of freedom" or 6DoF) is allowed, the required bitrate grows
   even further.  In this case, immersive content is typically referred
   to as volumetric media.  One way to represent the volumetric media is
   to use point clouds, where streaming a single object may easily
   require a bitrate of 30 Mbps or higher.  Refer to [MPEGI] and [PCC]
   for more details.

3.2.  Path Bottlenecks and Constraints

   Even when the bandwidth requirements for media streams along a path
   are well understood, additional analysis is required to understand
   the constraints on bandwidth at various points along the path between
   media servers and media players.  Media streams can encounter
   bottlenecks at many points along a path, whether the bottleneck
   happens at a node or at a path segment along the path, and these
   bottlenecks may involve a lack of processing power, buffering
   capacity, link speed, or any other exhaustible resource.

   Media servers may react to bandwidth constraints using two
   independent feedback loops:

   *  Media servers often respond to application-level feedback from the
      media player that indicates a bottleneck somewhere along the path
      by sending a different media bitrate.  This is described in
      greater detail in Section 5.



   *  Media servers also typically rely on transport protocols with
      capacity-seeking congestion controllers that probe for available
      path bandwidth and adjust the media sending rate based on
      transport mechanisms.  This is described in greater detail in
      Section 6.

   The result is that these two (potentially competing) "helpful"
   mechanisms each respond to the same bottleneck with no coordination
   between themselves, so that each is unaware of actions taken by the
   other, and this can result in QoE for users that is significantly
   lower than what could have been achieved.

   One might wonder why media servers and transport protocols are each
   unaware of what the other is doing, and there are multiple reasons
   for that.  One reason is that media servers are often implemented as
   applications executing in user space, relying on a general-purpose
   operating system that typically has its transport protocols
   implemented in the operating system kernel, making decisions that the
   media server never knows about.

   As one example, if a media server overestimates the available
   bandwidth to the media player,

   *  the transport protocol may detect loss due to congestion and
      reduce its sending window size per round trip,

   *  the media server adapts to application-level feedback from the
      media player and reduces its own sending rate, and/or

   *  the transport protocol sends media at the new, lower rate and
      confirms that this new, lower rate is "safe" because no transport-
      level loss is occurring.

   However, because the media server continues to send at the new, lower
   rate, the transport protocol’s maximum sending rate is now limited by
   the amount of information the media server queues for transmission.
   Therefore, the transport protocol cannot probe for available path
   bandwidth by sending at a higher rate until the media player requests
   segments that buffer enough data for the transport to perform the
   probing.

   To avoid these types of situations, which can potentially affect all
   the users whose streaming media segments traverse a bottleneck path
   segment, there are several possible mitigations that streaming
   operators can use.  However, the first step toward mitigating a
   problem is knowing that a problem is occurring.

3.2.1.  Recognizing Changes from a Baseline

   There are many reasons why path characteristics might change in
   normal operation.  For example:

   *  If the path topology changes.  For example, routing changes, which
      can happen in normal operation, may result in traffic being
      carried over a new path topology that is partially or entirely
      disjointed from the previous path, especially if the new path
      topology includes one or more path segments that are more heavily
      loaded, offer lower total bandwidth, change the overall Path MTU
      size, or simply cover more distance between the path endpoints.

   *  If cross traffic that also traverses part or all of the same path
      topology increases or decreases, especially if this new cross
      traffic is "inelastic" and does not respond to indications of path
      congestion.

   *  Wireless links (Wi-Fi, 5G, LTE, etc.) may see rapid changes to
      capacity from changes in radio interference and signal strength as
      endpoints move.

   To recognize that a path carrying streaming media has experienced a



   change, maintaining a baseline that captures its prior properties is
   fundamental.  Analytics that aid in that recognition can be more or
   less sophisticated and can usefully operate on several different time
   scales, from milliseconds to hours or days.

   Useful properties to monitor for changes can include the following:

   *  round-trip times

   *  loss rate (and explicit congestion notification (ECN) [RFC3168]
      when in use)

   *  out-of-order packet rate

   *  packet and byte receive rate

   *  application-level goodput

   *  properties of other connections carrying competing traffic, in
      addition to the connections carrying the streaming media

   *  externally provided measurements, for example, from network cards
      or metrics collected by the operating system

3.3.  Path Requirements

   The bitrate requirements in Section 3.1 are per end user actively
   consuming a media feed, so in the worst case, the bitrate demands can
   be multiplied by the number of simultaneous users to find the
   bandwidth requirements for a delivery path with that number of users
   downstream.  For example, at a node with 10,000 downstream users
   simultaneously consuming video streams, approximately 80 Gbps might
   be necessary for all of them to get typical content at 1080p
   resolution.

   However, when there is some overlap in the feeds being consumed by
   end users, it is sometimes possible to reduce the bandwidth
   provisioning requirements for the network by performing some kind of
   replication within the network.  This can be achieved via object
   caching with the delivery of replicated objects over individual
   connections and/or by packet-level replication using multicast.

   To the extent that replication of popular content can be performed,
   bandwidth requirements at peering or ingest points can be reduced to
   as low as a per-feed requirement instead of a per-user requirement.

3.4.  Caching Systems

   When demand for content is relatively predictable, and especially
   when that content is relatively static, caching content close to
   requesters and preloading caches to respond quickly to initial
   requests are often useful (for example, HTTP/1.1 caching is described
   in [RFC9111]).  This is subject to the usual considerations for
   caching -- for example, how much data must be cached to make a
   significant difference to the requester and how the benefit of
   caching and preloading cache balances against the costs of tracking
   stale content in caches and refreshing that content.

   It is worth noting that not all high-demand content is "live"
   content.  One relevant example is when popular streaming content can
   be staged close to a significant number of requesters, as can happen
   when a new episode of a popular show is released.  This content may
   be largely stable and is therefore low-cost to maintain in multiple
   places throughout the Internet.  This can reduce demands for high
   end-to-end bandwidth without having to use mechanisms like multicast.

   Caching and preloading can also reduce exposure to peering point
   congestion, since less traffic crosses the peering point exchanges if
   the caches are placed in peer networks.  This is especially true when
   the content can be preloaded during off-peak hours and if the
   transfer can make use of "A Lower-Effort Per-Hop Behavior (LE PHB)



   for Differentiated Services" [RFC8622], "Low Extra Delay Background
   Transport (LEDBAT)" [RFC6817], or similar mechanisms.

   All of this depends, of course, on the ability of a streaming media
   operator to predict usage and provision bandwidth, caching, and other
   mechanisms to meet the needs of users.  In some cases (Section 3.5),
   this is relatively routine, but in other cases, it is more difficult
   (Section 3.6).

   With the emergence of ultra-low-latency streaming, responses have to
   start streaming to the end user while still being transmitted to the
   cache and while the cache does not yet know the size of the object.
   Some of the popular caching systems were designed around a cache
   footprint and had deeply ingrained assumptions about knowing the size
   of objects that are being stored, so the change in design
   requirements in long-established systems caused some errors in
   production.  Incidents occurred where a transmission error in the
   connection from the upstream source to the cache could result in the
   cache holding a truncated segment and transmitting it to the end
   user’s device.  In this case, players rendering the stream often had
   a playback freeze until the player was reset.  In some cases, the
   truncated object was even cached that way and served later to other
   players as well, causing continued stalls at the same spot in the
   media for all players playing the segment delivered from that cache
   node.

3.5.  Predictable Usage Profiles

   Historical data shows that users consume more videos, and these
   videos are encoded at a bitrate higher than they were in the past.
   Improvements in the codecs that help reduce the encoding bitrates
   with better compression algorithms have not offset the increase in
   the demand for the higher quality video (higher resolution, higher
   frame rate, better color gamut, better dynamic range, etc.).  In
   particular, mobile data usage in cellular access networks has shown a
   large jump over the years due to increased consumption of
   entertainment and conversational video.

3.6.  Unpredictable Usage Profiles

   It is also possible for usage profiles to change significantly and
   suddenly.  These changes are more difficult to plan for, but at a
   minimum, recognizing that sudden changes are happening is critical.

   The two examples that follow are instructive.

3.6.1.  Peer-to-Peer Applications

   In the first example, described in "Report from the IETF Workshop on
   Peer-to-Peer (P2P) Infrastructure, May 28, 2008" [RFC5594], when the
   BitTorrent file sharing application came into widespread use in 2005,
   sudden and unexpected growth in peer-to-peer traffic led to
   complaints from ISP customers about the performance of delay-
   sensitive traffic (Voice over IP (VoIP) and gaming).  These
   performance issues resulted from at least two causes:

   *  Many access networks for end users used underlying technologies
      that are inherently asymmetric, favoring downstream bandwidth
      (e.g., ADSL, cellular technologies, and most IEEE 802.11
      variants), assuming that most users will need more downstream
      bandwidth than upstream bandwidth.  This is a good assumption for
      client-server applications, such as streaming media or software
      downloads, but BitTorrent rewarded peers that uploaded as much as
      they downloaded, so BitTorrent users had much more symmetric usage
      profiles, which interacted badly with these asymmetric access
      network technologies.

