
ï»¿

Internet Engineering Task Force (IETF) C. Bormann
Request for Comments: 9090 UniversitÃ¤t Bremen TZI
Category: Standards Track July 2021
ISSN: 2070-1721

Concise Binary Object Representation (CBOR) Tags for Object Identifiers

Abstract

 The Concise Binary Object Representation (CBOR), defined in RFC 8949,
 is a data format whose design goals include the possibility of
 extremely small code size, fairly small message size, and
 extensibility without the need for version negotiation.

 This document defines CBOR tags for object identifiers (OIDs) and is
 the reference document for the IANA registration of the CBOR tags so
 defined.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9090.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Terminology
 2. Object Identifiers
 2.1. Requirements on the Byte String Being Tagged
 2.2. Preferred Serialization Considerations
 2.3. Discussion
 3. Basic Examples
 3.1. Encoding of the SHA-256 OID
 3.2. Encoding of a MIB Relative OID
 4. Tag Factoring with Arrays and Maps
 4.1. Preferred Serialization Considerations
 4.2. Tag Factoring Example: X.500 Distinguished Name
 5. CDDL Control Operators
 6. CDDL Type Names
 7. IANA Considerations
 7.1. CBOR Tags
 7.2. CDDL Control Operators

 8. Security Considerations
 9. References
 9.1. Normative References
 9.2. Informative References
 Acknowledgments
 Contributors
 Author’s Address

1. Introduction

 The Concise Binary Object Representation (CBOR) [RFC8949] provides
 for the interchange of structured data without a requirement for a
 pre-agreed schema. [RFC8949] defines a basic set of data types, as
 well as a tagging mechanism that enables extending the set of data
 types supported via an IANA registry.

 This document defines CBOR tags for object identifiers (OIDs)
 [X.660], which many IETF protocols carry. The ASN.1 Basic Encoding
 Rules (BER) [X.690] specify binary encodings of both (absolute)
 object identifiers and relative object identifiers. The contents of
 these encodings (the "value" part of BER’s type-length-value
 structure) can be carried in a CBOR byte string. This document
 defines two CBOR tags that cover the two kinds of ASN.1 object
 identifiers encoded in this way and a third one to enable a common
 optimization. The tags can also be applied to arrays and maps to
 efficiently tag all elements of an array or all keys of a map. This
 document is the reference document for the IANA registration of the
 tags so defined.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The terminology of [RFC8949] applies; in particular, the term "byte"
 is used in its now-customary sense as a synonym for "octet". The
 verb "to tag (something)" is used to express the construction of a
 CBOR tag, with the object (something) as the tag content and a tag
 number indicated elsewhere in the sentence (for instance, in a "with"
 clause or by the shorthand "an NNN tag" for "a tag with tag number
 NNN"). The term "SDNV" (Self-Delimiting Numeric Value) is used as
 defined in [RFC6256], with the additional restriction detailed in
 Section 2.1 (no leading zeros).

2. Object Identifiers

 The International Object Identifier tree [X.660] is a hierarchically
 managed space of identifiers, each of which is uniquely represented
 as a sequence of unsigned integer values [X.680]. (These integer
 values are called "primary integer values" in [X.660] because they
 can be accompanied by (not necessarily unambiguous) secondary
 identifiers. We ignore the latter and simply use the term "integer
 values" here, occasionally calling out their unsignedness. We also
 use the term "arc" when the focus is on the edge of the tree labeled
 by such an integer value, as well as in the sense of a "long arc",
 i.e., a (sub)sequence of such integer values.)

 While these sequences can easily be represented in CBOR arrays of
 unsigned integers, a more compact representation can often be
 achieved by adopting the widely used representation of object
 identifiers defined in BER; this representation may also be more
 amenable to processing by other software that makes use of object
 identifiers.

 BER represents the sequence of unsigned integers by concatenating
 self-delimiting representations [RFC6256] of each of the integer
 values in sequence.

 ASN.1 distinguishes absolute object identifiers (ASN.1 type "OBJECT
 IDENTIFIER"), which begin at a root arc ([X.660], Clause 3.5.21),
 from relative object identifiers (ASN.1 type "RELATIVE-OID"), which
 begin relative to some object identifier known from context ([X.680],
 Clause 3.8.63). As a special optimization, BER combines the first
 two integers in an absolute object identifier into one numeric
 identifier by making use of the property of the hierarchy that the
 first arc has only three integer values (0, 1, and 2) and the second
 arcs under 0 and 1 are limited to the integer values between 0 and
 39. (The root arc "joint-iso-itu-t(2)" has no such limitations on
 its second arc.) If X and Y are the first two integer values, the
 single integer value actually encoded is computed as:

 X * 40 + Y

 The inverse transformation (again making use of the known ranges of X
 and Y) is applied when decoding the object identifier.

