
ï»¿

Internet Engineering Task Force (IETF) T. Fossati
Request for Comments: 9290 Arm Limited
Category: Standards Track C. Bormann
ISSN: 2070-1721 UniversitÃ¤t Bremen TZI
 October 2022

Concise Problem Details for Constrained Application Protocol (CoAP) APIs

Abstract

 This document defines a concise "problem detail" as a way to carry
 machine-readable details of errors in a Representational State
 Transfer (REST) response to avoid the need to define new error
 response formats for REST APIs for constrained environments. The
 format is inspired by, but intended to be more concise than, the
 problem details for HTTP APIs defined in RFC 7807.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9290.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 1.1. Terminology and Requirements Language
 2. Basic Problem Details
 3. Extending Concise Problem Details
 3.1. Standard Problem Detail Entries
 3.1.1. Standard Problem Detail Entry: Unprocessed CoAP Option
 3.2. Custom Problem Detail Entries
 4. Privacy Considerations
 5. Security Considerations
 6. IANA Considerations
 6.1. Standard Problem Detail Keys Registry
 6.2. Custom Problem Detail Keys Registry
 6.3. Media Type
 6.4. Content-Format
 6.5. CBOR Tag 38
 7. References
 7.1. Normative References
 7.2. Informative References

 Appendix A. Language-Tagged Strings
 A.1. Introduction
 A.2. Detailed Semantics
 A.3. Examples
 Appendix B. Interworking with RFC 7807
 Acknowledgments
 Contributors
 Authors’ Addresses

1. Introduction

 REST response status information such as Constrained Application
 Protocol (CoAP) response codes (Section 5.9 of [RFC7252]) is
 sometimes not sufficient to convey enough information about an error
 to be helpful. This specification defines a simple and extensible
 framework to define Concise Binary Object Representation (CBOR)
 [STD94] data items to suit this purpose. This framework is designed
 to be reused by REST APIs, which can identify distinct "shapes" of
 these data items specific to their needs. Thus, API clients can be
 informed of both the high-level error class (using the response code)
 and the finer-grained details of the problem (using the vocabulary
 defined here). This pattern of communication is illustrated in
 Figure 1.

 .--------. .--------.
 | CoAP | | CoAP |
 | Client | | Server |
 ’----+---’ ’---+----’
 | |
 | Request |
 o----------------->|
 | | (failure)
 |<-----------------o
 | Error Response |
 | with a CBOR |
 | data item giving |
 | Problem Details |
 | |

 Figure 1: Problem Details: Example with CoAP

 The framework presented is largely inspired by the problem details
 for HTTP APIs defined in [RFC7807]. Appendix B discusses
 applications where interworking with [RFC7807] is required.

1.1. Terminology and Requirements Language

 The terminology from [RFC7252], [STD94], and [RFC8610] applies; in
 particular, CBOR diagnostic notation is defined in Section 8 of RFC
 8949 [STD94] and Appendix G of [RFC8610]. Readers are also expected
 to be familiar with the terminology from [RFC7807].

 In this document, the structure of data is specified in Concise Data
 Definition Language (CDDL) [RFC8610] [RFC9165].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Basic Problem Details

 A Concise Problem Details data item is a CBOR data item with the
 following structure (rules named starting with tag38 are defined in
 Appendix A):

 problem-details = non-empty<{
 ? &(title: -1) => oltext
 ? &(detail: -2) => oltext
 ? &(instance: -3) => ˜uri

 ? &(response-code: -4) => uint .size 1
 ? &(base-uri: -5) => ˜uri
 ? &(base-lang: -6) => tag38-ltag
 ? &(base-rtl: -7) => tag38-direction
 standard-problem-detail-entries
 custom-problem-detail-entries
 }>

 standard-problem-detail-entries = (
 * nint => any
)

 custom-problem-detail-entries = (
 * (uint/˜uri) => { + any => any }
)

 non-empty<M> = (M) .and ({ + any => any })

 oltext = text / tag38

 Figure 2: Structure of Concise Problem Details Data Item

 (Examples of elaborated Concise Problem Details data items can be
 found later in the document, e.g., Figure 3.)

 A number of problem detail entries, the Standard Problem Detail
 entries, are predefined (more predefined details can be registered,
 see Section 3.1).

 Note that, unlike [RFC7807], Concise Problem Details data items have
 no explicit "problem type". Instead, the category (or, one could
 say, Gestalt) of the problem can be understood from the shape of the
 problem details offered. We talk of a "problem shape" for short.

