
ï»¿

Internet Engineering Task Force (IETF) T. Lodderstedt
Request for Comments: 9126 yes.com
Category: Standards Track B. Campbell
ISSN: 2070-1721 Ping Identity
 N. Sakimura
 NAT.Consulting
 D. Tonge
 Moneyhub Financial Technology
 F. Skokan
 Auth0
 September 2021

 OAuth 2.0 Pushed Authorization Requests

Abstract

 This document defines the pushed authorization request (PAR)
 endpoint, which allows clients to push the payload of an OAuth 2.0
 authorization request to the authorization server via a direct
 request and provides them with a request URI that is used as
 reference to the data in a subsequent call to the authorization
 endpoint.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9126.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Introductory Example
 1.2. Conventions and Terminology
 2. Pushed Authorization Request Endpoint
 2.1. Request
 2.2. Successful Response
 2.3. Error Response
 2.4. Management of Client Redirect URIs
 3. The "request" Request Parameter
 4. Authorization Request
 5. Authorization Server Metadata
 6. Client Metadata

 7. Security Considerations
 7.1. Request URI Guessing
 7.2. Open Redirection
 7.3. Request Object Replay
 7.4. Client Policy Change
 7.5. Request URI Swapping
 8. Privacy Considerations
 9. IANA Considerations
 9.1. OAuth Authorization Server Metadata
 9.2. OAuth Dynamic Client Registration Metadata
 9.3. OAuth URI Registration
 10. References
 10.1. Normative References
 10.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 This document defines the pushed authorization request (PAR)
 endpoint, which enables an OAuth [RFC6749] client to push the payload
 of an authorization request directly to the authorization server. A
 request URI value is received in exchange; it is used as reference to
 the authorization request payload data in a subsequent call to the
 authorization endpoint via the user agent.

 In OAuth [RFC6749], authorization request parameters are typically
 sent as URI query parameters via redirection in the user agent. This
 is simple but also yields challenges:

 * There is no cryptographic integrity and authenticity protection.
 An attacker could, for example, modify the scope of access
 requested or swap the context of a payment transaction by changing
 scope values. Although protocol facilities exist to enable
 clients or users to detect some such changes, preventing
 modifications early in the process is a more robust solution.

 * There is no mechanism to ensure confidentiality of the request
 parameters. Although HTTPS is required for the authorization
 endpoint, the request data passes through the user agent in the
 clear, and query string data can inadvertently leak to web server
 logs and to other sites via the referrer. The impact of such
 leakage can be significant, if personally identifiable information
 or other regulated data is sent in the authorization request
 (which might well be the case in identity, open banking, and
 similar scenarios).

 * Authorization request URLs can become quite large, especially in
 scenarios requiring fine-grained authorization data, which might
 cause errors in request processing.

 JWT-Secured Authorization Request (JAR) [RFC9101] provides solutions
 for the security challenges by allowing OAuth clients to wrap
 authorization request parameters in a Request Object, which is a
 signed and optionally encrypted JSON Web Token (JWT) [RFC7519]. In
 order to cope with the size restrictions, JAR introduces the
 "request_uri" parameter that allows clients to send a reference to a
 Request Object instead of the Request Object itself.

 This document complements JAR by providing an interoperable way to
 push the payload of an authorization request directly to the
 authorization server in exchange for a "request_uri" value usable at
 the authorization server in a subsequent authorization request.

 PAR fosters OAuth security by providing clients a simple means for a
 confidential and integrity-protected authorization request. Clients
 requiring an even higher security level, especially cryptographically
 confirmed non-repudiation, are able to use JWT-based Request Objects
 as defined by [RFC9101] in conjunction with PAR.

 PAR allows the authorization server to authenticate the client before

 any user interaction happens. The increased confidence in the
 identity of the client during the authorization process allows the
 authorization server to refuse illegitimate requests much earlier in
 the process, which can prevent attempts to spoof clients or otherwise
 tamper with or misuse an authorization request.

 Note that HTTP "POST" requests to the authorization endpoint via the
 user agent, as described in Section 3.1 of [RFC6749] and
 Section 3.1.2.1 of [OIDC], could also be used to cope with the
 request size limitations described above. However, it’s only
 optional per [RFC6749], and, even when supported, it is a viable
 option for conventional web applications but is prohibitively
 difficult to use with installed mobile applications. As described in
 [RFC8252], those apps use platform-specific APIs to open the
 authorization request URI in the system browser. When a mobile app
 launches a browser, however, the resultant initial request is
 constrained to use the "GET" method. Using "POST" for the
 authorization request would require the app to first direct the
 browser to open a URI that the app controls via "GET" while somehow
 conveying the sizable authorization request payload and then having
 the resultant response contain the content and script to initiate a
 cross-site form "POST" towards the authorization server. PAR is
 simpler to use and has additional security benefits, as described
 above.

