
ï»¿

Internet Engineering Task Force (IETF) E. Rescorla, Ed.
Request for Comments: 9146 Mozilla
Updates: 6347 H. Tschofenig, Ed.
Category: Standards Track T. Fossati
ISSN: 2070-1721 Arm Limited
 A. Kraus
 Bosch.IO GmbH
 March 2022

 Connection Identifier for DTLS 1.2

Abstract

 This document specifies the Connection ID (CID) construct for the
 Datagram Transport Layer Security (DTLS) protocol version 1.2.

 A CID is an identifier carried in the record layer header that gives
 the recipient additional information for selecting the appropriate
 security association. In "classical" DTLS, selecting a security
 association of an incoming DTLS record is accomplished with the help
 of the 5-tuple. If the source IP address and/or source port changes
 during the lifetime of an ongoing DTLS session, then the receiver
 will be unable to locate the correct security context.

 The new ciphertext record format with the CID also provides content
 type encryption and record layer padding.

 This document updates RFC 6347.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9146.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may

 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction
 2. Conventions and Terminology
 3. The "connection_id" Extension
 4. Record Layer Extensions
 5. Record Payload Protection
 5.1. Block Ciphers
 5.2. Block Ciphers with Encrypt-then-MAC Processing
 5.3. AEAD Ciphers
 6. Peer Address Update
 7. Example
 8. Privacy Considerations
 9. Security Considerations
 10. IANA Considerations
 10.1. Extra Column Added to the TLS ExtensionType Values
 Registry
 10.2. New Entry in the TLS ExtensionType Values Registry
 10.3. New Entry in the TLS ContentType Registry
 11. References
 11.1. Normative References
 11.2. Informative References
 Acknowledgements
 Contributors
 Authors’ Addresses

1. Introduction

 The Datagram Transport Layer Security (DTLS) protocol [RFC6347] was
 designed for securing data sent over datagram transports (e.g., UDP).
 DTLS, like TLS, starts with a handshake, which can be computationally
 demanding (particularly when public key cryptography is used). After
 a successful handshake, symmetric key cryptography is used to apply
 data origin authentication, integrity, and confidentiality
 protection. This two-step approach allows endpoints to amortize the
 cost of the initial handshake across subsequent application data
 protection. Ideally, the second phase where application data is
 protected lasts over a long period of time, since the established
 keys will only need to be updated once the key lifetime expires.

 In DTLS as specified in RFC 6347, the IP address and port of the peer
 are used to identify the DTLS association. Unfortunately, in some
 cases, such as NAT rebinding, these values are insufficient. This is
 a particular issue in the Internet of Things when devices enter
 extended sleep periods to increase their battery lifetime. The NAT
 rebinding leads to connection failure, with the resulting cost of a
 new handshake.

 This document defines an extension to DTLS 1.2 to add a Connection ID
 (CID) to the DTLS record layer. The presence of the CID is
 negotiated via a DTLS extension.

 Adding a CID to the ciphertext record format presents an opportunity
 to make other changes to the record format. In keeping with the best
 practices established by TLS 1.3, the type of the record is
 encrypted, and a mechanism is provided for adding padding to
 obfuscate the plaintext length.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document assumes familiarity with DTLS 1.2 [RFC6347]. The

 presentation language used in this document is described in Section 3
 of [RFC8446].

3. The "connection_id" Extension

 This document defines the "connection_id" extension, which is used in
 ClientHello and ServerHello messages.

 The extension type is specified as follows.

 enum {
 connection_id(54), (65535)
 } ExtensionType;

 The extension_data field of this extension, when included in the
 ClientHello, MUST contain the ConnectionId structure. This structure
 contains the CID value the client wishes the server to use when
 sending messages to the client. A zero-length CID value indicates
 that the client is prepared to send using a CID but does not wish the
 server to use one when sending.

 struct {
 opaque cid<0..2^8-1>;
 } ConnectionId;

 A server willing to use CIDs will respond with a "connection_id"
 extension in the ServerHello, containing the CID it wishes the client
 to use when sending messages towards it. A zero-length value
 indicates that the server will send using the client’s CID but does
 not wish the client to include a CID when sending.