 The title (key -1):
 A short, human-readable summary of the problem shape. Beyond the
 shape of the problem, it is not intended to summarize all the
 specific information given with the problem details. For
 instance, the summary might include that an account does not have
 enough money for a transaction to succeed but not the detailed
 information such as the account number, how much money that
 account has, and how much would be needed.

 The detail (key -2):
 A human-readable explanation specific to this occurrence of the
 problem.

 The instance (key -3):
 A URI reference that identifies the specific occurrence of the
 problem. It may or may not yield further information if
 dereferenced.

 The response-code (key -4):
 The CoAP response code (Sections 5.9 and 12.1.2 of [RFC7252])
 generated by the origin server for this occurrence of the problem.

 The base-uri (key -5):
 The base URI (see Section 5.1 of RFC 3986 [STD66]) that should be
 used to resolve relative URI references embedded in this Concise
 Problem Details data item.

 The base-lang (key -6):
 The language-tag (tag38-ltag) that applies to the presentation of
 unadorned text strings (not using tag 38) in this Concise Problem
 Details data item; see Appendix A.

 The base-rtl (key -7):
 The writing-direction (tag38-direction) that applies to the
 presentation of unadorned text strings (not using tag 38) in this
 Concise Problem Details data item; see Appendix A.

 Both "title" and "detail" can use either an unadorned CBOR text
 string (text) or a language-tagged text string (tag38); see
 Appendix A for the definition of the latter. Language tag and
 writing direction information for unadorned text strings is intended
 to be obtained from context; if that context needs to be saved or
 forwarded with a Concise Problem Details data item, "base-lang" and
 "base-rtl" can be used. If no such (explicitly saved or implicit)
 context information is available, unadorned text is interpreted with
 language-tag "en" and writing-direction "false" (ltr).

 The "title" string is advisory and included to give consumers a
 shorthand for the category (problem shape) of the error encountered.

 The "detail" member, if present, ought to focus on helping the client
 correct the problem rather than giving extensive server-side
 debugging information. Consumers SHOULD NOT parse the "detail"
 member for information; extensions (see Section 3) are more suitable
 and less error-prone ways to obtain such information. Note that the
 "instance" URI reference may be relative; this means that it must be
 resolved relative to the representation’s base URI, as per Section 5
 of RFC 3986 [STD66].

 The "response-code" member, if present, is only advisory; it conveys
 the CoAP response code used for the convenience of the consumer.
 Generators MUST use the same response code here as in the actual CoAP
 response; the latter is needed to assure that generic CoAP software
 that does not understand the problem-details format still behaves
 correctly. Consumers can use the "response-code" member to determine
 what the original response code used by the generator was, in cases
 where it has been changed (e.g., by an intermediary or cache), and
 when message bodies persist without CoAP information (e.g., in an
 events log or analytics database). Generic CoAP software will still
 use the CoAP response code. To support the use case of message-body
 persistence without support by the problem-details generator, the
 entity that persists the Concise Problem Details data item can copy
 over the CoAP response code that it received on the CoAP level. Note
 that the "response-code" value is a numeric representation of the
 actual code (see Section 3 of [RFC7252]), so it does not take the
 usual presentation form that resembles an HTTP status code: 4.04 Not
 Found is represented by the number 132.

 The "base-uri" member is usually not present in the initial request-
 response communication as it can be inferred as per Section 5.1.3 of
 RFC 3986 [STD66]. An entity that stores a Concise Problem Details
 data item or otherwise makes it available for consumers without this
 context might add in a "base-uri" member to allow those consumers to
 perform resolution of any relative URI references embedded in the
 data item.

3. Extending Concise Problem Details

 This specification defines a generic problem-details container with
 only a minimal set of attributes to make it usable.

 It is expected that applications will extend the base format by
 defining new attributes.

 These new attributes fall into two categories: generic and
 application specific.

 Generic attributes will be allocated in the standard-problem-detail-
 entries slot according to the registration procedure defined in
 Section 3.1.

 Application-specific attributes will be allocated in the custom-
 problem-detail-entries slot according to the procedure described in
 Section 3.2.