1.1. Introductory Example

 In conventional OAuth 2.0, a client typically initiates an
 authorization request by directing the user agent to make an HTTP
 request like the following to the authorization server’s
 authorization endpoint (extra line breaks and indentation for display
 purposes only):

 GET /authorize?response_type=code
 &client_id=CLIENT1234&state=duk681S8n00GsJpe7n9boxdzen
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb HTTP/1.1
 Host: as.example.com

 Such a request could instead be pushed directly to the authorization
 server by the client with a "POST" request to the PAR endpoint as
 illustrated in the following example (extra line breaks and spaces
 for display purposes only). The client can authenticate (e.g., using
 JWT client assertion-based authentication as shown) because the
 request is made directly to the authorization server.

 POST /as/par HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 &response_type=code
 &client_id=CLIENT1234&state=duk681S8n00GsJpe7n9boxdzen
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &client_assertion_type=
 urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer
 &client_assertion=eyJraWQiOiI0MiIsImFsZyI6IkVTMjU2In0.eyJpc3MiOiJDTE
 lFTlQxMjM0Iiwic3ViIjoiQ0xJRU5UMTIzNCIsImF1ZCI6Imh0dHBzOi8vc2VydmVyL
 mV4YW1wbGUuY29tIiwiZXhwIjoxNjI1ODY4ODc4fQ.Igw8QrpAWRNPDGoWGRmJumLBM
 wbLjeIYwqWUu-ywgvvufl_0sQJftNs3bzjIrP0BV9rRG-3eI1Ksh0kQ1CwvzA

 The authorization server responds with a request URI:

 HTTP/1.1 201 Created
 Cache-Control: no-cache, no-store
 Content-Type: application/json

 {
 "request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2",
 "expires_in": 90
 }

 The client uses the request URI value to create the subsequent

 authorization request by directing the user agent to make an HTTP
 request to the authorization server’s authorization endpoint like the
 following (extra line breaks and indentation for display purposes
 only):

 GET /authorize?client_id=CLIENT1234
 &request_uri=urn%3Aexample%3Abwc4JK-ESC0w8acc191e-Y1LTC2 HTTP/1.1
 Host: as.example.com

1.2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the terms "access token", "authorization
 server", "authorization endpoint", "authorization request", "token
 endpoint", and "client" defined by "The OAuth 2.0 Authorization
 Framework" [RFC6749].

2. Pushed Authorization Request Endpoint

 The pushed authorization request endpoint is an HTTP API at the
 authorization server that accepts HTTP "POST" requests with
 parameters in the HTTP request message body using the "application/x-
 www-form-urlencoded" format. This format has a character encoding of
 UTF-8, as described in Appendix B of [RFC6749]. The PAR endpoint URL
 MUST use the "https" scheme.

 Authorization servers supporting PAR SHOULD include the URL of their
 pushed authorization request endpoint in their authorization server
 metadata document [RFC8414] using the
 "pushed_authorization_request_endpoint" parameter as defined in
 Section 5.

 The endpoint accepts the authorization request parameters defined in
 [RFC6749] for the authorization endpoint as well as all applicable
 extensions defined for the authorization endpoint. Some examples of
 such extensions include Proof Key for Code Exchange (PKCE) [RFC7636],
 Resource Indicators [RFC8707], and OpenID Connect (OIDC) [OIDC]. The
 endpoint MAY also support sending the set of authorization request
 parameters as a Request Object according to [RFC9101] and Section 3
 of this document.

 The rules for client authentication as defined in [RFC6749] for token
 endpoint requests, including the applicable authentication methods,
 apply for the PAR endpoint as well. If applicable, the
 "token_endpoint_auth_method" client metadata parameter [RFC7591]
 indicates the registered authentication method for the client to use
 when making direct requests to the authorization server, including
 requests to the PAR endpoint. Similarly, the
 "token_endpoint_auth_methods_supported" authorization server metadata
 [RFC8414] parameter lists client authentication methods supported by
 the authorization server when accepting direct requests from clients,
 including requests to the PAR endpoint.

 Due to historical reasons, there is potential ambiguity regarding the
 appropriate audience value to use when employing JWT client
 assertion-based authentication (defined in Section 2.2 of [RFC7523]
 with "private_key_jwt" or "client_secret_jwt" authentication method
 names per Section 9 of [OIDC]). To address that ambiguity, the
 issuer identifier URL of the authorization server according to
 [RFC8414] SHOULD be used as the value of the audience. In order to
 facilitate interoperability, the authorization server MUST accept its
 issuer identifier, token endpoint URL, or pushed authorization
 request endpoint URL as values that identify it as an intended
 audience.

