
ï»¿

Internet Engineering Task Force (IETF) K. Meyer zu Selhausen
Request for Comments: 9207 Hackmanit
Category: Standards Track D. Fett
ISSN: 2070-1721 yes.com
 March 2022

 OAuth 2.0 Authorization Server Issuer Identification

Abstract

 This document specifies a new parameter called iss. This parameter
 is used to explicitly include the issuer identifier of the
 authorization server in the authorization response of an OAuth
 authorization flow. The iss parameter serves as an effective
 countermeasure to "mix-up attacks".

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9207.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 1.1. Conventions and Terminology
 2. Response Parameter iss
 2.1. Example Authorization Response
 2.2. Example Error Response
 2.3. Providing the Issuer Identifier
 2.4. Validating the Issuer Identifier
 3. Authorization Server Metadata
 4. Security Considerations
 5. IANA Considerations
 5.1. OAuth Authorization Server Metadata
 5.2. OAuth Parameters Registration
 6. References
 6.1. Normative References
 6.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 The OAuth 2.0 Authorization Framework [RFC6749] allows clients to
 interact with multiple independent authorization servers under the
 control of separate entities. Some OAuth grant types utilize the
 resource owner’s user agent to deliver the authorization server’s
 response to the OAuth client. One example of this pattern is the
 authorization response of the authorization code grant.

 The authorization response as specified in Section 4.1.2 of [RFC6749]
 does not contain any information about the identity of the
 authorization server that issued the response. Therefore, clients
 receiving a response from the resource owner’s user agent cannot be
 sure who initially issued the response and the secrets contained
 therein. The lack of certainty about the origin of the response
 enables a class of attacks called "mix-up attacks".

 Mix-up attacks are a potential threat to all OAuth clients that
 interact with multiple authorization servers. When at least one of
 these authorization servers is under an attacker’s control, the
 attacker can launch a mix-up attack to acquire authorization codes or
 access tokens issued by any one of the other authorization servers.
 There are multiple ways in which an attacker can gain control over an
 authorization server supported by the client; for instance, an
 authorization server could become compromised, or the attacker could
 register their own authorization server, for example, using dynamic
 client registration [RFC7591].

 OAuth clients that interact with only one authorization server are
 not vulnerable to mix-up attacks. However, when such clients decide
 to add support for a second authorization server in the future, they
 become vulnerable and need to apply countermeasures to mix-up
 attacks.

 Mix-up attacks aim to steal an authorization code or access token by
 tricking the client into sending the authorization code or access
 token to the attacker instead of the honest authorization or resource
 server. This marks a severe threat to the confidentiality and
 integrity of resources whose access is managed with OAuth. A
 detailed description and different variants of the mix-up attack
 class can be found in Section 4.4 of "OAuth 2.0 Security Best Current
 Practice" [OAUTH-SECURITY-TOPICS] as well as in the original research
 first highlighting this attack class, "On the security of modern
 Single Sign-On Protocols: Second-Order Vulnerabilities in OpenID
 Connect" [arXiv.1508.04324] and "A Comprehensive Formal Security
 Analysis of OAuth 2.0" [arXiv.1601.01229].

 This document defines a new parameter in the authorization response
 called iss. The iss parameter allows the authorization server to
 include its identity in the authorization response explicitly. The
 client can compare the value of the iss parameter to the issuer
 identifier of the authorization server (e.g., retrieved from its
 metadata) it believes it is interacting with. The iss parameter
 gives the client certainty about the authorization server’s identity
 and enables it to send credentials such as authorization codes and
 access tokens only to the intended recipients.

 The effectiveness of the iss parameter against mix-up attacks was
 analyzed and formally proven in "A Comprehensive Formal Security
 Analysis of OAuth 2.0" [arXiv.1601.01229].

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the terms "access token", "authorization
 code", "authorization code grant", "authorization server", "resource
 server", "authorization response", "grant type", and "client" defined

 by the OAuth 2.0 Authorization Framework [RFC6749]. The term "issuer
 identifier" is defined by OAuth 2.0 Authorization Server Metadata
 [RFC8414].

2. Response Parameter iss

 In authorization responses to the client, including error responses,
 an authorization server supporting this specification MUST indicate
 its identity by including the iss parameter in the response.

 The iss parameter value is the issuer identifier of the authorization
 server that created the authorization response, as defined in
 [RFC8414]. Its value MUST be a URL that uses the "https" scheme
 without any query or fragment components.

