
ï»¿

Internet Engineering Task Force (IETF) L. Seitz
Request for Comments: 9200 Combitech
Category: Standards Track G. Selander
ISSN: 2070-1721 Ericsson
 E. Wahlstroem

 S. Erdtman
 Spotify AB
 H. Tschofenig
 Arm Ltd.
 August 2022

Authentication and Authorization for Constrained Environments Using the
 OAuth 2.0 Framework (ACE-OAuth)

Abstract

 This specification defines a framework for authentication and
 authorization in Internet of Things (IoT) environments called
 ACE-OAuth. The framework is based on a set of building blocks
 including OAuth 2.0 and the Constrained Application Protocol (CoAP),
 thus transforming a well-known and widely used authorization solution
 into a form suitable for IoT devices. Existing specifications are
 used where possible, but extensions are added and profiles are
 defined to better serve the IoT use cases.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9200.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 3. Overview
 3.1. OAuth 2.0
 3.2. CoAP
 4. Protocol Interactions
 5. Framework
 5.1. Discovering Authorization Servers
 5.2. Unauthorized Resource Request Message

 5.3. AS Request Creation Hints
 5.3.1. The Client-Nonce Parameter
 5.4. Authorization Grants
 5.5. Client Credentials
 5.6. AS Authentication
 5.7. The Authorization Endpoint
 5.8. The Token Endpoint
 5.8.1. Client-to-AS Request
 5.8.2. AS-to-Client Response
 5.8.3. Error Response
 5.8.4. Request and Response Parameters
 5.8.4.1. Grant Type
 5.8.4.2. Token Type
 5.8.4.3. Profile
 5.8.4.4. Client-Nonce
 5.8.5. Mapping Parameters to CBOR
 5.9. The Introspection Endpoint
 5.9.1. Introspection Request
 5.9.2. Introspection Response
 5.9.3. Error Response
 5.9.4. Mapping Introspection Parameters to CBOR
 5.10. The Access Token
 5.10.1. The Authorization Information Endpoint
 5.10.1.1. Verifying an Access Token
 5.10.1.2. Protecting the Authorization Information Endpoint
 5.10.2. Client Requests to the RS
 5.10.3. Token Expiration
 5.10.4. Key Expiration
 6. Security Considerations
 6.1. Protecting Tokens
 6.2. Communication Security
 6.3. Long-Term Credentials
 6.4. Unprotected AS Request Creation Hints
 6.5. Minimal Security Requirements for Communication
 6.6. Token Freshness and Expiration
 6.7. Combining Profiles
 6.8. Unprotected Information
 6.9. Identifying Audiences
 6.10. Denial of Service Against or with Introspection
 7. Privacy Considerations
 8. IANA Considerations
 8.1. ACE Authorization Server Request Creation Hints
 8.2. CoRE Resource Types
 8.3. OAuth Extensions Errors
 8.4. OAuth Error Code CBOR Mappings
 8.5. OAuth Grant Type CBOR Mappings
 8.6. OAuth Access Token Types
 8.7. OAuth Access Token Type CBOR Mappings
 8.7.1. Initial Registry Contents
 8.8. ACE Profiles
 8.9. OAuth Parameters
 8.10. OAuth Parameters CBOR Mappings
 8.11. OAuth Introspection Response Parameters
 8.12. OAuth Token Introspection Response CBOR Mappings
 8.13. JSON Web Token Claims
 8.14. CBOR Web Token Claims
 8.15. Media Type Registration
 8.16. CoAP Content-Formats
 8.17. Expert Review Instructions
 9. References
 9.1. Normative References
 9.2. Informative References
 Appendix A. Design Justification
 Appendix B. Roles and Responsibilities
 Appendix C. Requirements on Profiles
 Appendix D. Assumptions on AS Knowledge about the C and RS
 Appendix E. Differences to OAuth 2.0
 Appendix F. Deployment Examples
 F.1. Local Token Validation
 F.2. Introspection Aided Token Validation
 Acknowledgments

 Authors’ Addresses

1. Introduction

 Authorization is the process for granting approval to an entity to
 access a generic resource [RFC4949]. The authorization task itself
 can best be described as granting access to a requesting client for a
 resource hosted on a device, i.e., the resource server (RS). This
 exchange is mediated by one or multiple authorization servers (ASes).
 Managing authorization for a large number of devices and users can be
 a complex task.

 While prior work on authorization solutions for the Web and for the
 mobile environment also applies to the Internet of Things (IoT)
 environment, many IoT devices are constrained, for example, in terms
 of processing capabilities, available memory, etc. For such devices,
 the Constrained Application Protocol (CoAP) [RFC7252] can alleviate
 some resource concerns when used instead of HTTP to implement the
 communication flows of this specification.

 Appendix A gives an overview of the constraints considered in this
 design, and a more detailed treatment of constraints can be found in
 [RFC7228]. This design aims to accommodate different IoT deployments
 as well as a continuous range of device and network capabilities.
 Taking energy consumption as an example, at one end, there are
 energy-harvesting or battery-powered devices that have a tight power
 budget; on the other end, there are mains-powered devices; and all
 levels exist in between.

 Hence, IoT devices may be very different in terms of available
 processing and message exchange capabilities, and there is a need to
 support many different authorization use cases [RFC7744].

 This specification describes a framework for Authentication and
 Authorization for Constrained Environments (ACE) built on reuse of
 OAuth 2.0 [RFC6749], thereby extending authorization to Internet of
 Things devices. This specification contains the necessary building
 blocks for adjusting OAuth 2.0 to IoT environments.

 Profiles of this framework are available in separate specifications,
 such as [RFC9202] or [RFC9203]. Such profiles may specify the use of
 the framework for a specific security protocol and the underlying
 transports for use in a specific deployment environment to improve
 interoperability. Implementations may claim conformance with a
 specific profile, whereby implementations utilizing the same profile
 interoperate, while implementations of different profiles are not
 expected to be interoperable. More powerful devices, such as mobile
 phones and tablets, may implement multiple profiles and will
 therefore be able to interact with a wider range of constrained
 devices. Requirements on profiles are described at contextually
 appropriate places throughout this specification and also summarized
 in Appendix C.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Certain security-related terms, such as "authentication",
 "authorization", "confidentiality", "(data) integrity", "message
 authentication code", and "verify", are taken from [RFC4949].

 Since exchanges in this specification are described as RESTful
 protocol interactions, HTTP [RFC9110] offers useful terminology.
 (Note that "RESTful" refers to the Representational State Transfer
 (REST) architecture.)

 Terminology for entities in the architecture is defined in OAuth 2.0

 [RFC6749], such as client (C), resource server (RS), and
 authorization server (AS).

 Note that the term "endpoint" is used here following its OAuth
 definition, which is to denote resources, such as token and
 introspection at the AS and authz-info at the RS (see Section 5.10.1
 for a definition of the authz-info endpoint). The CoAP definition,
 which is "[a]n entity participating in the CoAP protocol" [RFC7252],
 is not used in this specification.

 The specification in this document is called the "framework" or "ACE
 framework". When referring to "profiles of this framework", it
 refers to additional specifications that define the use of this
 specification with concrete transport and communication security
 protocols (e.g., CoAP over DTLS).

 The term "Access Information" is used for parameters, other than the
 access token, provided to the client by the AS to enable it to access
 the RS (e.g., public key of the RS or profile supported by RS).

 The term "authorization information" is used to denote all
 information, including the claims of relevant access tokens, that an
 RS uses to determine whether an access request should be granted.

 Throughout this document, examples for CBOR data items are expressed
 in CBOR extended diagnostic notation as defined in Section 8 of
 [RFC8949] and Appendix G of [RFC8610] ("diagnostic notation"), unless
 noted otherwise. We often use diagnostic notation comments to
 provide a textual representation of the numeric parameter names and
 values.

3. Overview

 This specification defines the ACE framework for authorization in the
 Internet of Things environment. It consists of a set of building
 blocks.

 The basic block is the OAuth 2.0 [RFC6749] framework, which enjoys
 widespread deployment. Many IoT devices can support OAuth 2.0
 without any additional extensions, but for certain constrained
 settings, additional profiling is needed.

 Another building block is the lightweight web transfer protocol CoAP
 [RFC7252], for those communication environments where HTTP is not
 appropriate. CoAP typically runs on top of UDP, which further
 reduces overhead and message exchanges. While this specification
 defines extensions for the use of OAuth over CoAP, other underlying
 protocols are not prohibited from being supported in the future, such
 as HTTP/2 [RFC9113], Message Queuing Telemetry Transport (MQTT)
 [MQTT5.0], Bluetooth Low Energy (BLE) [BLE], and QUIC [RFC9000].
 Note that this document specifies protocol exchanges in terms of
 RESTful verbs, such as GET and POST. Future profiles using protocols
 that do not support these verbs MUST specify how the corresponding
 protocol messages are transmitted instead.

 A third building block is the Concise Binary Object Representation
 (CBOR) [RFC8949], for encodings where JSON [RFC8259] is not
 sufficiently compact. CBOR is a binary encoding designed for small
 code and message size. Self-contained tokens and protocol message
 payloads are encoded in CBOR when CoAP is used. When CoAP is not
 used, the use of CBOR remains RECOMMENDED.

 A fourth building block is CBOR Object Signing and Encryption (COSE)
 [RFC8152], which enables object-level layer security as an
 alternative or complement to transport layer security (DTLS [RFC6347]
 [RFC9147] or TLS [RFC8446]). COSE is used to secure self-contained
 tokens, such as proof-of-possession (PoP) tokens, which are an
 extension to the OAuth bearer tokens. The default token format is
 defined in CBOR Web Token (CWT) [RFC8392]. Application-layer
 security for CoAP using COSE can be provided with Object Security for
 Constrained RESTful Environments (OSCORE) [RFC8613].

 With the building blocks listed above, solutions satisfying various
 IoT device and network constraints are possible. A list of
 constraints is described in detail in [RFC7228], and a description of
 how the building blocks mentioned above relate to the various
 constraints can be found in Appendix A.

 Luckily, not every IoT device suffers from all constraints.
 Nevertheless, the ACE framework takes all these aspects into account
 and allows several different deployment variants to coexist, rather
 than mandating a one-size-fits-all solution. It is important to
 cover the wide range of possible interworking use cases and the
 different requirements from a security point of view. Once IoT
 deployments mature, popular deployment variants will be documented in
 the form of ACE profiles.

3.1. OAuth 2.0

 The OAuth 2.0 authorization framework enables a client to obtain
 scoped access to a resource with the permission of a resource owner.
 Authorization information, or references to it, is passed between the
 nodes using access tokens. These access tokens are issued to clients
 by an authorization server with the approval of the resource owner.
 The client uses the access token to access the protected resources
 hosted by the resource server.

 A number of OAuth 2.0 terms are used within this specification:

 Access Tokens:
 Access tokens are credentials needed to access protected
 resources. An access token is a data structure representing
 authorization permissions issued by the AS to the client. Access
 tokens are generated by the AS and consumed by the RS. The access
 token content is opaque to the client.

 Access tokens can have different formats and various methods of
 utilization (e.g., cryptographic properties) based on the security
 requirements of the given deployment.

 Introspection:
 Introspection is a method for a resource server, or potentially a
 client, to query the authorization server for the active state and
 content of a received access token. This is particularly useful
 in those cases where the authorization decisions are very dynamic
 and/or where the received access token itself is an opaque
 reference, rather than a self-contained token. More information
 about introspection in OAuth 2.0 can be found in [RFC7662].

 Refresh Tokens:
 Refresh tokens are credentials used to obtain access tokens.
 Refresh tokens are issued to the client by the authorization
 server and are used to obtain a new access token when the current
 access token expires or to obtain additional access tokens with
 identical or narrower scope (such access tokens may have a shorter
 lifetime and fewer permissions than authorized by the resource
 owner). Issuing a refresh token is optional at the discretion of
 the authorization server. If the authorization server issues a
 refresh token, it is included when issuing an access token (i.e.,
 step (B) in Figure 1).

 A refresh token in OAuth 2.0 is a string representing the
 authorization granted to the client by the resource owner. The
 string is usually opaque to the client. The token denotes an
 identifier used to retrieve the authorization information. Unlike
 access tokens, refresh tokens are intended for use only with
 authorization servers and are never sent to resource servers. In
 this framework, refresh tokens are encoded in binary instead of
 strings, if used.

 Proof-of-Possession Tokens:
 A token may be bound to a cryptographic key, which is then used to

 bind the token to a request authorized by the token. Such tokens
 are called proof-of-possession tokens (or PoP tokens).

 The proof-of-possession security concept used here assumes that
 the AS acts as a trusted third party that binds keys to tokens.
 In the case of access tokens, these so-called PoP keys are then
 used by the client to demonstrate the possession of the secret to
 the RS when accessing the resource. The RS, when receiving an
 access token, needs to verify that the key used by the client
 matches the one bound to the access token. When this
 specification uses the term "access token", it is assumed to be a
 PoP access token unless specifically stated otherwise.

 The key bound to the token (the PoP key) may use either symmetric
 or asymmetric cryptography. The appropriate choice of the kind of
 cryptography depends on the constraints of the IoT devices as well
 as on the security requirements of the use case.

 Symmetric PoP key:
 The AS generates a random, symmetric PoP key. The key is
 either stored to be returned on introspection calls or included
 in the token. Either the whole token or only the key MUST be
 encrypted in the latter case. The PoP key is also returned to
 client together with the token, protected by the secure
 channel.

 Asymmetric PoP key:
 An asymmetric key pair is generated by the client and the
 public key is sent to the AS (if it does not already have
 knowledge of the client’s public key). Information about the
 public key, which is the PoP key in this case, is either stored
 to be returned on introspection calls or included inside the
 token and sent back to the client. The resource server
 consuming the token can identify the public key from the
 information in the token, which allows the client to use the
 corresponding private key for the proof of possession.

 The token is either a simple reference or a structured information
 object (e.g., CWT [RFC8392]) protected by a cryptographic wrapper
 (e.g., COSE [RFC8152]). The choice of PoP key does not
 necessarily imply a specific credential type for the integrity
 protection of the token.

 Scopes and Permissions:
 In OAuth 2.0, the client specifies the type of permissions it is
 seeking to obtain (via the scope parameter) in the access token
 request. In turn, the AS may use the scope response parameter to
 inform the client of the scope of the access token issued. As the
 client could be a constrained device as well, this specification
 defines the use of CBOR encoding (see Section 5) for such requests
 and responses.

 The values of the scope parameter in OAuth 2.0 are expressed as a
 list of space-delimited, case-sensitive strings with a semantic
 that is well known to the AS and the RS. More details about the
 concept of scopes are found under Section 3.3 of [RFC6749].

 Claims:
 Information carried in the access token or returned from
 introspection, called claims, is in the form of name-value pairs.
 An access token may, for example, include a claim identifying the
 AS that issued the token (via the iss claim) and what audience the
 access token is intended for (via the aud claim). The audience of
 an access token can be a specific resource, one resource, or many
 resource servers. The resource owner policies influence what
 claims are put into the access token by the authorization server.

 While the structure and encoding of the access token varies
 throughout deployments, a standardized format has been defined
 with the JSON Web Token (JWT) [RFC7519], where claims are encoded
 as a JSON object. In [RFC8392], the CBOR Web Token (CWT) has been

 defined as an equivalent format using CBOR encoding.

 Token and Introspection Endpoints:
 The AS hosts the token endpoint that allows a client to request
 access tokens. The client makes a POST request to the token
 endpoint on the AS and receives the access token in the response
 (if the request was successful).

 In some deployments, a token introspection endpoint is provided by
 the AS, which can be used by the RS and potentially the client, if
 they need to request additional information regarding a received
 access token. The requesting entity makes a POST request to the
 introspection endpoint on the AS and receives information about
 the access token in the response. (See "Introspection" above.)

3.2. CoAP

 CoAP is an application-layer protocol similar to HTTP but
 specifically designed for constrained environments. CoAP typically
 uses datagram-oriented transport, such as UDP, where reordering and
 loss of packets can occur. A security solution needs to take the
 latter aspects into account.

 While HTTP uses headers and query strings to convey additional
 information about a request, CoAP encodes such information into
 header parameters called ’options’.

 CoAP supports application-layer fragmentation of the CoAP payloads
 through block-wise transfers [RFC7959]. However, block-wise transfer
 does not increase the size limits of CoAP options; therefore, data
 encoded in options has to be kept small.

 Transport layer security for CoAP can be provided by DTLS or TLS
 [RFC6347] [RFC8446] [RFC9147]. CoAP defines a number of proxy
 operations that require transport layer security to be terminated at
 the proxy. One approach for protecting CoAP communication end-to-end
 through proxies, and also to support security for CoAP over a
 different transport in a uniform way, is to provide security at the
 application layer using an object-based security mechanism, such as
 COSE [RFC8152].

 One application of COSE is OSCORE [RFC8613], which provides end-to-
 end confidentiality, integrity and replay protection, and a secure
 binding between CoAP request and response messages. In OSCORE, the
 CoAP messages are wrapped in COSE objects and sent using CoAP.