2.1. Request

 A client sends the parameters that comprise an authorization request
 directly to the PAR endpoint. A typical parameter set might include:
 "client_id", "response_type", "redirect_uri", "scope", "state",
 "code_challenge", and "code_challenge_method" as shown in the example
 below. However, the pushed authorization request can be composed of
 any of the parameters applicable for use at the authorization
 endpoint, including those defined in [RFC6749] as well as all
 applicable extensions. The "request_uri" authorization request
 parameter is one exception, and it MUST NOT be provided.

 The request also includes, as appropriate for the given client, any
 additional parameters necessary for client authentication (e.g.,
 "client_secret" or "client_assertion" and "client_assertion_type").
 Such parameters are defined and registered for use at the token
 endpoint but are applicable only for client authentication. When
 present in a pushed authorization request, they are relied upon only
 for client authentication and are not germane to the authorization
 request itself. Any token endpoint parameters that are not related
 to client authentication have no defined meaning for a pushed
 authorization request. The "client_id" parameter is defined with the
 same semantics for both authorization requests and requests to the
 token endpoint; as a required authorization request parameter, it is
 similarly required in a pushed authorization request.

 The client constructs the message body of an HTTP "POST" request with
 parameters formatted with "x-www-form-urlencoded" using a character
 encoding of UTF-8, as described in Appendix B of [RFC6749]. If
 applicable, the client also adds its authentication credentials to
 the request header or the request body using the same rules as for
 token endpoint requests.

 This is illustrated by the following example (extra line breaks in
 the message body for display purposes only):

 POST /as/par HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 response_type=code&state=af0ifjsldkj&client_id=s6BhdRkqt3
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U
 &code_challenge_method=S256&scope=account-information
 &client_assertion_type=
 urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer
 &client_assertion=eyJraWQiOiJrMmJkYyIsImFsZyI6IlJTMjU2In0.eyJpc3Mi
 OiJzNkJoZFJrcXQzIiwic3ViIjoiczZCaGRSa3F0MyIsImF1ZCI6Imh0dHBzOi8vc
 2VydmVyLmV4YW1wbGUuY29tIiwiZXhwIjoxNjI1ODY5Njc3fQ.te4IdnP_DK4hWrh
 TWA6fyhy3fxlAQZAhfA4lmzRdpoP5uZb-E90R5YxzN1YDA8mnVdpgj_Bx1lG5r6se
 f5TlckApA3hahhC804dcqlE4naEmLISmN1pds2WxTMOUzZY8aKKSDzNTDqhyTgE-K
 dTb3RafRj7tdZb09zWs7c_moOvfVcQIoy5zz1BvLQKW1Y8JsYvdpu2AvpxRPbcP8W
 yeW9B6PL6_fy3pXYKG3e-qUcvPa9kan-mo9EoSgt-YTDQjK1nZMdXIqTluK9caVJE
 RWW0fD1Y11_tlOcJn-ya7v7d8YmFyJpkhZfm8x1FoeH0djEicXTixEkdRuzsgUCm6
 GQ

 The authorization server MUST process the request as follows:

 1. Authenticate the client in the same way as at the token endpoint
 (Section 2.3 of [RFC6749]).

 2. Reject the request if the "request_uri" authorization request
 parameter is provided.

 3. Validate the pushed request as it would an authorization request
 sent to the authorization endpoint. For example, the
 authorization server checks whether the redirect URI matches one
 of the redirect URIs configured for the client and also checks
 whether the client is authorized for the scope for which it is
 requesting access. This validation allows the authorization
 server to refuse unauthorized or fraudulent requests early. The
 authorization server MAY omit validation steps that it is unable

 to perform when processing the pushed request; however, such
 checks MUST then be performed when processing the authorization
 request at the authorization endpoint.

 The authorization server MAY allow clients with authentication
 credentials to establish per-authorization-request redirect URIs with
 every pushed authorization request. Described in more detail in
 Section 2.4, this is possible since, in contrast to [RFC6749], this
 specification gives the authorization server the ability to
 authenticate clients and validate client requests before the actual
 authorization request is performed.

2.2. Successful Response

 If the verification is successful, the server MUST generate a request
 URI and provide it in the response with a "201" HTTP status code.
 The following parameters are included as top-level members in the
 message body of the HTTP response using the "application/json" media
 type as defined by [RFC8259].

 request_uri
 The request URI corresponding to the authorization request posted.
 This URI is a single-use reference to the respective request data
 in the subsequent authorization request. The way the
 authorization process obtains the authorization request data is at
 the discretion of the authorization server and is out of scope of
 this specification. There is no need to make the authorization
 request data available to other parties via this URI.

 expires_in
 A JSON number that represents the lifetime of the request URI in
 seconds as a positive integer. The request URI lifetime is at the
 discretion of the authorization server but will typically be
 relatively short (e.g., between 5 and 600 seconds).