2.1. Example Authorization Response

 The following example shows an authorization response from the
 authorization server whose issuer identifier is
 https://honest.as.example (extra line breaks and indentation are for
 display purposes only):

 HTTP/1.1 302 Found
 Location: https://client.example/cb?
 code=x1848ZT64p4IirMPT0R-X3141MFPTuBX-VFL_cvaplMH58
 &state=ZWVlNDBlYzA1NjdkMDNhYjg3ZjUxZjAyNGQzMTM2NzI
 &iss=https%3A%2F%2Fhonest.as.example

2.2. Example Error Response

 The following example shows an error response from the same
 authorization server (extra line breaks and indentation are for
 display purposes only):

 HTTP/1.1 302 Found
 Location: https://client.example/cb?
 error=access_denied
 &state=N2JjNGJhY2JiZjRhYzA3MGJkMzNmMDE5OWJhZmJhZjA
 &iss=https%3A%2F%2Fhonest.as.example

2.3. Providing the Issuer Identifier

 Authorization servers supporting this specification MUST provide
 their issuer identifier to enable clients to validate the iss
 parameter effectively.

 For authorization servers publishing metadata according to [RFC8414],
 the following rules apply:

 * The issuer identifier included in the server’s metadata value
 issuer MUST be identical to the iss parameter’s value.

 * The server MUST indicate its support for the iss parameter by
 setting the metadata parameter
 authorization_response_iss_parameter_supported, defined in
 Section 3, to true.

 Authorization servers MAY additionally provide the issuer identifier
 to clients by any other mechanism, which is outside of the scope of
 this specification.

2.4. Validating the Issuer Identifier

 Clients that support this specification MUST extract the value of the
 iss parameter from authorization responses they receive if the
 parameter is present. Clients MUST then decode the value from its
 "application/x-www-form-urlencoded" form according to Appendix B of
 [RFC6749] and compare the result to the issuer identifier of the
 authorization server where the authorization request was sent to.
 This comparison MUST use simple string comparison as defined in
 Section 6.2.1 of [RFC3986]. If the value does not match the expected

 issuer identifier, clients MUST reject the authorization response and
 MUST NOT proceed with the authorization grant. For error responses,
 clients MUST NOT assume that the error originates from the intended
 authorization server.

 More precisely, clients that interact with authorization servers
 supporting OAuth metadata [RFC8414] MUST compare the iss parameter
 value to the issuer value in the server’s metadata document. If
 OAuth metadata is not used, clients MUST use deployment-specific ways
 (for example, a static configuration) to decide if the returned iss
 value is the expected value in the current flow (see also Section 4).

 If clients interact with both authorization servers supporting this
 specification and authorization servers not supporting this
 specification, clients MUST retain state about whether each
 authorization server supports the iss parameter. Clients MUST reject
 authorization responses without the iss parameter from authorization
 servers that do support the parameter according to the client’s
 configuration. Clients SHOULD discard authorization responses with
 the iss parameter from authorization servers that do not indicate
 their support for the parameter. However, there might be legitimate
 authorization servers that provide the iss parameter without
 indicating their support in their metadata. Local policy or
 configuration can determine whether to accept such responses, and
 specific guidance is out of scope for this specification.

 In general, clients that support this specification MAY accept
 authorization responses that do not contain the iss parameter or
 reject them and exclusively support authorization servers that
 provide the iss parameter in the authorization response. Local
 policy or configuration can determine when to accept such responses,
 and specific guidance is out of scope for this specification.

 In OpenID Connect [OIDC.Core] flows where an ID Token is returned
 from the authorization endpoint, the value in the iss parameter MUST
 always be identical to the iss claim in the ID Token.

 Section 4.1.2 of [RFC6749] already mandates that clients that do not
 support this specification MUST ignore the unrecognized iss
 parameter.

 | Note: The "JWT Secured Authorization Response Mode for OAuth
 | 2.0 (JARM)" [JARM] defines a mechanism that conveys all
 | authorization response parameters in a JSON Web Token (JWT).
 | This JWT contains an iss claim that provides the same
 | protection if it is validated as described in Section 2.4.
 | Therefore, an additional iss parameter outside the JWT is not
 | necessary when JARM is used.

3. Authorization Server Metadata

 The following parameter for the authorization server metadata
 [RFC8414] is introduced to signal the authorization server’s support
 for this specification:

 authorization_response_iss_parameter_supported: Boolean parameter
 indicating whether the authorization server provides the iss
 parameter in the authorization response as defined in Section 2.
 If omitted, the default value is false.

4. Security Considerations

 Clients MUST validate the iss parameter precisely as described in
 Section 2.4 and MUST NOT allow multiple authorization servers to use
 the same issuer identifier. In particular, when authorization server
 details can be manually configured in the client, the client MUST
 ensure that the accepted iss values are unique for each authorization
 server.