 In this framework, the use of CoAP as replacement for HTTP is
 RECOMMENDED for use in constrained environments. For communication
 security, this framework does not make an explicit protocol
 recommendation, since the choice depends on the requirements of the
 specific application. DTLS [RFC6347] [RFC9147] and OSCORE [RFC8613]
 are mentioned as examples; other protocols fulfilling the
 requirements from Section 6.5 are also applicable.

4. Protocol Interactions

 The ACE framework is based on the OAuth 2.0 protocol interactions
 using the token endpoint and optionally the introspection endpoint.
 A client obtains an access token, and optionally a refresh token,
 from an AS using the token endpoint and subsequently presents the
 access token to an RS to gain access to a protected resource. In
 most deployments, the RS can process the access token locally;
 however, in some cases, the RS may present it to the AS via the
 introspection endpoint to get fresh information. These interactions
 are shown in Figure 1. An overview of various OAuth concepts is
 provided in Section 3.1.

 +--------+ +---------------+
	---(A)-- Token Request ------->	
		Authorization
	<--(B)-- Access Token ---------	Server

 | | + Access Information | |
 | | + Refresh Token (optional) +---------------+
 | | ^ |
 | | Introspection Request (D)| |
 | Client | Response | |(E)
 | | (optional exchange) | |
 | | | v
 | | +--------------+
	---(C)-- Token + Request ----->	
		Resource
	<--(F)-- Protected Resource ---	Server
 +--------+ +--------------+

 Figure 1: Basic Protocol Flow

 Requesting an Access Token (A):
 The client makes an access token request to the token endpoint at
 the AS. This framework assumes the use of PoP access tokens (see
 Section 3.1 for a short description) wherein the AS binds a key to
 an access token. The client may include permissions it seeks to
 obtain and information about the credentials it wants to use for
 proof of possession (e.g., symmetric/asymmetric cryptography or a
 reference to a specific key) of the access token.

 Access Token Response (B):
 If the request from the client has been successfully verified,
 authenticated, and authorized, the AS returns an access token and
 optionally a refresh token. Note that only certain grant types
 support refresh tokens. The AS can also return additional
 parameters, referred to as "Access Information". In addition to
 the response parameters defined by OAuth 2.0 and the PoP access
 token extension, this framework defines parameters that can be
 used to inform the client about capabilities of the RS, e.g., the
 profile the RS supports. More information about these parameters
 can be found in Section 5.8.4.

 Resource Request (C):
 The client interacts with the RS to request access to the
 protected resource and provides the access token. The protocol to
 use between the client and the RS is not restricted to CoAP.
 HTTP, HTTP/2 [RFC9113], QUIC [RFC9000], MQTT [MQTT5.0], Bluetooth
 Low Energy [BLE], etc., are also viable candidates.

 Depending on the device limitations and the selected protocol,
 this exchange may be split up into two parts:

 (1) the client sends the access token containing, or referencing,
 the authorization information to the RS that will be used for
 subsequent resource requests by the client, and

 (2) the client makes the resource access request using the
 communication security protocol and other Access Information
 obtained from the AS.

 The client and the RS mutually authenticate using the security
 protocol specified in the profile (see step (B)) and the keys
 obtained in the access token or the Access Information. The RS
 verifies that the token is integrity protected and originated by
 the AS. It then compares the claims contained in the access token
 with the resource request. If the RS is online, validation can be
 handed over to the AS using token introspection (see messages (D)
 and (E)) over HTTP or CoAP.

 Token Introspection Request (D):
 A resource server may be configured to introspect the access token
 by including it in a request to the introspection endpoint at that
 AS. Token introspection over CoAP is defined in Section 5.9 and
 for HTTP in [RFC7662].

 Note that token introspection is an optional step and can be

 omitted if the token is self-contained and the resource server is
 prepared to perform the token validation on its own.

 Token Introspection Response (E):
 The AS validates the token and returns the most recent parameters,
 such as scope, audience, validity, etc., associated with it back
 to the RS. The RS then uses the received parameters to process
 the request to either accept or to deny it.

 Protected Resource (F):
 If the request from the client is authorized, the RS fulfills the
 request and returns a response with the appropriate response code.
 The RS uses the dynamically established keys to protect the
 response according to the communication security protocol used.

 The OAuth 2.0 framework defines a number of "protocol flows" via
 grant types, which have been extended further with extensions to
 OAuth 2.0 (such as [RFC7521] and [RFC8628]). What grant type works
 best depends on the usage scenario; [RFC7744] describes many
 different IoT use cases, but there are two grant types that cover a
 majority of these scenarios, namely the authorization code grant
 (described in Section 4.1 of [RFC6749]) and the client credentials
 grant (described in Section 4.4 of [RFC6749]). The authorization
 code grant is a good fit for use with apps running on smartphones and
 tablets that request access to IoT devices, a common scenario in the
 smart home environment, where users need to go through an
 authentication and authorization phase (at least during the initial
 setup phase). The native apps guidelines described in [RFC8252] are
 applicable to this use case. The client credentials grant is a good
 fit for use with IoT devices where the OAuth client itself is
 constrained. In such a case, the resource owner has prearranged
 access rights for the client with the authorization server, which is
 often accomplished using a commissioning tool.

 The consent of the resource owner, for giving a client access to a
 protected resource, can be provided dynamically as in the classical
 OAuth flows, or it could be preconfigured by the resource owner as
 authorization policies at the AS, which the AS evaluates when a token
 request arrives. The resource owner and the requesting party (i.e.,
 client owner) are not shown in Figure 1.

 This framework supports a wide variety of communication security
 mechanisms between the ACE entities, such as the client, AS, and RS.
 It is assumed that the client has been registered (also called
 enrolled or onboarded) to an AS using a mechanism defined outside the
 scope of this document. In practice, various techniques for
 onboarding have been used, such as factory-based provisioning or the
 use of commissioning tools. Regardless of the onboarding technique,
 this provisioning procedure implies that the client and the AS
 exchange credentials and configuration parameters. These credentials
 are used to mutually authenticate each other and to protect messages
 exchanged between the client and the AS.

 It is also assumed that the RS has been registered with the AS,
 potentially in a similar way as the client has been registered with
 the AS. Established keying material between the AS and the RS allows
 the AS to apply cryptographic protection to the access token to
 ensure that its content cannot be modified and, if needed, that the
 content is confidentiality protected. Confidentiality protection of
 the access token content would be provided on top of confidentiality
 protection via a communication security protocol.

 The keying material necessary for establishing communication security
 between the C and RS is dynamically established as part of the
 protocol described in this document.

 At the start of the protocol, there is an optional discovery step
 where the client discovers the resource server and the resources this
 server hosts. In this step, the client might also determine what
 permissions are needed to access the protected resource. A generic
 procedure is described in Section 5.1; profiles MAY define other

 procedures for discovery.

 In Bluetooth Low Energy, for example, advertisements are broadcast by
 a peripheral, including information about the primary services. In
 CoAP, as a second example, a client can make a request to "/.well-
 known/core" to obtain information about available resources, which
 are returned in a standardized format, as described in [RFC6690].

5. Framework

 The following sections detail the profiling and extensions of OAuth
 2.0 for constrained environments, which constitutes the ACE
 framework.

 Credential Provisioning
 In constrained environments, it cannot be assumed that the client
 and the RS are part of a common key infrastructure. Therefore,
 the AS provisions credentials and associated information to allow
 mutual authentication between the client and the RS. The
 resulting security association between the client and the RS may
 then also be used to bind these credentials to the access tokens
 the client uses.

 Proof of Possession
 The ACE framework, by default, implements proof of possession for
 access tokens, i.e., that the token holder can prove being a
 holder of the key bound to the token. The binding is provided by
 the cnf (confirmation) claim [RFC8747], indicating what key is
 used for proof of possession. If a client needs to submit a new
 access token, e.g., to obtain additional access rights, they can
 request that the AS binds this token to the same key as the
 previous one.

 ACE Profiles
 The client or RS may be limited in the encodings or protocols it
 supports. To support a variety of different deployment settings,
 specific interactions between the client and RS are defined in an
 ACE profile. In the ACE framework, the AS is expected to manage
 the matching of compatible profile choices between a client and an
 RS. The AS informs the client of the selected profile using the
 ace_profile parameter in the token response.

 OAuth 2.0 requires the use of TLS to protect the communication
 between the AS and client when requesting an access token between the
 client and RS when accessing a resource and between the AS and RS if
 introspection is used. In constrained settings, TLS is not always
 feasible or desirable. Nevertheless, it is REQUIRED that the
 communications named above are encrypted, integrity protected, and
 protected against message replay. It is also REQUIRED that the
 communicating endpoints perform mutual authentication. Furthermore,
 it MUST be assured that responses are bound to the requests in the
 sense that the receiver of a response can be certain that the
 response actually belongs to a certain request. Note that setting up
 such a secure communication may require some unprotected messages to
 be exchanged first (e.g., sending the token from the client to the
 RS).

 Profiles MUST specify a communication security protocol between the
 client and RS that provides the features required above. Profiles
 MUST specify a communication security protocol RECOMMENDED to be used
 between the client and AS that provides the features required above.
 Profiles MUST specify, for introspection, a communication security
 protocol RECOMMENDED to be used between the RS and AS that provides
 the features required above. These recommendations enable
 interoperability between different implementations without the need
 to define a new profile if the communication between the C and AS, or
 between the RS and AS, is protected with a different security
 protocol complying with the security requirements above.

 In OAuth 2.0, the communication with the Token and the Introspection
 endpoints at the AS is assumed to be via HTTP and may use Uri-query

 parameters. When profiles of this framework use CoAP instead, it is
 REQUIRED to use of the following alternative instead of Uri-query
 parameters: The sender (client or RS) encodes the parameters of its
 request as a CBOR map and submits that map as the payload of the POST
 request. The CBOR encoding for a number of OAuth 2.0 parameters is
 specified in this document; if a profile needs to use other OAuth 2.0
 parameters with CoAP, it MUST specify their CBOR encoding.

 Profiles that use CBOR encoding of protocol message parameters at the
 outermost encoding layer MUST use the Content-Format "application/
 ace+cbor". If CoAP is used for communication, the Content-Format
 MUST be abbreviated with the ID: 19 (see Section 8.16).

 The OAuth 2.0 AS uses a JSON structure in the payload of its
 responses both to the client and RS. If CoAP is used, it is REQUIRED
 to use CBOR [RFC8949] instead of JSON. Depending on the profile, the
 CBOR payload MAY be enclosed in a non-CBOR cryptographic wrapper.

5.1. Discovering Authorization Servers

 The C must discover the AS in charge of the RS to determine where to
 request the access token. To do so, the C 1) must find out the AS
 URI to which the token request message must be sent and 2) MUST
 validate that the AS with this URI is authorized to provide access
 tokens for this RS.

 In order to determine the AS URI, the C MAY send an initial
 Unauthorized Resource Request message to the RS. The RS then denies
 the request and sends the address of its AS back to the C (see
 Section 5.2). How the C validates the AS authorization is not in
 scope for this document. The C may, for example, ask its owner if
 this AS is authorized for this RS. The C may also use a mechanism
 that addresses both problems at once (e.g., by querying a dedicated
 secure service provided by the client owner) .

5.2. Unauthorized Resource Request Message

 An Unauthorized Resource Request message is a request for any
 resource hosted by the RS for which the client does not have
 authorization granted. The RSs MUST treat any request for a
 protected resource as an Unauthorized Resource Request message when
 any of the following hold:

 * The request has been received on an unsecured channel.

 * The RS has no valid access token for the sender of the request
 regarding the requested action on that resource.

 * The RS has a valid access token for the sender of the request, but
 that token does not authorize the requested action on the
 requested resource.

 Note: These conditions ensure that the RS can handle requests
 autonomously once access was granted and a secure channel has been
 established between the C and RS. The authz-info endpoint, as part
 of the process for authorizing to protected resources, is not itself
 a protected resource and MUST NOT be protected as specified above
 (cf. Section 5.10.1).

 Unauthorized Resource Request messages MUST be denied with an
 "unauthorized_client" error response. In this response, the resource
 server SHOULD provide proper AS Request Creation Hints to enable the
 client to request an access token from the RS’s AS, as described in
 Section 5.3.

 The handling of all client requests (including unauthorized ones) by
 the RS is described in Section 5.10.2.

5.3. AS Request Creation Hints

 The AS Request Creation Hints are sent by an RS as a response to an

 Unauthorized Resource Request message (see Section 5.2) to help the
 sender of the Unauthorized Resource Request message acquire a valid
 access token. The AS Request Creation Hints are a CBOR or JSON map,
 with an OPTIONAL element AS specifying an absolute URI (see
 Section 4.3 of [RFC3986]) that identifies the appropriate AS for the
 RS.

 The message can also contain the following OPTIONAL parameters:

 * An audience element contains an identifier the client should
 request at the AS, as suggested by the RS. With this parameter,
 when included in the access token request to the AS, the AS is
 able to restrict the use of the access token to specific RSs. See
 Section 6.9 for a discussion of this parameter.

 * A kid (key identifier) element contains the key identifier of a
 key used in an existing security association between the client
 and the RS. The RS expects the client to request an access token
 bound to this key in order to avoid having to reestablish the
 security association.

 * A cnonce element contains a client-nonce. See Section 5.3.1.

 * A scope element contains the suggested scope that the client
 should request towards the AS.

 Table 1 summarizes the parameters that may be part of the AS Request
 Creation Hints.

 +==========+==========+=====================+
 | Name | CBOR Key | Value Type |
 +==========+==========+=====================+
 | AS | 1 | text string |
 +----------+----------+---------------------+
 | kid | 2 | byte string |
 +----------+----------+---------------------+
 | audience | 5 | text string |
 +----------+----------+---------------------+
 | scope | 9 | text or byte string |
 +----------+----------+---------------------+
 | cnonce | 39 | byte string |
 +----------+----------+---------------------+

 Table 1: AS Request Creation Hints

 Note that the schema part of the AS parameter may need to be adapted
 to the security protocol that is used between the client and the AS.
 Thus, the example AS value "coap://as.example.com/token" might need
 to be transformed to "coaps://as.example.com/token". It is assumed
 that the client can determine the correct schema part on its own
 depending on the way it communicates with the AS.

 Figure 2 shows an example for an AS Request Creation Hints payload
 using diagnostic notation.

 4.01 Unauthorized
 Content-Format: application/ace+cbor
 Payload :
 {
 / AS / 1 : "coaps://as.example.com/token",
 / audience / 5 : "coaps://rs.example.com",
 / scope / 9 : "rTempC",
 / cnonce / 39 : h’e0a156bb3f’
 }

 Figure 2: AS Request Creation Hints Payload Example

 In the example above, the response parameter AS points the receiver
 of this message to the URI "coaps://as.example.com/token" to request
 access tokens. The RS sending this response uses an internal clock
 that is not synchronized with the clock of the AS. Therefore, it

 cannot reliably verify the expiration time of access tokens it
 receives. Nevertheless, to ensure a certain level of access token
 freshness, the RS has included a cnonce parameter (see Section 5.3.1)
 in the response. (The hex sequence of the cnonce parameter is
 encoded in CBOR-based notation in this example.)

 Figure 3 illustrates the mandatory use of binary encoding of the
 message payload shown in Figure 2.

 a4 # map(4)
 01 # unsigned(1) (=AS)
 78 1c # text(28)
 636f6170733a2f2f61732e657861
 6d706c652e636f6d2f746f6b656e # "coaps://as.example.com/token"
 05 # unsigned(5) (=audience)
 76 # text(22)
 636f6170733a2f2f72732e657861
 6d706c652e636f6d # "coaps://rs.example.com"
 09 # unsigned(9) (=scope)
 66 # text(6)
 7254656d7043 # "rTempC"
 18 27 # unsigned(39) (=cnonce)
 45 # bytes(5)
 e0a156bb3f #

 Figure 3: AS Request Creation Hints Example Encoded in CBOR

5.3.1. The Client-Nonce Parameter

 If the RS does not synchronize its clock with the AS, it could be
 tricked into accepting old access tokens that are either expired or
 have been compromised. In order to ensure some level of token
 freshness in that case, the RS can use the cnonce (client-nonce)
 parameter. The processing requirements for this parameter are as
 follows:

 * An RS sending a cnonce parameter in an AS Request Creation Hints
 message MUST store information to validate that a given cnonce is
 fresh. How this is implemented internally is out of scope for
 this specification. Expiration of client-nonces should be based
 roughly on the time it would take a client to obtain an access
 token after receiving the AS Request Creation Hints, with some
 allowance for unexpected delays.

 * A client receiving a cnonce parameter in an AS Request Creation
 Hints message MUST include this in the parameters when requesting
 an access token at the AS, using the cnonce parameter from
 Section 5.8.4.4.

 * If an AS grants an access token request containing a cnonce
 parameter, it MUST include this value in the access token, using
 the cnonce claim specified in Section 5.10.

 * An RS that is using the client-nonce mechanism and that receives
 an access token MUST verify that this token contains a cnonce
 claim, with a client-nonce value that is fresh according to the
 information stored at the first step above. If the cnonce claim
 is not present or if the cnonce claim value is not fresh, the RS
 MUST discard the access token. If this was an interaction with
 the authz-info endpoint, the RS MUST also respond with an error
 message using a response code equivalent to the CoAP code 4.01
 (Unauthorized).