   *  Some P2P systems also used distributed hash tables to organize
      peers into a ring topology, where each peer knew its "next peer"
      and "previous peer".  There was no connection between the
      application-level ring topology and the lower-level network



      topology, so a peer’s "next peer" might be anywhere on the
      reachable Internet.  Traffic models that expected most
      communication to take place with a relatively small number of
      servers were unable to cope with peer-to-peer traffic that was
      much less predictable.

   Especially as end users increase the use of video-based social
   networking applications, it will be helpful for access network
   providers to watch for increasing numbers of end users uploading
   significant amounts of content.

3.6.2.  Impact of Global Pandemic

   Early in 2020, the COVID-19 pandemic and resulting quarantines and
   shutdowns led to significant changes in traffic patterns due to a
   large number of people who suddenly started working and attending
   school remotely and using more interactive applications (e.g.,
   videoconferencing and streaming media).  Subsequently, the Internet
   Architecture Board (IAB) held a COVID-19 Network Impacts Workshop
   [RFC9075] in November 2020.  The following observations from the
   workshop report are worth considering.

   *  Participants describing different types of networks reported
      different kinds of impacts, but all types of networks saw impacts.

   *  Mobile networks saw traffic reductions, and residential networks
      saw significant increases.

   *  Reported traffic increases from ISPs and Internet Exchange Points
      (IXPs) over just a few weeks were as big as the traffic growth
      over the course of a typical year, representing a 15-20% surge in
      growth to land at a new normal that was much higher than
      anticipated.

   *  At Deutscher Commercial Internet Exchange (DE-CIX) Frankfurt, the
      world’s largest IXP in terms of data throughput, the year 2020 has
      seen the largest increase in peak traffic within a single year
      since the IXP was founded in 1995.

   *  The usage pattern changed significantly as work-from-home and
      videoconferencing usage peaked during normal work hours, which
      would have typically been off-peak hours with adults at work and
      children at school.  One might expect that the peak would have had
      more impact on networks if it had happened during typical evening
      peak hours for streaming applications.

   *  The increase in daytime bandwidth consumption reflected both
      significant increases in essential applications, such as
      videoconferencing and virtual private networks (VPNs), and
      entertainment applications as people watched videos or played
      games.

   *  At the IXP level, it was observed that physical link utilization
      increased.  This phenomenon could probably be explained by a
      higher level of uncacheable traffic, such as videoconferencing and
      VPNs, from residential users as they stopped commuting and
      switched to working at home.

   Again, it will be helpful for streaming operators to monitor traffic
   as described in Section 5.6, watching for sudden changes in
   performance.

4.  Latency Considerations

   Streaming media latency refers to the "glass-to-glass" time duration,
   which is the delay between the real-life occurrence of an event and
   the streamed media being appropriately played on an end user’s
   device.  Note that this is different from the network latency
   (defined as the time for a packet to cross a network from one end to
   another end) because it includes media encoding/decoding and
   buffering time and, for most cases, also the ingest to an



   intermediate service, such as a CDN or other media distribution
   service, rather than a direct connection to an end user.

   The team working on this document found these rough categories to be
   useful when considering a streaming media application’s latency
   requirements:

   *  ultra-low-latency (less than 1 second)

   *  low-latency live (less than 10 seconds)

   *  non-low-latency live (10 seconds to a few minutes)

   *  on-demand (hours or more)

4.1.  Ultra-Low-Latency

   Ultra-low-latency delivery of media is defined here as having a
   glass-to-glass delay target under 1 second.

   Some media content providers aim to achieve this level of latency for
   live media events.  This introduces new challenges when compared to
   the other latency categories described in Section 4, because ultra-
   low-latency is on the same scale as commonly observed end-to-end
   network latency variation, often due to bufferbloat [CoDel], Wi-Fi
   error correction, or packet reordering.  These effects can make it
   difficult to achieve ultra-low-latency for many users and may require
   accepting relatively frequent user-visible media artifacts.  However,
   for controlled environments that provide mitigations against such
   effects, ultra-low-latency is potentially achievable with the right
   provisioning and the right media transport technologies.

   Most applications operating over IP networks and requiring latency
   this low use the Real-time Transport Protocol (RTP) [RFC3550] or
   WebRTC [RFC8825], which uses RTP as its media transport protocol,
   along with several other protocols necessary for safe operation in
   browsers.

   It is worth noting that many applications for ultra-low-latency
   delivery do not need to scale to as many users as applications for
   low-latency and non-low-latency live delivery, which simplifies many
   delivery considerations.

   Recommended reading for applications adopting an RTP-based approach
   also includes [RFC7656].  For increasing the robustness of the
   playback by implementing adaptive playout methods, refer to [RFC4733]
   and [RFC6843].

4.1.1.  Near-Real-Time Latency

   Some Internet applications that incorporate media streaming have
   specific interactivity or control-feedback requirements that drive
   much lower glass-to-glass media latency targets than 1 second.  These
   include videoconferencing or voice calls; remote video gameplay;
   remote control of hardware platforms like drones, vehicles, or
   surgical robots; and many other envisioned or deployed interactive
   applications.

   Applications with latency targets in these regimes are out of scope
   for this document.

4.2.  Low-Latency Live

   Low-latency live delivery of media is defined here as having a glass-
   to-glass delay target under 10 seconds.

   This level of latency is targeted to have a user experience similar
   to broadcast TV delivery.  A frequently cited problem with failing to
   achieve this level of latency for live sporting events is the user
   experience failure from having crowds within earshot of one another
   who react audibly to an important play or from users who learn of an



   event in the match via some other channel, for example, social media,
   before it has happened on the screen showing the sporting event.

   Applications requiring low-latency live media delivery are generally
   feasible at scale with some restrictions.  This typically requires
   the use of a premium service dedicated to the delivery of live media,
   and some trade-offs may be necessary relative to what is feasible in
   a higher-latency service.  The trade-offs may include higher costs,
   delivering a lower quality media, reduced flexibility for adaptive
   bitrates, or reduced flexibility for available resolutions so that
   fewer devices can receive an encoding tuned for their display.  Low-
   latency live delivery is also more susceptible to user-visible
   disruptions due to transient network conditions than higher-latency
   services.

   Implementation of a low-latency live media service can be achieved
   with the use of HTTP Live Streaming (HLS) [RFC8216] by using its low-
   latency extension (called LL-HLS) [HLS-RFC8216BIS] or with Dynamic
   Adaptive Streaming over HTTP (DASH) [MPEG-DASH] by using its low-
   latency extension (called LL-DASH) [LL-DASH].  These extensions use
   the Common Media Application Format (CMAF) standard [MPEG-CMAF] that
   allows the media to be packaged into and transmitted in units smaller
   than segments, which are called "chunks" in CMAF language.  This way,
   the latency can be decoupled from the duration of the media segments.
   Without a CMAF-like packaging, lower latencies can only be achieved
   by using very short segment durations.  However, using shorter
   segments means using more frequent intra-coded frames, and that is
   detrimental to video encoding quality.  The CMAF standard allows us
   to still use longer segments (improving encoding quality) without
   penalizing latency.

   While an LL-HLS client retrieves each chunk with a separate HTTP GET
   request, an LL-DASH client uses the chunked transfer encoding feature
   of the HTTP [CMAF-CTE], which allows the LL-DASH client to fetch all
   the chunks belonging to a segment with a single GET request.  An HTTP
   server can transmit the CMAF chunks to the LL-DASH client as they
   arrive from the encoder/packager.  A detailed comparison of LL-HLS
   and LL-DASH is given in [MMSP20].

4.3.  Non-Low-Latency Live

   Non-low-latency live delivery of media is defined here as a live
   stream that does not have a latency target shorter than 10 seconds.

   This level of latency is the historically common case for segmented
   media delivery using HLS and DASH.  This level of latency is often
   considered adequate for content like news.  This level of latency is
   also sometimes achieved as a fallback state when some part of the
   delivery system or the client-side players do not support low-latency
   live streaming.

   This level of latency can typically be achieved at scale with
   commodity CDN services for HTTP(s) delivery, and in some cases, the
   increased time window can allow for the production of a wider range
   of encoding options relative to the requirements for a lower-latency
   service without the need for increasing the hardware footprint, which
   can allow for wider device interoperability.

4.4.  On-Demand

   On-demand media streaming refers to the playback of pre-recorded
   media based on a user’s action.  In some cases, on-demand media is
   produced as a by-product of a live media production, using the same
   segments as the live event but freezing the manifest that describes
   the media available from the media server after the live event has
   finished.  In other cases, on-demand media is constructed out of pre-
   recorded assets with no streaming necessarily involved during the
   production of the on-demand content.

   On-demand media generally is not subject to latency concerns, but
   other timing-related considerations can still be as important or even



   more important to the user experience than the same considerations
   with live events.  These considerations include the startup time, the
   stability of the media stream’s playback quality, and avoidance of
   stalls and other media artifacts during the playback under all but
   the most severe network conditions.

   In some applications, optimizations are available to on-demand media
   but are not always available to live events, such as preloading the
   first segment for a startup time that does not have to wait for a
   network download to begin.

5.  Adaptive Encoding, Adaptive Delivery, and Measurement Collection

   This section describes one of the best-known ways to provide a good
   user experience over a given network path, but one thing to keep in
   mind is that application-level mechanisms cannot provide a better
   experience than the underlying network path can support.