 Since the semantics of absolute and relative object identifiers
 differ and since it is very common for companies to use self-assigned
 numbers under the arc "1.3.6.1.4.1" (IANA Private Enterprise Number
 OID [IANA.enterprise-numbers]) that adds 5 fixed bytes to an encoded
 OID value, this specification defines three tags, collectively called
 the "OID tags" here:

 Tag number 111: Used to tag a byte string as the BER encoding
 [X.690] of an absolute object identifier (simply "object
 identifier" or "OID").

 Tag number 110: Used to tag a byte string as the BER encoding
 [X.690] of a relative object identifier (also called "relative
 OID"). Since the encoding of each number is the same as for Self-
 Delimiting Numeric Values (SDNVs) [RFC6256], this tag can also be
 used for tagging a byte string that contains a sequence of zero or
 more SDNVs (or a more application-specific tag can be created for
 such an application).

 Tag number 112: Structurally like tag 110 but understood to be
 relative to "1.3.6.1.4.1" (IANA Private Enterprise Number OID
 [IANA.enterprise-numbers]). Hence, the semantics of the result
 are that of an absolute object identifier.

2.1. Requirements on the Byte String Being Tagged

 To form a valid tag, a byte string tagged with 111, 110, or 112 MUST
 be syntactically valid contents (the value part) for a BER
 representation of an object identifier (see Table 1):

 +============+====================+
 | Tag number | Section of [X.690] |
 +============+====================+
 | 111 | 8.19 |
 +------------+--------------------+
 | 110 | 8.20 |
 +------------+--------------------+
 | 112 | 8.20 |
 +------------+--------------------+

 Table 1: Tag Number and
 Section of X.690 Governing Tag
 Content

 This is a concatenation of zero or more SDNV values, where each SDNV
 value is a sequence of one or more bytes that all have their most
 significant bit set, except for the last byte, where it is unset.
 Also, the first byte of each SDNV cannot be a leading zero in SDNV’s
 base-128 arithmetic, so it cannot take the value 0x80 (bullet (c) in
 Section 8.1.2.4.2 of [X.690]).

 In other words:

 * The byte string’s first byte, and any byte that follows a byte
 that has the most significant bit unset, MUST NOT be 0x80 (this
 requirement requires expressing the integer values in their
 shortest form, with no leading zeroes).

 * The byte string’s last byte MUST NOT have the most significant bit
 set (this requirement excludes an incomplete final integer value).

 If either of these invalid conditions are encountered, the tag is
 invalid.

 [X.680] restricts RELATIVE-OID values to having at least one arc,
 i.e., their encoding would have at least one SDNV. This
 specification permits empty relative object identifiers; they may
 still be excluded by application semantics.

 To facilitate the search for specific object ID values, it is
 RECOMMENDED that definite length encoding (see Section 3.2.3 of
 [RFC8949]) be used for the byte strings that are used as tag content
 for these tags.

 The valid set of byte strings can also be expressed using regular
 expressions on bytes, using no specific notation but resembling Perl
 Compatible Regular Expressions [PCRE]. Unlike typical regular
 expressions that operate on character sequences, the following
 regular expressions take bytes as their domain, so they can be
 applied directly to CBOR byte strings.

 For byte strings with tag 111:

 "/^(([\x81-\xFF][\x80-\xFF]*)?[\x00-\x7F])+$/"

 For byte strings with tags 110 or 112:

 "/^(([\x81-\xFF][\x80-\xFF]*)?[\x00-\x7F])*$/"

 A tag with tagged content that does not conform to the applicable
 regular expression is invalid.

2.2. Preferred Serialization Considerations

 For an absolute OID with a prefix of "1.3.6.1.4.1", representations
 with both the 111 and 112 tags are applicable, where the
 representation with 112 will be five bytes shorter (by leaving out
 the prefix h’2b06010401’ from the enclosed byte string). This
 specification makes that shorter representation the preferred
 serialization (see Sections 3.4 and 4.1 of [RFC8949]). Note that
 this also implies that the Core Deterministic Encoding Requirements
 (Section 4.2.1 of [RFC8949]) require the use of 112 tags instead of
 111 tags wherever that is possible.