5.4. Authorization Grants

 To request an access token, the client obtains authorization from the
 resource owner or uses its client credentials as a grant. The
 authorization is expressed in the form of an authorization grant.

 The OAuth framework [RFC6749] defines four grant types. The grant
 types can be split up into two groups: those granted on behalf of the

 resource owner (password, authorization code, implicit) and those for
 the client (client credentials). Further grant types have been added
 later, such as an assertion-based authorization grant defined in
 [RFC7521].

 The grant type is selected depending on the use case. In cases where
 the client acts on behalf of the resource owner, the authorization
 code grant is recommended. If the client acts on behalf of the
 resource owner but does not have any display or has very limited
 interaction possibilities, it is recommended to use the device code
 grant defined in [RFC8628]. In cases where the client acts
 autonomously, the client credentials grant is recommended.

 For details on the different grant types, see Section 1.3 of
 [RFC6749]. The OAuth 2.0 framework provides an extension mechanism
 for defining additional grant types, so profiles of this framework
 MAY define additional grant types, if needed.

5.5. Client Credentials

 Authentication of the client is mandatory independent of the grant
 type when requesting an access token from the token endpoint. In the
 case of the client credentials grant type, the authentication and
 grant coincide.

 Client registration and provisioning of client credentials to the
 client is out of scope for this specification.

 The OAuth framework defines one client credential type in
 Section 2.3.1 of [RFC6749] that comprises the client_id and
 client_secret values. [OAUTH-RPCC] adds raw public key and pre-
 shared key to the client credentials type. Profiles of this
 framework MAY extend it with an additional client credentials type
 using client certificates.

5.6. AS Authentication

 The client credentials grant does not, by default, authenticate the
 AS that the client connects to. In classic OAuth, the AS is
 authenticated with a TLS server certificate.

 Profiles of this framework MUST specify how clients authenticate the
 AS and how communication security is implemented. By default, server
 side TLS certificates, as defined by OAuth 2.0, are required.

5.7. The Authorization Endpoint

 The OAuth 2.0 authorization endpoint is used to interact with the
 resource owner and obtain an authorization grant in certain grant
 flows. The primary use case for the ACE-OAuth framework is for
 machine-to-machine interactions that do not involve the resource
 owner in the authorization flow; therefore, this endpoint is out of
 scope here. Future profiles may define constrained adaptation
 mechanisms for this endpoint as well. Nonconstrained clients
 interacting with constrained resource servers can use the
 specification in Section 3.1 of [RFC6749] and the attack
 countermeasures suggested in Section 4.2 of [RFC6819].

5.8. The Token Endpoint

 In standard OAuth 2.0, the AS provides the token endpoint for
 submitting access token requests. This framework extends the
 functionality of the token endpoint, giving the AS the possibility to
 help the client and RS establish shared keys or exchange their public
 keys. Furthermore, this framework defines encodings using CBOR as a
 substitute for JSON.

 The endpoint may also be exposed over HTTPS, as in classical OAuth or
 even other transports. A profile MUST define the details of the
 mapping between the fields described below and these transports. If
 HTTPS with JSON is used, the semantics of Sections 4.1.3 and 4.1.4 of

 the OAuth 2.0 specification [RFC6749] MUST be followed (with
 additions as described below). If CBOR is used as the payload
 format, the semantics described in this section MUST be followed.

 For the AS to be able to issue a token, the client MUST be
 authenticated and present a valid grant for the scopes requested.
 Profiles of this framework MUST specify how the AS authenticates the
 client and how the communication between the client and AS is
 protected, fulfilling the requirements specified in Section 5.

 The default name of this endpoint in a url-path SHOULD be ’/token’.
 However, implementations are not required to use this name and can
 define their own instead.

5.8.1. Client-to-AS Request

 The client sends a POST request to the token endpoint at the AS. The
 profile MUST specify how the communication is protected. The content
 of the request consists of the parameters specified in the relevant
 subsection of Section 4 of the OAuth 2.0 specification [RFC6749],
 depending on the grant type, with the following exceptions and
 additions:

 * The grant_type parameter is OPTIONAL in the context of this
 framework (as opposed to REQUIRED in [RFC6749]). If that
 parameter is missing, the default value "client_credentials" is
 implied.

 * The audience parameter from [RFC8693] is OPTIONAL to request an
 access token bound to a specific audience.

 * The cnonce parameter defined in Section 5.8.4.4 is REQUIRED if the
 RS provided a client-nonce in the AS Request Creation Hints
 message (Section 5.3).

 * The scope parameter MAY be encoded as a byte string instead of the
 string encoding specified in Section 3.3 of [RFC6749] or in order
 to allow compact encoding of complex scopes. The syntax of such a
 binary encoding is explicitly not specified here and left to
 profiles or applications. Note specifically that a binary encoded
 scope does not necessarily use the space character ’0x20’ to
 delimit scope-tokens.

 * The client can send an empty (null value) ace_profile parameter to
 indicate that it wants the AS to include the ace_profile parameter
 in the response. See Section 5.8.4.3.

 * A client MUST be able to use the parameters from [RFC9201] in an
 access token request to the token endpoint, and the AS MUST be
 able to process these additional parameters.

 The default behavior is that the AS generates a symmetric proof-of-
 possession key for the client. In order to use an asymmetric key
 pair or to reuse a key previously established with the RS, the client
 is supposed to use the req_cnf parameter from [RFC9201].

 If CoAP is used, then these parameters MUST be provided in a CBOR map
 (see Table 5).

 When HTTP is used as a transport, then the client makes a request to
 the token endpoint; the parameters MUST be encoded as defined in
 Appendix B of [RFC6749].

 The following examples illustrate different types of requests for
 proof-of-possession tokens.

 Figure 4 shows a request for a token with a symmetric proof-of-
 possession key, using diagnostic notation.

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"

 Uri-Path: "token"
 Content-Format: application/ace+cbor
 Payload:
 {
 / client_id / 24 : "myclient",
 / audience / 5 : "tempSensor4711"
 }

 Figure 4: Example Request for an Access Token Bound to a
 Symmetric Key

 Figure 5 shows a request for a token with an asymmetric proof-of-
 possession key. Note that, in this example, OSCORE [RFC8613] is used
 to provide object-security; therefore, the Content-Format is
 "application/oscore" wrapping the "application/ace+cbor" type
 content. The OSCORE option has a decoded interpretation appended in
 parentheses for the reader’s convenience. Also note that, in this
 example, the audience is implicitly known by both the client and AS.
 Furthermore, note that this example uses the req_cnf parameter from
 [RFC9201].

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 OSCORE: 0x09, 0x05, 0x44, 0x6C
 (h=0, k=1, n=001, partialIV= 0x05, kid=[0x44, 0x6C])
 Content-Format: application/oscore
 Payload:
 0x44025d1/ ... (full payload omitted for brevity) ... /68b3825e

 Decrypted payload:
 {
 / client_id / 24 : "myclient",
 / req_cnf / 4 : {
 / COSE_Key / 1 : {
 / kty / 1 : 2 / EC2 /,
 / kid / 2 : h’11’,
 / crv / -1 : 1 / P-256 /,
 / x / -2 : b64’usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8’,
 / y / -3 : b64’IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4’
 }
 }
 }

 Figure 5: Example Token Request Bound to an Asymmetric Key

 Figure 6 shows a request for a token where a previously communicated
 proof-of-possession key is only referenced using the req_cnf
 parameter from [RFC9201].

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: application/ace+cbor
 Payload:
 {
 / client_id / 24 : "myclient",
 / audience / 5 : "valve424",
 / scope / 9 : "read",
 / req_cnf / 4 : {
 / kid / 3 : b64’6kg0dXJM13U’
 }
 }

 Figure 6: Example Request for an Access Token Bound to a Key
 Reference

 Refresh tokens are typically not stored as securely as proof-of-
 possession keys in requesting clients. Proof-of-possession-based
 refresh token requests MUST NOT request different proof-of-possession
 keys or different audiences in token requests. Refresh token

 requests can only be used to request access tokens bound to the same
 proof-of-possession key and the same audience as access tokens issued
 in the initial token request.

5.8.2. AS-to-Client Response

 If the access token request has been successfully verified by the AS
 and the client is authorized to obtain an access token corresponding
 to its access token request, the AS sends a response with the
 response code equivalent to the CoAP response code 2.01 (Created).
 If the client request was invalid, or not authorized, the AS returns
 an error response, as described in Section 5.8.3.

 Note that the AS decides which token type and profile to use when
 issuing a successful response. It is assumed that the AS has prior
 knowledge of the capabilities of the client and the RS (see
 Appendix D). This prior knowledge may, for example, be set by the
 use of a dynamic client registration protocol exchange [RFC7591]. If
 the client has requested a specific proof-of-possession key using the
 req_cnf parameter from [RFC9201], this may also influence which
 profile the AS selects, as it needs to support the use of the key
 type requested by the client.

 The content of the successful reply is the Access Information. When
 using CoAP, the payload MUST be encoded as a CBOR map; when using
 HTTP, the encoding is a JSON map, as specified in Section 5.1 of
 [RFC6749]. In both cases, the parameters specified in Section 5.1 of
 [RFC6749] are used, with the following additions and changes:

 ace_profile:
 This parameter is OPTIONAL unless the request included an empty
 ace_profile parameter, in which case it is MANDATORY. This
 indicates the profile that the client MUST use towards the RS.
 See Section 5.8.4.3 for the formatting of this parameter. If
 this parameter is absent, the AS assumes that the client
 implicitly knows which profile to use towards the RS.

 token_type:
 This parameter is OPTIONAL, as opposed to REQUIRED in
 [RFC6749]. By default, implementations of this framework
 SHOULD assume that the token_type is "PoP". If a specific use
 case requires another token_type (e.g., "Bearer") to be used,
 then this parameter is REQUIRED.

 Furthermore, [RFC9201] defines additional parameters that the AS MUST
 be able to use when responding to a request to the token endpoint.

 Table 2 summarizes the parameters that can currently be part of the
 Access Information. Future extensions may define additional
 parameters.

 +===================+==============+
 | Parameter name | Specified in |
 +===================+==============+
 | access_token | [RFC6749] |
 +-------------------+--------------+
 | token_type | [RFC6749] |
 +-------------------+--------------+
 | expires_in | [RFC6749] |
 +-------------------+--------------+
 | refresh_token | [RFC6749] |
 +-------------------+--------------+
 | scope | [RFC6749] |
 +-------------------+--------------+
 | state | [RFC6749] |
 +-------------------+--------------+
 | error | [RFC6749] |
 +-------------------+--------------+
 | error_description | [RFC6749] |
 +-------------------+--------------+
 | error_uri | [RFC6749] |

 +-------------------+--------------+
 | ace_profile | RFC 9200 |
 +-------------------+--------------+
 | cnf | [RFC9201] |
 +-------------------+--------------+
 | rs_cnf | [RFC9201] |
 +-------------------+--------------+

 Table 2: Access Information
 Parameters

 Figure 7 shows a response containing a token and a cnf parameter with
 a symmetric proof-of-possession key, which is defined in [RFC9201].
 Note that the key identifier kid is only used to simplify indexing
 and retrieving the key, and no assumptions should be made that it is
 unique in the domains of either the client or the RS.

 Header: Created (Code=2.01)
 Content-Format: application/ace+cbor
 Payload:
 {
 / access_token / 1 : b64’SlAV32hk’/ ...
 (remainder of CWT omitted for brevity;
 CWT contains COSE_Key in the cnf claim)/,
 / ace_profile / 38 : "coap_dtls",
 / expires_in / 2 : 3600,
 / cnf / 8 : {
 / COSE_Key / 1 : {
 / kty / 1 : 4 / Symmetric /,
 / kid / 2 : b64’39Gqlw’,
 / k / -1 : b64’hJtXhkV8FJG+Onbc6mxC’
 }
 }
 }

 Figure 7: Example AS Response with an Access Token Bound to a
 Symmetric Key

5.8.3. Error Response

 The error responses for interactions with the AS are generally
 equivalent to the ones defined in Section 5.2 of [RFC6749], with the
 following exceptions:

 * When using CoAP, the payload MUST be encoded as a CBOR map, with
 the Content-Format "application/ace+cbor". When using HTTP, the
 payload is encoded in JSON, as specified in Section 5.2 of
 [RFC6749].

 * A response code equivalent to the CoAP code 4.00 (Bad Request)
 MUST be used for all error responses, except for invalid_client,
 where a response code equivalent to the CoAP code 4.01
 (Unauthorized) MAY be used under the same conditions as specified
 in Section 5.2 of [RFC6749].

 * The parameters error, error_description, and error_uri MUST be
 abbreviated using the codes specified in Table 5, when a CBOR
 encoding is used.

 * The error code (i.e., value of the error parameter) MUST be
 abbreviated, as specified in Table 3, when a CBOR encoding is
 used.

 +===========================+=============+========================+
 | Name | CBOR Values | Original Specification |
 +===========================+=============+========================+
 | invalid_request | 1 | Section 5.2 of |
 | | | [RFC6749] |
 +---------------------------+-------------+------------------------+
 | invalid_client | 2 | Section 5.2 of |
 | | | [RFC6749] |

 +---------------------------+-------------+------------------------+
 | invalid_grant | 3 | Section 5.2 of |
 | | | [RFC6749] |
 +---------------------------+-------------+------------------------+
 | unauthorized_client | 4 | Section 5.2 of |
 | | | [RFC6749] |
 +---------------------------+-------------+------------------------+
 | unsupported_grant_type | 5 | Section 5.2 of |
 | | | [RFC6749] |
 +---------------------------+-------------+------------------------+
 | invalid_scope | 6 | Section 5.2 of |
 | | | [RFC6749] |
 +---------------------------+-------------+------------------------+
 | unsupported_pop_key | 7 | RFC 9200 |
 +---------------------------+-------------+------------------------+
 | incompatible_ace_profiles | 8 | RFC 9200 |
 +---------------------------+-------------+------------------------+

 Table 3: CBOR Abbreviations for Common Error Codes

 In addition to the error responses defined in OAuth 2.0, the
 following behavior MUST be implemented by the AS:

 * If the client submits an asymmetric key in the token request that
 the RS cannot process, the AS MUST reject that request with a
 response code equivalent to the CoAP code 4.00 (Bad Request),
 including the error code "unsupported_pop_key" specified in
 Table 3.

 * If the client and the RS it has requested an access token for do
 not share a common profile, the AS MUST reject that request with a
 response code equivalent to the CoAP code 4.00 (Bad Request),
 including the error code "incompatible_ace_profiles" specified in
 Table 3.

5.8.4. Request and Response Parameters

 This section provides more detail about the new parameters that can
 be used in access token requests and responses, as well as
 abbreviations for more compact encoding of existing parameters and
 common parameter values.

5.8.4.1. Grant Type

 The abbreviations specified in the registry defined in Section 8.5
 MUST be used in CBOR encodings instead of the string values defined
 in [RFC6749] if CBOR payloads are used.

 +====================+============+============================+
 | Name | CBOR Value | Original Specification |
 +====================+============+============================+
 | password | 0 | Section 4.3.2 of [RFC6749] |
 +--------------------+------------+----------------------------+
 | authorization_code | 1 | Section 4.1.3 of [RFC6749] |
 +--------------------+------------+----------------------------+
 | client_credentials | 2 | Section 4.4.2 of [RFC6749] |
 +--------------------+------------+----------------------------+
 | refresh_token | 3 | Section 6 of [RFC6749] |
 +--------------------+------------+----------------------------+

 Table 4: CBOR Abbreviations for Common Grant Types

5.8.4.2. Token Type

 The token_type parameter, defined in Section 5.1 of [RFC6749], allows
 the AS to indicate to the client which type of access token it is
 receiving (e.g., a bearer token).

 This document registers the new value "PoP" for the "OAuth Access
 Token Types" registry, specifying a proof-of-possession token. How
 the proof of possession by the client to the RS is performed MUST be

 specified by the profiles.

 The values in the token_type parameter MUST use the CBOR
 abbreviations defined in the registry specified by Section 8.7 if a
 CBOR encoding is used.

 In this framework, the "pop" value for the token_type parameter is
 the default. The AS may, however, provide a different value from
 those registered in [IANA.OAuthAccessTokenTypes].

5.8.4.3. Profile

 Profiles of this framework MUST define the communication protocol and
 the communication security protocol between the client and the RS.
 The security protocol MUST provide encryption, integrity, and replay
 protection. It MUST also provide a binding between requests and
 responses. Furthermore, profiles MUST define a list of allowed
 proof-of-possession methods if they support proof-of-possession
 tokens.

 A profile MUST specify an identifier that MUST be used to uniquely
 identify itself in the ace_profile parameter. The textual
 representation of the profile identifier is intended for human
 readability and for JSON-based interactions; it MUST NOT be used for
 CBOR-based interactions. Profiles MUST register their identifier in
 the registry defined in Section 8.8.

 Profiles MAY define additional parameters for both the token request
 and the Access Information in the access token response in order to
 support negotiation or signaling of profile-specific parameters.

