
ï»¿

Internet Engineering Task Force (IETF) P. FÃ¤ltstrÃ¶m
Request for Comments: 9285 Netnod
Category: Informational F. Ljunggren
ISSN: 2070-1721 Kirei
 D.W. van Gulik
 Webweaving
 August 2022

 The Base45 Data Encoding

Abstract

 This document describes the Base45 encoding scheme, which is built
 upon the Base64, Base32, and Base16 encoding schemes.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9285.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 2. Conventions Used in This Document
 3. Interpretation of Encoded Data
 4. The Base45 Encoding
 4.1. When to Use and Not Use Base45
 4.2. The Alphabet Used in Base45
 4.3. Encoding Examples
 4.4. Decoding Example
 5. IANA Considerations
 6. Security Considerations
 7. Normative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 A QR code is used to encode text as a graphical image. Depending on
 the characters used in the text, various encoding options for a QR

 code exist, e.g., Numeric, Alphanumeric, and Byte mode. Even in Byte
 mode, a typical QR code reader tries to interpret a byte sequence as
 text encoded in UTF-8 or ISO/IEC 8859-1. Thus, QR codes cannot be
 used to encode arbitrary binary data directly. Such data has to be
 converted into an appropriate text before that text could be encoded
 as a QR code. Compared to already established Base64, Base32, and
 Base16 encoding schemes that are described in [RFC4648], the Base45
 scheme described in this document offers a more compact QR code
 encoding.

 One important difference from those others and Base45 is the key
 table and that the padding with ’=’ is not required.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Interpretation of Encoded Data

 Encoded data is to be interpreted as described in [RFC4648] with the
 exception that a different alphabet is selected.

4. The Base45 Encoding

 QR codes have a limited ability to store binary data. In practice,
 binary data have to be encoded in characters according to one of the
 modes already defined in the standard for QR codes. The easiest mode
 to use in called Alphanumeric mode (see Section 7.3.4 and Table 2 of
 [ISO18004]. Unfortunately Alphanumeric mode uses 45 different
 characters which implies neither Base32 nor Base64 are very effective
 encodings.

 A 45-character subset of US-ASCII is used; the 45 characters usable
 in a QR code in Alphanumeric mode (see Section 7.3.4 and Table 2 of
 [ISO18004]). Base45 encodes 2 bytes in 3 characters, compared to
 Base64, which encodes 3 bytes in 4 characters.

 For encoding, two bytes [a, b] MUST be interpreted as a number n in
 base 256, i.e. as an unsigned integer over 16 bits so that the number
 n = (a * 256) + b.

 This number n is converted to base 45 [c, d, e] so that n = c + (d *
 45) + (e * 45 * 45). Note the order of c, d and e which are chosen
 so that the left-most [c] is the least significant.

 The values c, d, and e are then looked up in Table 1 to produce a
 three character string. The process is reversed when decoding.

 For encoding a single byte [a], it MUST be interpreted as a base 256
 number, i.e. as an unsigned integer over 8 bits. That integer MUST
 be converted to base 45 [c d] so that a = c + (45 * d). The values c
 and d are then looked up in Table 1 to produce a two-character
 string.

 A byte string [a b c d ... x y z] with arbitrary content and
 arbitrary length MUST be encoded as follows: From left to right pairs
 of bytes MUST be encoded as described above. If the number of bytes
 is even, then the encoded form is a string with a length that is
 evenly divisible by 3. If the number of bytes is odd, then the last
 (rightmost) byte MUST be encoded on two characters as described
 above.

 For decoding a Base45 encoded string the inverse operations are
 performed.

4.1. When to Use and Not Use Base45

 If binary data is to be stored in a QR code, the suggested mechanism
 is to use the Alphanumeric mode that uses 11 bits for 2 characters as
 defined in Section 7.3.4 of [ISO18004]. The Extended Channel
 Interpretation (ECI) mode indicator for this encoding is 0010.

 On the other hand if the data is to be sent via some other transport,
 a transport encoding suitable for that transport should be used
 instead of Base45. For example, it is not recommended to first
 encode data in Base45 and then encode the resulting string in Base64
 if the data is to be sent via email. Instead, the Base45 encoding
 should be removed, and the data itself should be encoded in Base64.