5.1.  Overview

   A simple model of media playback can be described as a media stream
   consumer, a buffer, and a transport mechanism that fills the buffer.
   The consumption rate is fairly static and is represented by the
   content bitrate.  The size of the buffer is also commonly a fixed
   size.  The buffer fill process needs to be at least fast enough to
   ensure that the buffer is never empty; however, it also can have
   significant complexity when things like personalization or
   advertising insertion workflows are introduced.

   The challenges in filling the buffer in a timely way fall into two
   broad categories:

   *  Content variation (also sometimes called a "bitrate ladder") is
      the set of content renditions that are available at any given
      selection point.

   *  Content selection comprises all of the steps a client uses to
      determine which content rendition to play.

   The mechanism used to select the bitrate is part of the content
   selection, and the content variation is all of the different bitrate
   renditions.

   Adaptive bitrate streaming ("ABR streaming" or simply "ABR") is a
   commonly used technique for dynamically adjusting the media quality
   of a stream to match bandwidth availability.  When this goal is
   achieved, the media server will tend to send enough media that the
   media player does not "stall", without sending so much media that the
   media player cannot accept it.

   ABR uses an application-level response strategy in which the
   streaming client attempts to detect the available bandwidth of the
   network path by first observing the successful application-layer
   download speed; then, given the available bandwidth, the client
   chooses a bitrate for each of the video, audio, subtitles, and
   metadata (among a limited number of available options for each type
   of media) that fits within that bandwidth, typically adjusting as
   changes in available bandwidth occur in the network or changes in
   capabilities occur during the playback (such as available memory,
   CPU, display size, etc.).

5.2.  Adaptive Encoding

   Media servers can provide media streams at various bitrates because
   the media has been encoded at various bitrates.  This is a so-called
   "ladder" of bitrates that can be offered to media players as part of
   the manifest so that the media player can select among the available
   bitrate choices.

   The media server may also choose to alter which bitrates are made
   available to players by adding or removing bitrate options from the



   ladder delivered to the player in subsequent manifests built and sent
   to the player.  This way, both the player, through its selection of
   bitrate to request from the manifest, and the server, through its
   construction of the bitrates offered in the manifest, are able to
   affect network utilization.

5.3.  Adaptive Segmented Delivery

   Adaptive segmented delivery attempts to optimize its own use of the
   path between a media server and a media client.  ABR playback is
   commonly implemented by streaming clients using HLS [RFC8216] or DASH
   [MPEG-DASH] to perform a reliable segmented delivery of media over
   HTTP.  Different implementations use different strategies
   [ABRSurvey], often relying on proprietary algorithms (called rate
   adaptation or bitrate selection algorithms) to perform available
   bandwidth estimation/prediction and the bitrate selection.

   Many systems will do an initial probe or a very simple throughput
   speed test at the start of media playback.  This is done to get a
   rough sense of the highest (total) media bitrate that the network
   between the server and player will likely be able to provide under
   initial network conditions.  After the initial testing, clients tend
   to rely upon passive network observations and will make use of
   player-side statistics, such as buffer fill rates, to monitor and
   respond to changing network conditions.

   The choice of bitrate occurs within the context of optimizing for one
   or more metrics monitored by the client, such as the highest
   achievable audiovisual quality or the lowest chances for a
   rebuffering event (playback stall).

5.4.  Advertising

   The inclusion of advertising alongside or interspersed with streaming
   media content is common in today’s media landscape.

   Some commonly used forms of advertising can introduce potential user
   experience issues for a media stream.  This section provides a very
   brief overview of a complex and rapidly evolving space.

   The same techniques used to allow a media player to switch between
   renditions of different bitrates at segment boundaries can also be
   used to enable the dynamic insertion of advertisements (hereafter
   referred to as "ads"), but this does not mean that the insertion of
   ads has no effect on the user’s quality of experience.

   Ads may be inserted with either Client-side Ad Insertion (CSAI) or
   Server-side Ad Insertion (SSAI).  In CSAI, the ABR manifest will
   generally include links to an external ad server for some segments of
   the media stream, while in SSAI, the server will remain the same
   during ads but will include media segments that contain the
   advertising.  In SSAI, the media segments may or may not be sourced
   from an external ad server like with CSAI.

   In general, the more targeted the ad request is, the more requests
   the ad service needs to be able to handle concurrently.  If
   connectivity is poor to the ad service, this can cause rebuffering
   even if the underlying media assets (both content and ads) can be
   accessed quickly.  The less targeted the ad request is, the more
   likely that ad requests can be consolidated and that ads can be
   cached similarly to the media content.

   In some cases, especially with SSAI, advertising space in a stream is
   reserved for a specific advertiser and can be integrated with the
   video so that the segments share the same encoding properties, such
   as bitrate, dynamic range, and resolution.  However, in many cases,
   ad servers integrate with a Supply Side Platform (SSP) that offers
   advertising space in real-time auctions via an Ad Exchange, with bids
   for the advertising space coming from Demand Side Platforms (DSPs)
   that collect money from advertisers for delivering the ads.  Most
   such Ad Exchanges use application-level protocol specifications



   published by the Interactive Advertising Bureau [IAB-ADS], an
   industry trade organization.

   This ecosystem balances several competing objectives, and integrating
   with it naively can produce surprising user experience results.  For
   example, ad server provisioning and/or the bitrate of the ad segments
   might be different from that of the main content, and either of these
   differences can result in playback stalls.  For another example,
   since the inserted ads are often produced independently, they might
   have a different base volume level than the main content, which can
   make for a jarring user experience.

   Another major source of competing objectives comes from user privacy
   considerations vs. the advertiser’s incentives to target ads to user
   segments based on behavioral data.  Multiple studies, for example,
   [BEHAVE] and [BEHAVE2], have reported large improvements in ad
   effectiveness when using behaviorally targeted ads, relative to
   untargeted ads.  This provides a strong incentive for advertisers to
   gain access to the data necessary to perform behavioral targeting,
   leading some to engage in what is indistinguishable from a pervasive
   monitoring attack [RFC7258] based on user tracking in order to
   collect the relevant data.  A more complete review of issues in this
   space is available in [BALANCING].

   On top of these competing objectives, this market historically has
   had incidents of misreporting of ad delivery to end users for
   financial gain [ADFRAUD].  As a mitigation for concerns driven by
   those incidents, some SSPs have required the use of specific media
   players that include features like reporting of ad delivery or
   providing additional user information that can be used for tracking.

   In general, this is a rapidly developing space with many
   considerations, and media streaming operators engaged in advertising
   may need to research these and other concerns to find solutions that
   meet their user experience, user privacy, and financial goals.  For
   further reading on mitigations, [BAP] has published some standards
   and best practices based on user experience research.

5.5.  Bitrate Detection Challenges

   This kind of bandwidth-measurement system can experience various
   troubles that are affected by networking and transport protocol
   issues.  Because adaptive application-level response strategies are
   often using rates as observed by the application layer, there are
   sometimes inscrutable transport-level protocol behaviors that can
   produce surprising measurement values when the application-level
   feedback loop is interacting with a transport-level feedback loop.

   A few specific examples of surprising phenomena that affect bitrate
   detection measurements are described in the following subsections.
   As these examples will demonstrate, it is common to encounter cases
   that can deliver application-level measurements that are too low, too
   high, and (possibly) correct but that vary more quickly than a lab-
   tested selection algorithm might expect.

   These effects and others that cause transport behavior to diverge
   from lab modeling can sometimes have a significant impact on bitrate
   selection and on user QoE, especially where players use naive
   measurement strategies and selection algorithms that do not account
   for the likelihood of bandwidth measurements that diverge from the
   true path capacity.

5.5.1.  Idle Time between Segments

   When the bitrate selection is chosen substantially below the
   available capacity of the network path, the response to a segment
   request will typically complete in much less absolute time than the
   duration of the requested segment, leaving significant idle time
   between segment downloads.  This can have a few surprising
   consequences:



   *  TCP slow-start, when restarting after idle, requires multiple RTTs
      to re-establish a throughput at the network’s available capacity.
      When the active transmission time for segments is substantially
      shorter than the time between segments, leaving an idle gap
      between segments that triggers a restart of TCP slow-start, the
      estimate of the successful download speed coming from the
      application-visible receive rate on the socket can thus end up
      much lower than the actual available network capacity.  This, in
      turn, can prevent a shift to the most appropriate bitrate.
      [RFC7661] provides some mitigations for this effect at the TCP
      transport layer for senders who anticipate a high incidence of
      this problem.

   *  Mobile flow-bandwidth spectrum and timing mapping can be impacted
      by idle time in some networks.  The carrier capacity assigned to a
      physical or virtual link can vary with activity.  Depending on the
      idle time characteristics, this can result in a lower available
      bitrate than would be achievable with a steadier transmission in
      the same network.

   Some receiver-side ABR algorithms, such as [ELASTIC], are designed to
   try to avoid this effect.

   Another way to mitigate this effect is by the help of two
   simultaneous TCP connections, as explained in [MMSys11] for Microsoft
   Smooth Streaming.  In some cases, the system-level TCP slow-start
   restart can also be disabled, for example, as described in
   [OReilly-HPBN].

5.5.2.  Noisy Measurements

   In addition to smoothing over an appropriate time scale to handle
   network jitter (see [RFC5481]), ABR systems relying on measurements
   at the application layer also have to account for noise from the in-
   order data transmission at the transport layer.