 The iss parameter enables a client to decide if an authorization
 server "expects" to be used in an OAuth flow together with a certain

 token endpoint and potentially other endpoints, like the userinfo
 endpoint [OIDC.Core]. When OAuth metadata is used, the iss parameter
 identifies the issuer and therefore the respective OAuth metadata
 document that points to the other endpoints. When OAuth metadata is
 not used, the client can use, for example, a statically configured
 expected iss value for each configured authorization server.

 The issuer identifier contained in the authorization response is not
 cryptographically protected against tampering. In general,
 mechanisms such as JWTs (as specified in [JARM]) could be used to
 protect the integrity of the authorization response. However, in
 mix-up attacks, the client generally receives the authorization
 response from an uncompromised authorization server. If an attacker
 can tamper with this authorization response before it is received by
 the client, the attacker would also have direct access to the
 authorization code. The attacker does not need to execute a mix-up
 attack to steal the authorization code. Therefore, integrity
 protection for the authorization response is not necessary to defend
 against mix-up attacks.

 There are also alternative countermeasures to mix-up attacks. When
 an authorization response already includes an authorization server’s
 issuer identifier by other means and this identifier is checked as
 laid out in Section 2.4, the use and verification of the iss
 parameter is not necessary and MAY be omitted. For example, this is
 the case when OpenID Connect response types that return an ID Token
 from the authorization endpoint (e.g., response_type=code id_token)
 or [JARM] are used. However, if a client receives an authorization
 response that contains multiple issuer identifiers, the client MUST
 reject the response if these issuer identifiers do not match. The
 details of alternative countermeasures are outside of the scope of
 this specification.

 Mix-up attacks are only relevant to clients that interact with
 multiple authorization servers. However, clients interacting with
 only one authorization server might add support for a second
 authorization server in the future. By supporting multiple
 authorization servers, they become vulnerable to mix-up attacks and
 need to apply countermeasures.

5. IANA Considerations

5.1. OAuth Authorization Server Metadata

 IANA has registered the following value in the "OAuth Authorization
 Server Metadata" registry of [IANA.OAuth.Parameters] established by
 [RFC8414].

 Metadata Name: authorization_response_iss_parameter_supported
 Metadata Description: Boolean value indicating whether the
 authorization server provides the iss parameter in the
 authorization response.
 Change Controller: IETF
 Specification Document(s): Section 3 of RFC 9207

5.2. OAuth Parameters Registration

 IANA has updated the iss entry to appear as follows in the "OAuth
 Parameters" registry of [IANA.OAuth.Parameters] established by
 [RFC6749].

 Parameter name: iss
 Parameter usage location: authorization request, authorization
 response
 Change Controller: IETF
 Specification Document(s): Section 2 of RFC 9207, [RFC9101], and
 Section 4.1.1 of [RFC7519].

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

6.2. Informative References

 [arXiv.1508.04324]
 Mainka, C., Mladenov, V., and J. Schwenk, "On the security
 of modern Single Sign-On Protocols: Second-Order
 Vulnerabilities in OpenID Connect", August 2015,
 <https://arxiv.org/abs/1508.04324>.

 [arXiv.1601.01229]
 Fett, D., Kuesters, R., and G. Schmitz, "A Comprehensive
 Formal Security Analysis of OAuth 2.0",
 DOI 10.1145/2976749.2978385, January 2016,
 <https://arxiv.org/abs/1601.01229>.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <https://www.iana.org/assignments/oauth-parameters>.

 [JARM] Lodderstedt, T. and B. Campbell, "Financial-grade API: JWT
 Secured Authorization Response Mode for OAuth 2.0 (JARM)",
 October 2018,
 <https://openid.net/specs/openid-financial-api-jarm.html>.

 [OAUTH-SECURITY-TOPICS]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", Work in
 Progress, Internet-Draft, draft-ietf-oauth-security-
 topics-19, 16 December 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 security-topics-19>.

 [OIDC.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0 incorporating
 errata set 1", November 2014,
 <https://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC9101] Sakimura, N., Bradley, J., and M. Jones, "The OAuth 2.0

 Authorization Framework: JWT-Secured Authorization Request
 (JAR)", RFC 9101, DOI 10.17487/RFC9101, August 2021,
 <https://www.rfc-editor.org/info/rfc9101>.

Acknowledgements

 We would like to thank Brian Campbell, Roman Danyliw, Vladimir
 Dzhuvinov, Joseph Heenan, Takahiko Kawasaki, Torsten Lodderstedt,
 Christian Mainka, Vladislav Mladenov, Warren Parad, Aaron Parecki,
 and Rifaat Shekh-Yusef for their valuable feedback on this document.

Authors’ Addresses

 Karsten Meyer zu Selhausen
 Hackmanit
 Email: karsten.meyerzuselhausen@hackmanit.de

 Daniel Fett
 yes.com
 Email: mail@danielfett.de