 The format of the "request_uri" value is at the discretion of the
 authorization server, but it MUST contain some part generated using a
 cryptographically strong pseudorandom algorithm such that it is
 computationally infeasible to predict or guess a valid value (see
 Section 10.10 of [RFC6749] for specifics). The authorization server
 MAY construct the "request_uri" value using the form
 "urn:ietf:params:oauth:request_uri:<reference-value>" with
 "<reference-value>" as the random part of the URI that references the
 respective authorization request data.

 The "request_uri" value MUST be bound to the client that posted the
 authorization request.

 The following is an example of such a response:

 HTTP/1.1 201 Created
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "request_uri":
 "urn:ietf:params:oauth:request_uri:6esc_11ACC5bwc014ltc14eY22c",
 "expires_in": 60
 }

2.3. Error Response

 The authorization server returns an error response with the same
 format as is specified for error responses from the token endpoint in
 Section 5.2 of [RFC6749] using the appropriate error code from
 therein or from Section 4.1.2.1 of [RFC6749]. In those cases where
 Section 4.1.2.1 of [RFC6749] prohibits automatic redirection with an
 error back to the requesting client and hence doesn’t define an error
 code (for example, when the request fails due to a missing, invalid,
 or mismatching redirection URI), the "invalid_request" error code can
 be used as the default error code. Error codes defined by the OAuth

 extension can also be used when such an extension is involved in the
 initial processing of the authorization request that was pushed.
 Since initial processing of the pushed authorization request does not
 involve resource owner interaction, error codes related to user
 interaction, such as "consent_required" defined by [OIDC], are never
 returned.

 If the client is required to use signed Request Objects, by either
 the authorization server or the client policy (see [RFC9101],
 Section 10.5), the authorization server MUST only accept requests
 complying with the definition given in Section 3 and MUST refuse any
 other request with HTTP status code 400 and error code
 "invalid_request".

 In addition to the above, the PAR endpoint can also make use of the
 following HTTP status codes:

 405: If the request did not use the "POST" method, the authorization
 server responds with an HTTP 405 (Method Not Allowed) status
 code.

 413: If the request size was beyond the upper bound that the
 authorization server allows, the authorization server responds
 with an HTTP 413 (Payload Too Large) status code.

 429: If the number of requests from a client during a particular
 time period exceeds the number the authorization server allows,
 the authorization server responds with an HTTP 429 (Too Many
 Requests) status code.

 The following is an example of an error response from the PAR
 endpoint:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "error": "invalid_request",
 "error_description":
 "The redirect_uri is not valid for the given client"
 }

2.4. Management of Client Redirect URIs

 OAuth 2.0 [RFC6749] allows clients to use unregistered "redirect_uri"
 values in certain circumstances or for the authorization server to
 apply its own matching semantics to the "redirect_uri" value
 presented by the client at the authorization endpoint. However, the
 OAuth security BCP [OAUTH-SECURITY-TOPICS] as well as the OAuth 2.1
 specification [OAUTH-V2] require an authorization server to exactly
 match the "redirect_uri" parameter against the set of redirect URIs
 previously established for a particular client. This is a means for
 early detection of client impersonation attempts and prevents token
 leakage and open redirection. As a downside, this can make client
 management more cumbersome since the redirect URI is typically the
 most volatile part of a client policy.

 The exact matching requirement MAY be relaxed when using PAR for
 clients that have established authentication credentials with the
 authorization server. This is possible since, in contrast to a
 conventional authorization request, the authorization server
 authenticates the client before the authorization process starts and
 thus ensures it is interacting with the legitimate client. The
 authorization server MAY allow such clients to specify "redirect_uri"
 values that were not previously registered with the authorization
 server. This will give the client more flexibility (e.g., to mint
 distinct "redirect_uri" values per authorization server at runtime)
 and can simplify client management. It is at the discretion of the
 authorization server to apply restrictions on supplied "redirect_uri"
 values, e.g., the authorization server MAY require a certain URI

 prefix or allow only a query parameter to vary at runtime.

 | Note: The ability to set up transaction-specific redirect URIs
 | is also useful in situations where client IDs and corresponding
 | credentials and policies are managed by a trusted third party,
 | e.g., via client certificates containing client permissions.
 | Such an externally managed client could interact with an
 | authorization server trusting the respective third party
 | without the need for an additional registration step.