   For instance, in the event of a lost packet on a TCP connection with
   SACK support (a common case for segmented delivery in practice), loss
   of a packet can provide a confusing bandwidth signal to the receiving
   application.  Because of the sliding window in TCP, many packets may
   be accepted by the receiver without being available to the
   application until the missing packet arrives.  Upon the arrival of
   the one missing packet after retransmit, the receiver will suddenly
   get access to a lot of data at the same time.

   To a receiver measuring bytes received per unit time at the
   application layer and interpreting it as an estimate of the available
   network bandwidth, this appears as a high jitter in the goodput
   measurement, presenting as a stall followed by a sudden leap that can
   far exceed the actual capacity of the transport path from the server
   when the hole in the received data is filled by a later
   retransmission.

5.5.3.  Wide and Rapid Variation in Path Capacity

   As many end devices have moved to wireless connections for the final
   hop (such as Wi-Fi, 5G, LTE, etc.), new problems in bandwidth
   detection have emerged.

   In most real-world operating environments, wireless links can often
   experience sudden changes in capacity as the end user device moves
   from place to place or encounters new sources of interference.
   Microwave ovens, for example, can cause a throughput degradation in
   Wi-Fi of more than a factor of 2 while active [Micro].

   These swings in actual transport capacity can result in user
   experience issues when interacting with ABR algorithms that are not
   tuned to handle the capacity variation gracefully.

5.6.  Measurement Collection



   Media players use measurements to guide their segment-by-segment
   adaptive streaming requests but may also provide measurements to
   streaming media providers.

   In turn, media providers may base analytics on these measurements to
   guide decisions, such as whether adaptive encoding bitrates in use
   are the best ones to provide to media players or whether current
   media content caching is providing the best experience for viewers.

   To that effect, the Consumer Technology Association (CTA), who owns
   the Web Application Video Ecosystem (WAVE) project, has published two
   important specifications.

   *  CTA-2066: Streaming Quality of Experience Events, Properties and
      Metrics

   [CTA-2066] specifies a set of media player events, properties, QoE
   metrics, and associated terminology for representing streaming media
   QoE across systems, media players, and analytics vendors.  While all
   these events, properties, metrics, and associated terminology are
   used across a number of proprietary analytics and measurement
   solutions, they were used in slightly (or vastly) different ways that
   led to interoperability issues.  CTA-2066 attempts to address this
   issue by defining common terminology and how each metric should be
   computed for consistent reporting.

   *  CTA-5004: Web Application Video Ecosystem - Common Media Client
      Data (CMCD)

   Many assume that the CDNs have a holistic view of the health and
   performance of the streaming clients.  However, this is not the case.
   The CDNs produce millions of log lines per second across hundreds of
   thousands of clients, and they have no concept of a "session" as a
   client would have, so CDNs are decoupled from the metrics the clients
   generate and report.  A CDN cannot tell which request belongs to
   which playback session, the duration of any media object, the
   bitrate, or whether any of the clients have stalled and are
   rebuffering or are about to stall and will rebuffer.  The consequence
   of this decoupling is that a CDN cannot prioritize delivery for when
   the client needs it most, prefetch content, or trigger alerts when
   the network itself may be underperforming.  One approach to couple
   the CDN to the playback sessions is for the clients to communicate
   standardized media-relevant information to the CDNs while they are
   fetching data.  [CTA-5004] was developed exactly for this purpose.

6.  Transport Protocol Behaviors and Their Implications for Media
    Transport Protocols

   Within this document, the term "media transport protocol" is used to
   describe any protocol that carries media metadata and media segments
   in its payload, and the term "transport protocol" describes any
   protocol that carries a media transport protocol, or another
   transport protocol, in its payload.  This is easier to understand if
   the reader assumes a protocol stack that looks something like this:

             Media Segments
       ---------------------------
              Media Format
       ---------------------------
         Media Transport Protocol
       ---------------------------
          Transport Protocol(s)

   where

   *  "Media segments" would be something like the output of a codec or
      some other source of media segments, such as closed-captioning,

   *  "Media format" would be something like an RTP payload format
      [RFC2736] or an ISO base media file format (ISOBMFF) profile
      [ISOBMFF],



   *  "Media transport protocol" would be something like RTP [RFC3550]
      or DASH [MPEG-DASH], and

   *  "Transport protocol" would be a protocol that provides appropriate
      transport services, as described in Section 5 of [RFC8095].

   Not all possible streaming media applications follow this model, but
   for the ones that do, it seems useful to distinguish between the
   protocol layer that is aware it is transporting media segments and
   underlying protocol layers that are not aware.

   As described in the abstract of [RFC8095], the IETF has standardized
   a number of protocols that provide transport services.  Although
   these protocols, taken in total, provide a wide variety of transport
   services, Section 6 will distinguish between two extremes:

   *  transport protocols used to provide reliable, in-order media
      delivery to an endpoint, typically providing flow control and
      congestion control (Section 6.1), and

   *  transport protocols used to provide unreliable, unordered media
      delivery to an endpoint, without flow control or congestion
      control (Section 6.2).

   Because newly standardized transport protocols, such as QUIC
   [RFC9000], that are typically implemented in user space can evolve
   their transport behavior more rapidly than currently used transport
   protocols that are typically implemented in operating system kernel
   space, this document includes a description of how the path
   characteristics that streaming media providers may see are likely to
   evolve; see Section 6.3.

   It is worth noting explicitly that the transport protocol layer might
   include more than one protocol.  For example, a specific media
   transport protocol might run over HTTP, or over WebTransport, which
   in turn runs over HTTP.

   It is worth noting explicitly that more complex network protocol
   stacks are certainly possible -- for instance, when packets with this
   protocol stack are carried in a tunnel or in a VPN, the entire packet
   would likely appear in the payload of other protocols.  If these
   environments are present, streaming media operators may need to
   analyze their effects on applications as well.

6.1.  Media Transport over Reliable Transport Protocols

   The HLS [RFC8216] and DASH [MPEG-DASH] media transport protocols are
   typically carried over HTTP, and HTTP has used TCP as its only
   standardized transport protocol until HTTP/3 [RFC9114].  These media
   transport protocols use ABR response strategies as described in
   Section 5 to respond to changing path characteristics, and underlying
   transport protocols are also attempting to respond to changing path
   characteristics.

   The past success of the largely TCP-based Internet is evidence that
   the various flow control and congestion control mechanisms that TCP
   has used to achieve equilibrium quickly, at a point where TCP senders
   do not interfere with other TCP senders for sustained periods of time
   [RFC5681], have been largely successful.  The Internet has continued
   to work even when the specific TCP mechanisms used to reach
   equilibrium changed over time [RFC7414].  Because TCP provided a
   common tool to avoid contention, even when significant TCP-based
   applications like FTP were largely replaced by other significant TCP-
   based applications like HTTP, the transport behavior remained safe
   for the Internet.

   Modern TCP implementations [RFC9293] continue to probe for available
   bandwidth and "back off" when a network path is saturated but may
   also work to avoid growing queues along network paths, which can
   prevent older TCP senders from quickly detecting when a network path



   is becoming saturated.  Congestion control mechanisms, such as Copa
   [COPA18] and Bottleneck Bandwidth and Round-trip propagation time
   (BBR) [BBR-CONGESTION-CONTROL], make these decisions based on
   measured path delays, assuming that if the measured path delay is
   increasing, the sender is injecting packets onto the network path
   faster than the network can forward them (or the receiver can accept
   them), so the sender should adjust its sending rate accordingly.

   Although common TCP behavior has changed significantly since the days
   of [Jacobson-Karels] and [RFC2001], even with adding new congestion
   controllers such as CUBIC [RFC8312], the common practice of
   implementing TCP as part of an operating system kernel has acted to
   limit how quickly TCP behavior can change.  Even with the widespread
   use of automated operating system update installation on many end-
   user systems, streaming media providers could have a reasonable
   expectation that they could understand TCP transport protocol
   behaviors and that those behaviors would remain relatively stable in
   the short term.

6.2.  Media Transport over Unreliable Transport Protocols

   Because UDP does not provide any feedback mechanism to senders to
   help limit impacts on other users, UDP-based application-level
   protocols have been responsible for the decisions that TCP-based
   applications have delegated to TCP, i.e., what to send, how much to
   send, and when to send it.  Because UDP itself has no transport-layer
   feedback mechanisms, UDP-based applications that send and receive
   substantial amounts of information are expected to provide their own
   feedback mechanisms and to respond to the feedback the application
   receives.  This expectation is most recently codified as a Best
   Current Practice [RFC8085].

   In contrast to adaptive segmented delivery over a reliable transport
   as described in Section 5.3, some applications deliver streaming
   media segments using an unreliable transport and rely on a variety of
   approaches, including:

   *  media encapsulated in a raw MPEG Transport Stream (MPEG-TS)
      [MPEG-TS] over UDP, which makes no attempt to account for
      reordering or loss in the transport,

   *  RTP [RFC3550], which can notice packet loss and repair some
      limited reordering,

   *  the Stream Control Transmission Protocol (SCTP) [RFC9260], which
      can use partial reliability [RFC3758] to recover from some loss
      but can abandon recovery to limit head-of-line blocking, and

   *  the Secure Reliable Transport (SRT) [SRT], which can use forward
      error correction and time-bound retransmission to recover from
      loss within certain limits but can abandon recovery to limit head-
      of-line blocking.

