
ï»¿

Internet Engineering Task Force (IETF) M. VuÄ\215iniÄ\207, Ed.
Request for Comments: 9031 Inria
Category: Standards Track J. Simon
ISSN: 2070-1721 Analog Devices
 K. Pister
 University of California Berkeley
 M. Richardson
 Sandelman Software Works
 May 2021

 Constrained Join Protocol (CoJP) for 6TiSCH

Abstract

 This document describes the minimal framework required for a new
 device, called a "pledge", to securely join a 6TiSCH (IPv6 over the
 Time-Slotted Channel Hopping mode of IEEE 802.15.4) network. The
 framework requires that the pledge and the JRC (Join Registrar/
 Coordinator, a central entity), share a symmetric key. How this key
 is provisioned is out of scope of this document. Through a single
 CoAP (Constrained Application Protocol) request-response exchange
 secured by OSCORE (Object Security for Constrained RESTful
 Environments), the pledge requests admission into the network, and
 the JRC configures it with link-layer keying material and other
 parameters. The JRC may at any time update the parameters through
 another request-response exchange secured by OSCORE. This
 specification defines the Constrained Join Protocol and its CBOR
 (Concise Binary Object Representation) data structures, and it
 describes how to configure the rest of the 6TiSCH communication stack
 for this join process to occur in a secure manner. Additional
 security mechanisms may be added on top of this minimal framework.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9031.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 3. Provisioning Phase

 4. Join Process Overview
 4.1. Step 1 - Enhanced Beacon
 4.2. Step 2 - Neighbor Discovery
 4.3. Step 3 - Constrained Join Protocol (CoJP) Execution
 4.4. The Special Case of the 6LBR Pledge Joining
 5. Link-Layer Configuration
 5.1. Distribution of Time
 6. Network-Layer Configuration
 6.1. Identification of Unauthenticated Traffic
 7. Application-Layer Configuration
 7.1. Statelessness of the JP
 7.2. Recommended Settings
 7.3. OSCORE
 8. Constrained Join Protocol (CoJP)
 8.1. Join Exchange
 8.2. Parameter Update Exchange
 8.3. Error Handling
 8.4. CoJP Objects
 8.5. Recommended Settings
 9. Security Considerations
 10. Privacy Considerations
 11. IANA Considerations
 11.1. Constrained Join Protocol (CoJP) Parameters
 11.2. Constrained Join Protocol (CoJP) Key Usage
 11.3. Constrained Join Protocol (CoJP) Unsupported Configuration
 Codes
 12. References
 12.1. Normative References
 12.2. Informative References
 Appendix A. Example
 Appendix B. Lightweight Implementation Option
 Acknowledgments
 Authors’ Addresses

1. Introduction

 This document defines a "secure join" solution for a new device,
 called a "pledge", to securely join a 6TiSCH network. The term
 "secure join" refers to network access authentication, authorization,
 and parameter distribution as defined in [RFC9030]. The Constrained
 Join Protocol (CoJP) defined in this document handles parameter
 distribution needed for a pledge to become a joined node. Mutual
 authentication during network access and implicit authorization are
 achieved through the use of a secure channel as configured according
 to this document. This document also specifies a configuration of
 different layers of the 6TiSCH protocol stack that reduces the Denial
 of Service (DoS) attack surface during the join process.

 This document presumes a 6TiSCH network as described by [RFC7554] and
 [RFC8180]. By design, nodes in a 6TiSCH network [RFC7554] have their
 radio turned off most of the time in order to conserve energy. As a
 consequence, the link used by a new device for joining the network
 has limited bandwidth [RFC8180]. The secure join solution defined in
 this document therefore keeps the number of over-the-air exchanges to
 a minimum.

 The microcontrollers at the heart of 6TiSCH nodes have small amounts
 of code memory. It is therefore paramount to reuse existing
 protocols available as part of the 6TiSCH stack. At the application
 layer, the 6TiSCH stack already relies on CoAP [RFC7252] for web
 transfer and on OSCORE [RFC8613] for its end-to-end security. The
 secure join solution defined in this document therefore reuses those
 two protocols as its building blocks.

 CoJP is a generic protocol that can be used as-is in all modes of
 IEEE Std 802.15.4 [IEEE802.15.4], including the Time-Slotted Channel
 Hopping (TSCH) mode on which 6TiSCH is based. CoJP may also be used
 in other (low-power) networking technologies where efficiency in
 terms of communication overhead and code footprint is important. In
 such a case, it may be necessary to define through companion
 documents the configuration parameters specific to the technology in

 question. The overall process is described in Section 4, and the
 configuration of the stack is specific to 6TiSCH.

 CoJP assumes the presence of a Join Registrar/Coordinator (JRC), a
 central entity. The configuration defined in this document assumes
 that the pledge and the JRC share a unique symmetric cryptographic
 key, called PSK (pre-shared key). The PSK is used to configure
 OSCORE to provide a secure channel to CoJP. How the PSK is installed
 is out of scope of this document: this may happen during the
 provisioning phase or by a key exchange protocol that may precede the
 execution of CoJP.

 When the pledge seeks admission to a 6TiSCH network, it first
 synchronizes to it by initiating the passive scan defined in
 [IEEE802.15.4]. The pledge then exchanges CoJP messages with the
 JRC; for this end-to-end communication to happen, the messages are
 forwarded by nodes, called Join Proxies, that are already part of the
 6TiSCH network. The messages exchanged allow the JRC and the pledge
 to mutually authenticate based on the properties provided by OSCORE.
 They also allow the JRC to configure the pledge with link-layer
 keying material, a short identifier, and other parameters. After
 this secure join process successfully completes, the joined node can
 interact with its neighbors to request additional bandwidth using the
 6TiSCH Operation Sublayer (6top) Protocol [RFC8480] and can start
 sending application traffic.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The reader is expected to be familiar with the terms and concepts
 defined in [RFC9030], [RFC7252], [RFC8613], and [RFC8152].

 The specification also includes a set of informative specifications
 using the Concise Data Definition Language (CDDL) [RFC8610].

 The following terms defined in [RFC9030] are used extensively
 throughout this document:

 * pledge

 * joined node

 * Join Proxy (JP)

 * Join Registrar/Coordinator (JRC)

 * Enhanced Beacon (EB)

 * join protocol

 * join process

 The following terms defined in [RFC8505] are also used throughout
 this document:

 * 6LoWPAN Border Router (6LBR)

 * 6LoWPAN Node (6LN)

 The term "6LBR" is used interchangeably with the term "DODAG root"
 defined in [RFC6550] on the assumption that the two entities are co-
 located, as recommended by [RFC9030].

 The term "pledge", as used throughout the document, explicitly
 denotes non-6LBR devices attempting to join the network using their
 IEEE Std 802.15.4 network interface. The device that attempts to

 join as the 6LBR of the network and does so over another network
 interface is explicitly denoted as the "6LBR pledge". When the text
 applies equally to the pledge and the 6LBR pledge, the "(6LBR)
 pledge" form is used.

 In addition, we use generic terms "pledge identifier" and "network
 identifier". See Section 3.

3. Provisioning Phase

 The (6LBR) pledge is provisioned with certain parameters before
 attempting to join the network, and the same parameters are
 provisioned to the JRC. There are many ways by which this
 provisioning can be done. Physically, the parameters can be written
 into the (6LBR) pledge with a number of mechanisms, such as using a
 JTAG (Joint Test Action Group) interface, using a serial (craft)
 console interface, pushing buttons simultaneously on different
 devices, configuring over-the-air in a Faraday cage, etc. The
 provisioning can be done by the vendor, the manufacturer, the
 integrator, etc.

 Details of how this provisioning is done are out of scope of this
 document. What is assumed is that there can be a secure, private
 conversation between the JRC and the (6LBR) pledge, and that the two
 devices can exchange the parameters.

 Parameters that are provisioned to the (6LBR) pledge include:

 pledge identifier: The pledge identifier identifies the (6LBR)
 pledge. The pledge identifier MUST be unique in the set of all
 pledge identifiers managed by a JRC. The pledge identifier
 uniqueness is an important security requirement, as discussed in
 Section 9. The pledge identifier is typically the globally unique
 64-bit Extended Unique Identifier (EUI-64) of the IEEE Std
 802.15.4 device, in which case it is provisioned by the hardware
 manufacturer. The pledge identifier is used to generate the IPv6
 addresses of the (6LBR) pledge and to identify it during the
 execution of the join protocol. Depending on the configuration,
 the pledge identifier may also be used after the join process to
 identify the joined node. For privacy reasons (see Section 10),
 it is possible to use a pledge identifier different from the EUI-
 64. For example, a pledge identifier may be a random byte string,
 but care needs to be taken that such a string meets the uniqueness
 requirement.

 Pre-Shared Key (PSK): A symmetric cryptographic key shared between
 the (6LBR) pledge and the JRC. To look up the PSK for a given
 pledge, the JRC additionally needs to store the corresponding
 pledge identifier. Each (6LBR) pledge MUST be provisioned with a
 unique PSK. The PSK MUST be a cryptographically strong key, with
 at least 128 bits of entropy, indistinguishable by feasible
 computation from a random uniform string of the same length. How
 the PSK is generated and/or provisioned is out of scope of this
 specification. This could be done during a provisioning step, or
 companion documents can specify the use of a key-agreement
 protocol. Common pitfalls when generating PSKs are discussed in
 Section 9. In the case of recommissioning a device to a new
 owner, the PSK MUST be changed. Note that the PSK is different
 from the link-layer keys K1 and K2 specified in [RFC8180]. The
 PSK is a long-term secret used to protect the execution of the
 secure join protocol specified in this document; the link-layer
 keys are transported as part of the secure join protocol.

 Optionally, a network identifier: The network identifier identifies
 the 6TiSCH network. The network identifier MUST be carried within
 Enhanced Beacon (EB) frames. Typically, the 16-bit Personal Area
 Network Identifier (PAN ID) defined in [IEEE802.15.4] is used as
 the network identifier. However, PAN ID is not considered a
 stable network identifier as it may change during network lifetime
 if a collision with another network is detected. Companion
 documents can specify the use of a different network identifier

 for join purposes, but this is out of scope of this specification.
 Provisioning the network identifier to a pledge is RECOMMENDED.
 However, due to operational constraints, the network identifier
 may not be known at the time of provisioning. If this parameter
 is not provisioned to the pledge, the pledge will attempt to join
 one advertised network at a time, which significantly prolongs the
 join process. This parameter MUST be provisioned to the 6LBR
 pledge.

 Optionally, any non-default algorithms: The default algorithms are
 specified in Section 7.3.3. When algorithm identifiers are not
 provisioned, the use of these default algorithms is implied.