 Clients that want the AS to provide them with the ace_profile
 parameter in the access token response can indicate that by sending
 an ace_profile parameter with a null value for CBOR-based
 interactions, or an empty string if CBOR is not used, in the access
 token request.

5.8.4.4. Client-Nonce

 This parameter MUST be sent from the client to the AS if it
 previously received a cnonce parameter in the AS Request Creation
 Hints (Section 5.3). The parameter is encoded as a byte string for
 CBOR-based interactions and as a string (base64url without padding
 encoded binary [RFC4648]) if CBOR is not used. It MUST copy the
 value from the cnonce parameter in the AS Request Creation Hints.

5.8.5. Mapping Parameters to CBOR

 If CBOR encoding is used, all OAuth parameters in access token
 requests and responses MUST be mapped to CBOR types, as specified in
 the registry defined by Section 8.10, using the given integer
 abbreviation for the map keys.

 Note that we have aligned the abbreviations corresponding to claims
 with the abbreviations defined in [RFC8392].

 Note also that abbreviations from -24 to 23 have a 1-byte encoding
 size in CBOR. We have thus chosen to assign abbreviations in that
 range to parameters we expect to be used most frequently in
 constrained scenarios.

 +===================+==========+=============+===============+
 | Name | CBOR Key | Value Type | Original |
 | | | | Specification |
 +===================+==========+=============+===============+
 | access_token | 1 | byte string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | expires_in | 2 | unsigned | [RFC6749] |
 | | | integer | |
 +-------------------+----------+-------------+---------------+
 | audience | 5 | text string | [RFC8693] |

 +-------------------+----------+-------------+---------------+
 | scope | 9 | text or | [RFC6749] |
 | | | byte string | |
 +-------------------+----------+-------------+---------------+
 | client_id | 24 | text string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | client_secret | 25 | byte string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | response_type | 26 | text string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | redirect_uri | 27 | text string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | state | 28 | text string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | code | 29 | byte string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | error | 30 | integer | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | error_description | 31 | text string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | error_uri | 32 | text string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | grant_type | 33 | unsigned | [RFC6749] |
 | | | integer | |
 +-------------------+----------+-------------+---------------+
 | token_type | 34 | integer | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | username | 35 | text string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | password | 36 | text string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | refresh_token | 37 | byte string | [RFC6749] |
 +-------------------+----------+-------------+---------------+
 | ace_profile | 38 | integer | RFC 9200 |
 +-------------------+----------+-------------+---------------+
 | cnonce | 39 | byte string | RFC 9200 |
 +-------------------+----------+-------------+---------------+

 Table 5: CBOR Mappings Used in Token Requests and Responses

5.9. The Introspection Endpoint

 Token introspection [RFC7662] MAY be implemented by the AS and the
 RS. When implemented, it MAY be used by the RS and to query the AS
 for metadata about a given token, e.g., validity or scope. Analogous
 to the protocol defined in [RFC7662] for HTTP and JSON, this section
 defines adaptations to more constrained environments using CBOR and
 leaving the choice of the application protocol to the profile. The
 client MAY also implement and use introspection analogously to the RS
 to obtain information about a given token.

 Communication between the requesting entity and the introspection
 endpoint at the AS MUST be integrity protected and encrypted. The
 communication security protocol MUST also provide a binding between
 requests and responses. Furthermore, the two interacting parties
 MUST perform mutual authentication. Finally, the AS SHOULD verify
 that the requesting entity has the right to access introspection
 information about the provided token. Profiles of this framework
 that support introspection MUST specify how authentication and
 communication security between the requesting entity and the AS is
 implemented.

 The default name of this endpoint in a url-path SHOULD be
 ’/introspect’. However, implementations are not required to use this
 name and can define their own instead.

5.9.1. Introspection Request

 The requesting entity sends a POST request to the introspection
 endpoint at the AS. The profile MUST specify how the communication
 is protected. If CoAP is used, the payload MUST be encoded as a CBOR

 map with a token entry containing the access token. Further optional
 parameters representing additional context that is known by the
 requesting entity to aid the AS in its response MAY be included.

 For CoAP-based interaction, all messages MUST use the content type
 "application/ace+cbor". For HTTP, the encoding defined in
 Section 2.1 of [RFC7662] is used.

 The same parameters are required and optional as in Section 2.1 of
 [RFC7662].

 For example, Figure 8 shows an RS calling the token introspection
 endpoint at the AS to query about an OAuth 2.0 proof-of-possession
 token. Note that object security based on OSCORE [RFC8613] is
 assumed in this example; therefore, the Content-Format is
 "application/oscore". Figure 9 shows the decoded payload.

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "introspect"
 OSCORE: 0x09, 0x05, 0x25
 Content-Format: application/oscore
 Payload:
 ... COSE content ...

 Figure 8: Example Introspection Request

 {
 / token / 11 : b64’7gj0dXJQ43U’,
 / token_type_hint / 33 : 2 / PoP /
 }

 Figure 9: Decoded Payload

5.9.2. Introspection Response

 If the introspection request is authorized and successfully
 processed, the AS sends a response with the response code equivalent
 to the CoAP code 2.01 (Created). If the introspection request was
 invalid, not authorized, or couldn’t be processed, the AS returns an
 error response, as described in Section 5.9.3.

 In a successful response, the AS encodes the response parameters in a
 map. If CoAP is used, this MUST be encoded as a CBOR map; if HTTP is
 used, the JSON encoding specified in Section 2.2 of [RFC7662] is
 used. The map containing the response payload includes the same
 required and optional parameters as in Section 2.2 of [RFC7662], with
 the following additions:

 ace_profile
 This parameter is OPTIONAL. This indicates the profile that the
 RS MUST use with the client. See Section 5.8.4.3 for more details
 on the formatting of this parameter. If this parameter is absent,
 the AS assumes that the RS implicitly knows which profile to use
 towards the client.

 cnonce
 This parameter is OPTIONAL. This is a client-nonce provided to
 the AS by the client. The RS MUST verify that this corresponds to
 the client-nonce previously provided to the client in the AS
 Request Creation Hints. See Sections 5.3 and 5.8.4.4. Its value
 is a byte string when encoded in CBOR and is the base64url
 encoding of this byte string without padding when encoded in JSON
 [RFC4648].

 cti
 This parameter is OPTIONAL. This is the cti claim associated to
 this access token. This parameter has the same meaning and
 processing rules as the jti parameter defined in Section 3.1.2 of
 [RFC7662] except that its value is a byte string when encoded in
 CBOR and is the base64url encoding of this byte string without

 padding when encoded in JSON [RFC4648].

 exi
 This parameter is OPTIONAL. This is the expires_in claim
 associated to this access token. See Section 5.10.3.

 Furthermore, [RFC9201] defines more parameters that the AS MUST be
 able to use when responding to a request to the introspection
 endpoint.

 For example, Figure 10 shows an AS response to the introspection
 request in Figure 8. Note that this example contains the cnf
 parameter defined in [RFC9201].

 Header: Created (Code=2.01)
 Content-Format: application/ace+cbor
 Payload:
 {
 / active / 10 : true,
 / scope / 9 : "read",
 / ace_profile / 38 : 1 / coap_dtls /,
 / cnf / 8 : {
 / COSE_Key / 1 : {
 / kty / 1 : 4 / Symmetric /,
 / kid / 2 : b64’39Gqlw’,
 / k / -1 : b64’hJtXhkV8FJG+Onbc6mxC’
 }
 }
 }

 Figure 10: Example Introspection Response

5.9.3. Error Response

 The error responses for CoAP-based interactions with the AS are
 equivalent to the ones for HTTP-based interactions, as defined in
 Section 2.3 of [RFC7662], with the following differences:

 * If content is sent and CoAP is used, the payload MUST be encoded
 as a CBOR map and the Content-Format "application/ace+cbor" MUST
 be used. For HTTP, the encoding defined in Section 2.3 of
 [RFC6749] is used.

 * If the credentials used by the requesting entity (usually the RS)
 are invalid, the AS MUST respond with the response code equivalent
 to the CoAP code 4.01 (Unauthorized) and use the required and
 optional parameters from Section 2.3 of [RFC7662].

 * If the requesting entity does not have the right to perform this
 introspection request, the AS MUST respond with a response code
 equivalent to the CoAP code 4.03 (Forbidden). In this case, no
 payload is returned.

 * The parameters error, error_description, and error_uri MUST be
 abbreviated using the codes specified in Table 5.

 * The error codes MUST be abbreviated using the codes specified in
 the registry defined by Section 8.4.

 Note that a properly formed and authorized query for an inactive or
 otherwise invalid token does not warrant an error response by this
 specification. In these cases, the authorization server MUST instead
 respond with an introspection response with the active field set to
 "false".

5.9.4. Mapping Introspection Parameters to CBOR

 If CBOR is used, the introspection request and response parameters
 MUST be mapped to CBOR types, as specified in the registry defined by
 Section 8.12, using the given integer abbreviation for the map key.

 Note that we have aligned abbreviations that correspond to a claim
 with the abbreviations defined in [RFC8392] and the abbreviations of
 parameters with the same name from Section 5.8.5.

 +===================+======+======================+===============+
 | Parameter name | CBOR | Value Type | Original |
 | | Key | | Specification |
 +===================+======+======================+===============+
 | iss | 1 | text string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | sub | 2 | text string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | aud | 3 | text string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | exp | 4 | integer or floating- | [RFC7662] |
 | | | point number | |
 +-------------------+------+----------------------+---------------+
 | nbf | 5 | integer or floating- | [RFC7662] |
 | | | point number | |
 +-------------------+------+----------------------+---------------+
 | iat | 6 | integer or floating- | [RFC7662] |
 | | | point number | |
 +-------------------+------+----------------------+---------------+
 | cti | 7 | byte string | RFC 9200 |
 +-------------------+------+----------------------+---------------+
 | scope | 9 | text or byte string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | active | 10 | True or False | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | token | 11 | byte string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | client_id | 24 | text string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | error | 30 | integer | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | error_description | 31 | text string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | error_uri | 32 | text string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | token_type_hint | 33 | text string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | token_type | 34 | integer | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | username | 35 | text string | [RFC7662] |
 +-------------------+------+----------------------+---------------+
 | ace_profile | 38 | integer | RFC 9200 |
 +-------------------+------+----------------------+---------------+
 | cnonce | 39 | byte string | RFC 9200 |
 +-------------------+------+----------------------+---------------+
 | exi | 40 | unsigned integer | RFC 9200 |
 +-------------------+------+----------------------+---------------+

 Table 6: CBOR Mappings for Token Introspection Parameters

5.10. The Access Token

 In this framework, the use of CBOR Web Token (CWT) as specified in
 [RFC8392] is RECOMMENDED.

 In order to facilitate offline processing of access tokens, this
 document uses the cnf claim from [RFC8747] and the scope claim from
 [RFC8693] for JWT- and CWT-encoded tokens. In addition to string
 encoding specified for the scope claim, a binary encoding MAY be
 used. The syntax of such an encoding is explicitly not specified
 here and left to profiles or applications, specifically note that a
 binary encoded scope does not necessarily use the space character
 ’0x20’ to delimit scope-tokens.

 If the AS needs to convey a hint to the RS about which profile it
 should use to communicate with the client, the AS MAY include an
 ace_profile claim in the access token, with the same syntax and

 semantics as defined in Section 5.8.4.3.

 If the client submitted a cnonce parameter in the access token
 request (Section 5.8.4.4), the AS MUST include the value of this
 parameter in the cnonce claim specified here. The cnonce claim uses
 binary encoding.

5.10.1. The Authorization Information Endpoint

 The access token, containing authorization information and
 information about the proof-of-possession method used by the client,
 needs to be transported to the RS so that the RS can authenticate and
 authorize the client request.

 This section defines a method for transporting the access token to
 the RS using a RESTful protocol, such as CoAP. Profiles of this
 framework MAY define other methods for token transport.

 The method consists of an authz-info endpoint, implemented by the RS.
 A client using this method MUST make a POST request to the authz-info
 endpoint at the RS with the access token in the payload. The CoAP
 Content-Format or HTTP media type MUST reflect the format of the
 token, e.g., "application/cwt", for CBOR Web Tokens; if no Content-
 Format or media type is defined for the token format, "application/
 octet-stream" MUST be used.

 The RS receiving the token MUST verify the validity of the token. If
 the token is valid, the RS MUST respond to the POST request with a
 response code equivalent to CoAP code 2.01 (Created).
 Section 5.10.1.1 outlines how an RS MUST proceed to verify the
 validity of an access token.

 The RS MUST be prepared to store at least one access token for future
 use. This is a difference as to how access tokens are handled in
 OAuth 2.0, where the access token is typically sent along with each
 request and therefore not stored at the RS.

 When using this framework, it is RECOMMENDED that an RS stores only
 one token per proof-of-possession key. This means that an additional
 token linked to the same key will supersede any existing token at the
 RS by replacing the corresponding authorization information. The
 reason is that this greatly simplifies (constrained) implementations,
 with respect to required storage and resolving a request to the
 applicable token. The use of multiple access tokens for a single
 client increases the strain on the resource server, as it must
 consider every access token and calculate the actual permissions of
 the client. Also, tokens may contradict each other, which may lead
 the server to enforce wrong permissions. If one of the access tokens
 expires earlier than others, the resulting permissions may offer
 insufficient protection.

 If the payload sent to the authz-info endpoint does not parse to a
 token, the RS MUST respond with a response code equivalent to the
 CoAP code 4.00 (Bad Request).

 The RS MAY make an introspection request to validate the token before
 responding to the POST request to the authz-info endpoint, e.g., if
 the token is an opaque reference. Some transport protocols may
 provide a way to indicate that the RS is busy and the client should
 retry after an interval; this type of status update would be
 appropriate while the RS is waiting for an introspection response.

 Profiles MUST specify whether the authz-info endpoint is protected,
 including whether error responses from this endpoint are protected.
 Note that since the token contains information that allows the client
 and the RS to establish a security context in the first place, mutual
 authentication may not be possible at this point.

 The default name of this endpoint in a url-path is ’/authz-info’;
 however, implementations are not required to use this name and can
 define their own instead.

5.10.1.1. Verifying an Access Token

 When an RS receives an access token, it MUST verify it before storing
 it. The details of token verification depends on various aspects,
 including the token encoding, the type of token, the security
 protection applied to the token, and the claims. The token encoding
 matters since the security protection differs between the token
 encodings. For example, a CWT token uses COSE, while a JWT token
 uses JSON Object Signing and Encryption (JOSE). The type of token
 also has an influence on the verification procedure since tokens may
 be self-contained, whereby token verification may happen locally at
 the RS, while a reference token requires further interaction with the
 authorization server, for example, using token introspection, to
 obtain the claims associated with the token reference. Self-
 contained tokens MUST at least be integrity protected, but they MAY
 also be encrypted.

 For self-contained tokens, the RS MUST process the security
 protection of the token first, as specified by the respective token
 format. For CWT, the description can be found in [RFC8392]; for JWT,
 the relevant specification is [RFC7519]. This MUST include a
 verification that security protection (and thus the token) was
 generated by an AS that has the right to issue access tokens for this
 RS.

 In case the token is communicated by reference, the RS needs to
 obtain the claims first. When the RS uses token introspection, the
 relevant specification is [RFC7662] with CoAP transport specified in
 Section 5.9.

 Errors may happen during this initial processing stage:

 * If the verification of the security wrapper fails, or the token
 was issued by an AS that does not have the right to issue tokens
 for the receiving RS, the RS MUST discard the token and, if this
 was an interaction with authz-info, return an error message with a
 response code equivalent to the CoAP code 4.01 (Unauthorized).

 * If the claims cannot be obtained, the RS MUST discard the token
 and, in case of an interaction via the authz-info endpoint, return
 an error message with a response code equivalent to the CoAP code
 4.00 (Bad Request).

 Next, the RS MUST verify claims, if present, contained in the access
 token. Errors are returned when claim checks fail, in the order of
 priority of this list:

 iss
 The iss claim (if present) must identify the AS that has produced
 the security protection for the access token. If that is not the
 case, the RS MUST discard the token. If this was an interaction
 with authz-info, the RS MUST also respond with a response code
 equivalent to the CoAP code 4.01 (Unauthorized).

 exp
 The expiration date must be in the future. If that is not the
 case, the RS MUST discard the token. If this was an interaction
 with authz-info, the RS MUST also respond with a response code
 equivalent to the CoAP code 4.01 (Unauthorized). Note that the RS
 has to terminate access rights to the protected resources at the
 time when the tokens expire.

 aud
 The aud claim must refer to an audience that the RS identifies
 with. If that is not the case, the RS MUST discard the token. If
 this was an interaction with authz-info, the RS MUST also respond
 with a response code equivalent to the CoAP code 4.03 (Forbidden).

 scope
 The RS must recognize value of the scope claim. If that is not

 the case, the RS MUST discard the token. If this was an
 interaction with authz-info, the RS MUST also respond with a
 response code equivalent to the CoAP code 4.00 (Bad Request). The
 RS MAY provide additional information in the error response to
 clarify what went wrong.