2.3. Discussion

 Staying close to the way object identifiers are encoded in ASN.1 BER
 makes back-and-forth translation easy; otherwise, we would choose a
 more efficient encoding. Object identifiers in IETF protocols are
 serialized in dotted decimal form or BER form, so there is an
 advantage in not inventing a third form. Also, expectations of the
 cost of encoding object identifiers are based on BER; using a
 different encoding might not be aligned with these expectations. If
 additional information about an OID is desired, lookup services such
 as the OID Resolution Service (ORS) [X.672] and the OID Repository
 [OID-INFO] are available.

3. Basic Examples

 This section gives simple examples of an absolute and a relative
 object identifier, represented via tag numbers 111 and 110,
 respectively.

3.1. Encoding of the SHA-256 OID

 ASN.1 Value Notation:
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) sha256(1) }

 Dotted Decimal Notation: 2.16.840.1.101.3.4.2.1

 06 # UNIVERSAL TAG 6
 09 # 9 bytes, primitive
 60 86 48 01 65 03 04 02 01 # X.690 Clause 8.19
 # | 840 1 | 3 4 2 1 show component encoding
 # 2.16 101

 Figure 1: SHA-256 OID in BER

 D8 6F # tag(111)
 49 # 0b010_01001: mt 2, 9 bytes
 60 86 48 01 65 03 04 02 01 # X.690 Clause 8.19

 Figure 2: SHA-256 OID in CBOR

3.2. Encoding of a MIB Relative OID

 Given some OID (e.g., "lowpanMib", assumed to be "1.3.6.1.2.1.226"
 [RFC7388]), to which the following is added:

 ASN.1 Value Notation:
 { lowpanObjects(1) lowpanStats(1) lowpanOutTransmits(29) }

 Dotted Decimal Notation: .1.1.29

 0D # UNIVERSAL TAG 13
 03 # 3 bytes, primitive
 01 01 1D # X.690 Clause 8.20
 # 1 1 29 show component encoding

 Figure 3: MIB Relative Object Identifier in BER

 D8 6E # tag(110)
 43 # 0b010_00011: mt 2 (bstr), 3 bytes
 01 01 1D # X.690 Clause 8.20

 Figure 4: MIB Relative Object Identifier in CBOR

 This relative OID saves seven bytes compared to the full OID
 encoding.

4. Tag Factoring with Arrays and Maps

 The tag content of OID tags can be byte strings (as discussed above)
 but also CBOR arrays and maps. The idea in the latter case is that
 the tag construct is factored out from each individual item in the
 container; the tag is placed on the array or map instead.

 When the tag content of an OID tag is an array, this means that the
 respective tag is imputed to all elements of the array that are byte
 strings, arrays, or maps. (There is no effect on other elements,
 including text strings or tags.) For example, when the tag content
 of a 111 tag is an array, every array element that is a byte string
 is an OID, and every element that is an array or map is, in turn,
 treated as discussed here.

 When the tag content of an OID tag is a map, this means that a tag
 with the same tag number is imputed to all keys in the map that are
 byte strings, arrays, or maps; again, there is no effect on keys of
 other major types. Note that there is also no effect on the values
 in the map.

 As a result of these rules, tag factoring in nested arrays and maps
 is supported. For example, a 3-dimensional array of OIDs can be
 composed by using a single 111 tag containing an array of arrays of

 arrays of byte strings. All such byte strings are then considered
 OIDs.

4.1. Preferred Serialization Considerations

 Where tag factoring with tag number 111 is used, some OIDs enclosed
 in the tag may be encoded in a shorter way by using tag number 112
 instead of encoding an unadorned byte string. This remains the
 preferred serialization (see also Section 2.2). However, this
 specification does not make the presence or absence of tag factoring
 a preferred serialization; application protocols can define where tag
 factoring is to be used or not (and will need to do so if they have
 deterministic encoding requirements).

4.2. Tag Factoring Example: X.500 Distinguished Name

 Consider the X.500 distinguished name:

 +==============================+=============+
 | Attribute Types | Attribute |
 | | Values |
 +==============================+=============+
 | c (2.5.4.6) | US |
 +------------------------------+-------------+
 | l (2.5.4.7) | Los Angeles |
 | s (2.5.4.8) | CA |
 | postalCode (2.5.4.17) | 90013 |
 +------------------------------+-------------+
 | street (2.5.4.9) | 532 S Olive |
 | | St |
 +------------------------------+-------------+
 | businessCategory (2.5.4.15) | Public Park |
 | buildingName | Pershing |
 | (0.9.2342.19200300.100.1.48) | Square |
 +------------------------------+-------------+

 Table 2: Example X.500 Distinguished Name

 Table 2 has four "relative distinguished names" (RDNs). The country
 (first) and street (third) RDNs are single valued. The second and
 fourth RDNs are multivalued.