 Additionally, the 6LBR pledge that is not co-located with the JRC
 needs to be provisioned with the following:

 Global IPv6 address of the JRC: This address is used by the 6LBR
 pledge to address the JRC during the join process. The 6LBR
 pledge may also obtain the IPv6 address of the JRC through other
 available mechanisms, such as DHCPv6 [RFC8415], Generic Autonomic
 Signaling Protocol (GRASP) [RFC8990], or Multicast DNS (mDNS)
 [RFC6762]; the use of these mechanisms is out of scope of this
 document. Pledges do not need to be provisioned with this address
 as they discover it dynamically through CoJP.

4. Join Process Overview

 This section describes the steps taken by a pledge in a 6TiSCH
 network. When a pledge seeks admission to a 6TiSCH network, the
 following exchange occurs:

 1. The pledge listens for an Enhanced Beacon (EB) frame
 [IEEE802.15.4]. This frame provides network synchronization
 information, telling the device when it can send a frame to the
 node sending the beacons, which acts as a Join Proxy (JP) for the
 pledge, and when it can expect to receive a frame. The EB
 provides the link-layer address of the JP, and it may also
 provide its link-local IPv6 address.

 2. The pledge configures its link-local IPv6 address and advertises
 it to the JP using Neighbor Discovery. The advertisement step
 may be omitted if the link-local address has been derived from a
 known unique interface identifier, such as an EUI-64 address.

 3. The pledge sends a Join Request to the JP in order to securely
 identify itself to the network. The Join Request is forwarded to
 the JRC.

 4. In the case of successful processing of the request, the pledge
 receives a Join Response from the JRC (via the JP). The Join
 Response contains configuration parameters necessary for the
 pledge to join the network.

 From the pledge’s perspective, joining is a local phenomenon -- the
 pledge only interacts with the JP, and it needs not know how far it
 is from the 6LBR or how to route to the JRC. Only after establishing
 one or more link-layer keys does it need to know about the
 particulars of a 6TiSCH network.

 The join process is shown as a transaction diagram in Figure 1:

 +--------+ +-------+ +--------+
 | pledge | | JP | | JRC |
 | | | | | |
 +--------+ +-------+ +--------+
 | | |
 |<---Enhanced Beacon (1)---| |
 | | |
 |<-Neighbor Discovery (2)->| |
 | | |
 |-----Join Request (3a)----|----Join Request (3a)---->| \

 | | | | CoJP
 |<----Join Response (3b)---|----Join Response (3b)----| /
 | | |

 Figure 1: Overview of a successful join process.

 As for other nodes in the network, the 6LBR node may act as the JP.
 The 6LBR may in addition be co-located with the JRC.

 The details of each step are described in the following sections.

4.1. Step 1 - Enhanced Beacon

 The pledge synchronizes to the network by listening for, and
 receiving, an EB sent by a node already in the network. This process
 is entirely defined by [IEEE802.15.4] and described in [RFC7554].

 Once the pledge hears an EB, it synchronizes to the joining schedule
 using the cells contained in the EB. The pledge can hear multiple
 EBs; the selection of which EB to use is out of the scope for this
 document and is discussed in [RFC7554]. Implementers should make use
 of information such as the following: which network identifier the EB
 contains, the value of the Join Metric field within EBs, whether the
 source link-layer address of the EB has been tried before, at which
 signal strength the different EBs were received, etc. In addition,
 the pledge may be preconfigured to search for EBs with a specific
 network identifier.

 If the pledge is not provisioned with the network identifier, it
 attempts to join one network at a time, as described in
 Section 8.1.1.

 Once the pledge selects the EB, it synchronizes to it and transitions
 into a low-power mode. It follows the schedule information contained
 in the EB, which indicates the slots that the pledge may use for the
 join process. During the remainder of the join process, the node
 that has sent the EB to the pledge acts as the JP.

 At this point, the pledge may either proceed to step 2 or continue to
 listen for additional EBs.

4.2. Step 2 - Neighbor Discovery

 The pledge forms its link-local IPv6 address based on the interface
 identifier per [RFC4944]. The pledge MAY perform the Neighbor
 Solicitation / Neighbor Advertisement exchange with the JP per
 Section 5.6 of [RFC8505]. Per [RFC8505], there is no need to perform
 duplicate address detection for the link-local address. The pledge
 and the JP use their link-local IPv6 addresses for all subsequent
 communication during the join process.

 Note that Neighbor Discovery exchanges at this point are not
 protected with link-layer security as the pledge is not in possession
 of the keys. How the JP accepts these unprotected frames is
 discussed in Section 5.

4.3. Step 3 - Constrained Join Protocol (CoJP) Execution

 The pledge triggers the join exchange of the Constrained Join
 Protocol (CoJP). The join exchange consists of two messages: the
 Join Request message (Step 3a (Section 4.3.1)) and the Join Response
 message, conditioned on the successful security processing of the
 request (Step 3b (Section 4.3.2)).

 All CoJP messages are exchanged over a secure end-to-end channel that
 provides confidentiality, data authenticity, and replay protection.
 Frames carrying CoJP messages are not protected with link-layer
 security when exchanged between the pledge and the JP as the pledge
 is not in possession of the link-layer keys in use. How the JP and
 pledge accept these unprotected frames is discussed in Section 5.
 When frames carrying CoJP messages are exchanged between nodes that

 have already joined the network, the link-layer security is applied
 according to the security configuration used in the network.

4.3.1. Step 3a - Join Request

 The Join Request is a message sent from the pledge to the JP, and
 which the JP forwards to the JRC. The pledge indicates in the Join
 Request the role it requests to play in the network, as well as the
 identifier of the network it requests to join. The JP forwards the
 Join Request to the JRC on the existing links. How exactly this
 happens is out of scope of this document; some networks may wish to
 dedicate specific link-layer resources for this join traffic.

4.3.2. Step 3b - Join Response

 The Join Response is sent by the JRC to the pledge, and it is
 forwarded through the JP. The packet containing the Join Response
 travels from the JRC to the JP using the operating routes in the
 network. The JP delivers it to the pledge. The JP operates as an
 application-layer proxy, see Section 7.

 The Join Response contains various parameters needed by the pledge to
 become a fully operational network node. These parameters include
 the link-layer key(s) currently in use in the network, the short
 address assigned to the pledge, the IPv6 address of the JRC needed by
 the pledge to operate as the JP, among others.

4.4. The Special Case of the 6LBR Pledge Joining

 The 6LBR pledge performs Section 4.3 of the join process just like
 any other pledge, albeit over a different network interface. There
 is no JP intermediating the communication between the 6LBR pledge and
 the JRC, as described in Section 6. The other steps of the described
 join process do not apply to the 6LBR pledge. How the 6LBR pledge
 obtains an IPv6 address and triggers the execution of CoJP is out of
 scope of this document.

5. Link-Layer Configuration

 In an operational 6TiSCH network, all frames use link-layer frame
 security [RFC8180]. The IEEE Std 802.15.4 security attributes
 include frame authenticity and optionally frame confidentiality
 (i.e., encryption).

 Any node sending EB frames MUST be prepared to act as a JP for
 potential pledges.

 The pledge does not initially perform an authenticity check of the EB
 frames because it does not possess the link-layer key(s) in use. The
 pledge is still able to parse the contents of the received EBs and
 synchronize to the network, as EBs are not encrypted [RFC8180].

 When sending frames during the join process, the pledge sends
 unencrypted and unauthenticated frames at the link layer. In order
 for the join process to be possible, the JP must accept these
 unsecured frames for the duration of the join process. This behavior
 may be implemented by setting the "secExempt" attribute in the IEEE
 Std 802.15.4 security configuration tables. It is expected that the
 lower layer provides an interface to indicate to the upper layer that
 unsecured frames are being received from a device. The upper layer
 can use that information to determine that a join process is in place
 and that the unsecured frames should be processed. How the JP makes
 such a determination and interacts with the lower layer is out of
 scope of this specification. The JP can additionally use information
 such as the value of the join rate parameter (Section 8.4.2) set by
 the JRC, physical button press, etc.

 When the pledge initially synchronizes with the network, it has no
 means of verifying the authenticity of EB frames. Because an
 attacker can craft a frame that looks like a legitimate EB frame,
 this opens up a DoS vector, as discussed in Section 9.

5.1. Distribution of Time

 Nodes in a 6TiSCH network keep a global notion of time known as the
 Absolute Slot Number. The Absolute Slot Number is used in the
 construction of the link-layer nonce, as defined in [IEEE802.15.4].
 The pledge initially synchronizes with the EB frame sent by the JP
 and uses the value of the Absolute Slot Number found in the TSCH
 Synchronization Information Element. At the time of the
 synchronization, the EB frame can neither be authenticated nor its
 freshness verified. During the join process, the pledge sends frames
 that are unprotected at the link-layer and protected end-to-end
 instead. The pledge does not obtain the time information as the
 output of the join process as this information is local to the
 network and may not be known at the JRC.

 This enables an attack on the pledge where the attacker replays to
 the pledge legitimate EB frames obtained from the network and acts as
 a man-in-the-middle between the pledge and the JP. The EB frames
 will make the pledge believe that the replayed Absolute Slot Number
 value is the current notion of time in the network. By forwarding
 the join traffic to the legitimate JP, the attacker enables the
 pledge to join the network. Under different conditions relating to
 the reuse of the pledge’s short address by the JRC or its attempt to
 rejoin the network, this may cause the pledge to reuse the link-layer
 nonce in the first frame it sends protected after the join process is
 completed.

 For this reason, all frames originated at the JP and destined to the
 pledge during the join process MUST be authenticated at the link
 layer using the key that is normally in use in the network. Link-
 layer security processing at the pledge for these frames will fail as
 the pledge is not yet in possession of the key. The pledge
 acknowledges these frames without link-layer security, and JP accepts
 the unsecured acknowledgment due to the secExempt attribute set for
 the pledge. The frames should be passed to the upper layer for
 processing using the promiscuous mode of [IEEE802.15.4] or another
 appropriate mechanism. When the upper-layer processing on the pledge
 is completed, and the link-layer keys are configured, the upper layer
 MUST trigger the security processing of the corresponding frame.
 Once the security processing of the frame carrying the Join Response
 message is successful, the current Absolute Slot Number kept locally
 at the pledge SHALL be declared as valid.

6. Network-Layer Configuration

 The pledge and the JP SHOULD keep a separate neighbor cache for
 untrusted entries and use it to store each other’s information during
 the join process. Mixing neighbor entries belonging to pledges and
 nodes that are part of the network opens up the JP to a DoS attack,
 as the attacker may fill the JP’s neighbor table and prevent the
 discovery of legitimate neighbors.

 Once the pledge obtains link-layer keys and becomes a joined node, it
 is able to securely communicate with its neighbors, obtain the
 network IPv6 prefix, and form its global IPv6 address. The joined
 node then undergoes an independent process to bootstrap its neighbor
 cache entries, possibly with a node that formerly acted as a JP,
 following [RFC8505]. From the point of view of the JP, there is no
 relationship between the neighbor cache entry belonging to a pledge
 and the joined node that formerly acted as a pledge.