3. The "request" Request Parameter

 Clients MAY use the "request" parameter as defined in JAR [RFC9101]
 to push a Request Object JWT to the authorization server. The rules
 for processing, signing, and encryption of the Request Object as
 defined in JAR [RFC9101] apply. Request parameters required by a
 given client authentication method are included in the "application/
 x-www-form-urlencoded" request directly and are the only parameters
 other than "request" in the form body (e.g., mutual TLS client
 authentication [RFC8705] uses the "client_id" HTTP request parameter,
 while JWT assertion-based client authentication [RFC7523] uses
 "client_assertion" and "client_assertion_type"). All other request
 parameters, i.e., those pertaining to the authorization request
 itself, MUST appear as claims of the JWT representing the
 authorization request.

 The following is an example of a pushed authorization request using a
 signed Request Object with the same authorization request payload as
 the example in Section 2.1. The client is authenticated with JWT
 client assertion-based authentication [RFC7523] (extra line breaks
 and spaces for display purposes only):

 POST /as/par HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 client_assertion_type=
 urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer
 &client_assertion=eyJraWQiOiJrMmJkYyIsImFsZyI6IlJTMjU2In0.eyJpc3Mi
 OiJzNkJoZFJrcXQzIiwic3ViIjoiczZCaGRSa3F0MyIsImF1ZCI6Imh0dHBzOi8vc
 2VydmVyLmV4YW1wbGUuY29tIiwiZXhwIjoxNjI1ODY5Njc3fQ.te4IdnP_DK4hWrh
 TWA6fyhy3fxlAQZAhfA4lmzRdpoP5uZb-E90R5YxzN1YDA8mnVdpgj_Bx1lG5r6se
 f5TlckApA3hahhC804dcqlE4naEmLISmN1pds2WxTMOUzZY8aKKSDzNTDqhyTgE-K
 dTb3RafRj7tdZb09zWs7c_moOvfVcQIoy5zz1BvLQKW1Y8JsYvdpu2AvpxRPbcP8W
 yeW9B6PL6_fy3pXYKG3e-qUcvPa9kan-mo9EoSgt-YTDQjK1nZMdXIqTluK9caVJE
 RWW0fD1Y11_tlOcJn-ya7v7d8YmFyJpkhZfm8x1FoeH0djEicXTixEkdRuzsgUCm6
 GQ
 &request=eyJraWQiOiJrMmJkYyIsImFsZyI6IlJTMjU2In0.eyJpc3MiOiJzNkJoZ
 FJrcXQzIiwiYXVkIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJleHAiOj
 E2MjU4Njk2NzcsInJlc3BvbnNlX3R5cGUiOiJjb2RlIiwiY2xpZW50X2lkIjoiczZ
 CaGRSa3F0MyIsInJlZGlyZWN0X3VyaSI6Imh0dHBzOi8vY2xpZW50LmV4YW1wbGUu
 b3JnL2NiIiwic2NvcGUiOiJhY2NvdW50LWluZm9ybWF0aW9uIiwic3RhdGUiOiJhZ
 jBpZmpzbGRraiIsImNvZGVfY2hhbGxlbmdlIjoiSzItbHRjODNhY2M0aDBjOXc2RV
 NDX3JFTVRKM2J3dy11Q0hhb2VLMXQ4VSIsImNvZGVfY2hhbGxlbmdlX21ldGhvZCI
 6IlMyNTYifQ.l9R3RC9bFBHry_8acObQjEf4fX5yfJkWUPfak3J3iiBm0aaQznPw5
 BZ0B3VQZ9_KYdPt5bTkaflS5fSDklM3_7my9MyOSKFYmf46INk6ju_qUuC2crkOQX
 ZWYJB-0bnYEbdHpUjazFSUvN49cEGstNQeE-dKDWHNgEojgcuNA_pjKfL9VYp1dEA
 6-WjXZ_OlJ7R_mBWpjFAzc0UkQwqX5hfOJoGTqB2tE4a4aB2z8iYlUJp0DeeYp_hP
 N6svtmdvte73p5bLGDFpRIlmrBQIAQuxiS0skORpXlS0cBcgHimXVnXOJG7E-A_lS
 _5y54dVLQPA1jKYx-fxbYSG7dp2fw
 &client_id=s6BhdRkqt3

 The authorization server MUST take the following steps beyond the
 processing rules defined in Section 2.1:

 1. If applicable, decrypt the Request Object as specified in JAR
 [RFC9101], Section 6.1.

 2. Validate the Request Object signature as specified in JAR
 [RFC9101], Section 6.2.

 3. If the client has authentication credentials established with the
 authorization server, reject the request if the authenticated
 "client_id" does not match the "client_id" claim in the Request
 Object. Additionally, requiring the "iss" claim to match the
 "client_id" is at the discretion of the authorization server.