 Because each party sends the value in the "connection_id" extension
 it wants to receive as a CID in encrypted records, it is possible for
 an endpoint to use a deployment-specific constant length for such
 connection identifiers. This can in turn ease parsing and connection
 lookup -- for example, by having the length in question be a compile-
 time constant. Such implementations MUST still be able to send CIDs
 of different lengths to other parties. Since the CID length
 information is not included in the record itself, implementations
 that want to use variable-length CIDs are responsible for
 constructing the CID in such a way that its length can be determined
 on reception.

 In DTLS 1.2, CIDs are exchanged at the beginning of the DTLS session
 only. There is no dedicated "CID update" message that allows new
 CIDs to be established mid-session, because DTLS 1.2 in general does
 not allow TLS 1.3-style post-handshake messages that do not
 themselves begin other handshakes. When a DTLS session is resumed or
 renegotiated, the "connection_id" extension is negotiated afresh.

 If DTLS peers have not negotiated the use of CIDs, or a zero-length
 CID has been advertised for a given direction, then the record format
 and content type defined in RFC 6347 MUST be used to send in the
 indicated direction(s).

 If DTLS peers have negotiated the use of a non-zero-length CID for a
 given direction, then once encryption is enabled, they MUST send with
 the record format defined in Figure 3 (see Section 4) with the new
 Message Authentication Code (MAC) computation defined in Section 5
 and the content type tls12_cid. Plaintext payloads never use the new
 record format or the CID content type.

 When receiving, if the tls12_cid content type is set, then the CID is
 used to look up the connection and the security association. If the
 tls12_cid content type is not set, then the connection and the
 security association are looked up by the 5-tuple and a check MUST be
 made to determine whether a non-zero-length CID is expected. If a
 non-zero-length CID is expected for the retrieved association, then
 the datagram MUST be treated as invalid, as described in
 Section 4.1.2.1 of [RFC6347].

 When receiving a datagram with the tls12_cid content type, the new
 MAC computation defined in Section 5 MUST be used. When receiving a
 datagram with the record format defined in RFC 6347, the MAC
 calculation defined in Section 4.1.2 of [RFC6347] MUST be used.

4. Record Layer Extensions

 This specification defines the CID-enhanced record layer format for
 DTLS 1.2, and [DTLS13] specifies how to carry the CID in DTLS 1.3.

 To allow a receiver to determine whether a record has a CID or not,
 connections that have negotiated this extension use a distinguished
 record type tls12_cid(25). The use of this content type has the
 following three implications:

 * The CID field is present and contains one or more bytes.

 * The MAC calculation follows the process described in Section 5.

 * The real content type is inside the encryption envelope, as
 described below.

 Plaintext records are not impacted by this extension. Hence, the
 format of the DTLSPlaintext structure is left unchanged, as shown in
 Figure 1.

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch;
 uint48 sequence_number;
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 Figure 1: DTLS 1.2 Plaintext Record Payload

 When CIDs are being used, the content to be sent is first wrapped
 along with its content type and optional padding into a
 DTLSInnerPlaintext structure. This newly introduced structure is
 shown in Figure 2.

 struct {
 opaque content[length];
 ContentType real_type;
 uint8 zeros[length_of_padding];
 } DTLSInnerPlaintext;

 Figure 2: New DTLSInnerPlaintext Payload Structure

 content: Corresponds to the fragment of a given length.

 real_type: The content type describing the cleartext payload.

 zeros: An arbitrary-length run of zero-valued bytes may appear in
 the cleartext after the type field. This provides an opportunity
 for senders to pad any DTLS record by a chosen amount as long as
 the total stays within record size limits. See Section 5.4 of
 [RFC8446] for more details. (Note that the term TLSInnerPlaintext
 in RFC 8446 refers to DTLSInnerPlaintext in this specification.)

 The DTLSInnerPlaintext byte sequence is then encrypted. To create
 the DTLSCiphertext structure shown in Figure 3, the CID is added.

 struct {
 ContentType outer_type = tls12_cid;
 ProtocolVersion version;
 uint16 epoch;
 uint48 sequence_number;
 opaque cid[cid_length]; // New field
 uint16 length;

 opaque enc_content[DTLSCiphertext.length];
 } DTLSCiphertext;

 Figure 3: DTLS 1.2 CID-Enhanced Ciphertext Record

 outer_type: The outer content type of a DTLSCiphertext record
 carrying a CID is always set to tls12_cid(25). The real content
 type of the record is found in DTLSInnerPlaintext.real_type after
 decryption.

 cid: The CID value, cid_length bytes long, as agreed at the time the
 extension has been negotiated. Recall that each peer chooses the
 CID value it will receive and use to identify the connection, so
 an implementation can choose to always receive CIDs of a fixed
 length. If, however, an implementation chooses to receive CIDs of
 different lengths, the assigned CID values must be self-
 delineating, since there is no other mechanism available to
 determine what connection (and thus, what CID length) is in use.

 enc_content: The encrypted form of the serialized DTLSInnerPlaintext
 structure.