 The pledge does not communicate with the JRC at the network layer.
 This allows the pledge to join without knowing the IPv6 address of
 the JRC. Instead, the pledge communicates with the JP at the network
 layer using link-local addressing, and with the JRC at the
 application layer, as specified in Section 7.

 The JP communicates with the JRC over global IPv6 addresses. The JP
 discovers the network IPv6 prefix and configures its global IPv6
 address upon successful completion of the join process and the

 obtention of link-layer keys. The pledge learns the IPv6 address of
 the JRC from the Join Response, as specified in Section 8.1.2; it
 uses it once joined in order to operate as a JP.

 As a special case, the 6LBR pledge may have an additional network
 interface that it uses in order to obtain the configuration
 parameters from the JRC and to start advertising the 6TiSCH network.
 This additional interface needs to be configured with a global IPv6
 address, by a mechanism that is out of scope of this document. The
 6LBR pledge uses this interface to directly communicate with the JRC
 using global IPv6 addressing.

 The JRC can be co-located on the 6LBR. In this special case, the
 IPv6 address of the JRC can be omitted from the Join Response message
 for space optimization. The 6LBR then MUST set the DODAGID field in
 the RPL DODAG Information Objects (DIOs) [RFC6550] to its IPv6
 address. The pledge learns the address of the JRC once joined and
 upon the reception of the first RPL DIO message, and uses it to
 operate as a JP.

6.1. Identification of Unauthenticated Traffic

 The traffic that is proxied by the JP comes from unauthenticated
 pledges, and there may be an arbitrary amount of it. In particular,
 an attacker may send fraudulent traffic in an attempt to overwhelm
 the network.

 When operating as part of a 6TiSCH minimal network [RFC8180] using
 distributed scheduling algorithms, the traffic from unauthenticated
 pledges may cause intermediate nodes to request additional bandwidth.
 An attacker could use this property to cause the network to
 overcommit bandwidth (and energy) to the join process.

 The JP is aware of what traffic originates from unauthenticated
 pledges, and so can avoid allocating additional bandwidth itself.
 The JP implements a data cap on outgoing join traffic by implementing
 the recommendation of 1 packet per 3 seconds in Section 3.1.3 of
 [RFC8085]. This can be achieved with the congestion control
 mechanism specified in Section 4.7 of [RFC7252]. This cap will not
 protect intermediate nodes as they cannot tell join traffic from
 regular traffic. Despite the data cap implemented separately on each
 JP, the aggregate join traffic from many JPs may cause intermediate
 nodes to decide to allocate additional cells. It is undesirable to
 do so in response to the traffic originated from unauthenticated
 pledges. In order to permit the intermediate nodes to avoid this,
 the traffic needs to be tagged. [RFC2597] defines a set of per-hop
 behaviors that may be encoded into the Diffserv Code Points (DSCPs).
 Based on the DSCP, intermediate nodes can decide whether to act on a
 given packet.

6.1.1. Traffic from JP to JRC

 The JP SHOULD set the DSCP of packets that it produces as part of the
 forwarding process to AF43 code point (See Section 6 of [RFC2597]).
 A JP that does not require a specific DSCP value on forwarded traffic
 should set it to zero so that it is compressed out.

 A Scheduling Function (SF) running on 6TiSCH nodes SHOULD NOT
 allocate additional cells as a result of traffic with code point
 AF43. Companion SF documents SHOULD specify how this recommended
 behavior is achieved.

6.1.2. Traffic from JRC to JP

 The JRC SHOULD set the DSCP of Join Response packets addressed to the
 JP to the AF42 code point. AF42 has lower drop probability than
 AF43, giving this traffic priority in buffers over the traffic going
 towards the JRC.

 The 6LBR links are often the most congested within a DODAG, and from
 that point down, there is progressively less (or equal) congestion.

 If the 6LBR paces itself when sending Join Response traffic, then it
 ought to never exceed the bandwidth allocated to the best effort
 traffic cells. If the 6LBR has the capacity (if it is not
 constrained), then it should provide some buffers in order to satisfy
 the Assured Forwarding behavior.

 Companion SF documents SHOULD specify how traffic with code point
 AF42 is handled with respect to cell allocation. If the recommended
 behavior described in this section is not followed, the network may
 become prone to the attack discussed in Section 6.1.

7. Application-Layer Configuration

 The CoJP join exchange in Figure 1 is carried over CoAP [RFC7252] and
 the secure channel provided by OSCORE [RFC8613]. The (6LBR) pledge
 acts as a CoAP client; the JRC acts as a CoAP server. The JP
 implements CoAP forward proxy functionality [RFC7252]. Because the
 JP can also be a constrained device, it cannot implement a cache.

 The pledge designates a JP as a proxy by including the Proxy-Scheme
 option in the CoAP requests that it sends to the JP. The pledge also
 includes in the requests the Uri-Host option with its value set to
 the well-known JRC’s alias, as specified in Section 8.1.1.

 The JP resolves the alias to the IPv6 address of the JRC that it
 learned when it acted as a pledge and joined the network. This
 allows the JP to reach the JRC at the network layer and forward the
 requests on behalf of the pledge.

7.1. Statelessness of the JP

 The CoAP proxy defined in [RFC7252] keeps per-client state
 information in order to forward the response towards the originator
 of the request. This state information includes at least the CoAP
 token, the IPv6 address of the client, and the UDP source port
 number. Since the JP can be a constrained device that acts as a CoAP
 proxy, memory limitations make it prone to a DoS attack.

 This DoS vector on the JP can be mitigated by making the JP act as a
 stateless CoAP proxy, where "state" encompasses the information
 related to individual pledges. The JP can wrap the state it needs to
 keep for a given pledge throughout the network stack in a "state
 object" and include it as a CoAP token in the forwarded request to
 the JRC. The JP may use the CoAP token as defined in [RFC7252], if
 the size of the serialized state object permits, or use the extended
 CoAP token defined in [RFC8974] to transport the state object. The
 JRC and any other potential proxy on the JP-JRC path MUST support
 extended token lengths, as defined in [RFC8974]. Since the CoAP
 token is echoed back in the response, the JP is able to decode the
 state object and configure the state needed to forward the response
 to the pledge. The information that the JP needs to encode in the
 state object to operate in a fully stateless manner with respect to a
 given pledge is implementation specific.

 It is RECOMMENDED that the JP operates in a stateless manner and
 signals the per-pledge state within the CoAP token for every request
 that it forwards into the network on behalf of unauthenticated
 pledges. When the JP is operating in a stateless manner, the
 security considerations from [RFC8974] apply, and the type of the
 CoAP message that the JP forwards on behalf of the pledge MUST be
 non-confirmable (NON), regardless of the message type received from
 the pledge. The use of a non-confirmable message by the JP
 alleviates the JP from keeping CoAP message exchange state. The
 retransmission burden is then entirely shifted to the pledge. A JP
 that operates in a stateless manner still needs to keep congestion
 control state with the JRC, see Section 9. Recommended values of
 CoAP settings for use during the join process, both by the pledge and
 the JP, are given in Section 7.2.

 Note that in some networking stack implementations, a fully (per-
 pledge) stateless operation of the JP may be challenging from the

 implementation’s point of view. In those cases, the JP may operate
 as a stateful proxy that stores the per-pledge state until the
 response is received or timed out, but this comes at a price of a DoS
 vector.

7.2. Recommended Settings

 This section gives RECOMMENDED values of CoAP settings during the
 join process.

 +===================+===============+
 | Name | Default Value |
 +===================+===============+
 | ACK_TIMEOUT | 10 seconds |
 +-------------------+---------------+
 | ACK_RANDOM_FACTOR | 1.5 |
 +-------------------+---------------+
 | MAX_RETRANSMIT | 4 |
 +-------------------+---------------+
 | NSTART | 1 |
 +-------------------+---------------+
 | DEFAULT_LEISURE | 5 seconds |
 +-------------------+---------------+
 | PROBING_RATE | 1 byte/second |
 +-------------------+---------------+

 Table 1: Recommended CoAP settings.

 These values may be configured to values specific to the deployment.
 The default values have been chosen to accommodate a wide range of
 deployments, taking into account dense networks.

 The PROBING_RATE value at the JP is controlled by the join rate
 parameter, see Section 8.4.2. Following [RFC7252], the average data
 rate in sending to the JRC must not exceed PROBING_RATE. For
 security reasons, the average data rate SHOULD be measured over a
 rather short window, e.g., ACK_TIMEOUT, see Section 9.

7.3. OSCORE

 Before the (6LBR) pledge and the JRC start exchanging CoAP messages
 protected with OSCORE, they need to derive the OSCORE security
 context from the provisioned parameters, as discussed in Section 3.

 The OSCORE security context MUST be derived per Section 3 of
 [RFC8613].

 * The Master Secret MUST be the PSK.

 * The Master Salt MUST be the empty byte string.

 * The ID Context MUST be set to the pledge identifier.

 * The ID of the pledge MUST be set to the empty byte string. This
 identifier is used as the OSCORE Sender ID of the pledge in the
 security context derivation, since the pledge initially acts as a
 CoAP client.

 * The ID of the JRC MUST be set to the byte string 0x4a5243 ("JRC"
 in ASCII). This identifier is used as the OSCORE Recipient ID of
 the pledge in the security context derivation, as the JRC
 initially acts as a CoAP server.

 * The Algorithm MUST be set to the value from [RFC8152], agreed to
 out-of-band by the same mechanism used to provision the PSK. The
 default is AES-CCM-16-64-128.

 * The key derivation function MUST be agreed out-of-band by the same
 mechanism used to provision the PSK. Default is HKDF SHA-256
 [RFC5869].

 Since the pledge’s OSCORE Sender ID is the empty byte string, when
 constructing the OSCORE option, the pledge sets the ’kid’ flag in the
 OSCORE flag bits but indicates a 0-length ’kid’. The pledge
 transports its pledge identifier within the ’kid context’ field of
 the OSCORE option. The derivation in [RFC8613] results in OSCORE
 keys and a Common Initialization Vector (IV) for each side of the
 conversation. Nonces are constructed by XORing the Common IV with
 the current sequence number. For details on nonce and OSCORE option
 construction, refer to [RFC8613].

 Implementations MUST ensure that multiple CoAP requests, including to
 different JRCs, are properly incrementing the sequence numbers, so
 that the same sequence number is never reused in distinct requests
 protected under the same PSK. The pledge typically sends requests to
 different JRCs if it is not provisioned with the network identifier
 and attempts to join one network at a time. Failure to comply will
 break the security guarantees of the Authenticated Encryption with
 Associated Data (AEAD) algorithm because of nonce reuse.