 Consumers of a Concise Problem Details data item MUST ignore any
 Standard Problem Detail entries or Custom Problem Detail entries, or
 keys inside the Custom Problem Detail entries, that they do not

 recognize ("ignore-unknown rule"); this allows problem details to
 evolve. When storing the data item for future use or forwarding it
 to other consumers, it is strongly RECOMMENDED to retain the
 unrecognized entries; exceptions might be when storage or forwarding
 occurs in a different format/protocol that cannot accommodate them or
 when the storage or forwarding function needs to filter out privacy-
 sensitive information and for that needs to assume unrecognized
 entries might be privacy-sensitive.

3.1. Standard Problem Detail Entries

 Beyond the Standard Problem Detail keys defined in Figure 2,
 additional Standard Problem Detail keys can be registered for use in
 the standard-problem-detail-entries slot (see Section 6.1).

 Standard Problem Detail keys are negative integers, so they can never
 conflict with Custom Problem Detail keys defined for a specific
 application domain (which are unsigned integers or URIs.)

 In summary, the keys for Standard Problem Detail entries are in a
 global namespace that is not specific to a particular application
 domain.

3.1.1. Standard Problem Detail Entry: Unprocessed CoAP Option

 Section 2 provides a number of generally applicable Standard Problem
 Detail entries. The present section both registers another useful
 Standard Problem Detail entry and serves as an example of a Standard
 Problem Detail Entry registration, in the registration template
 format that would be ready for registration.

 Key value:
 -8
 Name:
 unprocessed-coap-option
 CDDL type:
 one-or-more<uint>, where
 one-or-more<T> = T / [2* T]
 Brief description:
 Option number(s) of CoAP option(s) that were not understood
 Specification reference:
 Section 3.1.1 of RFC 9290

 The specification of the Standard Problem Detail entry referenced by
 the above registration template follows:

 The Standard Problem Detail entry unprocessed-coap-option provides
 the option number or numbers of any CoAP options present in the
 request that could not be processed by the server.

 This may be a critical option that the server is unaware of, or an
 option the server is aware of but could not process (and chose not
 to, or was not allowed to, ignore it).

 The Concise Problem Details data item including this Standard Problem
 Detail Entry can be used in fulfillment of the "SHOULD" requirement
 in Section 5.4.1 of [RFC7252].

 Several option numbers may be given in a list (in no particular
 order), without any guarantee that the list is a complete
 representation of all the problems in the request (as the server
 might have stopped processing already at one of the problematic
 options). If an option with the given number was repeated, there is
 no indication which of the values caused the error.

 Clients need to expect to see options in the list that they did not
 send in the request; this can happen if the request traversed a proxy
 that added the option but did not act on the problem-details response
 being returned by the origin server.

 For a few special values of unprocessed CoAP options (such as Accept

 or Proxy-Uri), note that there are special response codes (4.06 Not
 Acceptable, 5.05 Proxying Not Supported, respectively) to be sent
 instead of 4.02 Bad Option.

3.2. Custom Problem Detail Entries

 Applications may extend the Concise Problem Details data item with
 additional entries to convey additional, application-specific
 information.

 Such new entries are allocated in the custom-problem-detail-entries
 slot and carry a nested map specific to that application. The map
 key can be either an (absolute!) URI (under control of the entity
 defining this extension) or an unsigned integer. Only the latter
 needs to be registered (Section 6.2).

 Within the nested map, any number of attributes can be given for a
 single extension. The semantics of each custom attribute MUST be
 described in the documentation for the extension; for extensions that
 are registered (i.e., are identified by an unsigned int), that
 documentation goes along with the registration.

 The unsigned integer form allows a more compact representation. In
 exchange, authors are expected to comply with the required
 registration and documentation process. In comparison, the URI form
 is less space efficient but requires no registration. Therefore, it
 is useful for experimenting during the development cycle and for
 applications deployed in environments where producers and consumers
 of Concise Problem Details are more tightly integrated. (Thus, the
 URI form covers the potential need we might otherwise have for a
 "Private Use" range for the unsigned integers.)

 Note that the URI given for the extension is for identification
 purposes only and, even if dereferenceable in principle, it MUST NOT
 be dereferenced in the normal course of handling problem details
 (i.e., outside diagnostic or debugging procedures involving humans).

 Figure 3 shows an example (in CBOR diagnostic notation) of a custom
 extension using a (made-up) URI as the custom-problem-detail-entries
 key.