 Additional processing may be needed for other claims in a way
 specific to a profile or the underlying application.

 Note that the sub (Subject) claim cannot always be verified when the
 token is submitted to the RS since the client may not have
 authenticated yet. Also note that a counter for the exi (expires in)
 claim MUST be initialized when the RS first verifies this token.

 Also note that profiles of this framework may define access token
 transport mechanisms that do not allow for error responses.
 Therefore, the error messages specified here only apply if the token
 was sent to the authz-info endpoint.

 When sending error responses, the RS MAY use the error codes from
 Section 3.1 of [RFC6750] to provide additional details to the client.

5.10.1.2. Protecting the Authorization Information Endpoint

 As this framework can be used in RESTful environments, it is
 important to make sure that attackers cannot perform unauthorized
 requests on the authz-info endpoints, other than submitting access
 tokens.

 Specifically, it SHOULD NOT be possible to perform GET, DELETE, or
 PUT on the authz-info endpoint.

 The RS SHOULD implement rate-limiting measures to mitigate attacks
 aiming to overload the processing capacity of the RS by repeatedly
 submitting tokens. For CoAP-based communication, the RS could use
 the mechanisms from [RFC8516] to indicate that it is overloaded.

5.10.2. Client Requests to the RS

 Before sending a request to an RS, the client MUST verify that the
 keys used to protect this communication are still valid. See
 Section 5.10.4 for details on how the client determines the validity
 of the keys used.

 If an RS receives a request from a client and the target resource
 requires authorization, the RS MUST first verify that it has an
 access token that authorizes this request and that the client has
 performed the proof-of-possession binding for that token to the
 request.

 The response code MUST be 4.01 (Unauthorized) in case the client has
 not performed the proof of possession or if the RS has no valid
 access token for the client. If the RS has an access token for the
 client but the token does not authorize access for the resource that
 was requested, the RS MUST reject the request with a 4.03
 (Forbidden). If the RS has an access token for the client but it
 does not cover the action that was requested on the resource, the RS
 MUST reject the request with a 4.05 (Method Not Allowed).

 Note: The use of the response codes 4.03 and 4.05 is intended to
 prevent infinite loops where a client optimistically tries to access
 a requested resource with any access token received from AS. As
 malicious clients could pretend to be the C to determine the C’s
 privileges, these detailed response codes must be used only when a
 certain level of security is already available, which can be achieved
 only when the client is authenticated.

 Note: The RS MAY use introspection for timely validation of an access
 token at the time when a request is presented.

 Note: Matching the claims of the access token (e.g., scope) to a

 specific request is application specific.

 If the request matches a valid token and the client has performed the
 proof of possession for that token, the RS continues to process the
 request as specified by the underlying application.

5.10.3. Token Expiration

 Depending on the capabilities of the RS, there are various ways in
 which it can verify the expiration of a received access token. The
 following is a list of the possibilities including what functionality
 they require of the RS.

 * The token is a CWT and includes an exp claim and possibly the nbf
 claim. The RS verifies these by comparing them to values from its
 internal clock, as defined in [RFC7519]. In this case, the RS’s
 internal clock must reflect the current date and time or at least
 be synchronized with the AS’s clock. How this clock
 synchronization would be performed is out of scope for this
 specification.

 * The RS verifies the validity of the token by performing an
 introspection request, as specified in Section 5.9. This requires
 the RS to have a reliable network connection to the AS and to be
 able to handle two secure sessions in parallel (C to RS and RS to
 AS).

 * In order to support token expiration for devices that have no
 reliable way of synchronizing their internal clocks, this
 specification defines the following approach: The claim exi
 (expires in) can be used to provide the RS with the lifetime of
 the token in seconds from the time the RS first receives the
 token. This mechanism only works for self-contained tokens, i.e.,
 CWTs and JWTs. For CWTs, this parameter is encoded as an unsigned
 integer, while JWTs encode this as JSON number.

 * Processing this claim requires that the RS does the following:

 - For each token the RS receives that contains an exi claim, keep
 track of the time it received that token and revisit that list
 regularly to expunge expired tokens.

 - Keep track of the identifiers of tokens containing the exi
 claim that have expired (in order to avoid accepting them
 again). In order to avoid an unbounded memory usage growth,
 this MUST be implemented in the following way when the exi
 claim is used:

 o When creating the token, the AS MUST add a cti claim (or jti
 for JWTs) to the access token. The value of this claim MUST
 be created as the binary representation of the concatenation
 of the identifier of the RS with a sequence number counting
 the tokens containing an exi claim, issued by this AS for
 the RS.

 o The RS MUST store the highest sequence number of an expired
 token containing the exi claim that it has seen and treat
 tokens with lower sequence numbers as expired. Note that
 this could lead to discarding valid tokens with lower
 sequence numbers if the AS where to issue tokens of
 different validity time for the same RS. The assumption is
 that typically tokens in such a scenario would all have the
 same validity time.

 If a token that authorizes a long-running request, such as a CoAP
 Observe [RFC7641], expires, the RS MUST send an error response with
 the response code equivalent to the CoAP code 4.01 (Unauthorized) to
 the client and then terminate processing the long-running request.

5.10.4. Key Expiration

 The AS provides the client with key material that the RS uses. This
 can either be a common symmetric PoP key or an asymmetric key used by
 the RS to authenticate towards the client. Since there is currently
 no expiration metadata associated to those keys, the client has no
 way of knowing if these keys are still valid. This may lead to
 situations where the client sends requests containing sensitive
 information to the RS using a key that is expired and possibly in the
 hands of an attacker or where the client accepts responses from the
 RS that are not properly protected and could possibly have been
 forged by an attacker.

 In order to prevent this, the client must assume that those keys are
 only valid as long as the related access token is. Since the access
 token is opaque to the client, one of the following methods MUST be
 used to inform the client about the validity of an access token:

 * The client knows a default validity time for all tokens it is
 using (i.e., how long a token is valid after being issued). This
 information could be provisioned to the client when it is
 registered at the AS or published by the AS in a way that the
 client can query.

 * The AS informs the client about the token validity using the
 expires_in parameter in the Access Information.

 A client that is not able to obtain information about the expiration
 of a token MUST NOT use this token.

6. Security Considerations

 Security considerations applicable to authentication and
 authorization in RESTful environments provided in OAuth 2.0 [RFC6749]
 apply to this work. Furthermore, [RFC6819] provides additional
 security considerations for OAuth, which apply to IoT deployments as
 well. If the introspection endpoint is used, the security
 considerations from [RFC7662] also apply.

 The following subsections address issues specific to this document
 and its use in constrained environments.

6.1. Protecting Tokens

 A large range of threats can be mitigated by protecting the contents
 of the access token by using a digital signature or a keyed message
 digest, e.g., a Message Authentication Code (MAC) or an Authenticated
 Encryption with Associated Data (AEAD) algorithm. Consequently, the
 token integrity protection MUST be applied to prevent the token from
 being modified, particularly since it contains a reference to the
 symmetric key or the asymmetric key used for proof of possession. If
 the access token contains the symmetric key, this symmetric key MUST
 be encrypted by the authorization server so that only the resource
 server can decrypt it. Note that using an AEAD algorithm is
 preferable over using a MAC unless the token needs to be publicly
 readable.

 If the token is intended for multiple recipients (i.e., an audience
 that is a group), integrity protection of the token with a symmetric
 key, shared between the AS and the recipients, is not sufficient,
 since any of the recipients could modify the token undetected by the
 other recipients. Therefore, a token with a multirecipient audience
 MUST be protected with an asymmetric signature.

 It is important for the authorization server to include the identity
 of the intended recipient (the audience), typically a single resource
 server (or a list of resource servers), in the token. The same
 shared secret MUST NOT be used as a proof-of-possession key with
 multiple resource servers, since the benefit from using the proof-of-
 possession concept is then significantly reduced.

 If clients are capable of doing so, they should frequently request
 fresh access tokens, as this allows the AS to keep the lifetime of

 the tokens short. This allows the AS to use shorter proof-of-
 possession key sizes, which translate to a performance benefit for
 the client and for the resource server. Shorter keys also lead to
 shorter messages (particularly with asymmetric keying material).

 When authorization servers bind symmetric keys to access tokens, they
 SHOULD scope these access tokens to a specific permission.

 In certain situations, it may be necessary to revoke an access token
 that is still valid. Client-initiated revocation is specified in
 [RFC7009] for OAuth 2.0. Other revocation mechanisms are currently
 not specified, as the underlying assumption in OAuth is that access
 tokens are issued with a relatively short lifetime. This may not
 hold true for disconnected constrained devices needing access tokens
 with relatively long lifetimes and would therefore necessitate
 further standardization work that is out of scope for this document.

6.2. Communication Security

 Communication with the authorization server MUST use confidentiality
 protection. This step is extremely important since the client or the
 RS may obtain the proof-of-possession key from the authorization
 server for use with a specific access token. Not using
 confidentiality protection exposes this secret (and the access token)
 to an eavesdropper, thereby completely negating proof-of-possession
 security. The requirements for communication security of profiles
 are specified in Section 5.

 Additional protection for the access token can be applied by
 encrypting it, for example, encryption of CWTs is specified in
 Section 7.1 of [RFC8392]. Such additional protection can be
 necessary if the token is later transferred over an insecure
 connection (e.g., when it is sent to the authz-info endpoint).

 Care must be taken by developers to prevent leakage of the PoP
 credentials (i.e., the private key or the symmetric key). An
 adversary in possession of the PoP credentials bound to the access
 token will be able to impersonate the client. Be aware that this is
 a real risk with many constrained environments, since adversaries may
 get physical access to the devices and can therefore use physical
 extraction techniques to gain access to memory contents. This risk
 can be mitigated to some extent by making sure that keys are
 refreshed frequently, by using software isolation techniques, and by
 using hardware security.

6.3. Long-Term Credentials

 Both the clients and RSs have long-term credentials that are used to
 secure communications and authenticate to the AS. These credentials
 need to be protected against unauthorized access. In constrained
 devices deployed in publicly accessible places, such protection can
 be difficult to achieve without specialized hardware (e.g., secure
 key storage memory).

 If credentials are lost or compromised, the operator of the affected
 devices needs to have procedures to invalidate any access these
 credentials give and needs to revoke tokens linked to such
 credentials. The loss of a credential linked to a specific device
 MUST NOT lead to a compromise of other credentials not linked to that
 device; therefore, secret keys used for authentication MUST NOT be
 shared between more than two parties.

 Operators of the clients or RSs SHOULD have procedures in place to
 replace credentials that are suspected to have been compromised or
 that have been lost.

 Operators also SHOULD have procedures for decommissioning devices
 that include securely erasing credentials and other security-critical
 material in the devices being decommissioned.

6.4. Unprotected AS Request Creation Hints

 Initially, no secure channel exists to protect the communication
 between the C and RS. Thus, the C cannot determine if the AS Request
 Creation Hints contained in an unprotected response from the RS to an
 unauthorized request (see Section 5.3) are authentic. Therefore, the
 C MUST determine if an AS is authorized to provide access tokens for
 a certain RS. How this determination is implemented is out of scope
 for this document and left to the applications.

6.5. Minimal Security Requirements for Communication

 This section summarizes the minimal requirements for the
 communication security of the different protocol interactions.

 C-AS
 All communication between the client and the authorization server
 MUST be encrypted and integrity and replay protected.
 Furthermore, responses from the AS to the client MUST be bound to
 the client’s request to avoid attacks where the attacker swaps the
 intended response for an older one valid for a previous request.
 This requires that the client and the authorization server have
 previously exchanged either a shared secret or their public keys
 in order to negotiate a secure communication. Furthermore, the
 client MUST be able to determine whether an AS has the authority
 to issue access tokens for a certain RS. This can, for example,
 be done through preconfigured lists or through an online lookup
 mechanism that in turn also must be secured.

 RS-AS
 The communication between the resource server and the
 authorization server via the introspection endpoint MUST be
 encrypted and integrity and replay protected. Furthermore,
 responses from the AS to the RS MUST be bound to the RS’s request.
 This requires that the RS and the authorization server have
 previously exchanged either a shared secret or their public keys
 in order to negotiate a secure communication. Furthermore, the RS
 MUST be able to determine whether an AS has the authority to issue
 access tokens itself. This is usually configured out of band but
 could also be performed through an online lookup mechanism,
 provided that it is also secured in the same way.

 C-RS
 The initial communication between the client and the resource
 server cannot be secured in general, since the RS is not in
 possession of on access token for that client, which would carry
 the necessary parameters. If both parties support DTLS without
 client authentication, it is RECOMMENDED to use this mechanism for
 protecting the initial communication. After the client has
 successfully transmitted the access token to the RS, a secure
 communication protocol MUST be established between the client and
 RS for the actual resource request. This protocol MUST provide
 confidentiality, integrity, and replay protection, as well as a
 binding between requests and responses. This requires that the
 client learned either the RS’s public key or received a symmetric
 proof-of-possession key bound to the access token from the AS.
 The RS must have learned either the client’s public key, a shared
 symmetric key from the claims in the token, or an introspection
 request. Since ACE does not provide profile negotiation between
 the C and RS, the client MUST have learned what profile the RS
 supports (e.g., from the AS or preconfigured) and initiated the
 communication accordingly.

6.6. Token Freshness and Expiration

 An RS that is offline faces the problem of clock drift. Since it
 cannot synchronize its clock with the AS, it may be tricked into
 accepting old access tokens that are no longer valid or have been
 compromised. In order to prevent this, an RS may use the nonce-based
 mechanism (cnonce) defined in Section 5.3 to ensure freshness of an
 Access Token subsequently presented to this RS.

 Another problem with clock drift is that evaluating the standard
 token expiration claim exp can give unpredictable results.

 Acceptable ranges of clock drift are highly dependent on the concrete
 application. Important factors are how long access tokens are valid
 and how critical timely expiration of the access token is.

 The expiration mechanism implemented by the exi claim, based on the
 first time the RS sees the token, was defined to provide a more
 predictable alternative. The exi approach has some drawbacks that
 need to be considered:

 * A malicious client may hold back tokens with the exi claim in
 order to prolong their lifespan.

 * If an RS loses state (e.g., due to an unscheduled reboot), it may
 lose the current values of counters tracking the exi claims of
 tokens it is storing.

 The first drawback is inherent to the deployment scenario and the exi
 solution. It can therefore not be mitigated without requiring the RS
 be online at times. The second drawback can be mitigated by
 regularly storing the value of exi counters to persistent memory.

6.7. Combining Profiles

 There may be use cases where different transport and security
 protocols are allowed for the different interactions, and, if that is
 not explicitly covered by an existing profile, it corresponds to
 combining profiles into a new one. For example, a new profile could
 specify that a previously defined MQTT-TLS profile is used between
 the client and the RS in combination with a previously defined CoAP-
 DTLS profile for interactions between the client and the AS. The new
 profile that combines existing profiles MUST specify how the existing
 profiles’ security requirements remain satisfied. Therefore, any
 profile MUST clearly specify its security requirements and MUST
 document if its security depends on the combination of various
 protocol interactions.

6.8. Unprotected Information

 Communication with the authz-info endpoint, as well as the various
 error responses defined in this framework, potentially includes
 sending information over an unprotected channel. These messages may
 leak information to an adversary or may be manipulated by active
 attackers to induce incorrect behavior. For example, error responses
 for requests to the authorization information endpoint can reveal
 information about an otherwise opaque access token to an adversary
 who has intercepted this token.

 As far as error messages are concerned, this framework is written
 under the assumption that, in general, the benefits of detailed error
 messages outweigh the risk due to information leakage. For
 particular use cases where this assessment does not apply, detailed
 error messages can be replaced by more generic ones.

 In some scenarios, it may be possible to protect the communication
 with the authz-info endpoint (e.g., through DTLS with only server-
 side authentication). In cases where this is not possible, it is
 RECOMMENDED to use encrypted CWTs or tokens that are opaque
 references and need to be subjected to introspection by the RS.

 If the initial Unauthorized Resource Request message (see
 Section 5.2) is used, the client MUST make sure that it is not
 sending sensitive content in this request. While GET and DELETE
 requests only reveal the target URI of the resource, POST and PUT
 requests would reveal the whole payload of the intended operation.

 Since the client is not authenticated at the point when it is
 submitting an access token to the authz-info endpoint, attackers may
 be pretending to be a client and trying to trick an RS to use an

 obsolete profile that in turn specifies a vulnerable security
 mechanism via the authz-info endpoint. Such an attack would require
 a valid access token containing an ace_profile claim requesting the
 use of said obsolete profile. Resource owners should update the
 configuration of their RSs to prevent them from using such obsolete
 profiles.

6.9. Identifying Audiences

 The aud claim, as defined in [RFC7519], and the equivalent audience
 parameter from [RFC8693] are intentionally vague on how to match the
 audience value to a specific RS. This is intended to allow
 application-specific semantics to be used. This section attempts to
 give some general guidance for the use of audiences in constrained
 environments.

 URLs are not a good way of identifying mobile devices that can switch
 networks and thus be associated with new URLs. If the audience
 represents a single RS and asymmetric keys are used, the RS can be
 uniquely identified by a hash of its public key. If this approach is
 used, it is RECOMMENDED to apply the procedure from Section 3 of
 [RFC6920].