 This OSCORE security context is used for the initial joining of the
 (6LBR) pledge, where the (6LBR) pledge acts as a CoAP client, as well
 as for any later parameter updates, where the JRC acts as a CoAP
 client and the joined node as a CoAP server, as discussed in
 Section 8.2. Note that when the (6LBR) pledge and the JRC change
 roles between CoAP client and CoAP server, the same OSCORE security
 context as initially derived remains in use, and the derived
 parameters are unchanged, for example, Sender ID when sending and
 Recipient ID when receiving (see Section 3.1 of [RFC8613]). A (6LBR)
 pledge is expected to have exactly one OSCORE security context with
 the JRC.

7.3.1. Replay Window and Persistency

 Both the (6LBR) pledge and the JRC MUST implement a replay-protection
 mechanism. The use of the default OSCORE replay-protection mechanism
 specified in Section 3.2.2 of [RFC8613] is RECOMMENDED.

 Implementations MUST ensure that mutable OSCORE context parameters
 (Sender Sequence Number, Replay Window) are stored in persistent
 memory. A technique detailed in Appendix B.1.1 of [RFC8613] that
 prevents reuse of sequence numbers MUST be implemented. Each update
 of the OSCORE Replay Window MUST be written to persistent memory.

 This is an important security requirement in order to guarantee nonce
 uniqueness and resistance to replay attacks across reboots and
 rejoins. Traffic between the (6LBR) pledge and the JRC is rare,
 making security outweigh the cost of writing to persistent memory.

7.3.2. OSCORE Error Handling

 Errors raised by OSCORE during the join process MUST be silently
 dropped, with no error response being signaled. The pledge MUST
 silently discard any response not protected with OSCORE, including
 error codes.

 Such errors may happen for a number of reasons, including failed
 lookup of an appropriate security context (e.g., the pledge
 attempting to join a wrong network), failed decryption, positive
 Replay Window lookup, formatting errors (possibly due to malicious
 alterations in transit). Silently dropping OSCORE messages prevents
 a DoS attack on the pledge where the attacker could send bogus error
 responses, forcing the pledge to attempt joining one network at a
 time, until all networks have been tried.

7.3.3. Mandatory-to-Implement Algorithms

 The mandatory-to-implement AEAD algorithm for use with OSCORE is AES-
 CCM-16-64-128 from [RFC8152]. This is the algorithm used for
 securing IEEE Std 802.15.4 frames, and hardware acceleration for it
 is present in virtually all compliant radio chips. With this choice,
 CoAP messages are protected with an 8-byte CCM authentication tag,

 and the algorithm uses 13-byte long nonces.

 The mandatory-to-implement hash algorithm is SHA-256 [RFC4231]. The
 mandatory-to-implement key derivation function is HKDF [RFC5869],
 instantiated with a SHA-256 hash. See Appendix B for implementation
 guidance when code footprint is important.

8. Constrained Join Protocol (CoJP)

 The Constrained Join Protocol (CoJP) is a lightweight protocol over
 CoAP [RFC7252] and a secure channel provided by OSCORE [RFC8613].
 CoJP allows a (6LBR) pledge to request admission into a network
 managed by the JRC. It enables the JRC to configure the pledge with
 the necessary parameters. The JRC may update the parameters at any
 time, by reaching out to the joined node that formerly acted as a
 (6LBR) pledge. For example, network-wide rekeying can be implemented
 by updating the keying material on each node.

 CoJP relies on the security properties provided by OSCORE. This
 includes end-to-end confidentiality, data authenticity, replay
 protection, and a secure binding of responses to requests.

 +-----------------------------------+
 | Constrained Join Protocol (CoJP) |
 +-----------------------------------+
 +-----------------------------------+ \
 | Requests / Responses | |
 |-----------------------------------| |
 | OSCORE | | CoAP
 |-----------------------------------| |
 | Messaging Layer | |
 +-----------------------------------+ /
 +-----------------------------------+
 | UDP |
 +-----------------------------------+

 Figure 2: Abstract layering of CoJP.

 When a (6LBR) pledge requests admission to a given network, it
 undergoes the CoJP join exchange that consists of:

 * The Join Request message, sent by the (6LBR) pledge to the JRC,
 potentially proxied by the JP. The Join Request message and its
 mapping to CoAP is specified in Section 8.1.1.

 * The Join Response message, sent by the JRC to the (6LBR) pledge,
 if the JRC successfully processes the Join Request using OSCORE
 and it determines through a mechanism that is out of scope of this
 specification that the (6LBR) pledge is authorized to join the
 network. The Join Response message is potentially proxied by the
 JP. The Join Response message and its mapping to CoAP is
 specified in Section 8.1.2.

 When the JRC needs to update the parameters of a joined node that
 formerly acted as a (6LBR) pledge, it executes the CoJP parameter
 update exchange that consists of the following:

 * The Parameter Update message, sent by the JRC to the joined node
 that formerly acted as a (6LBR) pledge. The Parameter Update
 message and its mapping to CoAP is specified in Section 8.2.1.

 The payload of CoJP messages is encoded with CBOR [RFC8949]. The
 CBOR data structures that may appear as the payload of different CoJP
 messages are specified in Section 8.4.

8.1. Join Exchange

 This section specifies the messages exchanged when the (6LBR) pledge
 requests admission and configuration parameters from the JRC.

8.1.1. Join Request Message

 The Join Request message that the (6LBR) pledge sends SHALL be mapped
 to a CoAP request:

 * The request method is POST.

 * The type is Confirmable (CON).

 * The Proxy-Scheme option is set to "coap".

 * The Uri-Host option is set to "6tisch.arpa". This is an anycast
 type of identifier of the JRC that is resolved to its IPv6 address
 by the JP or the 6LBR pledge.

 * The Uri-Path option is set to "j".

 * The OSCORE option SHALL be set according to [RFC8613]. The OSCORE
 security context used is the one derived in Section 7.3. The
 OSCORE ’kid context’ allows the JRC to retrieve the security
 context for a given pledge.

 * The payload is a Join_Request CBOR object, as defined in
 Section 8.4.1.

 Since the Join Request is a confirmable message, the transmission at
 (6LBR) pledge will be controlled by CoAP’s retransmission mechanism.
 The JP, when operating in a stateless manner, forwards this Join
 Request as a non-confirmable (NON) CoAP message, as specified in
 Section 7. If the CoAP implementation at the (6LBR) pledge declares
 the message transmission a failure, the (6LBR) pledge SHOULD attempt
 to join a 6TiSCH network advertised with a different network
 identifier. See Section 7.2 for recommended values of CoAP settings
 to use during the join exchange.

 If all join attempts to advertised networks have failed, the (6LBR)
 pledge SHOULD signal the presence of an error condition, through some
 out-of-band mechanism.

 BCP 190 [RFC8820] provides guidelines on URI design and ownership.
 It recommends that whenever a third party wants to mandate a URI to
 web authority that it SHOULD go under "/.well-known" (per [RFC8615]).
 In the case of CoJP, the Uri-Host option is always set to
 "6tisch.arpa", and based upon the recommendations in Section 1 of
 [RFC8820], it is asserted that this document is the owner of the CoJP
 service. As such, the concerns of [RFC8820] do not apply, and thus
 the Uri-Path is only "j".

8.1.2. Join Response Message

 The Join Response message that the JRC sends SHALL be mapped to a
 CoAP response:

 * The Response Code is 2.04 (Changed).

 * The payload is a Configuration CBOR object, as defined in
 Section 8.4.2.

8.2. Parameter Update Exchange

 During the network lifetime, parameters returned as part of the Join
 Response may need to be updated. One typical example is the update
 of link-layer keying material for the network, a process known as
 rekeying. This section specifies a generic mechanism when this
 parameter update is initiated by the JRC.

 At the time of the join, the (6LBR) pledge acts as a CoAP client and
 requests the network parameters through a representation of the "/j"
 resource exposed by the JRC. In order for the update of these
 parameters to happen, the JRC needs to asynchronously contact the
 joined node. The use of the CoAP Observe option for this purpose is
 not feasible due to the change in the IPv6 address when the pledge

 becomes the joined node and obtains a global address.

 Instead, once the (6LBR) pledge receives and successfully validates
 the Join Response and so becomes a joined node, it becomes a CoAP
 server. The joined node creates a CoAP service at the Uri-Host value
 of "6tisch.arpa", and the joined node exposes the "/j" resource that
 is used by the JRC to update the parameters. Consequently, the JRC
 operates as a CoAP client when updating the parameters. The request/
 response exchange between the JRC and the (6LBR) pledge happens over
 the already-established OSCORE secure channel.

8.2.1. Parameter Update Message

 The Parameter Update message that the JRC sends to the joined node
 SHALL be mapped to a CoAP request:

 * The request method is POST.

 * The type is Confirmable (CON).

 * The Uri-Host option is set to "6tisch.arpa".

 * The Uri-Path option is set to "j".

 * The OSCORE option SHALL be set according to [RFC8613]. The OSCORE
 security context used is the one derived in Section 7.3. When a
 joined node receives a request with the Sender ID set to 0x4a5243
 (ID of the JRC), it is able to correctly retrieve the security
 context with the JRC.

 * The payload is a Configuration CBOR object, as defined in
 Section 8.4.2.

 The JRC has implicit knowledge of the global IPv6 address of the
 joined node, as it knows the pledge identifier that the joined node
 used when it acted as a pledge and the IPv6 network prefix. The JRC
 uses this implicitly derived IPv6 address of the joined node to
 directly address CoAP messages to it.

 If the JRC does not receive a response to a Parameter Update message,
 it attempts multiple retransmissions as configured by the underlying
 CoAP retransmission mechanism triggered for confirmable messages.
 Finally, if the CoAP implementation declares the transmission a
 failure, the JRC may consider this as a hint that the joined node is
 no longer in the network. How the JRC decides when to stop
 attempting to contact a previously joined node is out of scope of
 this specification, but the security considerations on the reuse of
 assigned resources apply, as discussed in Section 9.

8.3. Error Handling

8.3.1. CoJP CBOR Object Processing

 CoJP CBOR objects are transported within both CoAP requests and
 responses. This section describes handling the cases in which
 certain CoJP CBOR object parameters are not supported by the
 implementation or their processing fails. See Section 7.3.2 for the
 handling of errors that may be raised by the underlying OSCORE
 implementation.

 When such a parameter is detected in a CoAP request (Join Request
 message, Parameter Update message), a Diagnostic Response message
 MUST be returned. A Diagnostic Response message maps to a CoAP
 response and is specified in Section 8.3.2.

 When a parameter that cannot be acted upon is encountered while
 processing a CoJP object in a CoAP response (Join Response message),
 a (6LBR) pledge SHOULD reattempt to join. In this case, the (6LBR)
 pledge SHOULD include the Unsupported Configuration CBOR object
 within the Join Request object in the following Join Request message.
 The Unsupported Configuration CBOR object is self-contained and

 enables the (6LBR) pledge to signal any parameters that the
 implementation of the networking stack may not support. A (6LBR)
 pledge MUST NOT attempt more than COJP_MAX_JOIN_ATTEMPTS number of
 attempts to join if the processing of the Join Response message fails
 each time. If the COJP_MAX_JOIN_ATTEMPTS number of attempts is
 reached without success, the (6LBR) pledge SHOULD signal the presence
 of an error condition through some out-of-band mechanism.