 {
 / title / -1: "title of the error",
 / detail / -2: "detailed information about the error",
 / instance / -3: "coaps://pd.example/FA317434",
 / response-code / -4: 128, / 4.00 /

 "tag:3gpp.org,2022-03:TS29112": {
 / cause / 0: "machine-readable error cause",
 / invalidParams / 1: [
 [
 / param / "first parameter name",
 / reason / "must be a positive integer"
],
 [
 / param / "second parameter name"
]
],
 / supportedFeatures / 2: "d34db33f"
 }
 }

 Figure 3: Example Extension with URI Key

 Obviously, a Standards Development Organization (SDO) like 3GPP can
 also easily register such a Custom Problem Detail entry to receive a
 more efficient unsigned integer key; Figure 4 shows how the same
 example would look using a (made-up) registered unsigned int as the
 custom-problem-detail-entries key:

 {

 / title / -1: "title of the error",
 / detail / -2: "detailed information about the error",
 / instance / -3: "coaps://pd.example/FA317434",
 / response-code / -4: 128, / 4.00 /

 /4711 is made-up example key that is not actually registered:/
 4711: {
 / cause / 0: "machine-readable error cause",
 / invalidParams / 1: [
 [
 / param / "first parameter name",
 / reason / "must be a positive integer"
],
 [
 / param / "second parameter name"
]
],
 / supportedFeatures / 2: "d34db33f"
 }
 }

 Figure 4: Example Extension with Unsigned Int (Registered) Key

 In summary, the keys for the maps used inside Custom Problem Detail
 entries are defined specifically for use with the identifier of that
 Custom Problem Detail entry, the documentation of which defines these
 internal entries, typically chosen to address a given application
 domain.

 When there is a need to evolve a Custom Problem Detail entry
 definition, the "ignore-unknown rule" discussed in Section 3 provides
 an easy way to include additional information. The assumption is
 that this is done in a backward- and forward-compatible way.
 Sometimes, Custom Problem Detail entries may need to evolve in a way
 where forward compatibility by applying the "ignore-unknown rule"
 would not be appropriate: for example, when adding a "must-
 understand" member, which can only be ignored at the peril of
 misunderstanding the Concise Problem Details data item ("false
 interoperability"). In this case, a new Custom Problem Detail key
 can simply be registered for this case, keeping the old key backward
 and forward compatible.

4. Privacy Considerations

 Problem details may unintentionally disclose information. This can
 lead to both privacy and security problems. See Section 5 for more
 details that apply to both domains; particular attention needs to be
 given to unintentionally disclosing Personally Identifiable
 Information (PII).

5. Security Considerations

 Concise Problem Details can contain URIs that are not intended to be
 dereferenced (Section 3.2, Paragraph 5). One reason is that
 dereferencing these can lead to information disclosure (tracking).
 Information disclosure can also be caused by URIs in problem details
 that _are_ intended for dereferencing, e.g., the "instance" URI.
 Implementations need to consider which component of a client should
 perform the dereferencing and which servers are trusted with serving
 them. In any case, the security considerations of Section 7 of RFC
 3986 [STD66] apply.

 The security and privacy considerations outlined in Section 5 of
 [RFC7807] apply in full. While these are phrased in terms of
 security considerations for new RFC 7807 problem types, they equally
 apply to the problem detail entry definitions used here (Section 3).
 In summary, both when defining new detail entries and when actually
 using them to generate a Concise Problem Details data item, care
 needs to be taken that they do not leak sensitive information.
 Entities storing or forwarding Concise Problem Details data items
 need to consider whether this leads to information being transferred

 out of the context within which access to sensitive information was
 acceptable. See also Section 3, Paragraph 6 (the last paragraph of
 the introduction to that section). Privacy-sensitive information in
 the problem details SHOULD NOT be obscured in ways that might lead to
 misclassification as non-sensitive (e.g., by base64-encoding).

6. IANA Considerations

6.1. Standard Problem Detail Keys Registry

 This specification defines a new subregistry titled "Standard Problem
 Detail Keys" in the "Constrained RESTful Environments (CoRE)
 Parameters" registry [IANA.core-parameters], with "Specification
 Required" as the Registration Procedure (Section 4.6 of [RFC8126]).

 Each entry in the registry must include:

 Key Value:
 a negative integer to be used as the value of the key

 Name:
 a name that could be used in implementations for the key

 CDDL Type:
 type of the data associated with the key in CDDL notation

 Brief Description:
 a brief description

 Reference:
 a reference document

 Change Controller:
 (see Section 2.3 of [RFC8126])

 The designated expert is requested to assign the shortest key values
 (1+0 and 1+1 encoding) to registrations that are likely to enjoy wide
 use and can benefit from short encodings.