 All other fields are as defined in RFC 6347.

5. Record Payload Protection

 Several types of ciphers have been defined for use with TLS and DTLS,
 and the MAC calculations for those ciphers differ slightly.

 This specification modifies the MAC calculation as defined in
 [RFC6347] and [RFC7366], as well as the definition of the additional
 data used with Authenticated Encryption with Associated Data (AEAD)
 ciphers provided in [RFC6347], for records with content type
 tls12_cid. The modified algorithm MUST NOT be applied to records
 that do not carry a CID, i.e., records with content type other than
 tls12_cid.

 The following fields are defined in this document; all other fields
 are as defined in the cited documents.

 cid: Value of the negotiated CID (variable length).

 cid_length: The length (in bytes) of the negotiated CID (one-byte
 integer).

 length_of_DTLSInnerPlaintext: The length (in bytes) of the
 serialized DTLSInnerPlaintext (two-byte integer). The length MUST
 NOT exceed 2^14.

 seq_num_placeholder: 8 bytes of 0xff.

 Note that "+" denotes concatenation.

5.1. Block Ciphers

 The following MAC algorithm applies to block ciphers that do not use
 the Encrypt-then-MAC processing described in [RFC7366].

 MAC(MAC_write_key,
 seq_num_placeholder +
 tls12_cid +
 cid_length +
 tls12_cid +
 DTLSCiphertext.version +
 epoch +
 sequence_number +
 cid +
 length_of_DTLSInnerPlaintext +
 DTLSInnerPlaintext.content +
 DTLSInnerPlaintext.real_type +
 DTLSInnerPlaintext.zeros

);

 The rationale behind this construction is to separate the MAC input
 for DTLS without the connection ID from the MAC input with the
 connection ID. The former always consists of a sequence number
 followed by some content type other than tls12_cid; the latter always
 consists of the seq_num_placeholder followed by tls12_cid. Although
 2^64-1 is potentially a valid sequence number, tls12_cid will never
 be a valid content type when the connection ID is not in use. In
 addition, the epoch and sequence_number are now fed into the MAC in
 the same order as they appear on the wire.

5.2. Block Ciphers with Encrypt-then-MAC Processing

 The following MAC algorithm applies to block ciphers that use the
 Encrypt-then-MAC processing described in [RFC7366].

 MAC(MAC_write_key,
 seq_num_placeholder +
 tls12_cid +
 cid_length +
 tls12_cid +
 DTLSCiphertext.version +
 epoch +
 sequence_number +
 cid +
 DTLSCiphertext.length +
 IV +
 ENC(content + padding + padding_length)
);

5.3. AEAD Ciphers

 For ciphers utilizing AEAD, the following modification is made to the
 additional data calculation.

 additional_data = seq_num_placeholder +
 tls12_cid +
 cid_length +
 tls12_cid +
 DTLSCiphertext.version +
 epoch +
 sequence_number +
 cid +
 length_of_DTLSInnerPlaintext;

6. Peer Address Update

 When a record with a CID is received that has a source address
 different from the one currently associated with the DTLS connection,
 the receiver MUST NOT replace the address it uses for sending records
 to its peer with the source address specified in the received
 datagram, unless the following three conditions are met:

 * The received datagram has been cryptographically verified using
 the DTLS record layer processing procedures.

 * The received datagram is "newer" (in terms of both epoch and
 sequence number) than the newest datagram received. Reordered
 datagrams that are sent prior to a change in a peer address might
 otherwise cause a valid address change to be reverted. This also
 limits the ability of an attacker to use replayed datagrams to
 force a spurious address change, which could result in denial of
 service. An attacker might be able to succeed in changing a peer
 address if they are able to rewrite source addresses and if
 replayed packets are able to arrive before any original.

 * There is a strategy for ensuring that the new peer address is able
 to receive and process DTLS records. No strategy is mandated by
 this specification, but see note (*) below.