 Note that COJP_MAX_JOIN_ATTEMPTS relates to the application-layer
 handling of the CoAP response and is different from CoAP’s
 MAX_RETRANSMIT setting, which drives the retransmission mechanism of
 the underlying CoAP message.

8.3.2. Diagnostic Response Message

 The Diagnostic Response message is returned for any CoJP request when
 the processing of the payload failed. The Diagnostic Response
 message is protected by OSCORE as any other CoJP message.

 The Diagnostic Response message SHALL be mapped to a CoAP response:

 * The Response Code is 4.00 (Bad Request).

 * The payload is an Unsupported Configuration CBOR object, as
 defined in Section 8.4.5, containing more information about the
 parameter that triggered the sending of this message.

8.3.3. Failure Handling

 The parameter update exchange may be triggered at any time during the
 network lifetime, which may span several years. During this period,
 a joined node or the JRC may experience unexpected events such as
 reboots or complete failures.

 This document mandates that the mutable parameters in the security
 context are written to persistent memory (see Section 7.3.1) by both
 the JRC and pledges (joined nodes). As the pledge (joined node) is
 typically a constrained device that handles the write operations to
 persistent memory in a predictable manner, the retrieval of mutable
 security-context parameters is feasible across reboots such that
 there is no risk of AEAD nonce reuse due to reinitialized Sender
 Sequence Numbers or of a replay attack due to the reinitialized
 Replay Window. The JRC may be hosted on a generic machine where the
 write operation to persistent memory may lead to unpredictable delays
 due to caching. If a reboot event occurs at the JRC before the
 cached data is written to persistent memory, the loss of mutable
 security-context parameters is likely, which consequently poses the
 risk of AEAD nonce reuse.

 In the event of a complete device failure, where the mutable
 security-context parameters cannot be retrieved, it is expected that
 a failed joined node will be replaced with a new physical device,
 using a new pledge identifier and a PSK. When such a failure event
 occurs at the JRC, it is possible that the static information on
 provisioned pledges, like PSKs and pledge identifiers, can be
 retrieved through available backups. However, it is likely that the
 information about joined nodes, their assigned short identifiers and
 mutable security-context parameters, is lost. If this is the case,
 the network administrator MUST force all the networks managed by the
 failed JRC to rejoin through out-of-band means during the process of
 JRC reinitialization, e.g., reinitialize the 6LBR nodes and freshly
 generate dynamic cryptographic keys and other parameters that
 influence the security properties of the network.

 In order to recover from such a failure event, the reinitialized JRC
 can trigger the renegotiation of the OSCORE security context through
 the procedure described in Appendix B.2 of [RFC8613]. Aware of the
 failure event, the reinitialized JRC responds to the first Join
 Request of each pledge it is managing with a 4.01 (Unauthorized)
 error and a random nonce. The pledge verifies the error response and
 then initiates the CoJP join exchange using a new OSCORE security

 context derived from an ID Context consisting of the concatenation of
 two nonces, one that it received from the JRC and the other that the
 pledge generates locally. After verifying the Join Request with the
 new ID Context and the derived OSCORE security context, the JRC
 should consequently map the new ID Context to the previously used
 pledge identifier. How the JRC handles this mapping is out of scope
 of this document.

 The use of the procedure specified in Appendix B.2 of [RFC8613] is
 RECOMMENDED in order to handle the failure events or any other event
 that may lead to the loss of mutable security-context parameters.
 The length of nonces exchanged using this procedure MUST be at least
 8 bytes.

 The procedure requires both the pledge and the JRC to have good
 sources of randomness. While this is typically not an issue at the
 JRC side, the constrained device hosting the pledge may pose
 limitations in this regard. If the procedure outlined in
 Appendix B.2 of [RFC8613] is not supported by the pledge, the network
 administrator MUST reprovision the concerned devices with freshly
 generated parameters through out-of-band means.

8.4. CoJP Objects

 This section specifies the structure of CoJP CBOR objects that may be
 carried as the payload of CoJP messages. Some of these objects may
 be received both as part of the CoJP join exchange when the device
 operates as a (CoJP) pledge or as part of the parameter update
 exchange when the device operates as a joined (6LBR) node.

8.4.1. Join Request Object

 The Join_Request structure is built on a CBOR map object.

 The set of parameters that can appear in a Join_Request object is
 summarized below. The labels can be found in the "Constrained Join
 Protocol (CoJP) Parameters" registry, Section 11.1.

 role: The identifier of the role that the pledge requests to play in
 the network once it joins, encoded as an unsigned integer.
 Possible values are specified in Table 3. This parameter MAY be
 included. If the parameter is omitted, the default value of 0,
 i.e., the role "6TiSCH Node", MUST be assumed.

 network identifier: The identifier of the network, as discussed in
 Section 3, encoded as a CBOR byte string. When present in the
 Join_Request, it hints to the JRC which network the pledge is
 requesting to join, enabling the JRC to manage multiple networks.
 The pledge obtains the value of the network identifier from the
 received EB frames. This parameter MUST be included in a
 Join_Request object regardless of the role parameter value.

 unsupported configuration: The identifier of the parameters that are
 not supported by the implementation, encoded as an
 Unsupported_Configuration object described in Section 8.4.5. This
 parameter MAY be included. If a (6LBR) pledge previously
 attempted to join and received a valid Join Response message over
 OSCORE but failed to act on its payload (Configuration object), it
 SHOULD include this parameter to facilitate the recovery and
 debugging.

 Table 2 summarizes the parameters that may appear in a Join_Request
 object.

 +===========================+=======+==================+
 | Name | Label | CBOR Type |
 +===========================+=======+==================+
 | role | 1 | unsigned integer |
 +---------------------------+-------+------------------+
 | network identifier | 5 | byte string |
 +---------------------------+-------+------------------+

 | unsupported configuration | 8 | array |
 +---------------------------+-------+------------------+

 Table 2: Summary of Join_Request parameters.

 The CDDL fragment that represents the text above for the Join_Request
 follows:

 Join_Request = {
 ? 1 : uint, ; role
 5 : bstr, ; network identifier
 ? 8 : Unsupported_Configuration ; unsupported configuration
 }

 +========+=======+==============================+===========+
 | Name | Value | Description | Reference |
 +========+=======+==============================+===========+
 | 6TiSCH | 0 | The pledge requests to play | RFC 9031 |
 | Node | | the role of a regular 6TiSCH | |
 | | | node, i.e., non-6LBR node. | |
 +--------+-------+------------------------------+-----------+
 | 6LBR | 1 | The pledge requests to play | RFC 9031 |
 | | | the role of 6LoWPAN Border | |
 | | | Router (6LBR). | |
 +--------+-------+------------------------------+-----------+

 Table 3: Role values.

8.4.2. Configuration Object

 The Configuration structure is built on a CBOR map object. The set
 of parameters that can appear in a Configuration object is summarized
 below. The labels can be found in "Constrained Join Protocol (CoJP)
 Parameters" registry, Section 11.1.

 link-layer key set: An array encompassing a set of cryptographic
 keys and their identifiers that are currently in use in the
 network or that are scheduled to be used in the future. The
 encoding of individual keys is described in Section 8.4.3. The
 link-layer key set parameter MAY be included in a Configuration
 object. When present, the link-layer key set parameter MUST
 contain at least one key. This parameter is also used to
 implement rekeying in the network. The installation and use of
 keys differs for the 6LBR and other (regular) nodes, and this is
 explained in Sections 8.4.3.1 and 8.4.3.2.

 short identifier: A compact identifier assigned to the pledge. The
 short identifier structure is described in Section 8.4.4. The
 short identifier parameter MAY be included in a Configuration
 object.

 JRC address: The IPv6 address of the JRC, encoded as a byte string,
 with the length of 16 bytes. If the length of the byte string is
 different from 16, the parameter MUST be discarded. If the JRC is
 not co-located with the 6LBR and has a different IPv6 address than
 the 6LBR, this parameter MUST be included. In the special case
 where the JRC is co-located with the 6LBR and has the same IPv6
 address as the 6LBR, this parameter MAY be included. If the JRC
 address parameter is not present in the Configuration object, this
 indicates that the JRC has the same IPv6 address as the 6LBR. The
 joined node can then discover the IPv6 address of the JRC through
 network control traffic. See Section 6.

 blacklist: An array encompassing a list of pledge identifiers that
 are blacklisted by the JRC, with each pledge identifier encoded as
 a byte string. The blacklist parameter MAY be included in a
 Configuration object. When present, the array MUST contain zero
 or more byte strings encoding pledge identifiers. The joined node
 MUST silently drop any link-layer frames originating from the
 pledge identifiers enclosed in the blacklist parameter. When this
 parameter is received, its value MUST overwrite any previously set

 values. This parameter allows the JRC to configure the node
 acting as a JP to filter out traffic from misconfigured or
 malicious pledges before their traffic is forwarded into the
 network. If the JRC decides to remove a given pledge identifier
 from a blacklist, it omits the pledge identifier in the blacklist
 parameter value it sends next. Since the blacklist parameter
 carries the pledge identifiers, privacy considerations apply. See
 Section 10.

 join rate: The average data rate (in units of bytes/second) of join
 traffic forwarded into the network that should not be exceeded
 when a joined node operates as a JP, encoded as an unsigned
 integer. The join rate parameter MAY be included in a
 Configuration object. This parameter allows the JRC to configure
 different nodes in the network to operate as JP and to act in case
 of an attack by throttling the rate at which JP forwards
 unauthenticated traffic into the network. When this parameter is
 present in a Configuration object, the value MUST be used to set
 the PROBING_RATE of CoAP at the joined node for communication with
 the JRC. If this parameter is set to zero, a joined node MUST
 silently drop any join traffic coming from unauthenticated
 pledges. If this parameter is omitted, the value of positive
 infinity SHOULD be assumed. A node operating as a JP MAY use
 another mechanism that is out of scope of this specification to
 configure the PROBING_RATE of CoAP in the absence of a join rate
 parameter from the Configuration object.

 Table 4 summarizes the parameters that may appear in a Configuration
 object.

 +====================+=======+==================+
 | Name | Label | CBOR Type |
 +====================+=======+==================+
 | link-layer key set | 2 | array |
 +--------------------+-------+------------------+
 | short identifier | 3 | array |
 +--------------------+-------+------------------+
 | JRC address | 4 | byte string |
 +--------------------+-------+------------------+
 | blacklist | 6 | array |
 +--------------------+-------+------------------+
 | join rate | 7 | unsigned integer |
 +--------------------+-------+------------------+

 Table 4: Summary of Configuration parameters.

 The CDDL fragment that represents the text above for the
 Configuration follows. The structures Link_Layer_Key and
 Short_Identifier are specified in Sections 8.4.3 and 8.4.4,
 respectively.