 To be immediately useful in CDDL and programming-language contexts, a
 name consists of a lowercase ASCII letter (a-z) and zero or more
 additional ASCII characters that are either lowercase letters,
 digits, or a hyphen-minus, i.e., it matches [a-z][-a-z0-9]*. As with
 the key values, names need to be unique.

 The specification in the reference document needs to provide a
 description of the Standard Problem Detail entry, replicating the
 CDDL description in "CDDL Type", and describing the semantics of the
 presence of this entry and the semantics of the value given with it.

 Initial entries in this subregistry are as follows:

 +=====+============+===============+===========+=========+==========+
 |Key |Name |CDDL Type |Brief |Reference|Change |
 |Value| | |Description| |Controller|
 +=====+============+===============+===========+=========+==========+
-1	title	text / tag38	Short,	RFC 9290	IETF
			human-		
			readable		
			summary of		
			the problem		
			shape		
+-----+------------+---------------+-----------+---------+----------+					
-2	detail	text / tag38	Human-	RFC 9290	IETF
			readable		
			explanation		
			specific to		
			this		
			occurrence		
			of the		
			problem		

 +-----+------------+---------------+-----------+---------+----------+
-3	instance	˜uri	URI	RFC 9290	IETF
			reference		
			identifying		
			specific		
			occurrence		
			of the		
			problem		
+-----+------------+---------------+-----------+---------+----------+					
-4	response-	uint .size 1	CoAP	RFC 9290	IETF
	code		response		
			code		
+-----+------------+---------------+-----------+---------+----------+					
-5	base-uri	˜uri	Base URI	RFC 9290	IETF
+-----+------------+---------------+-----------+---------+----------+					
-6	base-lang	tag38-ltag	Base	RFC 9290	IETF
			language		
			tag (see		
			Appendix A)		
+-----+------------+---------------+-----------+---------+----------+					
-7	base-rtl	tag38-direction	Base	RFC 9290	IETF
			writing		
			direction		
			(see		
			Appendix A)		
+-----+------------+---------------+-----------+---------+----------+					
-8	unprocessed-	one-or-	Option	RFC 9290,	IETF
	coap-option	more<uint>	number(s)	Section	
			of CoAP	3.1.1	
			option(s)		
			that were		
			not		
			understood		
 +-----+------------+---------------+-----------+---------+----------+

 Table 1: Initial Entries in the Standard Problem Detail Keys Registry

6.2. Custom Problem Detail Keys Registry

 This specification defines a new subregistry titled "Custom Problem
 Detail Keys" in the "Constrained RESTful Environments (CoRE)
 Parameters" registry [IANA.core-parameters], with as "Expert Review"
 as the Registration Procedure (Section 4.5 of [RFC8126]).

 The designated expert is instructed to attempt making the
 registration experience as close to First Come First Served as
 reasonably achievable, but checking that the reference document does
 provide a description as set out below. (This requirement is a
 relaxed version of "Specification Required" as defined in Section 4.6
 of [RFC8126].)

 Each entry in the registry must include:

 Key Value:
 an unsigned integer to be used as the value of the key

 Name:
 a name that could be used in implementations for the key

 Brief Description:
 a brief description

 Reference:
 a reference document that provides a description of the map,
 including a CDDL description, that describes all inside keys and
 values

 Change Controller
 (see Section 2.3 of [RFC8126])

 The designated expert is requested to assign the shortest key values

 (1+0 and 1+1 encoding) to registrations that are likely to enjoy wide
 use and can benefit from short encodings.

 To be immediately useful in CDDL and programming-language contexts, a
 name consists of a lowercase ASCII letter (a-z) and zero or more
 additional ASCII characters that are either lowercase letters,
 digits, or a hyphen-minus, i.e., it matches [a-z][-a-z0-9]*. As with
 the key values, names need to be unique.

 Initial entries in this subregistry are as follows:

 +=======+=============+====================+===========+============+
 | Key | Name | Brief | Reference | Change |
 | Value | | Description | | Controller |
 +=======+=============+====================+===========+============+
7807	tunnel-7807	Carry RFC 7807	RFC 9290,	IETF
		problem details	Appendix	
		in a Concise	B	
		Problem Details		
		data item		
 +-------+-------------+--------------------+-----------+------------+

 Table 2: Initial Entries in the Custom Problem Detail Key Registry

6.3. Media Type

 IANA has added the following media type to the "Media Types" registry
 [IANA.media-types].