 The conditions above are necessary to protect against attacks that
 use datagrams with spoofed addresses or replayed datagrams to trigger
 attacks. Note that there is no requirement for the use of the anti-
 replay window mechanism defined in Section 4.1.2.6 of [RFC6347].
 Both solutions, the "anti-replay window" or "newer" algorithm, will
 prevent address updates from replay attacks while the latter will
 only apply to peer address updates and the former applies to any
 application layer traffic.

 Note that datagrams that pass the DTLS cryptographic verification
 procedures but do not trigger a change of peer address are still
 valid DTLS records and are still to be passed to the application.

 (*) Note: Application protocols that implement protection against
 spoofed addresses depend on being aware of changes in peer
 addresses so that they can engage the necessary mechanisms. When
 delivered such an event, an address validation mechanism specific
 to the application layer can be triggered -- for example, one that
 is based on successful exchange of a minimal amount of ping-pong
 traffic with the peer. Alternatively, a DTLS-specific mechanism
 may be used, as described in [DTLS-RRC].

 DTLS implementations MUST silently discard records with bad MACs or
 that are otherwise invalid.

7. Example

 Figure 4 shows an example exchange where a CID is used
 unidirectionally from the client to the server. To indicate that a
 zero-length CID is present in the "connection_id" extension, we use
 the notation ’connection_id=empty’.

 Client Server
 ------ ------

 ClientHello -------->
 (connection_id=empty)

 <-------- HelloVerifyRequest
 (cookie)

 ClientHello -------->
 (connection_id=empty)
 (cookie)

 ServerHello
 (connection_id=100)
 Certificate
 ServerKeyExchange
 CertificateRequest
 <-------- ServerHelloDone

 Certificate
 ClientKeyExchange
 CertificateVerify
 [ChangeCipherSpec]
 Finished -------->
 <CID=100>

 [ChangeCipherSpec]
 <-------- Finished

 Application Data ========>
 <CID=100>

 <======== Application Data

 Legend:

 <...> indicates that a connection ID is used in the record layer
 (...) indicates an extension
 [...] indicates a payload other than a handshake message

 Figure 4: Example DTLS 1.2 Exchange with CID

 Note: In the example exchange, the CID is included in the record
 layer once encryption is enabled. In DTLS 1.2, only one handshake
 message is encrypted, namely the Finished message. Since the
 example shows how to use the CID for payloads sent from the client
 to the server, only the record layer payloads containing the
 Finished message or application data include a CID.

8. Privacy Considerations

 The CID replaces the previously used 5-tuple and, as such, introduces
 an identifier that remains persistent during the lifetime of a DTLS
 connection. Every identifier introduces the risk of linkability, as
 explained in [RFC6973].

 An on-path adversary observing the DTLS protocol exchanges between
 the DTLS client and the DTLS server is able to link the observed
 payloads to all subsequent payloads carrying the same ID pair (for
 bidirectional communication). Without multihoming or mobility, the
 use of the CID exposes the same information as the 5-tuple.

 With multihoming, a passive attacker is able to correlate the
 communication interaction over the two paths. The lack of a CID
 update mechanism in DTLS 1.2 makes this extension unsuitable for
 mobility scenarios where correlation must be considered. Deployments
 that use DTLS in multihoming environments and are concerned about
 these aspects SHOULD refuse to use CIDs in DTLS 1.2 and switch to
 DTLS 1.3 where a CID update mechanism is provided and sequence number
 encryption is available.

 This specification introduces record padding for the CID-enhanced
 record layer, which is a privacy feature not available with the
 original DTLS 1.2 specification. Padding allows the size of the
 ciphertext to be inflated, making traffic analysis more difficult.
 More details about record padding can be found in Section 5.4 and
 Appendix E.3 of [RFC8446].

 Finally, endpoints can use the CID to attach arbitrary per-connection
 metadata to each record they receive on a given connection. This may
 be used as a mechanism to communicate per-connection information to
 on-path observers. There is no straightforward way to address this
 concern with CIDs that contain arbitrary values. Implementations
 concerned about this aspect SHOULD refuse to use CIDs.

9. Security Considerations

 An on-path adversary can create reflection attacks against third
 parties because a DTLS peer has no means to distinguish a genuine
 address update event (for example, due to a NAT rebinding) from one
 that is malicious. This attack is of particular concern when the
 request is small and the response large. See Section 6 for more on
 address updates.

 Additionally, an attacker able to observe the data traffic exchanged
 between two DTLS peers is able to replay datagrams with modified IP
 addresses / port numbers.