 The following RSA key pair, represented in JSON Web Key (JWK) format
 [RFC7517], can be used to validate or recreate the Request Object
 signature in the above example (extra line breaks and indentation
 within values for display purposes only):

 {
 "kty": "RSA",
 "kid":"k2bdc",
 "n": "y9Lqv4fCp6Ei-u2-ZCKq83YvbFEk6JMs_pSj76eMkddWRuWX2aBKGHAtKlE
 5P7_vn__PCKZWePt3vGkB6ePgzAFu08NmKemwE5bQI0e6kIChtt_6KzT5Oa
 aXDFI6qCLJmk51Cc4VYFaxgqevMncYrzaW_50mZ1yGSFIQzLYP8bijAHGVj
 dEFgZaZEN9lsn_GdWLaJpHrB3ROlS50E45wxrlg9xMncVb8qDPuXZarvghL
 L0HzOuYRadBJVoWZowDNTpKpk2RklZ7QaBO7XDv3uR7s_sf2g-bAjSYxYUG
 sqkNA9b3xVW53am_UZZ3tZbFTIh557JICWKHlWj5uzeJXaw",
 "e": "AQAB",
 "d": "LNwG_pCKrwowALpCpRdcOKlSVqylSurZhE6CpkRiE9cpDgGKIkO9CxPlXOL
 zjqxXuQc8MdMqRQZTnAwgd7HH0B6gncrruV3NewI-XQV0ckldTjqNfOTz1V
 Rs-jE-57KAXI3YBIhu-_0YpIDzdk_wBuAk661Svn0GsPQe7m9DoxdzenQu9
 O_soewUhlPzRrTH0EeIqYI715rwI3TYaSzoWBmEPD2fICyj18FF0MPy_SQz
 k3noVUUIzfzLnnJiWy_p63QBCMqjRoSHHdMnI4z9iVpIwJWQ3jO5n_2lC2-
 cSgwjmKsFzDBbQNJc7qMG1N6EssJUwgGJxz1eAUFf0w4YAQ",
 "qi": "J-mG0swR4FTy3atrcQ7dd0hhYn1E9QndN-
 -sDG4EQO0RnFj6wIefCvwIc4
 7hCtVeFnCTPYJNc_JyV-mU-9vlzS5GSNuyR5qdpsMZXUMpEvQcwKt23ffPZ
 YGaqfKyEesmf_Wi8fFcE68H9REQjnniKrXm7w2-IuG_IrVJA9Ox-uU",
 "q": "4hlMYAGa0dvogdK1jnxQ7J_Lqpqi99e-AeoFvoYpMPhthChTzwFZO9lQmUo
 BpMqVQTws_s7vWGmt7ZAB3ywkurf0pV7BD0fweJiUzrWk4KJjxtmP_auuxr
 jvm3s2FUGn6f0wRY9Z8Hj9A7C72DnYCjuZiJQMYCWDsZ8-d-L1a-s",
 "p": "5sd9Er3I2FFT9R-gy84_oakEyCmgw036B_nfYEEOCwpSvi2z7UcIVK3bSEL
 5WCW6BNgB3HDWhq8aYPirwQnqm0K9mX1E-4xM10WWZ-rP3XjYpQeS0Snru5
 LFVWsAzi-FX7BOqBibSAXLdEGXcXa44l08iec_bPD3xduq5V_1YoE",
 "dq": "Nz2PF3XM6bEc4XsluKZO70ErdYdKgdtIJReUR7Rno_tOZpejwlPGBYVW19
 zpAeYtCT82jxroB2XqhLxGeMxEPQpsz2qTKLSe4BgHY2ml2uxSDGdjcsrbb
 NoKUKaN1CuyZszhWl1n0AT_bENl4bJgQj_Fh0UEsQj5YBBUJt5gr_k",
 "dp": "Zc877jirkkLOtyTs2vxyNe9KnMNAmOidlUc2tE_-0gAL4Lpo1hSwKCtKwe
 ZJ-gkqt1hT-dwNx_0Xtg_-NXsadMRMwJnzBMYwYAfjApUkfqABc0yUCJJl3
 KozRCugf1WXkU9GZAH2_x8PUopdNUEa70ISowPRh04HANKX4fkjWAE"
 }

4. Authorization Request

 The client uses the "request_uri" value returned by the authorization
 server to build an authorization request as defined in [RFC9101].
 This is shown in the following example where the client directs the
 user agent to make the following HTTP request (extra line breaks and
 indentation for display purposes only):

 GET /authorize?client_id=s6BhdRkqt3&request_uri=urn%3Aietf%3Aparams
 %3Aoauth%3Arequest_uri%3A6esc_11ACC5bwc014ltc14eY22c HTTP/1.1
 Host: as.example.com

 Since parts of the authorization request content, e.g., the
 "code_challenge" parameter value, are unique to a particular
 authorization request, the client MUST only use a "request_uri" value
 once. Authorization servers SHOULD treat "request_uri" values as
 one-time use but MAY allow for duplicate requests due to a user
 reloading/refreshing their user agent. An expired "request_uri" MUST
 be rejected as invalid.