   Under congestion and loss, approaches like the above generally
   experience transient media artifacts more often and delay of playback
   effects less often, as compared with reliable segment transport.
   Often, one of the key goals of using a UDP-based transport that
   allows some unreliability is to reduce latency and better support
   applications like videoconferencing or other live-action video with
   interactive components, such as some sporting events.

   Congestion avoidance strategies for deployments using unreliable
   transport protocols vary widely in practice, ranging from being
   entirely unresponsive to responding by using strategies, including:

   *  feedback signaling to change encoder settings (as in [RFC5762]),

   *  fewer enhancement layers (as in [RFC6190]), and

   *  proprietary methods to detect QoE issues and turn off video to
      allow less bandwidth-intensive media, such as audio, to be



      delivered.

   RTP relies on RTCP sender and receiver reports [RFC3550] as its own
   feedback mechanism and even includes circuit breakers for unicast RTP
   sessions [RFC8083] for situations when normal RTP congestion control
   has not been able to react sufficiently to RTP flows sending at rates
   that result in sustained packet loss.

   The notion of "circuit breakers" has also been applied to other UDP
   applications in [RFC8084], such as tunneling packets over UDP that
   are potentially not congestion controlled (for example,
   "encapsulating MPLS in UDP", as described in [RFC7510]).  If
   streaming media segments are carried in tunnels encapsulated in UDP,
   these media streams may encounter "tripped circuit breakers", with
   resulting user-visible impacts.

6.3.  QUIC and Changing Transport Protocol Behavior

   The QUIC protocol, developed from a proprietary protocol into an IETF
   Standards Track protocol [RFC9000], behaves differently than the
   transport protocols characterized in Sections 6.1 and 6.2.

   Although QUIC provides an alternative to the TCP and UDP transport
   protocols, QUIC is itself encapsulated in UDP.  As noted elsewhere in
   Section 7.1, the QUIC protocol encrypts almost all of its transport
   parameters and all of its payload, so any intermediaries that network
   operators may be using to troubleshoot HTTP streaming media
   performance issues, perform analytics, or even intercept exchanges in
   current applications will not work for QUIC-based applications
   without making changes to their networks.  Section 7 describes the
   implications of media encryption in more detail.

   While QUIC is designed as a general-purpose transport protocol and
   can carry different application-layer protocols, the current
   standardized mapping is for HTTP/3 [RFC9114], which describes how
   QUIC transport services are used for HTTP.  The convention is for
   HTTP/3 to run over UDP port 443 [Port443], but this is not a strict
   requirement.

   When HTTP/3 is encapsulated in QUIC, which is then encapsulated in
   UDP, streaming operators (and network operators) might see UDP
   traffic patterns that are similar to HTTP(S) over TCP.  UDP ports may
   be blocked for any port numbers that are not commonly used, such as
   UDP 53 for DNS.  Even when UDP ports are not blocked and QUIC packets
   can flow, streaming operators (and network operators) may severely
   rate-limit this traffic because they do not expect to see legitimate
   high-bandwidth traffic, such as streaming media over the UDP ports
   that HTTP/3 is using.

   As noted in Section 5.5.2, because TCP provides a reliable, in-order
   delivery service for applications, any packet loss for a TCP
   connection causes head-of-line blocking so that no TCP segments
   arriving after a packet is lost will be delivered to the receiving
   application until retransmission of the lost packet has been
   received, allowing in-order delivery to the application to continue.
   As described in [RFC9000], QUIC connections can carry multiple
   streams, and when packet losses do occur, only the streams carried in
   the lost packet are delayed.

   A QUIC extension currently being specified [RFC9221] adds the
   capability for "unreliable" delivery, similar to the service provided
   by UDP, but these datagrams are still subject to the QUIC
   connection’s congestion controller, providing some transport-level
   congestion avoidance measures, which UDP does not.

   As noted in Section 6.1, there is an increasing interest in
   congestion control algorithms that respond to delay measurements
   instead of responding to packet loss.  These algorithms may deliver
   an improved user experience, but in some cases, they have not
   responded to sustained packet loss, which exhausts available buffers
   along the end-to-end path that may affect other users sharing that



   path.  The QUIC protocol provides a set of congestion control hooks
   that can be used for algorithm agility, and [RFC9002] defines a basic
   congestion control algorithm that is roughly similar to TCP NewReno
   [RFC6582].  However, QUIC senders can and do unilaterally choose to
   use different algorithms, such as loss-based CUBIC [RFC8312], delay-
   based Copa or BBR, or even something completely different.

   The Internet community does have experience with deploying new
   congestion controllers without causing congestion collapse on the
   Internet.  As noted in [RFC8312], both the CUBIC congestion
   controller and its predecessor BIC have significantly different
   behavior from Reno-style congestion controllers, such as TCP NewReno
   [RFC6582]; both were added to the Linux kernel to allow
   experimentation and analysis, both were then selected as the default
   TCP congestion controllers in Linux, and both were deployed globally.

   The point mentioned in Section 6.1 about TCP congestion controllers
   being implemented in operating system kernels is different with QUIC.
   Although QUIC can be implemented in operating system kernels, one of
   the design goals when this work was chartered was "QUIC is expected
   to support rapid, distributed development and testing of features";
   to meet this expectation, many implementers have chosen to implement
   QUIC in user space, outside the operating system kernel, and to even
   distribute QUIC libraries with their own applications.  It is worth
   noting that streaming operators using HTTP/3, carried over QUIC, can
   expect more frequent deployment of new congestion controller behavior
   than has been the case with HTTP/1 and HTTP/2, carried over TCP.

   It is worth considering that if TCP-based HTTP traffic and UDP-based
   HTTP/3 traffic are allowed to enter operator networks on roughly
   equal terms, questions of fairness and contention will be heavily
   dependent on interactions between the congestion controllers in use
   for TCP-based HTTP traffic and UDP-based HTTP/3 traffic.

7.  Streaming Encrypted Media

   "Encrypted Media" has at least three meanings:

   *  Media encrypted at the application layer, typically using some
      sort of Digital Rights Management (DRM) system or other object
      encryption/security mechanism and typically remaining encrypted at
      rest when senders and receivers store it.

   *  Media encrypted by the sender at the transport layer and remaining
      encrypted until it reaches the ultimate media consumer (in this
      document, it is referred to as end-to-end media encryption).

   *  Media encrypted by the sender at the transport layer and remaining
      encrypted until it reaches some intermediary that is _not_ the
      ultimate media consumer but has credentials allowing decryption of
      the media content.  This intermediary may examine and even
      transform the media content in some way, before forwarding re-
      encrypted media content (in this document, it is referred to as
      hop-by-hop media encryption).

   This document focuses on media encrypted at the transport layer,
   whether encryption is performed hop by hop or end to end.  Because
   media encrypted at the application layer will only be processed by
   application-level entities, this encryption does not have transport-
   layer implications.  Of course, both hop-by-hop and end-to-end
   encrypted transport may carry media that is, in addition, encrypted
   at the application layer.

   Each of these encryption strategies is intended to achieve a
   different goal.  For instance, application-level encryption may be
   used for business purposes, such as avoiding piracy or enforcing
   geographic restrictions on playback, while transport-layer encryption
   may be used to prevent media stream manipulation or to protect
   manifests.

   This document does not take a position on whether those goals are



   valid.

   Both end-to-end and hop-by-hop media encryption have specific
   implications for streaming operators.  These are described in
   Sections 7.2 and 7.3.

7.1.  General Considerations for Streaming Media Encryption

   The use of strong encryption does provide confidentiality for
   encrypted streaming media, from the sender to either the ultimate
   media consumer or to an intermediary that possesses credentials
   allowing decryption.  This does prevent deep packet inspection (DPI)
   by any on-path intermediary that does not possess credentials
   allowing decryption.  However, even encrypted content streams may be
   vulnerable to traffic analysis.  An on-path observer that can
   identify that encrypted traffic contains a media stream could
   "fingerprint" this encrypted media stream and then compare it against
   "fingerprints" of known content.  The protection provided by strong
   encryption can be further lessened if a streaming media operator is
   repeatedly encrypting the same content.  "Identifying HTTPS-Protected
   Netflix Videos in Real-Time" [CODASPY17] is an example of what is
   possible when identifying HTTPS-protected videos over TCP transport,
   based either on the length of entire resources being transferred or
   on characteristic packet patterns at the beginning of a resource
   being transferred.  If traffic analysis is successful at identifying
   encrypted content and associating it with specific users, this tells
   an on-path observer what resource is being streamed, and by who,
   almost as certainly as examining decrypted traffic.

   Because HTTPS has historically layered HTTP on top of TLS, which is
   in turn layered on top of TCP, intermediaries have historically had
   access to unencrypted TCP-level transport information, such as
   retransmissions, and some carriers exploited this information in
   attempts to improve transport-layer performance [RFC3135].  The most
   recent standardized version of HTTPS, HTTP/3 [RFC9114], uses the QUIC
   protocol [RFC9000] as its transport layer.  QUIC relies on the TLS
   1.3 initial handshake [RFC8446] only for key exchange [RFC9001] and
   encrypts almost all transport parameters itself, except for a few
   invariant header fields.  In the QUIC short header, the only
   transport-level parameter that is sent "in the clear" is the
   Destination Connection ID [RFC8999], and even in the QUIC long
   header, the only transport-level parameters sent "in the clear" are
   the version, Destination Connection ID, and Source Connection ID.
   For these reasons, HTTP/3 is significantly more "opaque" than HTTPS
   with HTTP/1 or HTTP/2.