 +============================+============================+=========+
 |Name |Template |Reference|
 +============================+============================+=========+
concise-problem-details+cbor	application/concise-problem-	RFC 9290,
	details+cbor	Section
		6.3
 +----------------------------+----------------------------+---------+

 Table 3: New Media Type ’application/concise-problem-details+cbor’

 Type name: application

 Subtype name: concise-problem-details+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary (CBOR data item)

 Security considerations: Section 5 of RFC 9290

 Interoperability considerations: none

 Published specification: Section 6.3 of RFC 9290

 Applications that use this media type: Clients and servers in the
 Internet of Things

 Fragment identifier considerations: The syntax and semantics of
 fragment identifiers is as specified for "application/cbor". (At
 publication of RFC 9290, there is no fragment identification
 syntax defined for "application/cbor".)

 Additional information:

 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): N/A
 Macintosh file type code(s): N/A

 Person & email address to contact for further information: CoRE WG

 mailing list (core@ietf.org) or IETF Applications and Real-Time
 Area (art@ietf.org)

 Intended usage: COMMON

 Restrictions on usage: none

 Author/Change controller: IETF

 Provisional registration: no

6.4. Content-Format

 IANA has registered a Content-Format number in the "CoAP
 Content-Formats" subregistry, within the "Constrained RESTful
 Environments (CoRE) Parameters" registry [IANA.core-parameters], as
 follows:

 +==============================+==========+=====+===========+
 | Media Type | Encoding | ID | Reference |
 +==============================+==========+=====+===========+
 | application/concise-problem- | - | 257 | RFC 9290 |
 | details+cbor | | | |
 +------------------------------+----------+-----+-----------+

 Table 4: Content-Format Registration

6.5. CBOR Tag 38

 In the registry "CBOR Tags" [IANA.cbor-tags], IANA has registered
 CBOR tag 38. IANA has updated the reference for CBOR tag 38 to point
 to RFC 9290, Appendix A.

7. References

7.1. Normative References

 [IANA.cbor-tags]
 IANA, "Concise Binary Object Representation (CBOR) Tags",
 <https://www.iana.org/assignments/cbor-tags>.

 [IANA.core-parameters]
 IANA, "Constrained RESTful Environments (CoRE)
 Parameters",
 <https://www.iana.org/assignments/core-parameters>.

 [IANA.media-types]
 IANA, "Provisional Standard Media Type Registry",
 <https://www.iana.org/assignments/provisional-standard-
 media-types>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4647] Phillips, A., Ed. and M. Davis, Ed., "Matching of Language
 Tags", BCP 47, RFC 4647, DOI 10.17487/RFC4647, September
 2006, <https://www.rfc-editor.org/info/rfc4647>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,

 <https://www.rfc-editor.org/info/rfc7807>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC9165] Bormann, C., "Additional Control Operators for the Concise
 Data Definition Language (CDDL)", RFC 9165,
 DOI 10.17487/RFC9165, December 2021,
 <https://www.rfc-editor.org/info/rfc9165>.

 [STD66] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 <https://www.rfc-editor.org/info/std66>

 [STD94] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949, December 2020.

 <https://www.rfc-editor.org/info/std94>

7.2. Informative References

 [HTTPAPI] Nottingham, M., Wilde, E., and S. Dalal, "Problem Details
 for HTTP APIs", Work in Progress, Internet-Draft, draft-
 ietf-httpapi-rfc7807bis-04, 5 September 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-
 rfc7807bis-04>.

 [RDF] Cyganiak, R., Wood, D., and M. Lanthaler, "RDF 1.1
 Concepts and Abstract Syntax", W3C Recommendation, 25
 February 2014,
 <http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC6082] Whistler, K., Adams, G., Duerst, M., Presuhn, R., Ed., and
 J. Klensin, "Deprecating Unicode Language Tag Characters:
 RFC 2482 is Historic", RFC 6082, DOI 10.17487/RFC6082,
 November 2010, <https://www.rfc-editor.org/info/rfc6082>.

 [Unicode-14.0.0]
 The Unicode Consortium, "The Unicode Standard, Version
 14.0.0", Mountain View: The Unicode Consortium,
 ISBN 978-1-936213-29-0, September 2021,
 <https://www.unicode.org/versions/Unicode14.0.0/>.