 The equivalent representations in CBOR diagnostic notation (Section 8
 of [RFC8949]) and CBOR are:

 111([{ h’550406’: "US" },
 { h’550407’: "Los Angeles",
 h’550408’: "CA",
 h’550411’: "90013" },
 { h’550409’: "532 S Olive St" },
 { h’55040f’: "Public Park",
 h’0992268993f22c640130’: "Pershing Square" }])

 Figure 5: Distinguished Name in CBOR Diagnostic Notation

 d8 6f # tag(111)
 84 # array(4)
 a1 # map(1)
 43 550406 # 2.5.4.6 (4)
 62 # text(2)
 5553 # "US"
 a3 # map(3)
 43 550407 # 2.5.4.7 (4)
 6b # text(11)
 4c6f7320416e67656c6573 # "Los Angeles"
 43 550408 # 2.5.4.8 (4)
 62 # text(2)
 4341 # "CA"
 43 550411 # 2.5.4.17 (4)
 65 # text(5)
 3930303133 # "90013"

 a1 # map(1)
 43 550409 # 2.5.4.9 (4)
 6e # text(14)
 3533322053204f6c697665205374 # "532 S Olive St"
 a2 # map(2)
 43 55040f # 2.5.4.15 (4)
 6b # text(11)
 5075626c6963205061726b # "Public Park"
 4a 0992268993f22c640130 # 0.9.2342.19200300.100.1.48 (11)
 6f # text(15)
 5065727368696e6720537175617265 # "Pershing Square"

 Figure 6: Distinguished Name in CBOR (109 Bytes)

 (This example encoding assumes that all attribute values are UTF-8
 strings or can be represented as UTF-8 strings with no loss of
 information.)

5. CDDL Control Operators

 Concise Data Definition Language (CDDL) specifications [RFC8610] may
 want to specify the use of SDNVs or SDNV sequences (as defined for
 the tag content for tag 110). This document introduces two new
 control operators that can be applied to a target value that is a
 byte string:

 * ".sdnv", with a control type that contains unsigned integers. The
 byte string is specified to be encoded as an SDNV (BER encoding)
 [RFC6256] for the matching values of the control type.

 * ".sdnvseq", with a control type that contains arrays of unsigned
 integers. The byte string is specified to be encoded as a
 sequence of SDNVs (BER encoding) [RFC6256] that decodes to an
 array of unsigned integers matching the control type.

 * ".oid", like ".sdnvseq", except that the X*40+Y translation for
 absolute OIDs is included (see Figure 8).

 Figure 7 shows an example for the use of ".sdnvseq" for a part of a
 structure using OIDs that could be used in Figure 6; Figure 8 shows
 the same with the ".oid" operator.

 country-rdn = {country-oid => country-value}
 country-oid = bytes .sdnvseq [85, 4, 6]
 country-value = text .size 2

 Figure 7: Using .sdnvseq

 country-rdn = {country-oid => country-value}
 country-oid = bytes .oid [2, 5, 4, 6]
 country-value = text .size 2

 Figure 8: Using .oid

 Note that the control type need not be a literal; for example, "bytes
 .oid [2, 5, 4, *uint]" matches all OIDs inside OID arc "2.5.4",
 "attributeType".

6. CDDL Type Names

 For the use with CDDL, the type names defined in Figure 9 are
 recommended:

 oid = #6.111(bstr)
 roid = #6.110(bstr)
 pen = #6.112(bstr)

 Figure 9: Recommended Type Names for CDDL

7. IANA Considerations

7.1. CBOR Tags

 IANA has assigned the CBOR tag numbers in Table 3 in the 1+1 byte
 space (24..255) of the "CBOR Tags" registry [IANA.cbor-tags], with
 this document as the specification reference.

 +=====+===============+============================+===========+
 | Tag | Data Item | Semantics | Reference |
 +=====+===============+============================+===========+
 | 111 | byte string, | object identifier (BER | RFC 9090 |
 | | array, or map | encoding) | |
 +-----+---------------+----------------------------+-----------+
 | 110 | byte string, | relative object identifier | RFC 9090 |
 | | array, or map | (BER encoding); SDNV | |
 | | | [RFC6256] sequence | |
 +-----+---------------+----------------------------+-----------+
 | 112 | byte string, | object identifier (BER | RFC 9090 |
 | | array, or map | encoding), relative to | |
 | | | 1.3.6.1.4.1 | |
 +-----+---------------+----------------------------+-----------+

 Table 3: New Tag Numbers

7.2. CDDL Control Operators

 IANA has assigned the CDDL control operators in Table 4 in the "CDDL
 Control Operators" registry [IANA.cddl], with this document as the
 specification reference.