   [RFC9312] discusses the manageability of the QUIC transport protocol
   that is used to encapsulate HTTP/3, focusing on the implications of
   QUIC’s design and wire image on network operations involving QUIC
   traffic.  It discusses what network operators can consider in some
   detail.

   More broadly, "Considerations around Transport Header
   Confidentiality, Network Operations, and the Evolution of Internet
   Transport Protocols" [RFC9065] describes the impact of increased
   encryption of transport headers in general terms.

   It is also worth noting that considerations for heavily encrypted
   transport protocols also come into play when streaming media is
   carried over IP-level VPNs and tunnels, with the additional
   consideration that an intermediary that does not possess credentials
   allowing decryption will not have visibility to the source and
   destination IP addresses of the packets being carried inside the
   tunnel.

7.2.  Considerations for Hop-by-Hop Media Encryption

   Hop-by-hop media encryption offers the benefits described in
   Section 7.1 between the streaming media operator and authorized
   intermediaries, among authorized intermediaries, and between
   authorized intermediaries and the ultimate media consumer; however,



   it does not provide these benefits end to end.  The streaming media
   operator and ultimate media consumer must trust the authorized
   intermediaries, and if these intermediaries cannot be trusted, the
   benefits of encryption are lost.

   Although the IETF has put considerable emphasis on end-to-end
   streaming media encryption, there are still important use cases that
   require the insertion of intermediaries.

   There are a variety of ways to involve intermediaries, and some are
   much more intrusive than others.

   From a streaming media operator’s perspective, a number of
   considerations are in play.  The first question is likely whether the
   streaming media operator intends that intermediaries are explicitly
   addressed from endpoints or whether the streaming media operator is
   willing to allow intermediaries to "intercept" streaming content
   transparently, with no awareness or permission from either endpoint.

   If a streaming media operator does not actively work to avoid
   interception by on-path intermediaries, the effect will be
   indistinguishable from "impersonation attacks", and endpoints cannot
   be assured of any level of confidentiality and cannot trust that the
   content received came from the expected sender.

   Assuming that a streaming media operator does intend to allow
   intermediaries to participate in content streaming and does intend to
   provide some level of privacy for endpoints, there are a number of
   possible tools, either already available or still being specified.
   These include the following:

   Server and Network Assisted DASH [MPEG-DASH-SAND]:
      This specification introduces explicit messaging between DASH
      clients and DASH-aware network elements or among various DASH-
      aware network elements for the purpose of improving the efficiency
      of streaming sessions by providing information about real-time
      operational characteristics of networks, servers, proxies, caches,
      CDNs, as well as a DASH client’s performance and status.

   "Double Encryption Procedures for the Secure Real-Time Transport
   Protocol (SRTP)" [RFC8723]:
      This specification provides a cryptographic transform for the SRTP
      that provides both hop-by-hop and end-to-end security guarantees.

   Secure Frames [SFRAME]:
      [RFC8723] is closely tied to SRTP, and this close association
      impeded widespread deployment, because it could not be used for
      the most common media content delivery mechanisms.  A more recent
      proposal, Secure Frames [SFRAME], also provides both hop-by-hop
      and end-to-end security guarantees but can be used with other
      media transport protocols beyond SRTP.

   A streaming media operator’s choice of whether to involve
   intermediaries requires careful consideration.  As an example, when
   ABR manifests were commonly sent unencrypted, some access network
   operators would modify manifests during peak hours by removing high-
   bitrate renditions to prevent players from choosing those renditions,
   thus reducing the overall bandwidth consumed for delivering these
   media streams and thereby reducing the network load and improving the
   average user experience for their customers.  Now that ubiquitous
   encryption typically prevents this kind of modification, a streaming
   media operator who used intermediaries in the past, and who now
   wishes to maintain the same level of network health and user
   experience, must choose between adding intermediaries who are
   authorized to change the manifests or adding some other form of
   complexity to their service.

   Some resources that might inform other similar considerations are
   further discussed in [RFC8824] (for WebRTC) and [RFC9312] (for HTTP/3
   and QUIC).



7.3.  Considerations for End-to-End Media Encryption

   End-to-end media encryption offers the benefits described in
   Section 7.1 from the streaming media operator to the ultimate media
   consumer.

   End-to-end media encryption has become much more widespread in the
   years since the IETF issued "Pervasive Monitoring Is an Attack"
   [RFC7258] as a Best Current Practice, describing pervasive monitoring
   as a much greater threat than previously appreciated.  After the
   Snowden disclosures, many content providers made the decision to use
   HTTPS protection -- HTTP over TLS -- for most or all content being
   delivered as a routine practice, rather than in exceptional cases for
   content that was considered sensitive.

   However, as noted in [RFC7258], there is no way to prevent pervasive
   monitoring by an attacker while allowing monitoring by a more benign
   entity who only wants to use DPI to examine HTTP requests and
   responses to provide a better user experience.  If a modern encrypted
   transport protocol is used for end-to-end media encryption,
   unauthorized on-path intermediaries are unable to examine transport
   and application protocol behavior.  As described in Section 7.2, only
   an intermediary explicitly authorized by the streaming media operator
   who is to examine packet payloads, rather than intercepting packets
   and examining them without authorization, can continue these
   practices.

   [RFC7258] states that "[t]he IETF will strive to produce
   specifications that mitigate pervasive monitoring attacks", so
   streaming operators should expect the IETF’s direction toward
   preventing unauthorized monitoring of IETF protocols to continue for
   the foreseeable future.

8.  Additional Resources for Streaming Media

   The Media Operations (MOPS) community maintains a list of references
   and resources; for further reading, see [MOPS-RESOURCES].

9.  IANA Considerations

   This document has no IANA actions.

10.  Security Considerations

   Security is an important matter for streaming media applications, and
   the topic of media encryption was explained in Section 7.  This
   document itself introduces no new security issues.

11.  Informative References

   [ABRSurvey]
              Bentaleb, A., Taani, B., Begen, A. C., Timmerer, C., and
              R. Zimmermann, "A survey on bitrate adaptation schemes for
              streaming media over HTTP", IEEE Communications Surveys &
              Tutorials, vol. 21/1, pp. 562-585, Firstquarter 2019,
              DOI 10.1109/COMST.2018.2862938,
              <https://doi.org/10.1109/COMST.2018.2862938>.

   [ADFRAUD]  Sadeghpour, S. and N. Vlajic, "Ads and Fraud: A
              Comprehensive Survey of Fraud in Online Advertising",
              Journal of Cybersecurity and Privacy 1, no. 4, pp.
              804-832, DOI 10.3390/jcp1040039, December 2021,
              <https://doi.org/10.3390/jcp1040039>.

   [BALANCING]
              Berger, D., "Balancing Consumer Privacy with Behavioral
              Targeting", Santa Clara High Technology Law Journal, Vol.
              27, Issue 1, Article 2, 2010,
              <https://digitalcommons.law.scu.edu/chtlj/vol27/iss1/2/>.

   [BAP]      Coalition for Better Ads, "Making Online Ads Better for



              Everyone", <https://www.betterads.org/>.

   [BBR-CONGESTION-CONTROL]
              Cardwell, N., Cheng, Y., Yeganeh, S. H., Swett, I., and V.
              Jacobson, "BBR Congestion Control", Work in Progress,
              Internet-Draft, draft-cardwell-iccrg-bbr-congestion-
              control-02, 7 March 2022,
              <https://datatracker.ietf.org/doc/html/draft-cardwell-
              iccrg-bbr-congestion-control-02>.

   [BEHAVE]   Yan, J., Liu, N., Wang, G., Zhang, W., Jiang, Y., and Z.
              Chen, "How much can behavioral targeting help online
              advertising?", WWW ’09: Proceedings of the 18th
              international conference on World wide web, pp. 261-270,
              DOI 10.1145/1526709.1526745, April 2009,
              <https://dl.acm.org/doi/abs/10.1145/1526709.1526745>.

   [BEHAVE2]  Goldfarb, A. and C. E. Tucker, "Online advertising,
              behavioral targeting, and privacy", Communications of the
              ACM, Volume 54, Issue 5, pp. 25-27,
              DOI 10.1145/1941487.1941498, May 2011,
              <https://dl.acm.org/doi/abs/10.1145/1941487.1941498>.

   [CMAF-CTE] Bentaleb, A., Akcay, M., Lim, M., Begen, A., and R.
              Zimmermann, "Catching the Moment With LoL+ in Twitch-Like
              Low-Latency Live Streaming Platforms", IEEE Trans.
              Multimedia, Vol. 24, pp. 2300-2314,
              DOI 10.1109/TMM.2021.3079288, May 2021,
              <https://doi.org/10.1109/TMM.2021.3079288>.

   [CODASPY17]
              Reed, A. and M. Kranch, "Identifying HTTPS-Protected
              Netflix Videos in Real-Time", ACM CODASPY,
              DOI 10.1145/3029806.3029821, March 2017,
              <https://dl.acm.org/doi/10.1145/3029806.3029821>.