 [Unicode-14.0.0-bidi]
 The Unicode Consortium, "Unicode Standard Annex #9 ---
 Unicode Bidirectional Algorithm", 27 August 2021,
 <https://www.unicode.org/reports/
 tr9/#Markup_And_Formatting>.

Appendix A. Language-Tagged Strings

 This appendix serves as the archival documentation for CBOR tag 38, a
 tag for serializing language-tagged text strings in CBOR. The text

 of this appendix is adapted from the specification text supplied for
 its initial registration. It has been extended to allow
 supplementing the language tag by a direction indication.

 As with any IANA-registered item, a specification that further
 updates this registration needs to update the reference column of the
 IANA registry (see Section 6.5). Future specifications may update
 this appendix, other parts of this document, or both. (When updating
 this appendix, keep in mind that applications beyond Concise Problem
 Details data items may adopt the tag defined here.) Users of this
 tag are advised to consult the registry to obtain the most recent
 update for this appendix.

A.1. Introduction

 In some cases, it is useful to specify the natural language of a text
 string. This specification defines a tag that does just that. One
 technology that supports language-tagged strings is the Resource
 Description Framework (RDF) [RDF].

A.2. Detailed Semantics

 A language-tagged text string in CBOR has the tag 38 and consists of
 an array with a length of 2 or 3.

 The first element is a well-formed language tag described in BCP 47
 ([RFC5646] and [RFC4647]), represented as a UTF-8 text string (major
 type 3).

 The second element is an arbitrary UTF-8 text string (major type 3).
 Both the language tag and the arbitrary string can optionally be
 annotated with CBOR tags; this is not shown in the CDDL below.

 The optional third element, if present, represents a ternary value
 that indicates a direction, as follows:

 * false: left-to-right direction ("ltr"). The text is expected to
 be displayed with left-to-right base direction if standalone and
 isolated with left-to-right direction (as if enclosed in LRI ...
 PDI or equivalent, see [Unicode-14.0.0-bidi]) in the context of a
 longer string or text.

 * true: right-to-left direction ("rtl"). The text is expected to be
 displayed with right-to-left base direction if standalone and
 isolated with right-to-left direction (as if enclosed in RLI ...
 PDI or equivalent, see [Unicode-14.0.0-bidi]) in the context of a
 longer string or text.

 * null: indicates that no indication is made about the direction
 ("auto"), enabling an internationalization library to make an
 auto-detection decision such as treating the string as if enclosed
 in FSI ... PDI or equivalent, see [Unicode-14.0.0-bidi].

 If the third element is absent, directionality context may be applied
 (e.g., base-directionality information for an entire CBOR message or
 part thereof). If there is no directionality context applied, the
 default interpretation is the same as for null ("auto").

 In CDDL:

 tag38 = #6.38([tag38-ltag, text, ?tag38-direction])
 tag38-ltag = text .regexp "[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*"
 tag38-direction = &(ltr: false, rtl: true, auto: null)

 NOTE: Language tags of any combination of case are allowed. But
 Section 2.1.1 of [RFC5646], part of BCP 47, recommends a case
 combination for language tags that encoders that support tag 38 may
 wish to follow when generating language tags.

 Data items with tag 38 that do not meet the criteria above are not
 valid (see Section 5.3.2 of RFC 8949 [STD94]).

 NOTE: The Unicode Standard [Unicode-14.0.0] includes a set of
 characters designed for tagging text (including language tagging) in
 the range U+E0000 to U+E007F. Although many applications, including
 RDF, do not disallow these characters in text strings, the Unicode
 Consortium has deprecated these characters and recommends annotating
 language via a higher-level protocol instead. See the section
 "Deprecated Tag Characters" in Section 23.9 of [Unicode-14.0.0] as
 well as [RFC6082].

 NOTE: while this document references a version of Unicode that was
 recent at the time of writing, the statements made based on this
 version are expected to remain valid for future versions.

A.3. Examples

 Examples in this section are given in CBOR diagnostic notation first
 and then as a pretty-printed hexadecimal representation of the
 encoded item.

 The following example shows how the English-language string "Hello"
 is represented.

 38(["en", "Hello"])

 D8 26 # tag(38)
 82 # array(2)
 62 # text(2)
 656E # "en"
 65 # text(5)
 48656C6C6F # "Hello"

 The following example shows how the French-language string "Bonjour"
 is represented.