 +==========+===========+
 | Name | Reference |
 +==========+===========+
 | .sdnv | RFC 9090 |
 +----------+-----------+
 | .sdnvseq | RFC 9090 |
 +----------+-----------+
 | .oid | RFC 9090 |
 +----------+-----------+

 Table 4: New CDDL
 Control Operators

8. Security Considerations

 The security considerations of [RFC8949] apply.

 The encodings in Clauses 8.19 and 8.20 of [X.690] are quite compact
 and unambiguous but MUST be followed precisely to avoid security
 pitfalls. In particular, the requirements set out in Section 2.1 of
 this document need to be followed; otherwise, an attacker may be able
 to subvert a checking process by submitting alternative
 representations that are later taken as the original (or even
 something else entirely) by another decoder that is intended to be
 protected by the checking process.

 OIDs and relative OIDs can always be treated as opaque byte strings.
 Actually understanding the structure that was used for generating
 them is not necessary, and, except for checking the structure
 requirements, it is strongly NOT RECOMMENDED to perform any
 processing of this kind (e.g., converting into dotted notation and
 back) unless absolutely necessary. If the OIDs are translated into
 other representations, the usual security considerations for non-
 trivial representation conversions apply; the integer values are
 unlimited in range.

 An attacker might trick an application into using a byte string
 inside a tag-factored data item, where the byte string is not
 actually intended to fall under one of the tags defined here. This
 may cause the application to emit data with semantics different from
 what was intended. Applications therefore need to be restrictive
 with respect to what data items they apply tag factoring to.

9. References

9.1. Normative References

 [IANA.cbor-tags]
 IANA, "Concise Binary Object Representation (CBOR) Tags",
 <https://www.iana.org/assignments/cbor-tags>.

 [IANA.cddl]
 IANA, "Concise Data Definition Language (CDDL)",
 <https://www.iana.org/assignments/cddl>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6256] Eddy, W. and E. Davies, "Using Self-Delimiting Numeric
 Values in Protocols", RFC 6256, DOI 10.17487/RFC6256, May
 2011, <https://www.rfc-editor.org/info/rfc6256>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

 [X.660] ITU-T, "Information technology - Procedures for the
 operation of object identifier registration authorities:
 General procedures and top arcs of the international
 object identifier tree", ITU-T Recommendation X.660, July
 2011, <https://www.itu.int/rec/T-REC-X.660>.

 [X.680] ITU-T, "Information technology - Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ITU-T
 Recommendation X.680, August 2015,
 <https://www.itu.int/rec/T-REC-X.680>.

 [X.690] ITU-T, "Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, August 2015,
 <https://www.itu.int/rec/T-REC-X.690>.

9.2. Informative References

 [IANA.enterprise-numbers]
 IANA, "Private Enterprise Numbers",
 <https://www.iana.org/assignments/enterprise-numbers>.

 [OID-INFO] Orange SA, "Object Identifier (OID) Repository",
 <http://www.oid-info.com/>.

 [PCRE] "PCRE - Perl Compatible Regular Expressions",
 <http://www.pcre.org/>.

 [RFC7388] Schoenwaelder, J., Sehgal, A., Tsou, T., and C. Zhou,
 "Definition of Managed Objects for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", RFC 7388,
 DOI 10.17487/RFC7388, October 2014,
 <https://www.rfc-editor.org/info/rfc7388>.

 [X.672] ITU-T, "Information technology - Open systems
 interconnection - Object identifier resolution system
 (ORS)", ITU-T Recommendation X.672, August 2010,
 <https://www.itu.int/rec/T-REC-X.672>.

Acknowledgments

 Sean Leonard started the work on this document in 2014 with an
 elaborate proposal. Jim Schaad provided a significant review of this
 document. Rob Wilton’s IESG review prompted us to provide preferred
 serialization considerations.

Contributors

 Sean Leonard
 Penango, Inc.
 5900 Wilshire Boulevard
 21st Floor
 Los Angeles, CA 90036
 United States of America

 Email: dev+ietf@seantek.com

Author’s Address

 Carsten Bormann
 UniversitÃ¤t Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