   [CoDel]    Nichols, K. and V. Jacobson, "Controlling queue delay",
              Communications of the ACM, Volume 55, Issue 7, pp. 42-50",
              DOI 10.1145/2209249.2209264, July 2012,
              <https://doi.org/10.1145/2209249.2209264>.

   [COPA18]   Arun, V. and H. Balakrishnan, "Copa: Practical Delay-Based
              Congestion Control for the Internet", USENIX NSDI, April
              2018, <https://web.mit.edu/copa/>.

   [CTA-2066] Consumer Technology Association, "Streaming Quality of
              Experience Events, Properties and Metrics", CTA-2066,
              March 2020, <https://shop.cta.tech/products/streaming-
              quality-of-experience-events-properties-and-metrics>.

   [CTA-5004] Consumer Technology Association, "Web Application Video
              Ecosystem - Common Media Client Data", CTA-5004, September
              2020, <https://shop.cta.tech/products/web-application-
              video-ecosystem-common-media-client-data-cta-5004>.

   [CVNI]     Cisco, "Cisco Visual Networking Index: Forecast and
              Trends, 2017â\200\2232022", 2018.

   [ELASTIC]  De Cicco, L., Caldaralo, V., Palmisano, V., and S.
              Mascolo, "ELASTIC: A Client-Side Controller for Dynamic
              Adaptive Streaming over HTTP (DASH)", Packet Video
              Workshop, DOI 10.1109/PV.2013.6691442, December 2013,
              <https://ieeexplore.ieee.org/document/6691442>.

   [Encodings]
              Apple Developer, "HTTP Live Streaming (HLS) Authoring
              Specification for Apple Devices", June 2020,
              <https://developer.apple.com/documentation/
              http_live_streaming/
              hls_authoring_specification_for_apple_devices>.



   [HLS-RFC8216BIS]
              Pantos, R., Ed., "HTTP Live Streaming 2nd Edition", Work
              in Progress, Internet-Draft, draft-pantos-hls-rfc8216bis-
              11, 11 May 2022, <https://www.ietf.org/archive/id/draft-
              pantos-hls-rfc8216bis-11.txt>.

   [IAB-ADS]  "IAB", <https://www.iab.com/>.

   [ISOBMFF]  ISO, "Information technology - Coding of audio-visual
              objects - Part 12: ISO base media file format", ISO/
              IEC 14496-12:2022, January 2022,
              <https://www.iso.org/standard/83102.html>.

   [Jacobson-Karels]
              Jacobson, V. and M. Karels, "Congestion Avoidance and
              Control", November 1988,
              <https://ee.lbl.gov/papers/congavoid.pdf>.

   [LL-DASH]  DASH-IF, "Low-latency Modes for DASH", March 2020,
              <https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf>.

   [Micro]    Taher, T. M., Misurac, M. J., LoCicero, J. L., and D. R.
              Ucci, "Microwave Oven Signal Interference Mitigation For
              Wi-Fi Communication Systems", 2008 5th IEEE Consumer
              Communications and Networking Conference, pp. 67-68,
              DOI 10.1109/ccnc08.2007.21, January 2008,
              <https://doi.org/10.1109/ccnc08.2007.21>.

   [MMSP20]   Durak, K. et al., "Evaluating the Performance of Apple’s
              Low-Latency HLS", IEEE MMSP,
              DOI 10.1109/MMSP48831.2020.9287117, September 2020,
              <https://ieeexplore.ieee.org/document/9287117>.

   [MMSys11]  Akhshabi, S., Begen, A. C., and C. Dovrolis, "An
              experimental evaluation of rate-adaptation algorithms in
              adaptive streaming over HTTP", ACM MMSys,
              DOI 10.1145/1943552.1943574, February 2011,
              <https://dl.acm.org/doi/10.1145/1943552.1943574>.

   [MOPS-RESOURCES]
              "rfc9317-additional-resources", September 2022,
              <https://wiki.ietf.org/group/mops/rfc9317-additional-
              resources>.

   [MPEG-CMAF]
              ISO, "Information technology - Multimedia application
              format (MPEG-A) - Part 19: Common media application format
              (CMAF) for segmented media", ISO/IEC 23000-19:2020, March
              2020, <https://www.iso.org/standard/79106.html>.

   [MPEG-DASH]
              ISO, "Information technology - Dynamic adaptive streaming
              over HTTP (DASH) - Part 1: Media presentation description
              and segment formats", ISO/IEC 23009-1:2022, August 2022,
              <https://www.iso.org/standard/83314.html>.

   [MPEG-DASH-SAND]
              ISO, "Information technology - Dynamic adaptive streaming
              over HTTP (DASH) - Part 5: Server and network assisted
              DASH (SAND)", ISO/IEC 23009-5:2017, February 2017,
              <https://www.iso.org/standard/69079.html>.

   [MPEG-TS]  ITU-T, "Information technology - Generic coding of moving
              pictures and associated audio information: Systems", ITU-T
              Recommendation H.222.0, June 2021,
              <https://www.itu.int/rec/T-REC-H.222.0>.

   [MPEGI]    Boyce, J. M. et al., "MPEG Immersive Video Coding
              Standard", Proceedings of the IEEE, Vol. 109, Issue 9, pp.
              1521-1536, DOI 10.1109/JPROC.2021.3062590,
              <https://ieeexplore.ieee.org/document/9374648>.



   [OReilly-HPBN]
              Grigorik, I., "High Performance Browser Networking -
              Chapter 2: Building Blocks of TCP", May 2021,
              <https://hpbn.co/building-blocks-of-tcp/>.

   [PCC]      Schwarz, S. et al., "Emerging MPEG Standards for Point
              Cloud Compression", IEEE Journal on Emerging and Selected
              Topics in Circuits and Systems,
              DOI 10.1109/JETCAS.2018.2885981, March 2019,
              <https://ieeexplore.ieee.org/document/8571288>.

   [Port443]  IANA, "Service Name and Transport Protocol Port Number
              Registry", <https://www.iana.org/assignments/service-
              names-port-numbers>.

   [RFC2001]  Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
              Retransmit, and Fast Recovery Algorithms", RFC 2001,
              DOI 10.17487/RFC2001, January 1997,
              <https://www.rfc-editor.org/info/rfc2001>.

   [RFC2736]  Handley, M. and C. Perkins, "Guidelines for Writers of RTP
              Payload Format Specifications", BCP 36, RFC 2736,
              DOI 10.17487/RFC2736, December 1999,
              <https://www.rfc-editor.org/info/rfc2736>.

   [RFC3135]  Border, J., Kojo, M., Griner, J., Montenegro, G., and Z.
              Shelby, "Performance Enhancing Proxies Intended to
              Mitigate Link-Related Degradations", RFC 3135,
              DOI 10.17487/RFC3135, June 2001,
              <https://www.rfc-editor.org/info/rfc3135>.

   [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
              of Explicit Congestion Notification (ECN) to IP",
              RFC 3168, DOI 10.17487/RFC3168, September 2001,
              <https://www.rfc-editor.org/info/rfc3168>.

   [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
              Jacobson, "RTP: A Transport Protocol for Real-Time
              Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
              July 2003, <https://www.rfc-editor.org/info/rfc3550>.

   [RFC3758]  Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
              Conrad, "Stream Control Transmission Protocol (SCTP)
              Partial Reliability Extension", RFC 3758,
              DOI 10.17487/RFC3758, May 2004,
              <https://www.rfc-editor.org/info/rfc3758>.

   [RFC4733]  Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF
              Digits, Telephony Tones, and Telephony Signals", RFC 4733,
              DOI 10.17487/RFC4733, December 2006,
              <https://www.rfc-editor.org/info/rfc4733>.

   [RFC5481]  Morton, A. and B. Claise, "Packet Delay Variation
              Applicability Statement", RFC 5481, DOI 10.17487/RFC5481,
              March 2009, <https://www.rfc-editor.org/info/rfc5481>.

   [RFC5594]  Peterson, J. and A. Cooper, "Report from the IETF Workshop
              on Peer-to-Peer (P2P) Infrastructure, May 28, 2008",
              RFC 5594, DOI 10.17487/RFC5594, July 2009,
              <https://www.rfc-editor.org/info/rfc5594>.

   [RFC5681]  Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
              Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
              <https://www.rfc-editor.org/info/rfc5681>.

   [RFC5762]  Perkins, C., "RTP and the Datagram Congestion Control
              Protocol (DCCP)", RFC 5762, DOI 10.17487/RFC5762, April
              2010, <https://www.rfc-editor.org/info/rfc5762>.

   [RFC6190]  Wenger, S., Wang, Y.-K., Schierl, T., and A.



              Eleftheriadis, "RTP Payload Format for Scalable Video
              Coding", RFC 6190, DOI 10.17487/RFC6190, May 2011,
              <https://www.rfc-editor.org/info/rfc6190>.

   [RFC6582]  Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
              NewReno Modification to TCP’s Fast Recovery Algorithm",
              RFC 6582, DOI 10.17487/RFC6582, April 2012,
              <https://www.rfc-editor.org/info/rfc6582>.