 If the audience addresses a group of resource servers, the mapping of
 a group identifier to an individual RS has to be provisioned to each
 RS before the group-audience is usable. Managing dynamic groups
 could be an issue if any RS is not always reachable when the groups’
 memberships change. Furthermore, issuing access tokens bound to
 symmetric proof-of-possession keys that apply to a group-audience is
 problematic, as an RS that is in possession of the access token can
 impersonate the client towards the other RSs that are part of the
 group. It is therefore NOT RECOMMENDED to issue access tokens bound
 to a group-audience and symmetric proof-of possession keys.

 Even the client must be able to determine the correct values to put
 into the audience parameter in order to obtain a token for the
 intended RS. Errors in this process can lead to the client
 inadvertently obtaining a token for the wrong RS. The correct values
 for audience can either be provisioned to the client as part of its
 configuration or dynamically looked up by the client in some
 directory. In the latter case, the integrity and correctness of the
 directory data must be assured. Note that the audience hint provided
 by the RS as part of the AS Request Creation Hints (Section 5.3) is
 not typically source authenticated and integrity protected and should
 therefore not be treated a trusted value.

6.10. Denial of Service Against or with Introspection

 The optional introspection mechanism provided by OAuth and supported
 in the ACE framework allows for two types of attacks that need to be
 considered by implementers.

 First, an attacker could perform a denial-of-service attack against
 the introspection endpoint at the AS in order to prevent validation
 of access tokens. To maintain the security of the system, an RS that
 is configured to use introspection MUST NOT allow access based on a
 token for which it couldn’t reach the introspection endpoint.

 Second, an attacker could use the fact that an RS performs
 introspection to perform a denial-of-service attack against that RS
 by repeatedly sending tokens to its authz-info endpoint that require
 an introspection call. The RS can mitigate such attacks by
 implementing rate limits on how many introspection requests they
 perform in a given time interval for a certain client IP address
 submitting tokens to /authz-info. When that limit has been reached,
 incoming requests from that address are rejected for a certain amount
 of time. A general rate limit on the introspection requests should
 also be considered in order to mitigate distributed attacks.

7. Privacy Considerations

 Implementers and users should be aware of the privacy implications of
 the different possible deployments of this framework.

 The AS is in a very central position and can potentially learn
 sensitive information about the clients requesting access tokens. If
 the client credentials grant is used, the AS can track what kind of
 access the client intends to perform. With other grants, this can be
 prevented by the resource owner. To do so, the resource owner needs
 to bind the grants it issues to anonymous, ephemeral credentials that
 do not allow the AS to link different grants and thus different
 access token requests by the same client.

 The claims contained in a token can reveal privacy-sensitive
 information about the client and the RS to any party having access to
 them (whether by processing the content of a self-contained token or
 by introspection). The AS SHOULD be configured to minimize the
 information about clients and RSs disclosed in the tokens it issues.

 If tokens are only integrity protected and not encrypted, they may
 reveal information to attackers listening on the wire or be able to
 acquire the access tokens in some other way. In the case of CWTs,
 the token may, e.g., reveal the audience, the scope, and the
 confirmation method used by the client. The latter may reveal the
 identity of the device or application running the client. This may
 be linkable to the identity of the person using the client (if there
 is a person and not a machine-to-machine interaction).

 Clients using asymmetric keys for proof of possession should be aware
 of the consequences of using the same key pair for proof of
 possession towards different RSs. A set of colluding RSs or an
 attacker able to obtain the access tokens will be able to link the
 requests or even to determine the client’s identity.

 An unprotected response to an unauthorized request (see Section 5.3)
 may disclose information about the RS and/or its existing
 relationship with the C. It is advisable to include as little
 information as possible in an unencrypted response. Even the
 absolute URI of the AS may reveal sensitive information about the
 service that the RS provides. Developers must ensure that the RS
 does not disclose information that has an impact on the privacy of
 the stakeholders in the AS Request Creation Hints. They may choose
 to use a different mechanism for the discovery of the AS if
 necessary. If means of encrypting communication between the C and RS
 already exist, more detailed information may be included with an
 error response to provide the C with sufficient information to react
 on that particular error.

8. IANA Considerations

 This document creates several registries with a registration policy
 of Expert Review; guidelines to the experts are given in
 Section 8.17.

8.1. ACE Authorization Server Request Creation Hints

 This specification establishes the IANA "ACE Authorization Server
 Request Creation Hints" registry.

 The columns of the registry are:

 Name: The name of the parameter.

 CBOR Key: CBOR map key for the parameter. Different ranges of
 values use different registration policies [RFC8126]. Integer
 values from -256 to 255 are designated as Standards Action.
 Integer values from -65536 to -257 and from 256 to 65535 are
 designated as Specification Required. Integer values greater than
 65535 are designated as Expert Review. Integer values less than
 -65536 are marked as Private Use.

 Value Type: The CBOR data types allowable for the values of this

 parameter.

 Reference: This contains a pointer to the public specification of
 the Request Creation Hint abbreviation, if one exists.

 This registry has been initially populated by the values in Table 1.
 The Reference column for all of these entries is this document.

8.2. CoRE Resource Types

 IANA has registered a new Resource Type (rt=) Link Target Attribute
 in the "Resource Type (rt=) Link Target Attribute Values" subregistry
 under the "Constrained RESTful Environments (CoRE) Parameters"
 [IANA.CoreParameters] registry:

 Value: ace.ai
 Description: ACE-OAuth authz-info endpoint resource.
 Reference: RFC 9200

 Specific ACE-OAuth profiles can use this common resource type for
 defining their profile-specific discovery processes.

8.3. OAuth Extensions Errors

 This specification registers the following error values in the "OAuth
 Extensions Error Registry" [IANA.OAuthExtensionsErrorRegistry].

 Name: unsupported_pop_key
 Usage Location: token error response
 Protocol Extension: RFC 9200
 Change Controller: IETF
 Reference: Section 5.8.3 of RFC 9200

 Name: incompatible_ace_profiles
 Usage Location: token error response
 Protocol Extension: RFC 9200
 Change Controller: IETF
 Reference: Section 5.8.3 of RFC 9200

8.4. OAuth Error Code CBOR Mappings

 This specification establishes the IANA "OAuth Error Code CBOR
 Mappings" registry.

 The columns of the registry are:

 Name: The OAuth Error Code name, refers to the name in Section 5.2
 of [RFC6749], e.g., "invalid_request".

 CBOR Value: CBOR abbreviation for this error code. Integer values
 less than -65536 are marked as Private Use; all other values use
 the registration policy Expert Review [RFC8126].

 Reference: This contains a pointer to the public specification of
 the error code abbreviation, if one exists.

 Original Specification: This contains a pointer to the public
 specification of the error code, if one exists.

 This registry has been initially populated by the values in Table 3.
 The Reference column for all of these entries is this document.

8.5. OAuth Grant Type CBOR Mappings

 This specification establishes the IANA "OAuth Grant Type CBOR
 Mappings" registry.

 The columns of this registry are:

 Name: The name of the grant type, as specified in Section 1.3 of
 [RFC6749].

 CBOR Value: CBOR abbreviation for this grant type. Integer values
 less than -65536 are marked as Private Use; all other values use
 the registration policy Expert Review [RFC8126].

 Reference: This contains a pointer to the public specification of
 the grant type abbreviation, if one exists.

 Original Specification: This contains a pointer to the public
 specification of the grant type, if one exists.

 This registry has been initially populated by the values in Table 4.
 The Reference column for all of these entries is this document.

8.6. OAuth Access Token Types

 This section registers the following new token type in the "OAuth
 Access Token Types" registry [IANA.OAuthAccessTokenTypes].

 Name: PoP
 Additional Token Endpoint Response Parameters: cnf, rs_cnf (see
 Section 3.1 of [RFC8747] and Section 3.2 of [RFC9201]).
 HTTP Authentication Scheme(s): N/A
 Change Controller: IETF
 Reference: RFC 9200

8.7. OAuth Access Token Type CBOR Mappings

 This specification establishes the IANA "OAuth Access Token Type CBOR
 Mappings" registry.

 The columns of this registry are:

 Name: The name of the token type, as registered in the "OAuth Access
 Token Types" registry, e.g., "Bearer".

 CBOR Value: CBOR abbreviation for this token type. Integer values
 less than -65536 are marked as Private Use; all other values use
 the registration policy Expert Review [RFC8126].

 Reference: This contains a pointer to the public specification of
 the OAuth token type abbreviation, if one exists.

 Original Specification: This contains a pointer to the public
 specification of the OAuth token type, if one exists.

8.7.1. Initial Registry Contents

 Name: Bearer
 CBOR Value: 1
 Reference: RFC 9200
 Original Specification: [RFC6749]

 Name: PoP
 CBOR Value: 2
 Reference: RFC 9200
 Original Specification: RFC 9200

8.8. ACE Profiles

 This specification establishes the IANA "ACE Profile" registry.

 The columns of this registry are:

 Name: The name of the profile to be used as the value of the profile
 attribute.

 Description: Text giving an overview of the profile and the context
 it is developed for.

 CBOR Value: CBOR abbreviation for this profile name. Different

 ranges of values use different registration policies [RFC8126].
 Integer values from -256 to 255 are designated as Standards
 Action. Integer values from -65536 to -257 and from 256 to 65535
 are designated as Specification Required. Integer values greater
 than 65535 are designated as Expert Review. Integer values less
 than -65536 are marked as Private Use.

 Reference: This contains a pointer to the public specification of
 the profile abbreviation, if one exists.

8.9. OAuth Parameters

 This specification registers the following parameter in the "OAuth
 Parameters" registry [IANA.OAuthParameters]:

 Name: ace_profile
 Parameter Usage Location: token response
 Change Controller: IETF
 Reference: Sections 5.8.2 and 5.8.4.3 of RFC 9200

8.10. OAuth Parameters CBOR Mappings

 This specification establishes the IANA "OAuth Parameters CBOR
 Mappings" registry.

 The columns of this registry are:

 Name: The OAuth Parameter name, refers to the name in the OAuth
 parameter registry, e.g., client_id.

 CBOR Key: CBOR map key for this parameter. Integer values less than
 -65536 are marked as Private Use; all other values use the
 registration policy Expert Review [RFC8126].

 Value Type: The allowable CBOR data types for values of this
 parameter.

 Reference: This contains a pointer to the public specification of
 the OAuth parameter abbreviation, if one exists.

 Original Specification This contains a pointer to the public
 specification of the OAuth parameter, if one exists.

 This registry has been initially populated by the values in Table 5.
 The Reference column for all of these entries is this document.

8.11. OAuth Introspection Response Parameters

 This specification registers the following parameters in the "OAuth
 Token Introspection Response" registry
 [IANA.TokenIntrospectionResponse].

 Name: ace_profile
 Description: The ACE profile used between the client and RS.
 Change Controller: IETF
 Reference: Section 5.9.2 of RFC 9200

 Name: cnonce
 Description: "client-nonce". A nonce previously provided to the AS
 by the RS via the client. Used to verify token freshness when the
 RS cannot synchronize its clock with the AS.
 Change Controller: IETF
 Reference: Section 5.9.2 of RFC 9200

 Name cti
 Description "CWT ID". The identifier of a CWT as defined in
 [RFC8392].
 Change Controller IETF
 Reference Section 5.9.2 of RFC 9200

 Name: exi

 Description: "Expires in". Lifetime of the token in seconds from
 the time the RS first sees it. Used to implement a weaker form of
 token expiration for devices that cannot synchronize their
 internal clocks.
 Change Controller: IETF
 Reference: Section 5.9.2 of RFC 9200

8.12. OAuth Token Introspection Response CBOR Mappings

 This specification establishes the IANA "OAuth Token Introspection
 Response CBOR Mappings" registry.

 The columns of this registry are:

 Name: The OAuth Parameter name, refers to the name in the OAuth
 parameter registry, e.g., client_id.

 CBOR Key: CBOR map key for this parameter. Integer values less than
 -65536 are marked as Private Use; all other values use the
 registration policy Expert Review [RFC8126].

 Value Type: The allowable CBOR data types for values of this
 parameter.

 Reference: This contains a pointer to the public specification of
 the introspection response parameter abbreviation, if one exists.

 Original Specification This contains a pointer to the public
 specification of the OAuth Token Introspection parameter, if one
 exists.

 This registry has been initially populated by the values in Table 6.
 The Reference column for all of these entries is this document.

 Note that the mappings of parameters corresponding to claim names
 intentionally coincide with the CWT claim name mappings from
 [RFC8392].

8.13. JSON Web Token Claims

 This specification registers the following new claims in the "JSON
 Web Token Claims" subregistry under the "JSON Web Token (JWT)"
 registry [IANA.JsonWebTokenClaims]:

 Claim Name: ace_profile
 Claim Description: The ACE profile a token is supposed to be used
 with.
 Change Controller: IETF
 Reference: Section 5.10 of RFC 9200

 Claim Name: cnonce
 Claim Description: "client-nonce". A nonce previously provided to
 the AS by the RS via the client. Used to verify token freshness
 when the RS cannot synchronize its clock with the AS.
 Change Controller: IETF
 Reference: Section 5.10 of RFC 9200

 Claim Name: exi
 Claim Description: "Expires in". Lifetime of the token in seconds
 from the time the RS first sees it. Used to implement a weaker
 form of token expiration for devices that cannot synchronize their
 internal clocks.
 Change Controller: IETF
 Reference: Section 5.10.3 of RFC 9200

8.14. CBOR Web Token Claims

 This specification registers the following new claims in the "CBOR
 Web Token (CWT) Claims" registry [IANA.CborWebTokenClaims].

 Claim Name: ace_profile

 Claim Description: The ACE profile a token is supposed to be used
 with.
 JWT Claim Name: ace_profile
 Claim Key: 38
 Claim Value Type: integer
 Change Controller: IETF
 Reference: Section 5.10 of RFC 9200

 Claim Name: cnonce
 Claim Description: The client-nonce sent to the AS by the RS via the
 client.
 JWT Claim Name: cnonce
 Claim Key: 39
 Claim Value Type: byte string
 Change Controller: IETF
 Reference: Section 5.10 of RFC 9200

 Claim Name: exi
 Claim Description: The expiration time of a token measured from when
 it was received at the RS in seconds.
 JWT Claim Name: exi
 Claim Key: 40
 Claim Value Type: unsigned integer
 Change Controller: IETF
 Reference: Section 5.10.3 of RFC 9200

 Claim Name: scope
 Claim Description: The scope of an access token, as defined in
 [RFC6749].
 JWT Claim Name: scope
 Claim Key: 9
 Claim Value Type: byte string or text string
 Change Controller: IETF
 Reference: Section 4.2 of [RFC8693]

8.15. Media Type Registration

 This specification registers the "application/ace+cbor" media type
 for messages of the protocols defined in this document carrying
 parameters encoded in CBOR. This registration follows the procedures
 specified in [RFC6838].

 Type name: application

 Subtype name: ace+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: Must be encoded as a CBOR map containing
 the protocol parameters defined in RFC 9200.

 Security considerations: See Section 6 of RFC 9200

 Interoperability considerations: N/A

 Published specification: RFC 9200

 Applications that use this media type: The type is used by
 authorization servers, clients, and resource servers that support
 the ACE framework with CBOR encoding, as specified in RFC 9200.

 Fragment identifier considerations: N/A

 Additional information: N/A

 Person & email address to contact for further information:
 IESG <iesg@ietf.org>

 Intended usage: COMMON

 Restrictions on usage: none

 Author: Ludwig Seitz <ludwig.seitz@combitech.se>

 Change controller: IETF

8.16. CoAP Content-Formats

 The following entry has been registered in the "CoAP Content-Formats"
 registry:

 Media Type: application/ace+cbor
 Encoding: -
 ID: 19
 Reference: RFC 9200

8.17. Expert Review Instructions

 All of the IANA registries established in this document are defined
 to use a registration policy of Expert Review. This section gives
 some general guidelines for what the experts should be looking for,
 but they are being designated as experts for a reason, so they should
 be given substantial latitude.

 Expert Reviewers should take into consideration the following points:

 * Point squatting should be discouraged. Reviewers are encouraged
 to get sufficient information for registration requests to ensure
 that the usage is not going to duplicate one that is already
 registered and that the point is likely to be used in deployments.
 The zones tagged as Private Use are intended for testing purposes
 and closed environments; code points in other ranges should not be
 assigned for testing.

 * Specifications are needed for the first-come, first-serve range if
 they are expected to be used outside of closed environments in an
 interoperable way. When specifications are not provided, the
 description provided needs to have sufficient information to
 identify what the point is being used for.

 * Experts should take into account the expected usage of fields when
 approving point assignment. The fact that there is a range for
 Standards Track documents does not mean that a Standards Track
 document cannot have points assigned outside of that range. The
 length of the encoded value should be weighed against how many
 code points of that length are left, i.e., the size of device it
 will be used on.