 The authorization server MUST validate authorization requests arising
 from a pushed request as it would any other authorization request.
 The authorization server MAY omit validation steps that it performed
 when the request was pushed, provided that it can validate that the
 request was a pushed request and that the request or the
 authorization server’s policy has not been modified in a way that

 would affect the outcome of the omitted steps.

 Authorization server policy MAY dictate, either globally or on a per-
 client basis, that PAR be the only means for a client to pass
 authorization request data. In this case, the authorization server
 will refuse, using the "invalid_request" error code, to process any
 request to the authorization endpoint that does not have a
 "request_uri" parameter with a value obtained from the PAR endpoint.

 | Note: Authorization server and clients MAY use metadata as
 | defined in Sections 5 and 6 to signal the desired behavior.

5. Authorization Server Metadata

 The following authorization server metadata parameters [RFC8414] are
 introduced to signal the server’s capability and policy with respect
 to PAR.

 pushed_authorization_request_endpoint
 The URL of the pushed authorization request endpoint at which a
 client can post an authorization request to exchange for a
 "request_uri" value usable at the authorization server.

 require_pushed_authorization_requests
 Boolean parameter indicating whether the authorization server
 accepts authorization request data only via PAR. If omitted, the
 default value is "false".

 Note that the presence of "pushed_authorization_request_endpoint" is
 sufficient for a client to determine that it may use the PAR flow. A
 "request_uri" value obtained from the PAR endpoint is usable at the
 authorization endpoint regardless of other authorization server
 metadata such as "request_uri_parameter_supported" or
 "require_request_uri_registration" [OIDC.Disco].

6. Client Metadata

 The Dynamic Client Registration Protocol [RFC7591] defines an API for
 dynamically registering OAuth 2.0 client metadata with authorization
 servers. The metadata defined by [RFC7591], and registered
 extensions to it, also imply a general data model for clients that is
 useful for authorization server implementations even when the Dynamic
 Client Registration Protocol isn’t in play. Such implementations
 will typically have some sort of user interface available for
 managing client configuration. The following client metadata
 parameter is introduced by this document to indicate whether pushed
 authorization requests are required for the given client.

 require_pushed_authorization_requests
 Boolean parameter indicating whether the only means of initiating
 an authorization request the client is allowed to use is PAR. If
 omitted, the default value is "false".

7. Security Considerations

7.1. Request URI Guessing

 An attacker could attempt to guess and replay a valid request URI
 value and try to impersonate the respective client. The
 authorization server MUST account for the considerations given in JAR
 [RFC9101], Section 10.2, clause (d) on request URI entropy.

7.2. Open Redirection

 An attacker could try to register a redirect URI pointing to a site
 under their control in order to obtain authorization codes or launch
 other attacks towards the user. The authorization server MUST only
 accept new redirect URIs in the pushed authorization request from
 authenticated clients.

7.3. Request Object Replay

 An attacker could replay a request URI captured from a legitimate
 authorization request. In order to cope with such attacks, the
 authorization server SHOULD make the request URIs one-time use.

7.4. Client Policy Change

 The client policy might change between the lodging of the Request
 Object and the authorization request using a particular Request
 Object. Therefore, it is recommended that the authorization server
 check the request parameter against the client policy when processing
 the authorization request.

7.5. Request URI Swapping

 An attacker could capture the request URI from one request and then
 substitute it into a different authorization request. For example,
 in the context of OpenID Connect, an attacker could replace a request
 URI asking for a high level of authentication assurance with one that
 requires a lower level of assurance. Clients SHOULD make use of PKCE
 [RFC7636], a unique "state" parameter [RFC6749], or the OIDC "nonce"
 parameter [OIDC] in the pushed Request Object to prevent this attack.

8. Privacy Considerations

 OAuth 2.0 is a complex and flexible framework with broad-ranging
 privacy implications due to its very nature of having one entity
 intermediate user authorization to data access between two other
 entities. The privacy considerations of all of OAuth are beyond the
 scope of this document, which only defines an alternative way of
 initiating one message sequence in the larger framework. However,
 using PAR may improve privacy by reducing the potential for
 inadvertent information disclosure since it passes the authorization
 request data directly between the client and authorization server
 over a secure connection in the message body of an HTTP request
 rather than in the query component of a URL that passes through the
 user agent in the clear.