 Configuration = {
 ? 2 : [+Link_Layer_Key], ; link-layer key set
 ? 3 : Short_Identifier, ; short identifier
 ? 4 : bstr, ; JRC address
 ? 6 : [*bstr], ; blacklist
 ? 7 : uint ; join rate
 }

 +===============+=======+==========+====================+===========+
 | Name | Label | CBOR | Description | Reference |
 | | | type | | |
 +===============+=======+==========+====================+===========+
 | role | 1 | unsigned | Identifies the | RFC 9031 |
 | | | integer | role parameter | |
 +---------------+-------+----------+--------------------+-----------+
link-layer	2	array	Identifies the	RFC 9031
key set			array carrying	
			one or more	
			link-layer	
			cryptographic	

 | | | | keys | |
 +---------------+-------+----------+--------------------+-----------+
short	3	array	Identifies the	RFC 9031
identifier			assigned short	
			identifier	
+---------------+-------+----------+--------------------+-----------+				
JRC address	4	byte	Identifies the	RFC 9031
		string	IPv6 address	
			of the JRC	
+---------------+-------+----------+--------------------+-----------+				
network	5	byte	Identifies the	RFC 9031
identifier		string	network	
			identifier	
			parameter	
+---------------+-------+----------+--------------------+-----------+				
blacklist	6	array	Identifies the	RFC 9031
			blacklist	
			parameter	
+---------------+-------+----------+--------------------+-----------+				
join rate	7	unsigned	Identifier the	RFC 9031
		integer	join rate	
			parameter	
+---------------+-------+----------+--------------------+-----------+				
unsupported	8	array	Identifies the	RFC 9031
configuration			unsupported	
			configuration	
			parameter	
 +---------------+-------+----------+--------------------+-----------+

 Table 5: CoJP parameters map labels.

8.4.3. Link-Layer Key

 The Link_Layer_Key structure encompasses the parameters needed to
 configure the link-layer security module: the key identifier; the
 value of the cryptographic key; the link-layer algorithm identifier
 and the security level and the frame types with which it should be
 used for both outgoing and incoming security operations; and any
 additional information that may be needed to configure the key.

 For encoding compactness, the Link_Layer_Key object is not enclosed
 in a top-level CBOR object. Rather, it is transported as a sequence
 of CBOR elements [RFC8742], some being optional.

 The set of parameters that can appear in a Link_Layer_Key object is
 summarized below, in order:

 key_id: The identifier of the key, encoded as a CBOR unsigned
 integer. This parameter MUST be included. If the decoded CBOR
 unsigned integer value is larger than the maximum link-layer key
 identifier, the key is considered invalid. If the key is
 considered invalid, the key MUST be discarded, and the
 implementation MUST signal the error as specified in
 Section 8.3.1.

 key_usage: The identifier of the link-layer algorithm, security
 level, and link-layer frame types that can be used with the key,
 encoded as an integer. This parameter MAY be included. Possible
 values and the corresponding link-layer settings are specified in
 the IANA "Constrained Join Protocol (CoJP) Key Usage" registry
 (Section 11.2). If the parameter is omitted, the default value of
 0 (6TiSCH-K1K2-ENC-MIC32) from Table 6 MUST be assumed. This
 default value has been chosen because it results in byte savings
 in the most constrained settings; its selection does not imply a
 recommendation for its general usage.

 key_value: The value of the cryptographic key, encoded as a byte
 string. This parameter MUST be included. If the length of the
 byte string is different than the corresponding key length for a
 given algorithm specified by the key_usage parameter, the key MUST
 be discarded, and the implementation MUST signal the error as

 specified in Section 8.3.1.

 key_addinfo: Additional information needed to configure the link-
 layer key, encoded as a byte string. This parameter MAY be
 included. The processing of this parameter is dependent on the
 link-layer technology in use and a particular keying mode.

 To be able to decode the keys that are present in the link-layer key
 set and to identify individual parameters of a single Link_Layer_Key
 object, the CBOR decoder needs to differentiate between elements
 based on the CBOR type. For example, a uint that follows a byte
 string signals to the decoder that a new Link_Layer_Key object is
 being processed.

 The CDDL fragment for the Link_Layer_Key that represents the text
 above follows:

 Link_Layer_Key = (
 key_id : uint,
 ? key_usage : int,
 key_value : bstr,
 ? key_addinfo : bstr,
)

 +======================+=====+======================+===============+
 |Name |Value|Algorithm |Description |
 +======================+=====+======================+===============+
6TiSCH-K1K2-ENC-MIC32	0	IEEE802154-AES-CCM-128	Use MIC-32 for
			EBs, ENC-MIC-32
			for DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K1K2-ENC-MIC64	1	IEEE802154-AES-CCM-128	Use MIC-64 for
			EBs, ENC-MIC-64
			for DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K1K2-ENC-MIC128	2	IEEE802154-AES-CCM-128	Use MIC-128 for
			EBs, ENC-
			MIC-128 for
			DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K1K2-MIC32	3	IEEE802154-AES-CCM-128	Use MIC-32 for
			EBs, DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K1K2-MIC64	4	IEEE802154-AES-CCM-128	Use MIC-64 for
			EBs, DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K1K2-MIC128	5	IEEE802154-AES-CCM-128	Use MIC-128 for
			EBs, DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K1-MIC32	6	IEEE802154-AES-CCM-128	Use MIC-32 for
			EBs.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K1-MIC64	7	IEEE802154-AES-CCM-128	Use MIC-64 for
			EBs.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K1-MIC128	8	IEEE802154-AES-CCM-128	Use MIC-128 for
			EBs.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K2-MIC32	9	IEEE802154-AES-CCM-128	Use MIC-32 for
			DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K2-MIC64	10	IEEE802154-AES-CCM-128	Use MIC-64 for
			DATA and
			ACKNOWLEDGMENT.

 +----------------------+-----+----------------------+---------------+
6TiSCH-K2-MIC128	11	IEEE802154-AES-CCM-128	Use MIC-128 for
			DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K2-ENC-MIC32	12	IEEE802154-AES-CCM-128	Use ENC-MIC-32
			for DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K2-ENC-MIC64	13	IEEE802154-AES-CCM-128	Use ENC-MIC-64
			for DATA and
			ACKNOWLEDGMENT.
+----------------------+-----+----------------------+---------------+			
6TiSCH-K2-ENC-MIC128	14	IEEE802154-AES-CCM-128	Use ENC-MIC-128
			for DATA and
			ACKNOWLEDGMENT.
 +----------------------+-----+----------------------+---------------+

 Table 6: Key Usage values.

8.4.3.1. Rekeying of 6LBRs

 When the 6LBR receives the Configuration object containing a link-
 layer key set, it MUST immediately install and start using the new
 keys for all outgoing traffic and remove any old keys it has
 installed from the previous key set after a delay of
 COJP_REKEYING_GUARD_TIME has passed. This mechanism is used by the
 JRC to force the 6LBR to start sending traffic with the new key. The
 decision is made by the JRC when it has determined that the new key
 has been made available to all (or some overwhelming majority) of
 nodes. Any node that the JRC has not yet reached at that point is
 either nonfunctional or in extended sleep such that it will not be
 reached. To get the key update, such a node will need to go through
 the join process anew.

8.4.3.2. Rekeying of 6LNs

 When a regular 6LN receives the Configuration object with a link-
 layer key set, it MUST install the new keys. The 6LN will use both
 the old and the new keys to decrypt and authenticate any incoming
 traffic that arrives based upon the key identifier in the packet. It
 MUST continue to use the old keys for all outgoing traffic until it
 has detected that the network has switched to the new key set.

 The detection of the network switch is based upon the receipt of
 traffic secured with the new keys. Upon the reception and the
 successful security processing of a link-layer frame secured with a
 key from the new key set, a 6LN MUST then switch to sending all
 outgoing traffic using the keys from the new set. The 6LN MUST
 remove any keys it had installed from the previous key set after
 waiting COJP_REKEYING_GUARD_TIME since it started using the new key
 set.

 Sending traffic with the new keys signals to other downstream nodes
 to switch to their new key, causing a ripple of key updates around
 each 6LBR.

8.4.3.3. Use in IEEE Std 802.15.4

 When Link_Layer_Key is used in the context of [IEEE802.15.4], the
 following considerations apply.

 Signaling of different keying modes of [IEEE802.15.4] is done based
 on the parameter values present in a Link_Layer_Key object. For
 instance, the value of the key_id parameter in combination with
 key_addinfo denotes which of the four Key ID modes of [IEEE802.15.4]
 is used and how.

 Key ID Mode 0x00 (Implicit, pairwise): The key_id parameter MUST be
 set to 0. The key_addinfo parameter MUST be present. The
 key_addinfo parameter MUST be set to the link-layer address(es) of

 a single peer with whom the key should be used. Depending on the
 configuration of the network, key_addinfo may carry the peer’s
 long link-layer address (i.e., pledge identifier), short link-
 layer address, or their concatenation with the long address being
 encoded first. Which address type(s) is carried is determined
 from the length of the byte string.

 Key ID Mode 0x01 (Key Index): The key_id parameter MUST be set to a
 value different from 0. The key_addinfo parameter MUST NOT be
 present.

 Key ID Mode 0x02 (4-byte Explicit Key Source): The key_id parameter
 MUST be set to a value different from 0. The key_addinfo
 parameter MUST be present. The key_addinfo parameter MUST be set
 to a byte string, exactly 4 bytes long. The key_addinfo parameter
 carries the Key Source parameter used to configure [IEEE802.15.4].

 Key ID Mode 0x03 (8-byte Explicit Key Source): The key_id parameter
 MUST be set to a value different from 0. The key_addinfo
 parameter MUST be present. The key_addinfo parameter MUST be set
 to a byte string, exactly 8 bytes long. The key_addinfo parameter
 carries the Key Source parameter used to configure [IEEE802.15.4].

 In all cases, the key_usage parameter determines how a particular key
 should be used with respect to incoming and outgoing security
 policies.

 For Key ID Modes 0x01 through 0x03, the key_id parameter sets the
 "secKeyIndex" parameter of [IEEE802.15.4] that is signaled in all
 outgoing frames secured with a given key. The maximum value that
 key_id can have is 254. The value of 255 is reserved in
 [IEEE802.15.4] and is therefore considered invalid.

 Key ID Mode 0x00 (Implicit, pairwise) enables the JRC to act as a
 trusted third party and assign pairwise keys between nodes in the
 network. How the JRC learns about the network topology is out of
 scope of this specification, but it could be done through 6LBR-JRC
 signaling, for example. Pairwise keys could also be derived through
 a key agreement protocol executed between the peers directly, where
 the authentication is based on the symmetric cryptographic material
 provided to both peers by the JRC. Such a protocol is out of scope
 of this specification.