 * Since a high degree of overlap is expected between these
 registries and the contents of the OAuth parameters
 [IANA.OAuthParameters] registries, experts should require new
 registrations to maintain alignment with parameters from OAuth
 that have comparable functionality. Deviation from this alignment
 should only be allowed if there are functional differences that
 are motivated by the use case and that cannot be easily or
 efficiently addressed by comparable OAuth parameters.

9. References

9.1. Normative References

 [IANA.CborWebTokenClaims]
 IANA, "CBOR Web Token (CWT) Claims",
 <https://www.iana.org/assignments/cwt>.

 [IANA.CoreParameters]
 IANA, "Constrained RESTful Environments (CoRE)
 Parameters",
 <https://www.iana.org/assignments/core-parameters>.

 [IANA.JsonWebTokenClaims]
 IANA, "JSON Web Token Claims",
 <https://www.iana.org/assignments/jwt>.

 [IANA.OAuthAccessTokenTypes]
 IANA, "OAuth Access Token Types",
 <https://www.iana.org/assignments/oauth-parameters>.

 [IANA.OAuthExtensionsErrorRegistry]
 IANA, "OAuth Extensions Error Registry",
 <https://www.iana.org/assignments/oauth-parameters>.

 [IANA.OAuthParameters]
 IANA, "OAuth Parameters",
 <https://www.iana.org/assignments/oauth-parameters>.

 [IANA.TokenIntrospectionResponse]
 IANA, "OAuth Token Introspection Response",
 <https://www.iana.org/assignments/oauth-parameters>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,
 <https://www.rfc-editor.org/info/rfc6920>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for

 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8693] Jones, M., Nadalin, A., Campbell, B., Ed., Bradley, J.,
 and C. Mortimore, "OAuth 2.0 Token Exchange", RFC 8693,
 DOI 10.17487/RFC8693, January 2020,
 <https://www.rfc-editor.org/info/rfc8693>.

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/info/rfc8747>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

 [RFC9201] Seitz, L., "Additional OAuth Parameters for Authentication
 and Authorization in Constrained Environments (ACE)",
 RFC 9201, DOI 10.17487/RFC9201, August 2022,
 <https://www.rfc-editor.org/info/rfc9201>.

9.2. Informative References

 [BLE] Bluetooth Special Interest Group, "Core Specification
 5.3", Section 4.4, July 2021,
 <https://www.bluetooth.com/specifications/bluetooth-core-
 specification/>.

 [DCAF] Gerdes, S., Bergmann, O., and C. Bormann, "Delegated CoAP
 Authentication and Authorization Framework (DCAF)", Work
 in Progress, Internet-Draft, draft-gerdes-ace-dcaf-
 authorize-04, 19 October 2015,
 <https://datatracker.ietf.org/doc/html/draft-gerdes-ace-
 dcaf-authorize-04>.

 [Margi10impact]
 Margi, C., de Oliveira, B., de Sousa, G., Simplicio Jr,
 M., Barreto, P., Carvalho, T., Naeslund, M., and R. Gold,
 "Impact of Operating Systems on Wireless Sensor Networks
 (Security) Applications and Testbeds", Proceedings of the
 19th International Conference on Computer Communications
 and Networks, DOI 10.1109/ICCCN.2010.5560028, August 2010,
 <https://doi.org/10.1109/ICCCN.2010.5560028>.

 [MQTT5.0] Banks, A., Briggs, E., Borgendale, K., and R. Gupta, "MQTT
 Version 5.0", OASIS Standard, March 2019,
 <https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-
 v5.0.html>.

 [OAUTH-RPCC]

 Seitz, L., Erdtman, S., and M. Tiloca, "Raw-Public-Key and
 Pre-Shared-Key as OAuth client credentials", Work in
 Progress, Internet-Draft, draft-erdtman-oauth-rpcc-00, 21
 November 2017, <https://datatracker.ietf.org/doc/html/
 draft-erdtman-oauth-rpcc-00>.

 [POP-KEY-DIST]
 Bradley, J., Hunt, P., Jones, M., Tschofenig, H., and M.
 Meszaros, "OAuth 2.0 Proof-of-Possession: Authorization
 Server to Client Key Distribution", Work in Progress,
 Internet-Draft, draft-ietf-oauth-pop-key-distribution-07,
 27 March 2019, <https://datatracker.ietf.org/doc/html/
 draft-ietf-oauth-pop-key-distribution-07>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
 August 2013, <https://www.rfc-editor.org/info/rfc7009>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7521] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC7744] Seitz, L., Ed., Gerdes, S., Ed., Selander, G., Mani, M.,
 and S. Kumar, "Use Cases for Authentication and
 Authorization in Constrained Environments", RFC 7744,
 DOI 10.17487/RFC7744, January 2016,
 <https://www.rfc-editor.org/info/rfc7744>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
 BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
 <https://www.rfc-editor.org/info/rfc8252>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8516] Keranen, A., ""Too Many Requests" Response Code for the
 Constrained Application Protocol", RFC 8516,
 DOI 10.17487/RFC8516, January 2019,
 <https://www.rfc-editor.org/info/rfc8516>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8628] Denniss, W., Bradley, J., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Device Authorization Grant", RFC 8628,
 DOI 10.17487/RFC8628, August 2019,
 <https://www.rfc-editor.org/info/rfc8628>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC9110] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/info/rfc9110>.

 [RFC9113] Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC 9113,
 DOI 10.17487/RFC9113, June 2022,
 <https://www.rfc-editor.org/info/rfc9113>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/info/rfc9147>.

 [RFC9202] Gerdes, S., Bergmann, O., Bormann, C., Selander, G., and
 L. Seitz, "Datagram Transport Layer Security (DTLS)
 Profile for Authentication and Authorization for
 Constrained Environments (ACE)", RFC 9202,
 DOI 10.17487/RFC9202, August 2022,
 <https://www.rfc-editor.org/info/rfc9202>.

 [RFC9203] Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
 "The Object Security for Constrained RESTful Environments
 (OSCORE) Profile of the Authentication and Authorization
 for Constrained Environments (ACE) Framework", RFC 9203,
 DOI 10.17487/RFC9203, August 2022,
 <https://www.rfc-editor.org/info/rfc9203>.

Appendix A. Design Justification

 This section provides further insight into the design decisions of
 the solution documented in this document. Section 3 lists several
 building blocks and briefly summarizes their importance. The
 justification for offering some of those building blocks, as opposed
 to using OAuth 2.0 as is, is given below.

 Common IoT constraints are:

 Low Power Radio:
 Many IoT devices are equipped with a small battery that needs to
 last for a long time. For many constrained wireless devices, the
 highest energy cost is associated to transmitting or receiving

 messages (roughly by a factor of 10 compared to AES)
 [Margi10impact]. It is therefore important to keep the total
 communication overhead low, including minimizing the number and
 size of messages sent and received, which has an impact of choice
 on the message format and protocol. By using CoAP over UDP and
 CBOR-encoded messages, some of these aspects are addressed.
 Security protocols contribute to the communication overhead and
 can, in some cases, be optimized. For example, authentication and
 key establishment may, in certain cases where security
 requirements allow, be replaced by the provisioning of security
 context by a trusted third party, using transport or application-
 layer security.

 Low CPU Speed:
 Some IoT devices are equipped with processors that are
 significantly slower than those found in most current devices on
 the Internet. This typically has implications on what timely
 cryptographic operations a device is capable of performing, which
 in turn impacts, e.g., protocol latency. Symmetric key
 cryptography may be used instead of the computationally more
 expensive public key cryptography where the security requirements
 so allow, but this may also require support for trusted, third-
 party-assisted secret key establishment using transport- or
 application-layer security.

 Small Amount of Memory:
 Microcontrollers embedded in IoT devices are often equipped with
 only a small amount of RAM and flash memory, which places
 limitations on what kind of processing can be performed and how
 much code can be put on those devices. To reduce code size, fewer
 and smaller protocol implementations can be put on the firmware of
 such a device. In this case, CoAP may be used instead of HTTP,
 symmetric-key cryptography may be used instead of public-key
 cryptography, and CBOR may be used instead of JSON. An
 authentication and key establishment protocol, e.g., the DTLS
 handshake, in comparison with assisted key establishment, also has
 an impact on memory and code footprints.

 User Interface Limitations:
 Protecting access to resources is both an important security as
 well as privacy feature. End users and enterprise customers may
 not want to give access to the data collected by their IoT device
 or to functions it may offer to third parties. Since the
 classical approach of requesting permissions from end users via a
 rich user interface does not work in many IoT deployment
 scenarios, these functions need to be delegated to user-controlled
 devices that are better suitable for such tasks, such as
 smartphones and tablets.

 Communication Constraints:
 In certain constrained settings, an IoT device may not be able to
 communicate with a given device at all times. Devices may be
 sleeping or just disconnected from the Internet because of general
 lack of connectivity in the area, cost reasons, or security
 reasons, e.g., to avoid an entry point for denial-of-service
 attacks.

 The communication interactions this framework builds upon (as
 shown graphically in Figure 1) may be accomplished using a variety
 of different protocols, and not all parts of the message flow are
 used in all applications due to the communication constraints.
 Deployments making use of CoAP are expected, but this framework is
 not limited to them. Other protocols, such as HTTP or Bluetooth
 Smart communication, that do not necessarily use IP could also be
 used. The latter raises the need for application-layer security
 over the various interfaces.

 In the light of these constraints, we have made the following design
 decisions:

 CBOR, COSE, CWT:

 When using this framework, it is RECOMMENDED to use CBOR [RFC8949]
 as the data format. Where CBOR data needs to be protected, the
 use of COSE [RFC8152] is RECOMMENDED. Furthermore, where self-
 contained tokens are needed, it is RECOMMENDED to use CWT
 [RFC8392]. These measures aim at reducing the size of messages
 sent over the wire, the RAM size of data objects that need to be
 kept in memory, and the size of libraries that devices need to
 support.

 CoAP:
 When using this framework, it is RECOMMENDED to use CoAP [RFC7252]
 instead of HTTP. This does not preclude the use of other
 protocols specifically aimed at constrained devices, e.g.,
 Bluetooth Low Energy (see Section 3.2). This aims again at
 reducing the size of messages sent over the wire, the RAM size of
 data objects that need to be kept in memory, and the size of
 libraries that devices need to support.

 Access Information:
 This framework defines the name "Access Information" for data
 concerning the RS that the AS returns to the client in an access
 token response (see Section 5.8.2). This aims at enabling
 scenarios where a powerful client supporting multiple profiles
 needs to interact with an RS for which it does not know the
 supported profiles and the raw public key.

 Proof of Possession:
 This framework makes use of proof-of-possession tokens, using the
 cnf claim [RFC8747]. A request parameter cnf and a Response
 parameter cnf, both having a value space semantically and
 syntactically identical to the cnf claim, are defined for the
 token endpoint to allow requesting and stating confirmation keys.
 This aims at making token theft harder. Token theft is
 specifically relevant in constrained use cases, as communication
 often passes through middleboxes, which could be able to steal
 bearer tokens and use them to gain unauthorized access.

 Authz-Info endpoint:
 This framework introduces a new way of providing access tokens to
 an RS by exposing an authz-info endpoint to which access tokens
 can be POSTed. This aims at reducing the size of the request
 message and the code complexity at the RS. The size of the
 request message is problematic, since many constrained protocols
 have severe message size limitations at the physical layer (e.g.,
 in the order of 100 bytes). This means that larger packets get
 fragmented, which in turn combines badly with the high rate of
 packet loss and the need to retransmit the whole message if one
 packet gets lost. Thus, separating sending of the request and
 sending of the access tokens helps to reduce fragmentation.

 Client Credentials Grant:
 In this framework, the use of the client credentials grant is
 RECOMMENDED for machine-to-machine communication use cases, where
 manual intervention of the resource owner to produce a grant token
 is not feasible. The intention is that the resource owner would
 instead prearrange authorization with the AS based on the client’s
 own credentials. The client can then (without manual
 intervention) obtain access tokens from the AS.

 Introspection:
 In this framework, the use of access token introspection is
 RECOMMENDED in cases where the client is constrained in a way that
 it cannot easily obtain new access tokens (i.e., it has
 connectivity issues that prevent it from communicating with the
 AS). In that case, it is RECOMMENDED to use a long-term token
 that could be a simple reference. The RS is assumed to be able to
 communicate with the AS and can therefore perform introspection in
 order to learn the claims associated with the token reference.
 The advantage of such an approach is that the resource owner can
 change the claims associated to the token reference without having
 to be in contact with the client, thus granting or revoking access

 rights.

Appendix B. Roles and Responsibilities

 Resource Owner
 * Make sure that the RS is registered at the AS. This includes
 making known to the AS which profiles, token_type, scopes, and
 key types (symmetric/asymmetric) the RS supports. Also making
 it known to the AS which audience(s) the RS identifies itself
 with.

 * Make sure that clients can discover the AS that is in charge of
 the RS.

 * If the client-credentials grant is used, make sure that the AS
 has the necessary, up-to-date access control policies for the
 RS.

 Requesting Party
 * Make sure that the client is provisioned the necessary
 credentials to authenticate to the AS.

 * Make sure that the client is configured to follow the security
 requirements of the requesting party when issuing requests
 (e.g., minimum communication security requirements or trust
 anchors).

 * Register the client at the AS. This includes making known to
 the AS which profiles, token_types, and key types (symmetric/
 asymmetric) for the client.

 Authorization Server
 * Register the RS and manage corresponding security contexts.

 * Register clients and authentication credentials.

 * Allow resource owners to configure and update access control
 policies related to their registered RSs.

 * Expose the token endpoint to allow clients to request tokens.

 * Authenticate clients that wish to request a token.

 * Process a token request using the authorization policies
 configured for the RS.

 * Optionally, expose the introspection endpoint that allows RSs
 to submit token introspection requests.

 * If providing an introspection endpoint, authenticate RSs that
 wish to get an introspection response.

 * If providing an introspection endpoint, process token
 introspection requests.

 * Optionally, handle token revocation.

 * Optionally, provide discovery metadata. See [RFC8414].

 * Optionally, handle refresh tokens.

 Client
 * Discover the AS in charge of the RS that is to be targeted with
 a request.

 * Submit the token request (see step (A) of Figure 1).

 - Authenticate to the AS.

 - Optionally (if not preconfigured), specify which RS, which
 resource(s), and which action(s) the request(s) will target.

 - If raw public keys (RPKs) or certificates are used, make
 sure the AS has the right RPK or certificate for this
 client.

 * Process the access token and Access Information (see step (B)
 of Figure 1).

 - Check that the Access Information provides the necessary
 security parameters (e.g., PoP key or information on
 communication security protocols supported by the RS).

 - Safely store the proof-of-possession key.

 - If provided by the AS, safely store the refresh token.

 * Send the token and request to the RS (see step (C) of
 Figure 1).

 - Authenticate towards the RS (this could coincide with the
 proof-of-possession process).

 - Transmit the token as specified by the AS (default is to the
 authz-info endpoint; alternative options are specified by
 profiles).

 - Perform the proof-of-possession procedure as specified by
 the profile in use (this may already have been taken care of
 through the authentication procedure).

 * Process the RS response (see step (F) of Figure 1) of the RS.

 Resource Server
 * Expose a way to submit access tokens. By default, this is the
 authz-info endpoint.

 * Process an access token.

 - Verify the token is from a recognized AS.

 - Check the token’s integrity.

 - Verify that the token applies to this RS.

 - Check that the token has not expired (if the token provides
 expiration information).

 - Store the token so that it can be retrieved in the context
 of a matching request.

 Note: The order proposed here is not normative; any process
 that arrives at an equivalent result can be used. A noteworthy
 consideration is whether one can use cheap operations early on
 to quickly discard nonapplicable or invalid tokens before
 performing expensive cryptographic operations (e.g., doing an
 expiration check before verifying a signature).

 * Process a request.

 - Set up communication security with the client.

 - Authenticate the client.

 - Match the client against existing tokens.

 - Check that tokens belonging to the client actually authorize
 the requested action.

 - Optionally, check that the matching tokens are still valid,
 using introspection (if this is possible.)

 * Send a response following the agreed upon communication
 security mechanism(s).

 * Safely store credentials, such as raw public keys, for
 authentication or proof-of-possession keys linked to access
 tokens.

Appendix C. Requirements on Profiles

 This section lists the requirements on profiles of this framework for
 the convenience of profile designers.

 * Optionally, define new methods for the client to discover the
 necessary permissions and AS for accessing a resource different
 from the one proposed in Sections 5.1 and 4

 * Optionally, specify new grant types (Section 5.4).

 * Optionally, define the use of client certificates as client
 credential type (Section 5.5).

 * Specify the communication protocol the client and RS must use
 (e.g., CoAP) (Sections 5 and 5.8.4.3).

 * Specify the security protocol the client and RS must use to
 protect their communication (e.g., OSCORE or DTLS). This must
 provide encryption and integrity and replay protection
 (Section 5.8.4.3).

 * Specify how the client and the RS mutually authenticate
 (Section 4).

 * Specify the proof-of-possession protocol(s) and how to select one
 if several are available. Also specify which key types (e.g.,
 symmetric/asymmetric) are supported by a specific proof-of-
 possession protocol (Section 5.8.4.2).