9. IANA Considerations

9.1. OAuth Authorization Server Metadata

 IANA has registered the following values in the IANA "OAuth
 Authorization Server Metadata" registry of [IANA.OAuth.Parameters]
 established by [RFC8414].

 Metadata Name: "pushed_authorization_request_endpoint"
 Metadata Description: URL of the authorization server’s pushed
 authorization request endpoint.
 Change Controller: IESG
 Specification Document(s): Section 5 of RFC 9126

 Metadata Name: "require_pushed_authorization_requests"
 Metadata Description: Indicates whether the authorization server
 accepts authorization requests only via PAR.
 Change Controller: IESG
 Specification Document(s): Section 5 of RFC 9126

9.2. OAuth Dynamic Client Registration Metadata

 IANA has registered the following value in the IANA "OAuth Dynamic
 Client Registration Metadata" registry of [IANA.OAuth.Parameters]
 established by [RFC7591].

 Client Metadata Name: "require_pushed_authorization_requests"
 Client Metadata Description: Indicates whether the client is
 required to use PAR to initiate authorization requests.
 Change Controller: IESG
 Specification Document(s): Section 6 of RFC 9126

9.3. OAuth URI Registration

 IANA has registered the following value in the "OAuth URI" registry
 of [IANA.OAuth.Parameters] established by [RFC6755].

 URN: "urn:ietf:params:oauth:request_uri:"
 Common Name: A URN Sub-Namespace for OAuth Request URIs.
 Change Controller: IESG
 Specification Document(s): Section 2.2 of RFC 9126

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

 [RFC9101] Sakimura, N., Bradley, J., and M. Jones, "The OAuth 2.0
 Authorization Framework: JWT-Secured Authorization Request
 (JAR)", RFC 9101, DOI 10.17487/RFC9101, August 2021,
 <https://www.rfc-editor.org/info/rfc9101>.

10.2. Informative References

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [OAUTH-SECURITY-TOPICS]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", Work in
 Progress, Internet-Draft, draft-ietf-oauth-security-
 topics-18, 13 April 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 security-topics-18>.

 [OAUTH-V2] Hardt, D., Parecki, A., and T. Lodderstedt, "The OAuth 2.1
 Authorization Framework", Work in Progress, Internet-
 Draft, draft-ietf-oauth-v2-1-03, 8 September 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 v2-1-03>.

 [OIDC] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0 incorporating
 errata set 1", November 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [OIDC.Disco]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0 incorporating errata set 1",
 November 2014, <http://openid.net/specs/openid-connect-
 discovery-1_0.html>.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
 <https://www.rfc-editor.org/info/rfc6755>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
 2015, <https://www.rfc-editor.org/info/rfc7523>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
 BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
 <https://www.rfc-editor.org/info/rfc8252>.

 [RFC8705] Campbell, B., Bradley, J., Sakimura, N., and T.
 Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
 and Certificate-Bound Access Tokens", RFC 8705,
 DOI 10.17487/RFC8705, February 2020,
 <https://www.rfc-editor.org/info/rfc8705>.

 [RFC8707] Campbell, B., Bradley, J., and H. Tschofenig, "Resource
 Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/RFC8707,
 February 2020, <https://www.rfc-editor.org/info/rfc8707>.

Acknowledgements

 This specification is based on the work on Pushed Request Object
 (https://bitbucket.org/openid/fapi/src/master/
 Financial_API_Pushed_Request_Object.md) conducted at the Financial-
 grade API Working Group at the OpenID Foundation. We would like to
 thank the members of the WG for their valuable contributions.

 We would like to thank Vladimir Dzhuvinov, Aaron Parecki, Justin
 Richer, Sascha Preibisch, Daniel Fett, Michael B. Jones, Annabelle
 Backman, Joseph Heenan, Sean Glencross, Maggie Hung, Neil Madden,
 Karsten Meyer zu Selhausen, Roman Danyliw, Meral Shirazipour, and
 Takahiko Kawasaki for their valuable feedback on this document.

Authors’ Addresses

 Torsten Lodderstedt
 yes.com

 Email: torsten@lodderstedt.net

 Brian Campbell
 Ping Identity

 Email: bcampbell@pingidentity.com

 Nat Sakimura

 NAT.Consulting

 Email: nat@sakimura.org

 Dave Tonge
 Moneyhub Financial Technology

 Email: dave@tonge.org

 Filip Skokan
 Auth0

 Email: panva.ip@gmail.com