 Implementations MUST use different link-layer keys when using
 different authentication tag (MIC) lengths, as using the same key
 with different authentication tag lengths might be unsafe. For
 example, this prohibits the usage of the same key for both MIC-32 and
 MIC-64 levels. See Annex B.4.3 of [IEEE802.15.4] for more
 information.

8.4.4. Short Identifier

 The Short_Identifier object represents an identifier assigned to the
 pledge. It is encoded as a CBOR array object and contains, in order:

 identifier: The short identifier assigned to the pledge, encoded as
 a byte string. This parameter MUST be included. The identifier
 MUST be unique in the set of all identifiers assigned in a network
 that is managed by a JRC. If the identifier is invalid, the
 decoder MUST silently ignore the Short_Identifier object.

 lease_time: The validity of the identifier in hours after the
 reception of the CBOR object, encoded as a CBOR unsigned integer.
 This parameter MAY be included. The node MUST stop using the
 assigned short identifier after the expiry of the lease_time
 interval. It is up to the JRC to renew the lease before the
 expiry of the previous interval. The JRC updates the lease by
 executing the parameter update exchange with the node and
 including the Short_Identifier in the Configuration object, as
 described in Section 8.2. If the lease expires, then the node
 SHOULD initiate a new join exchange, as described in Section 8.1.

 If this parameter is omitted, then the value of positive infinity
 MUST be assumed, meaning that the identifier is valid for as long
 as the node participates in the network.

 The CDDL fragment for the Short_Identifier that represents the text
 above follows:

 Short_Identifier = [
 identifier : bstr,
 ? lease_time : uint
]

8.4.4.1. Use in IEEE Std 802.15.4

 When the Short_Identifier is used in the context of [IEEE802.15.4],
 the following considerations apply.

 The identifier MUST be used to set the short address of the IEEE Std
 802.15.4 module. When operating in TSCH mode, the identifier MUST be
 unique in the set of all identifiers assigned in multiple networks
 that share link-layer key(s). If the length of the byte string
 corresponding to the identifier parameter is different from 2, the
 identifier is considered invalid. The values 0xfffe and 0xffff are
 reserved by [IEEE802.15.4], and their use is considered invalid.

 The security properties offered by the [IEEE802.15.4] link-layer in
 TSCH mode are conditioned on the uniqueness requirement of the short
 identifier (i.e., short address). The short address is one of the
 inputs in the construction of the nonce, which is used to protect
 link-layer frames. If a misconfiguration occurs, and the same short
 address is assigned twice under the same link-layer key, the loss of
 security properties is imminent. For this reason, practices where
 the pledge generates the short identifier locally are not safe and
 are likely to result in the loss of link-layer security properties.

 The JRC MUST ensure that at any given time there are never two of the
 same short identifiers being used under the same link-layer key. If
 the lease_time parameter of a given Short_Identifier object is set to
 positive infinity, care needs to be taken that the corresponding
 identifier is not assigned to another node until the JRC is certain
 that it is no longer in use, potentially through out-of-band
 signaling. If the lease_time parameter expires for any reason, the
 JRC should take into consideration potential ongoing transmissions by
 the joined node, which may be hanging in the queues, before assigning
 the same identifier to another node.

 Care needs to be taken on how the pledge (joined node) configures the
 expiration of the lease. Since units of the lease_time parameter are
 in hours after the reception of the CBOR object, the pledge needs to
 convert the received time to the corresponding Absolute Slot Number
 in the network. The joined node (pledge) MUST only use the Absolute
 Slot Number as the appropriate reference of time to determine whether
 the assigned short identifier is still valid.

8.4.5. Unsupported Configuration Object

 The Unsupported_Configuration object is encoded as a CBOR array,
 containing at least one Unsupported_Parameter object. Each
 Unsupported_Parameter object is a sequence of CBOR elements without
 an enclosing top-level CBOR object for compactness. The set of
 parameters that appear in an Unsupported_Parameter object is
 summarized below, in order:

 code: Indicates the capability of acting on the parameter signaled
 by parameter_label, encoded as an integer. This parameter MUST be
 included. Possible values of this parameter are specified in the
 IANA "Constrained Join Protocol (CoJP) Unsupported Configuration
 Codes" registry (Section 11.3).

 parameter_label: Indicates the parameter. This parameter MUST be
 included. Possible values of this parameter are specified in the

 label column of the IANA "Constrained Join Protocol (CoJP)
 Parameters" registry" (Section 11.1).

 parameter_addinfo: Additional information about the parameter that
 cannot be acted upon. This parameter MUST be included. If the
 code is set to "Unsupported", parameter_addinfo gives additional
 information to the JRC. If the parameter indicated by
 parameter_label cannot be acted upon regardless of its value,
 parameter_addinfo MUST be set to null, signaling to the JRC that
 it SHOULD NOT attempt to configure the parameter again. If the
 pledge can act on the parameter, but cannot configure the setting
 indicated by the parameter value, the pledge can hint this to the
 JRC. In this case, parameter_addinfo MUST be set to the value of
 the parameter that cannot be acted upon following the normative
 parameter structure specified in this document. For example, it
 is possible to include the link-layer key set object, signaling
 that either a subset or the entire key set that was received
 cannot be acted upon. In that case, the value of
 parameter_addinfo follows the link-layer key set structure defined
 in Section 8.4.2. If the code is set to "Malformed",
 parameter_addinfo MUST be set to null, signaling to the JRC that
 it SHOULD NOT attempt to configure the parameter again.

 The CDDL fragment for the Unsupported_Configuration and
 Unsupported_Parameter objects that represents the text above follows:

 Unsupported_Configuration = [
 + parameter : Unsupported_Parameter
]

 Unsupported_Parameter = (
 code : int,
 parameter_label : int,
 parameter_addinfo : nil / any
)

 +=============+=======+==============================+===========+
 | Name | Value | Description | Reference |
 +=============+=======+==============================+===========+
 | Unsupported | 0 | The indicated setting is not | RFC 9031 |
 | | | supported by the networking | |
 | | | stack implementation. | |
 +-------------+-------+------------------------------+-----------+
 | Malformed | 1 | The indicated parameter | RFC 9031 |
 | | | value is malformed. | |
 +-------------+-------+------------------------------+-----------+

 Table 7: Unsupported Configuration code values.

8.5. Recommended Settings

 This section gives RECOMMENDED values of CoJP settings.

 +==========================+===============+
 | Name | Default Value |
 +==========================+===============+
 | COJP_MAX_JOIN_ATTEMPTS | 4 |
 +--------------------------+---------------+
 | COJP_REKEYING_GUARD_TIME | 12 seconds |
 +--------------------------+---------------+

 Table 8: Recommended CoJP settings.

 The COJP_REKEYING_GUARD_TIME value SHOULD take into account possible
 retransmissions at the link layer due to imperfect wireless links.

9. Security Considerations

 Since this document uses the pledge identifier to set the ID Context
 parameter of OSCORE, an important security requirement is that the
 pledge identifier is unique in the set of all pledge identifiers

 managed by a JRC. The uniqueness of the pledge identifier ensures
 unique (key, nonce) pairs for the AEAD algorithm used by OSCORE. It
 also allows the JRC to retrieve the correct security context upon the
 reception of a Join Request message. The management of pledge
 identifiers is simplified if the globally unique EUI-64 is used, but
 this comes with privacy risks, as discussed in Section 10.

 This document further mandates that the (6LBR) pledge and the JRC are
 provisioned with unique PSKs. While the process of provisioning PSKs
 to all pledges can result in a substantial operational overhead, it
 is vital to do so for the security properties of the network. The
 PSK is used to set the OSCORE Master Secret during security context
 derivation. This derivation process results in OSCORE keys that are
 important for mutual authentication of the (6LBR) pledge and the JRC.
 The resulting security context shared between the pledge (joined
 node) and the JRC is used for the purpose of joining and is long-
 lived in that it can be used throughout the lifetime of a joined node
 for parameter update exchanges. Should an attacker come to know the
 PSK, then a man-in-the-middle attack is possible.

 Note that while OSCORE provides replay protection, it does not
 provide an indication of freshness in the presence of an attacker
 that can drop and/or reorder traffic. Since the Join Request
 contains no randomness, and the sequence number is predictable, the
 JRC could in principle anticipate a Join Request from a particular
 pledge and pre-calculate the response. In such a scenario, the JRC
 does not have to be alive at the time the request is received. This
 could be relevant in the case when the JRC was temporarily
 compromised and control was subsequently regained by the legitimate
 owner.

 It is of utmost importance to avoid unsafe practices when generating
 and provisioning PSKs. The use of a single PSK shared among a group
 of devices is a common pitfall that results in poor security. In
 this case, the compromise of a single device is likely to lead to a
 compromise of the entire batch, with the attacker having the ability
 to impersonate a legitimate device and join the network, generate
 bogus data, and disturb the network operation. Additionally, some
 vendors use methods such as scrambling or hashing device serial
 numbers or their EUI-64 identifiers to generate "unique" PSKs.
 Without any secret information involved, the effort that the attacker
 needs to invest into breaking these unsafe derivation methods is
 quite low, resulting in the possible impersonation of any device from
 the batch, without even needing to compromise a single device. The
 use of cryptographically secure random number generators to generate
 the PSK is RECOMMENDED, see [NIST800-90A] for different mechanisms
 using deterministic methods.

 The JP forwards the unauthenticated join traffic into the network. A
 data cap on the JP prevents it from forwarding more traffic than the
 network can handle and enables throttling in case of an attack. Note
 that this traffic can only be directed at the JRC so that the JRC
 needs to be prepared to handle such unsanitized inputs. The data cap
 can be configured by the JRC by including a join rate parameter in
 the Join Response, and it is implemented through the CoAP’s
 PROBING_RATE setting. The use of a data cap at a JP forces attackers
 to use more than one JP if they wish to overwhelm the network.
 Marking the join traffic packets with a nonzero DSCP allows the
 network to carry the traffic if it has capacity, but it encourages
 the network to drop the extra traffic rather than add bandwidth due
 to that traffic.

 The shared nature of the "minimal" cell used for the join traffic
 makes the network prone to a DoS attack by congesting the JP with
 bogus traffic. Such an attacker is limited by its maximum transmit
 power. The redundancy in the number of deployed JPs alleviates the
 issue and also gives the pledge the possibility to use the best
 available link for joining. How a network node decides to become a
 JP is out of scope of this specification.

 At the beginning of the join process, the pledge has no means of

 verifying the content in the EB and has to accept it at "face value".
 If the pledge tries to join an attacker’s network, the Join Response
 message will either fail the security check or time out. The pledge
 may implement a temporary blacklist in order to filter out undesired
 EBs and try to join using the next seemingly valid EB. This
 blacklist alleviates the issue but is effectively limited by the
 node’s available memory. Note that this temporary blacklist is
 different from the one communicated as part of the CoJP Configuration
 object as it helps the pledge fight a DoS attack. The bogus beacons
 prolong the join time of the pledge and so does the time spent in
 "minimal" duty cycle mode [RFC8180]. The blacklist communicated as
 part of the CoJP Configuration object helps the JP fight a DoS attack
 by a malicious pledge.