4.2. The Alphabet Used in Base45

 The Alphanumeric mode is defined to use 45 characters as specified in
 this alphabet.

 +=====+==========+=====+==========+=====+==========+=====+==========+
 |Value| Encoding |Value| Encoding |Value| Encoding |Value| Encoding |
 +=====+==========+=====+==========+=====+==========+=====+==========+
 | 00| 0 | 12| C | 24| O | 36| Space |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 01| 1 | 13| D | 25| P | 37| $ |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 02| 2 | 14| E | 26| Q | 38| % |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 03| 3 | 15| F | 27| R | 39| * |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 04| 4 | 16| G | 28| S | 40| + |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 05| 5 | 17| H | 29| T | 41| - |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 06| 6 | 18| I | 30| U | 42| . |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 07| 7 | 19| J | 31| V | 43| / |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 08| 8 | 20| K | 32| W | 44| : |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 09| 9 | 21| L | 33| X | | |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 10| A | 22| M | 34| Y | | |
 +-----+----------+-----+----------+-----+----------+-----+----------+
 | 11| B | 23| N | 35| Z | | |
 +-----+----------+-----+----------+-----+----------+-----+----------+

 Table 1: The Base45 Alphabet

4.3. Encoding Examples

 It should be noted that although the examples are all text, Base45 is
 an encoding for binary data where each octet can have any value
 0-255.

 Encoding example 1:

 The string "AB" is the byte sequence [[65 66]]. If we look at all
 16 bits, we get 65 * 256 + 66 = 16706. 16706 equals 11 + (11 *
 45) + (8 * 45 * 45), so the sequence in base 45 is [11 11 8].
 Referring to Table 1, we get the encoded string "BB8".

 +-----------+------------------+
 | AB | Initial string |
 +-----------+------------------+
 | [[65 66]] | Decimal value |
 +-----------+------------------+
 | [16706] | Value in base 16 |
 +-----------+------------------+
 | [11 11 8] | Value in base 45 |
 +-----------+------------------+
 | BB8 | Encoded string |
 +-----------+------------------+

 Table 2: Example 1 in Detail

 Encoding example 2:

 The string "Hello!!" as ASCII is the byte sequence [[72 101] [108
 108] [111 33] [33]]. If we look at this 16 bits at a time, we get
 [18533 27756 28449 33]. Note the 33 for the last byte. When
 looking at the values in base 45, we get [[38 6 9] [36 31 13] [9 2
 14] [33 0]], where the last byte is represented by two values.
 The resulting string "%69 VD92EX0" is created by looking up these
 values in Table 1. It should be noted it includes a space.

 +---------------------------------------+------------------+
 | Hello!! | Initial string |
 +---------------------------------------+------------------+
 | [[72 101] [108 108] [111 33] [33]] | Decimal value |
 +---------------------------------------+------------------+
 | [18533 27756 28449 33] | Value in base 16 |
 +---------------------------------------+------------------+
 | [[38 6 9] [36 31 13] [9 2 14] [33 0]] | Value in base 45 |
 +---------------------------------------+------------------+
 | %69 VD92EX0 | Encoded string |
 +---------------------------------------+------------------+

 Table 3: Example 2 in Detail

 Encoding example 3:

 The string "base-45" as ASCII is the byte sequence [[98 97] [115
 101] [45 52] [53]]. If we look at this two bytes at a time, we
 get [25185 29541 11572 53]. Note the 53 for the last byte. When
 looking at the values in base 45, we get [[30 19 12] [21 26 14] [7
 32 5] [8 1]] where the last byte is represented by two values.
 Referring to Table 1, we get the encoded string "UJCLQE7W581".

 +--+------------------+
 | base-45 | Initial string |
 +--+------------------+
 | [[98 97] [115 101] [45 52] [53]] | Decimal value |
 +--+------------------+
 | [25185 29541 11572 53] | Value in base 16 |
 +--+------------------+
 | [[30 19 12] [21 26 14] [7 32 5] [8 1]] | Value in base 45 |
 +--+------------------+
 | UJCLQE7W581 | Encoded string |
 +--+------------------+

 Table 4: Example 3 in Detail

4.4. Decoding Example

 Decoding example 1:

 The string "QED8WEX0" represents, when looked up in Table 1, the
 values [26 14 13 8 32 14 33 0]. We arrange the numbers in chunks
 of three, except for the last one which can be two numbers, and
 get [[26 14 13] [8 32 14] [33 0]]. In base 45, we get [26981
 29798 33] where the bytes are [[105 101] [116 102] [33]]. If we
 look at the ASCII values, we get the string "ietf!".