   [RFC6817]  Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
              "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
              DOI 10.17487/RFC6817, December 2012,
              <https://www.rfc-editor.org/info/rfc6817>.

   [RFC6843]  Clark, A., Gross, K., and Q. Wu, "RTP Control Protocol
              (RTCP) Extended Report (XR) Block for Delay Metric
              Reporting", RFC 6843, DOI 10.17487/RFC6843, January 2013,
              <https://www.rfc-editor.org/info/rfc6843>.

   [RFC7258]  Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
              Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
              2014, <https://www.rfc-editor.org/info/rfc7258>.

   [RFC7414]  Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
              Zimmermann, "A Roadmap for Transmission Control Protocol
              (TCP) Specification Documents", RFC 7414,
              DOI 10.17487/RFC7414, February 2015,
              <https://www.rfc-editor.org/info/rfc7414>.

   [RFC7510]  Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black,
              "Encapsulating MPLS in UDP", RFC 7510,
              DOI 10.17487/RFC7510, April 2015,
              <https://www.rfc-editor.org/info/rfc7510>.

   [RFC7656]  Lennox, J., Gross, K., Nandakumar, S., Salgueiro, G., and
              B. Burman, Ed., "A Taxonomy of Semantics and Mechanisms
              for Real-Time Transport Protocol (RTP) Sources", RFC 7656,
              DOI 10.17487/RFC7656, November 2015,
              <https://www.rfc-editor.org/info/rfc7656>.

   [RFC7661]  Fairhurst, G., Sathiaseelan, A., and R. Secchi, "Updating
              TCP to Support Rate-Limited Traffic", RFC 7661,
              DOI 10.17487/RFC7661, October 2015,
              <https://www.rfc-editor.org/info/rfc7661>.

   [RFC8083]  Perkins, C. and V. Singh, "Multimedia Congestion Control:
              Circuit Breakers for Unicast RTP Sessions", RFC 8083,
              DOI 10.17487/RFC8083, March 2017,
              <https://www.rfc-editor.org/info/rfc8083>.

   [RFC8084]  Fairhurst, G., "Network Transport Circuit Breakers",
              BCP 208, RFC 8084, DOI 10.17487/RFC8084, March 2017,
              <https://www.rfc-editor.org/info/rfc8084>.

   [RFC8085]  Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
              Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
              March 2017, <https://www.rfc-editor.org/info/rfc8085>.

   [RFC8095]  Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
              Ed., "Services Provided by IETF Transport Protocols and
              Congestion Control Mechanisms", RFC 8095,
              DOI 10.17487/RFC8095, March 2017,
              <https://www.rfc-editor.org/info/rfc8095>.

   [RFC8216]  Pantos, R., Ed. and W. May, "HTTP Live Streaming",
              RFC 8216, DOI 10.17487/RFC8216, August 2017,
              <https://www.rfc-editor.org/info/rfc8216>.

   [RFC8312]  Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
              R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",
              RFC 8312, DOI 10.17487/RFC8312, February 2018,



              <https://www.rfc-editor.org/info/rfc8312>.

   [RFC8404]  Moriarty, K., Ed. and A. Morton, Ed., "Effects of
              Pervasive Encryption on Operators", RFC 8404,
              DOI 10.17487/RFC8404, July 2018,
              <https://www.rfc-editor.org/info/rfc8404>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

   [RFC8622]  Bless, R., "A Lower-Effort Per-Hop Behavior (LE PHB) for
              Differentiated Services", RFC 8622, DOI 10.17487/RFC8622,
              June 2019, <https://www.rfc-editor.org/info/rfc8622>.

   [RFC8723]  Jennings, C., Jones, P., Barnes, R., and A.B. Roach,
              "Double Encryption Procedures for the Secure Real-Time
              Transport Protocol (SRTP)", RFC 8723,
              DOI 10.17487/RFC8723, April 2020,
              <https://www.rfc-editor.org/info/rfc8723>.

   [RFC8824]  Minaburo, A., Toutain, L., and R. Andreasen, "Static
              Context Header Compression (SCHC) for the Constrained
              Application Protocol (CoAP)", RFC 8824,
              DOI 10.17487/RFC8824, June 2021,
              <https://www.rfc-editor.org/info/rfc8824>.

   [RFC8825]  Alvestrand, H., "Overview: Real-Time Protocols for
              Browser-Based Applications", RFC 8825,
              DOI 10.17487/RFC8825, January 2021,
              <https://www.rfc-editor.org/info/rfc8825>.

   [RFC8834]  Perkins, C., Westerlund, M., and J. Ott, "Media Transport
              and Use of RTP in WebRTC", RFC 8834, DOI 10.17487/RFC8834,
              January 2021, <https://www.rfc-editor.org/info/rfc8834>.

   [RFC8835]  Alvestrand, H., "Transports for WebRTC", RFC 8835,
              DOI 10.17487/RFC8835, January 2021,
              <https://www.rfc-editor.org/info/rfc8835>.

   [RFC8999]  Thomson, M., "Version-Independent Properties of QUIC",
              RFC 8999, DOI 10.17487/RFC8999, May 2021,
              <https://www.rfc-editor.org/info/rfc8999>.

   [RFC9000]  Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
              Multiplexed and Secure Transport", RFC 9000,
              DOI 10.17487/RFC9000, May 2021,
              <https://www.rfc-editor.org/info/rfc9000>.

   [RFC9001]  Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
              QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
              <https://www.rfc-editor.org/info/rfc9001>.

   [RFC9002]  Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
              and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
              May 2021, <https://www.rfc-editor.org/info/rfc9002>.

   [RFC9065]  Fairhurst, G. and C. Perkins, "Considerations around
              Transport Header Confidentiality, Network Operations, and
              the Evolution of Internet Transport Protocols", RFC 9065,
              DOI 10.17487/RFC9065, July 2021,
              <https://www.rfc-editor.org/info/rfc9065>.

   [RFC9075]  Arkko, J., Farrell, S., KÃ¼hlewind, M., and C. Perkins,
              "Report from the IAB COVID-19 Network Impacts Workshop
              2020", RFC 9075, DOI 10.17487/RFC9075, July 2021,
              <https://www.rfc-editor.org/info/rfc9075>.

   [RFC9111]  Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
              Ed., "HTTP Caching", STD 98, RFC 9111,
              DOI 10.17487/RFC9111, June 2022,



              <https://www.rfc-editor.org/info/rfc9111>.

   [RFC9114]  Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114,
              June 2022, <https://www.rfc-editor.org/info/rfc9114>.

   [RFC9221]  Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
              Datagram Extension to QUIC", RFC 9221,
              DOI 10.17487/RFC9221, March 2022,
              <https://www.rfc-editor.org/info/rfc9221>.

   [RFC9260]  Stewart, R., TÃ¼xen, M., and K. Nielsen, "Stream Control
              Transmission Protocol", RFC 9260, DOI 10.17487/RFC9260,
              June 2022, <https://www.rfc-editor.org/info/rfc9260>.

   [RFC9293]  Eddy, W., Ed., "Transmission Control Protocol (TCP)",
              STD 7, RFC 9293, DOI 10.17487/RFC9293, August 2022,
              <https://www.rfc-editor.org/info/rfc9293>.

   [RFC9312]  KÃ¼hlewind, M. and B. Trammell, "Manageability of the QUIC
              Transport Protocol", RFC 9312, DOI 10.17487/RFC9312,
              September 2022, <https://www.rfc-editor.org/info/rfc9312>.

   [SFRAME]   IETF, "Secure Frame (sframe)",
              <https://datatracker.ietf.org/doc/draft-ietf-sframe-enc/>.

   [SRT]      Sharabayko, M., "SRT Protocol Overview", April 2020,
              <https://datatracker.ietf.org/meeting/interim-2020-mops-
              01/materials/slides-interim-2020-mops-01-sessa-srt-
              protocol-overview-00>.

   [Survey360]
              Yaqoob, A., Bi, T., and G. Muntean, "A Survey on Adaptive
              360Â° Video Streaming: Solutions, Challenges and
              Opportunities", IEEE Communications Surveys & Tutorials,
              Volume 22, Issue 4, DOI 10.1109/COMST.2020.3006999, July
              2020, <https://ieeexplore.ieee.org/document/9133103>.

Acknowledgments

   Thanks to Nancy Cam-Winget, Leslie Daigle, Roman Danyliw, Glenn Deen,
   Martin Duke, Linda Dunbar, Lars Eggert, Mike English, Roni Even,
   Aaron Falk, Alexandre Gouaillard, Erik Kline, Renan Krishna, Warren
   Kumari, Will Law, Chris Lemmons, Kiran Makhjani, Sanjay Mishra, Mark
   Nottingham, Dave Oran, Lucas Pardue, Tommy Pauly, Kyle Rose, Zahed
   Sarker, Michael Scharf, John Scudder, Valery Smyslov, Matt Stock,
   Ã\211ric Vyncke, and Robert Wilton for very helpful suggestions, reviews,
   and comments.

Authors’ Addresses

   Jake Holland
   Akamai Technologies, Inc.
   150 Broadway
   Cambridge, MA 02144
   United States of America
   Email: jakeholland.net@gmail.com

   Ali Begen
   Networked Media
   Turkey
   Email: ali.begen@networked.media

   Spencer Dawkins
   Tencent America LLC
   United States of America
   Email: spencerdawkins.ietf@gmail.com