 38(["fr", "Bonjour"])

 D8 26 # tag(38)
 82 # array(2)
 62 # text(2)
 6672 # "fr"
 67 # text(7)
 426F6E6A6F7572 # "Bonjour"

 The following example uses right-to-left (RTL) script, which in the
 context of this specification may be rendered differently by
 different document presentation environments. The descriptive text
 may be more reliable to follow than the necessarily device- and
 application-specific rendering. The example shows how the Hebrew-
 language string

 ×©×\234×\225×\235

 is represented, where in direction of reading, the sequence of
 characters is: "×©" (HEBREW LETTER SHIN, U+05E9), "×\234" (HEBREW LETTER
 LAMED, U+05DC), "×\225" (HEBREW LETTER VAV, U+05D5), "×\235" (HEBREW LETTER
 FINAL MEM, U+05DD). Note the rtl direction expressed by setting the
 third element in the array to "true".

 38(["he", "×©×\234×\225×\235", true])

 D8 26 # tag(38)
 83 # array(3)
 62 # text(2)
 6865 # "he"
 68 # text(8)
 D7A9D79CD795D79D # "×©×\234×\225×\235"
 F5 # primitive(21)

Appendix B. Interworking with RFC 7807

 On certain occasions, it will be necessary to carry ("tunnel")
 [RFC7807] problem details in a Concise Problem Details data item.

 This appendix defines a Custom Problem Detail entry for that purpose.
 This is assigned Custom Problem Detail key 7807 in Section 6.2. Its
 structure is:

 tunnel-7807 = {
 ? &(type: 0) => ˜uri
 ? &(status: 1) => 0..999
 * text => any
 }

 To carry an [RFC7807] problem details JSON object in a Concise
 Problem Details data item, first convert the JSON object to CBOR as
 per Section 6.2 of RFC 8949 [STD94]. Create an empty Concise Problem
 Details data item.

 Move the values for "title", "detail", and "instance", if present,
 from the [RFC7807] problem details to the equivalent Standard Problem
 Detail entries. Create a Custom Problem Detail entry with key 7807.
 Move the values for "type" and "status", if present, to the
 equivalent keys 0 and 1 of the Custom Problem Detail entry. Move all
 remaining key/value pairs (additional members as per Section 3.2 of
 [RFC7807]) in the converted [RFC7807] problem details object to the
 Custom Problem Detail map unchanged.

 The inverse direction, carrying Concise Problem Details in an RFC
 7807 problem details JSON object requires the additional support
 provided by [HTTPAPI], which is planned to create the HTTP Problem
 Types Registry. An HTTP Problem Type can then be registered that
 extracts top-level items from the Concise Problem Details data item
 in a similar way to the conversion described above and that carries
 the rest of the Concise Problem Details data item in an additional
 member via base64url encoding without padding (Section 5 of
 [RFC4648]). Details can be defined in a separate document when the
 work on [HTTPAPI] is completed.

Acknowledgments

 The authors would like to thank Mark Nottingham and Erik Wilde, the
 authors of RFC 7807; Klaus Hartke and Jaime JimÃ©nez, the coauthors of
 an earlier draft version of this specification; Christian AmsÃ¼ss,
 Marco Tiloca, Ari KerÃ¤nen, and Michael Richardson for review and
 comments on this document. Francesca Palombini for her review (and
 support) as responsible AD, and Joel Jaeggli for his OPSDIR review,
 both of which brought significant additional considerations to this
 document.

 For Appendix A, John Cowan and Doug Ewell are also to be
 acknowledged. The content of an earlier draft version of this
 appendix was also discussed in the "apps-discuss@ietf.org" and
 "ltru@ietf.org" mailing lists. More recently, the authors initiated
 a discussion about the handling of writing direction information in
 conjunction with language tags. That led to discussions within the
 W3C Internationalization Core Working Group. The authors would like
 to acknowledge that cross-organization cooperation and particular
 contributions from John Klensin and Addison Phillips and specific
 text proposals by Martin DÃ¼rst.

Contributors

 Peter Occil
 Email: poccil14@gmail.com
 URI: http://peteroupc.github.io/CBOR/

 Peter defined CBOR tag 38, basis of Appendix A.

 Christian AmsÃ¼ss
 Email: christian@amsuess.com

 Christian contributed what became Section 3.1.1.

Authors’ Addresses

 Thomas Fossati
 Arm Limited
 Email: thomas.fossati@arm.com

 Carsten Bormann
 UniversitÃ¤t Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany
 Phone: +49-421-218-63921
 Email: cabo@tzi.org