 * Specify a unique ace_profile identifier (Section 5.8.4.3).

 * If introspection is supported, specify the communication and
 security protocol for introspection (Section 5.9).

 * Specify the communication and security protocol for interactions
 between the client and AS. This must provide encryption,
 integrity protection, replay protection, and a binding between
 requests and responses (Sections 5 and 5.8).

 * Specify how/if the authz-info endpoint is protected, including how
 error responses are protected (Section 5.10.1).

 * Optionally, define other methods of token transport than the
 authz-info endpoint (Section 5.10.1).

Appendix D. Assumptions on AS Knowledge about the C and RS

 This section lists the assumptions on what an AS should know about a
 client and an RS in order to be able to respond to requests to the
 token and introspection endpoints. How this information is
 established is out of scope for this document.

 * The identifier of the client or RS.

 * The profiles that the client or RS supports.

 * The scopes that the RS supports.

 * The audiences that the RS identifies with.

 * The key types (e.g., pre-shared symmetric key, raw public key, key
 length, and other key parameters) that the client or RS supports.

 * The types of access tokens the RS supports (e.g., CWT).

 * If the RS supports CWTs, the COSE parameters for the crypto
 wrapper (e.g., algorithm, key-wrap algorithm, and key-length) that
 the RS supports.

 * The expiration time for access tokens issued to this RS (unless
 the RS accepts a default time chosen by the AS).

 * The symmetric key shared between the client and AS (if any).

 * The symmetric key shared between the RS and AS (if any).

 * The raw public key of the client or RS (if any).

 * Whether the RS has synchronized time (and thus is able to use the
 exp claim) or not.

Appendix E. Differences to OAuth 2.0

 This document adapts OAuth 2.0 to be suitable for constrained
 environments. This section lists the main differences from the
 normative requirements of OAuth 2.0.

 Use of TLS
 OAuth 2.0 requires the use of TLS to protect the communication
 between the AS and client when requesting an access token, between
 the client and RS when accessing a resource, and between the AS
 and RS if introspection is used. This framework requires similar
 security properties but does not require that they be realized
 with TLS. See Section 5.

 Cardinality of grant_type parameter
 In client-to-AS requests using OAuth 2.0, the grant_type parameter
 is required (per [RFC6749]). In this framework, this parameter is
 optional. See Section 5.8.1.

 Encoding of scope parameter
 In client-to-AS requests using OAuth 2.0, the scope parameter is
 string encoded (per [RFC6749]). In this framework, this parameter
 may also be encoded as a byte string. See Section 5.8.1.

 Cardinality of token_type parameter
 In AS-to-client responses using OAuth 2.0, the token_type
 parameter is required (per [RFC6749]). In this framework, this
 parameter is optional. See Section 5.8.2.

 Access token retention
 In OAuth 2.0, the access token may be sent with every request to
 the RS. The exact use of access tokens depends on the semantics
 of the application and the session management concept it uses. In
 this framework, the RS must be able to store these tokens for
 later use. See Section 5.10.1.

Appendix F. Deployment Examples

 There is a large variety of IoT deployments, as is indicated in
 Appendix A, and this section highlights a few common variants. This
 section is not normative but illustrates how the framework can be
 applied.

 For each of the deployment variants, there are a number of possible
 security setups between clients, resource servers, and authorization
 servers. The main focus in the following subsections is on how
 authorization of a client request for a resource hosted by an RS is
 performed. This requires the security of the requests and responses
 between the clients and the RS to be considered.

 Note: CBOR diagnostic notation is used for examples of requests and
 responses.

F.1. Local Token Validation

 In this scenario, the case where the resource server is offline is
 considered, i.e., it is not connected to the AS at the time of the
 access request. This access procedure involves steps (A), (B), (C),
 and (F) of Figure 1.

 Since the resource server must be able to verify the access token
 locally, self-contained access tokens must be used.

 This example shows the interactions between a client, the
 authorization server, and a temperature sensor acting as a resource
 server. Message exchanges A and B are shown in Figure 11.

 A: The client first generates a public-private key pair used for
 communication security with the RS.

 The client sends a CoAP POST request to the token endpoint at the
 AS. The security of this request can be transport or application
 layer. It is up the communication security profile to define.
 In the example, it is assumed that both the client and AS have
 performed mutual authentication, e.g., via DTLS. The request
 contains the public key of the client and the audience parameter
 set to "tempSensorInLivingRoom", a value that the temperature
 sensor identifies itself with. The AS evaluates the request and
 authorizes the client to access the resource.

 B: The AS responds with a 2.05 (Content) response containing the
 Access Information, including the access token. The PoP access
 token contains the public key of the client, and the Access
 Information contains the public key of the RS. For communication
 security, this example uses DTLS RawPublicKey between the client
 and the RS. The issued token will have a short validity time,
 i.e., exp close to iat, in order to mitigate attacks using stolen
 client credentials. The token includes claims, such as scope,
 with the authorized access that an owner of the temperature
 device can enjoy. In this example, the scope claim issued by the
 AS informs the RS that the owner of the token that can prove the
 possession of a key is authorized to make a GET request against
 the /temperature resource and a POST request on the /firmware
 resource. Note that the syntax and semantics of the scope claim
 are application specific.

 Note: In this example, it is assumed that the client knows what
 resource it wants to access and is therefore able to request
 specific audience and scope claims for the access token.

 Authorization
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | and mutual authentication
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Content-Format: application/ace+cbor
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | 2.05 | Content-Format: application/ace+cbor
 | | Payload: <Response-Payload>
 | |

 Figure 11: Token Request and Response Using Client Credentials

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 12. Note that the parameter rs_cnf from
 [RFC9201] is used to inform the client about the resource server’s
 public key.

 Request-Payload :

 {
 / audience / 5 : "tempSensorInLivingRoom",
 / client_id / 24 : "myclient",
 / req_cnf / 4 : {
 / COSE_Key / 1 : {
 / kid / 2 : b64’1Bg8vub9tLe1gHMzV76e’,
 / kty / 1 : 2 / EC2 /,
 / crv / -1 : 1 / P-256 /,
 / x / -2 : b64’f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU’,
 / y / -3 : b64’x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0’
 }
 }
 }

 Response-Payload :
 {
 / access_token / 1 : b64’0INDoQEKoQVNKkXfb7xaWqMT’/ .../,
 / rs_cnf / 41 : {
 / COSE_Key / 1 : {
 / kid / 2 : b64’c29tZSBwdWJsaWMga2V5IGlk’,
 / kty / 1 : 2 / EC2 /,
 / crv / -1 : 1 / P-256 /,
 / x / -2 : b64’MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4’,
 / y / -3 : b64’4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM’
 }
 }
 }

 Figure 12: Request and Response Payload Details

 The content of the access token is shown in Figure 13.

 {
 / aud / 3 : "tempSensorInLivingRoom",
 / iat / 6 : 1563451500,
 / exp / 4 : 1563453000,
 / scope / 9 : "temperature_g firmware_p",
 / cnf / 8 : {
 / COSE_Key / 1 : {
 / kid / 2 : b64’1Bg8vub9tLe1gHMzV76e’,
 / kty / 1 : 2 / EC2 /,
 / crv / -1 : 1 / P-256 /,
 / x / -2 : b64’f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU’,
 / y / -3 : b64’x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0’
 }
 }
 }

 Figure 13: Access Token Including Public Key of the Client

 Messages C and F are shown in Figures 14 and 15.

 C: The client then sends the PoP access token to the authz-info
 endpoint at the RS. This is a plain CoAP POST request, i.e., no
 transport or application-layer security is used between the
 client and RS since the token is integrity protected between the
 AS and RS. The RS verifies that the PoP access token was created
 by a known and trusted AS, which it applies to this RS, and that
 it is valid. The RS caches the security context together with
 authorization information about this client contained in the PoP
 access token.

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Payload: 0INDoQEKoQVN ...
 | |
 |<--------+ Header: 2.04 Changed
 | 2.04 |

 | |

 Figure 14: Access Token Provisioning to the RS

 The client and the RS runs the DTLS handshake using the raw public
 keys established in steps B and C.

 The client sends a CoAP GET request to /temperature on the RS over
 DTLS. The RS verifies that the request is authorized based on
 previously established security context.

 F: The RS responds over the same DTLS channel with a CoAP 2.05
 Content response containing a resource representation as payload.

 Resource
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | using Raw Public Keys
 | |
 +-------->| Header: GET (Code=0.01)
 | GET | Uri-Path: "temperature"
 | |
 | |
 | |
 F: |<--------+ Header: 2.05 Content
 | 2.05 | Payload: <sensor value>
 | |

 Figure 15: Resource Request and Response Protected by DTLS

F.2. Introspection Aided Token Validation

 In this deployment scenario, it is assumed that a client is not able
 to access the AS at the time of the access request, whereas the RS is
 assumed to be connected to the back-end infrastructure. Thus, the RS
 can make use of token introspection. This access procedure involves
 steps (A)-(F) of Figure 1 but assumes steps (A) and (B) have been
 carried out during a phase when the client had connectivity to the
 AS.

 Since the client is assumed to be offline, at least for a certain
 period of time, a preprovisioned access token has to be long lived.
 Since the client is constrained, the token will not be self-contained
 (i.e., not a CWT) but instead just a reference. The resource server
 uses its connectivity to learn about the claims associated to the
 access token by using introspection, which is shown in the example
 below.

 In the example, interactions between an offline client (key fob), an
 RS (online lock), and an AS is shown. It is assumed that there is a
 provisioning step where the client has access to the AS. This
 corresponds to message exchanges A and B, which are shown in
 Figure 16.

 Authorization consent from the resource owner can be preconfigured,
 but it can also be provided via an interactive flow with the resource
 owner. An example of this for the key fob case could be that the
 resource owner has a connected car and buys a generic key to use with
 the car. To authorize the key fob, the owner connects it to a
 computer that then provides the UI for the device. After that, OAuth
 2.0 implicit flow can be used to authorize the key for the car at the
 car manufacturer’s AS.

 Note: In this example, the client does not know the exact door it
 will be used to access since the token request is not sent at the
 time of access. So the scope and audience parameters are set quite
 wide to start with, while tailored values narrowing down the claims
 to the specific RS being accessed can be provided to that RS during
 an introspection step.

 A: The client sends a CoAP POST request to the token endpoint at the
 AS. The request contains the audience parameter set to
 "PACS1337" (Physical Access System (PACS)), a value that
 identifies the physical access control system to which the
 individual doors are connected. The AS generates an access token
 as an opaque string, which it can match to the specific client
 and the targeted audience. It furthermore generates a symmetric
 proof-of-possession key. The communication security and
 authentication between the client and AS is assumed to have been
 provided at the transport layer (e.g., via DTLS) using a pre-
 shared security context (pre-shared key (PSK), RPK, or
 certificate).

 B: The AS responds with a CoAP 2.05 Content response, containing as
 payload the Access Information, including the access token and
 the symmetric proof-of-possession key. Communication security
 between the C and RS will be DTLS and PreSharedKey. The PoP key
 is used as the PreSharedKey.

 Note: In this example, we are using a symmetric key for a multi-RS
 audience, which is not recommended normally (see Section 6.9).
 However, in this case, the risk is deemed to be acceptable, since all
 the doors are part of the same physical access control system;
 therefore, the risk of a malicious RS impersonating the client
 towards another RS is low.

 Authorization
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | and mutual authentication
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Content-Format: application/ace+cbor
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | | Content-Format: application/ace+cbor
 | 2.05 | Payload: <Response-Payload>
 | |

 Figure 16: Token Request and Response Using Client Credentials

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 17.

 Request-Payload:
 {
 / client_id / 24 : "keyfob",
 / audience / 5 : "PACS1337"
 }

 Response-Payload:
 {
 / access_token / 1 : b64’VGVzdCB0b2tlbg’,
 / cnf / 8 : {
 / COSE_Key / 1 : {
 / kid / 2 : b64’c29tZSBwdWJsaWMga2V5IGlk’,
 / kty / 1 : 4 / Symmetric /,
 / k / -1 : b64’ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE’
 }
 }
 }

 Figure 17: Request and Response Payload for the C Offline

 In this case, the access token is just an opaque byte string
 referencing the authorization information at the AS.

 C: Next, the client POSTs the access token to the authz-info

 endpoint in the RS. This is a plain CoAP request, i.e., no DTLS
 between the client and RS. Since the token is an opaque string,
 the RS cannot verify it on its own, and thus defers to respond to
 the client with a status code until after step E.

 D: The RS sends the token to the introspection endpoint on the AS
 using a CoAP POST request. In this example, the RS and AS are
 assumed to have performed mutual authentication using a pre-
 shared security context (PSK, RPK, or certificate) with the RS
 acting as the DTLS client.

 E: The AS provides the introspection response (2.05 Content)
 containing parameters about the token. This includes the
 confirmation key (cnf) parameter that allows the RS to verify the
 client’s proof of possession in step F. Note that our example in
 Figure 19 assumes a preestablished key (e.g., one used by the
 client and the RS for a previous token) that is now only
 referenced by its key identifier kid.

 After receiving message E, the RS responds to the client’s POST
 in step C with the CoAP response code 2.01 (Created).

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (T=CON, Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Payload: b64’VGVzdCB0b2tlbg’
 | |
 | | Authorization
 | | Server
 | | |
 | D: +--------->| Header: POST (Code=0.02)
 | | POST | Uri-Path: "introspect"
 | | | Content-Format: application/ace+cbor
 | | | Payload: <Request-Payload>
 | | |
 | E: |<---------+ Header: 2.05 Content
 | | 2.05 | Content-Format: application/ace+cbor
 | | | Payload: <Response-Payload>
 | | |
 | |
 |<--------+ Header: 2.01 Created
 | 2.01 |
 | |

 Figure 18: Token Introspection for the C Offline

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 19.

 Request-Payload:
 {
 / token / 11 : b64’VGVzdCB0b2tlbg’,
 / client_id / 24 : "FrontDoor"
 }

 Response-Payload:
 {
 / active / 10 : true,
 / aud / 3 : "lockOfDoor4711",
 / scope / 9 : "open close",
 / iat / 6 : 1563454000,
 / cnf / 8 : {
 / kid / 3 : b64’c29tZSBwdWJsaWMga2V5IGlk’
 }
 }

 Figure 19: Request and Response Payload for Introspection

 The client uses the symmetric PoP key to establish a DTLS

 PreSharedKey secure connection to the RS. The CoAP request PUT is
 sent to the uri-path /state on the RS, changing the state of the door
 to locked.

 F: The RS responds with an appropriate response over the secure DTLS
 channel.

 Resource
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | using Pre Shared Key
 | |
 +-------->| Header: PUT (Code=0.03)
 | PUT | Uri-Path: "state"
 | | Payload: <new state for the lock>
 | |
 F: |<--------+ Header: 2.04 Changed
 | 2.04 | Payload: <new state for the lock>
 | |

 Figure 20: Resource Request and Response Protected by OSCORE

Acknowledgments

 This document is a product of the ACE Working Group of the IETF.

 Thanks to Eve Maler for her contributions to the use of OAuth 2.0 and
 Unlicensed Mobile Access (UMA) in IoT scenarios, Robert Taylor for
 his discussion input, and MaliÅ¡a VuÄ\215iniÄ\207 for his input on the
 predecessors of this proposal.

 Thanks to the authors of "[POP-KEY-DIST]OAuth 2.0
 Proof-of-Possession: Authorization Server to Client Key Distribution"
 [POP-KEY-DIST], from where parts of the security considerations where
 copied.

 Thanks to Stefanie Gerdes, Olaf Bergmann, and Carsten Bormann for
 contributing their work on AS discovery from "Delegated CoAP
 Authentication and Authorization Framework (DCAF)" [DCAF] (see
 Section 5.1) and the considerations on multiple access tokens.

 Thanks to Jim Schaad and Mike Jones for their comprehensive reviews.

 Thanks to Benjamin Kaduk for his input on various questions related
 to this work.

 Thanks to Cigdem Sengul for some very useful review comments.

 Thanks to Carsten Bormann for contributing the text for the CoRE
 Resource Type registry.

 Thanks to Roman Danyliw for suggesting Appendix E (including its
 contents).

 Ludwig Seitz and GÃ¶ran Selander worked on this document as part of
 the CelticPlus project CyberWI, with funding from Vinnova. Ludwig
 Seitz has also received further funding for this work by Vinnova in
 the context of the CelticNext project CRITISEC.

Authors’ Addresses

 Ludwig Seitz
 Combitech
 DjÃ¤knegatan 31
 SE-211 35 MalmÃ¶
 Sweden
 Email: ludwig.seitz@combitech.com

 GÃ¶ran Selander

 Ericsson
 SE-164 80 Kista
 Sweden
 Email: goran.selander@ericsson.com

 Erik Wahlstroem
 Sweden
 Email: erik@wahlstromstekniska.se

 Samuel Erdtman
 Spotify AB
 Birger Jarlsgatan 61, 4tr
 SE-113 56 Stockholm
 Sweden
 Email: erdtman@spotify.com

 Hannes Tschofenig
 Arm Ltd.
 6067 Absam
 Austria
 Email: Hannes.Tschofenig@arm.com