 +-------------------------------+------------------------+
 | QED8WEX0 | Initial string |
 +-------------------------------+------------------------+
 | [26 14 13 8 32 14 33 0] | Looked up values |
 +-------------------------------+------------------------+
 | [[26 14 13] [8 32 14] [33 0]] | Groups of three |
 +-------------------------------+------------------------+
 | [26981 29798 33] | Interpreted as base 45 |
 +-------------------------------+------------------------+
 | [[105 101] [116 102] [33]] | Values in base 8 |

 +-------------------------------+------------------------+
 | ietf! | Decoded string |
 +-------------------------------+------------------------+

 Table 5: Example 4 in Detail

5. IANA Considerations

 This document has no IANA actions.

6. Security Considerations

 When implementing encoding and decoding it is important to be very
 careful so that buffer overflow or similar issues do not occur. This
 of course includes the calculations in base 45 and lookup in the
 table of characters (Table 1). A decoder must also be robust
 regarding input, including proper handling of any octet value 0-255,
 including the NUL character (ASCII 0).

 It should be noted that Base64 and some other encodings pad the
 string so that the encoding starts with an aligned number of
 characters while Base45 specifically avoids padding. Because of
 this, special care has to be taken when an odd number of octets is to
 be encoded. Similarly, care must be taken if the number of
 characters to decode are not evenly divisible by 3.

 Base encodings use a specific, reduced alphabet to encode binary
 data. Non-alphabet characters could exist within base-encoded data,
 caused by data corruption or by design. Non-alphabet characters may
 be exploited as a "covert channel", where non-protocol data can be
 sent for nefarious purposes. Non-alphabet characters might also be
 sent in order to exploit implementation errors leading to, for
 example, buffer overflow attacks.

 Implementations MUST reject any input that is not a valid encoding.
 For example, it MUST reject the input (encoded data) if it contains
 characters outside the base alphabet (in Table 1) when interpreting
 base-encoded data.

 Even though a Base45-encoded string contains only characters from the
 alphabet in Table 1, cases like the following have to be considered:
 The string "FGW" represents 65535 (FFFF in base 16), which is a valid
 encoding of 16 bits. A slightly different encoded string of the same
 length, "GGW", would represent 65536 (10000 in base 16), which is
 represented by more than 16 bits. Implementations MUST also reject
 the encoded data if it contains a triplet of characters that, when
 decoded, results in an unsigned integer that is greater than 65535
 (FFFF in base 16).

 It should be noted that the resulting string after encoding to Base45
 might include non-URL-safe characters so if the URL including the
 Base45 encoded data has to be URL-safe, one has to use percent-
 encoding.

7. Normative References

 [ISO18004] ISO/IEC, "Information technology - Automatic
 identification and data capture techniques - QR Code bar
 code symbology specification", ISO/IEC 18004:2015,
 February 2015, <https://www.iso.org/standard/62021.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Acknowledgements

 The authors thank Mark Adler, Anders Ahl, Alan Barrett, Sam Spens
 Clason, Alfred Fiedler, Tomas Harreveld, Erik Hellman, Joakim
 Jardenberg, Michael Joost, Erik Kline, Christian Landgren, Anders
 Lowinger, Mans Nilsson, Jakob Schlyter, Peter Teufl, and Gaby
 Whitehead for the feedback. Also, everyone who has been working with
 Base64 over a long period of years and has proven the implementations
 are stable.

Authors’ Addresses

 Patrik FÃ¤ltstrÃ¶m
 Netnod
 Email: paf@netnod.se

 Fredrik Ljunggren
 Kirei
 Email: fredrik@kirei.se

 Dirk-Willem van Gulik
 Webweaving
 Email: dirkx@webweaving.org