 The topic of peer address updates is discussed in Section 6.

10. IANA Considerations

 This document implements three IANA updates.

10.1. Extra Column Added to the TLS ExtensionType Values Registry

 IANA has added an extra column named "DTLS-Only" to the "TLS

 ExtensionType Values" registry to indicate whether an extension is
 only applicable to DTLS and to include this document as an additional
 reference for the registry.

10.2. New Entry in the TLS ExtensionType Values Registry

 IANA has allocated an entry in the existing "TLS ExtensionType
 Values" registry for connection_id(54), as described in the table
 below. Although the value 53 had been allocated by early allocation
 for a previous version of this document, it is incompatible with this
 document. Therefore, the early allocation has been deprecated in
 favor of this assignment.

 +=======+===============+=====+===========+=============+===========+
 | Value |Extension Name | TLS | DTLS-Only | Recommended | Reference |
 | | | 1.3 | | | |
 +=======+===============+=====+===========+=============+===========+
 | 54 |connection_id | CH, | Y | N | RFC 9146 |
 | | | SH | | | |
 +-------+---------------+-----+-----------+-------------+-----------+

 Table 1

 A new column, "DTLS-Only", has been added to the registry. The valid
 entries are "Y" if the extension is only applicable to DTLS, "N"
 otherwise. All the pre-existing entries are given the value "N".

 Note: The value "N" in the "Recommended" column is set because
 this extension is intended only for specific use cases. This
 document describes the behavior of this extension for DTLS 1.2
 only; it is not applicable to TLS, and its usage for DTLS 1.3 is
 described in [DTLS13].

10.3. New Entry in the TLS ContentType Registry

 IANA has allocated tls12_cid(25) in the "TLS ContentType" registry.
 The tls12_cid content type is only applicable to DTLS 1.2.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7366] Gutmann, P., "Encrypt-then-MAC for Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7366, DOI 10.17487/RFC7366, September 2014,
 <https://www.rfc-editor.org/info/rfc7366>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

11.2. Informative References

 [DTLS-RRC] Tschofenig, H., Ed. and T. Fossati, "Return Routability
 Check for DTLS 1.2 and DTLS 1.3", Work in Progress,
 Internet-Draft, draft-ietf-tls-dtls-rrc-05, 7 March 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-tls-
 dtls-rrc-05>.

 [DTLS13] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", Work in Progress, Internet-Draft, draft-ietf-tls-
 dtls13-43, 30 April 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-tls-
 dtls13-43>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

Acknowledgements

 We would like to thank Hanno Becker, Martin Duke, Lars Eggert, Ben
 Kaduk, Warren Kumari, Francesca Palombini, Tom Petch, John Scudder,
 Sean Turner, Ã\211ric Vyncke, and Robert Wilton for their review
 comments.

 Finally, we want to thank the IETF TLS Working Group chairs, Chris
 Wood, Joseph Salowey, and Sean Turner, for their patience, support,
 and feedback.

Contributors

 Many people have contributed to this specification, and we would like
 to thank the following individuals for their contributions:

 Yin Xinxing
 Huawei
 Email: yinxinxing@huawei.com

 Nikos Mavrogiannopoulos
 RedHat
 Email: nmav@redhat.com

 Tobias Gondrom
 Email: tobias.gondrom@gondrom.org

 Additionally, we would like to thank the Connection ID task force
 team members:

 * Martin Thomson (Mozilla)

 * Christian Huitema (Private Octopus Inc.)

 * Jana Iyengar (Google)

 * Daniel Kahn Gillmor (ACLU)

 * Patrick McManus (Mozilla)

 * Ian Swett (Google)

 * Mark Nottingham (Fastly)

 The task force team discussed various design ideas, including
 cryptographically generated session IDs using hash chains and public
 key encryption, but dismissed them due to their inefficiency. The
 approach described in this specification is the simplest possible
 design that works, given the limitations of DTLS 1.2. DTLS 1.3
 provides better privacy features, and developers are encouraged to
 switch to the new version of DTLS.

Authors’ Addresses

 Eric Rescorla (editor)
 Mozilla
 Email: ekr@rtfm.com

 Hannes Tschofenig (editor)
 Arm Limited
 Email: hannes.tschofenig@arm.com

 Thomas Fossati
 Arm Limited
 Email: thomas.fossati@arm.com

 Achim Kraus
 Bosch.IO GmbH
 Email: achim.kraus@bosch.io