 During the network lifetime, the JRC may at any time initiate a
 parameter update exchange with a joined node. The Parameter Update
 message uses the same OSCORE security context as is used for the join
 exchange, except that the server and client roles are interchanged.
 As a consequence, each Parameter Update message carries the well-
 known OSCORE Sender ID of the JRC. A passive attacker may use the
 OSCORE Sender ID to identify the Parameter Update traffic if the
 link-layer protection does not provide confidentiality. A
 countermeasure against such a traffic-analysis attack is to use
 encryption at the link layer. Note that the join traffic does not
 undergo link-layer protection at the first hop, as the pledge is not
 yet in possession of cryptographic keys. Similarly, EB traffic in
 the network is not encrypted. This makes it easy for a passive
 attacker to identify these types of traffic.

10. Privacy Considerations

 The join solution specified in this document relies on the uniqueness
 of the pledge identifier in the set of all pledge identifiers managed
 by a JRC. This identifier is transferred in the clear as an OSCORE
 ’kid context’. The use of the globally unique EUI-64 as pledge
 identifier simplifies the management but comes with certain privacy
 risks. The implications are thoroughly discussed in [RFC7721] and
 comprise correlation of activities over time, location tracking,
 address scanning, and device-specific vulnerability exploitation.
 Since the join process occurs rarely compared to the network
 lifetime, long-term threats that arise from using EUI-64 as the
 pledge identifier are minimal. However, after the join process
 completes, the use of EUI-64 in the form of a Layer 2 or Layer 3
 address extends the aforementioned privacy threats to the long term.

 As an optional mitigation technique, the Join Response message may
 contain a short address that is assigned by the JRC to the (6LBR)
 pledge. The assigned short address SHOULD be uncorrelated with the
 long-term pledge identifier. The short address is encrypted in the
 response. Once the join process completes, the new node may use the
 short addresses for all further Layer 2 (and Layer 3) operations.
 This reduces the privacy threats as the short Layer 2 address
 (visible even when the network is encrypted) does not disclose the
 manufacturer, as is the case of EUI-64. However, an eavesdropper
 with access to the radio medium during the join process may be able
 to correlate the assigned short address with the extended address
 based on timing information with a non-negligible probability. This
 probability decreases with an increasing number of pledges joining
 concurrently.

11. IANA Considerations

 This document allocates a well-known name under the .arpa name space
 according to the rules given in [RFC3172] and [RFC6761]. The name
 "6tisch.arpa" is requested. No subdomains are expected, and addition
 of any such subdomains requires the publication of an IETF Standards
 Track RFC. No A, AAAA, or PTR record is requested.

11.1. Constrained Join Protocol (CoJP) Parameters

 This section defines a subregistry within the "IPv6 Over the TSCH

 Mode of IEEE 802.15.4 (6TiSCH)" registry with the name "Constrained
 Join Protocol (CoJP) Parameters".

 The columns of the registry are:

 Name: This is a descriptive name that enables an easier reference to
 the item. It is not used in the encoding. The name MUST be
 unique.

 Label: The value to be used to identify this parameter. The label
 is an integer. The label MUST be unique.

 CBOR Type: This field contains the CBOR type for the field.

 Description: This field contains a brief description for the field.
 The description MUST be unique.

 Reference: This field contains a pointer to the public specification
 for the field, if one exists.

 This registry is populated with the values in Table 5.

 The amending formula for this subregistry is: Different ranges of
 values use different registration policies [RFC8126]. Integer values
 from -256 to 255 are designated as Standards Action. Integer values
 from -65536 to -257 and from 256 to 65535 are designated as
 Specification Required. Integer values greater than 65535 are
 designated as Expert Review. Integer values less than -65536 are
 marked as Private Use.

11.2. Constrained Join Protocol (CoJP) Key Usage

 This section defines a subregistry within the "IPv6 Over the TSCH
 Mode of IEEE 802.15.4 (6TiSCH)" registry with the name "Constrained
 Join Protocol (CoJP) Key Usage".

 The columns of this registry are:

 Name: This is a descriptive name that enables easier reference to
 the item. It is not used in the encoding. The name MUST be
 unique.

 Value: This is the value used to identify the key usage setting.
 These values MUST be unique. The value is an integer.

 Algorithm: This is a descriptive name of the link-layer algorithm in
 use and uniquely determines the key length. The name is not used
 in the encoding. The algorithm MUST be unique.

 Description: This field contains a description of the key usage
 setting. The field should describe in enough detail how the key
 is to be used with different frame types, specific for the link-
 layer technology in question. The description MUST be unique.

 Reference: This contains a pointer to the public specification for
 the field, if one exists.

 This registry is populated with the values in Table 6.

 The amending formula for this subregistry is: Different ranges of
 values use different registration policies [RFC8126]. Integer values
 from -256 to 255 are designated as Standards Action. Integer values
 from -65536 to -257 and from 256 to 65535 are designated as
 Specification Required. Integer values greater than 65535 are
 designated as Expert Review. Integer values less than -65536 are
 marked as Private Use.

11.3. Constrained Join Protocol (CoJP) Unsupported Configuration Codes

 This section defines a subregistry within the "IPv6 Over the TSCH
 Mode of IEEE 802.15.4 (6TiSCH)" registry with the name "Constrained

 Join Protocol (CoJP) Unsupported Configuration Codes".

 The columns of this registry are:

 Name: This is a descriptive name that enables easier reference to
 the item. It is not used in the encoding. The name MUST be
 unique.

 Value: This is the value used to identify the diagnostic code.
 These values MUST be unique. The value is an integer.

 Description: This is a descriptive human-readable name. The
 description MUST be unique. It is not used in the encoding.

 Reference: This contains a pointer to the public specification for
 the field, if one exists.

 This registry is to be populated with the values in Table 7.

 The amending formula for this subregistry is: Different ranges of
 values use different registration policies [RFC8126]. Integer values
 from -256 to 255 are designated as Standards Action. Integer values
 from -65536 to -257 and from 256 to 65535 are designated as
 Specification Required. Integer values greater than 65535 are
 designated as Expert Review. Integer values less than -65536 are
 marked as Private Use.

12. References

12.1. Normative References

 [IEEE802.15.4]
 IEEE, "IEEE Standard for Low-Rate Wireless Networks", IEEE
 Standard 802.15.4-2015, DOI 10.1109/IEEESTD.2016.7460875,
 April 2016,
 <https://ieeexplore.ieee.org/document/7460875>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2597] Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
 "Assured Forwarding PHB Group", RFC 2597,
 DOI 10.17487/RFC2597, June 1999,
 <https://www.rfc-editor.org/info/rfc2597>.

 [RFC3172] Huston, G., Ed., "Management Guidelines & Operational
 Requirements for the Address and Routing Parameter Area
 Domain ("arpa")", BCP 52, RFC 3172, DOI 10.17487/RFC3172,
 September 2001, <https://www.rfc-editor.org/info/rfc3172>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC6761] Cheshire, S. and M. Krochmal, "Special-Use Domain Names",
 RFC 6761, DOI 10.17487/RFC6761, February 2013,
 <https://www.rfc-editor.org/info/rfc6761>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
 IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
 Internet of Things (IoT): Problem Statement", RFC 7554,
 DOI 10.17487/RFC7554, May 2015,
 <https://www.rfc-editor.org/info/rfc7554>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8180] Vilajosana, X., Ed., Pister, K., and T. Watteyne, "Minimal
 IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH)
 Configuration", BCP 210, RFC 8180, DOI 10.17487/RFC8180,
 May 2017, <https://www.rfc-editor.org/info/rfc8180>.

 [RFC8505] Thubert, P., Ed., Nordmark, E., Chakrabarti, S., and C.
 Perkins, "Registration Extensions for IPv6 over Low-Power
 Wireless Personal Area Network (6LoWPAN) Neighbor
 Discovery", RFC 8505, DOI 10.17487/RFC8505, November 2018,
 <https://www.rfc-editor.org/info/rfc8505>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8820] Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 8820, DOI 10.17487/RFC8820, June 2020,
 <https://www.rfc-editor.org/info/rfc8820>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

 [RFC8974] Hartke, K. and M. Richardson, "Extended Tokens and
 Stateless Clients in the Constrained Application Protocol
 (CoAP)", RFC 8974, DOI 10.17487/RFC8974, January 2021,
 <https://www.rfc-editor.org/info/rfc8974>.

 [RFC9030] Thubert, P., Ed., "An Architecture for IPv6 over the Time-
 Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)",
 RFC 9030, DOI 10.17487/RFC9030, May 2021,
 <https://www.rfc-editor.org/info/rfc9030>.

12.2. Informative References

 [NIST800-90A]
 National Institute of Standards and Technology,
 "Recommendation for Random Number Generation Using
 Deterministic Random Bit Generators", Special Publication
 800-90A, Revision 1, DOI 10.6028/NIST.SP.800-90Ar1, June
 2015, <https://doi.org/10.6028/NIST.SP.800-90Ar1>.

 [RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
 224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
 RFC 4231, DOI 10.17487/RFC4231, December 2005,
 <https://www.rfc-editor.org/info/rfc4231>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
 Low-Power and Lossy Networks", RFC 6550,
 DOI 10.17487/RFC6550, March 2012,
 <https://www.rfc-editor.org/info/rfc6550>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",
 RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <https://www.rfc-editor.org/info/rfc7721>.

 [RFC8415] Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
 Richardson, M., Jiang, S., Lemon, T., and T. Winters,
 "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",
 RFC 8415, DOI 10.17487/RFC8415, November 2018,
 <https://www.rfc-editor.org/info/rfc8415>.

 [RFC8480] Wang, Q., Ed., Vilajosana, X., and T. Watteyne, "6TiSCH
 Operation Sublayer (6top) Protocol (6P)", RFC 8480,
 DOI 10.17487/RFC8480, November 2018,
 <https://www.rfc-editor.org/info/rfc8480>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8615] Nottingham, M., "Well-Known Uniform Resource Identifiers
 (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
 <https://www.rfc-editor.org/info/rfc8615>.

 [RFC8742] Bormann, C., "Concise Binary Object Representation (CBOR)
 Sequences", RFC 8742, DOI 10.17487/RFC8742, February 2020,
 <https://www.rfc-editor.org/info/rfc8742>.

 [RFC8990] Bormann, C., Carpenter, B., Ed., and B. Liu, Ed., "GeneRic
 Autonomic Signaling Protocol (GRASP)", RFC 8990,
 DOI 10.17487/RFC8990, May 2021,
 <https://www.rfc-editor.org/info/rfc8990>.

Appendix A. Example

 Figure 3 illustrates a successful join protocol exchange. The pledge
 instantiates the OSCORE context and derives the OSCORE keys and
 nonces from the PSK. It uses the instantiated context to protect the
 Join Request addressed with a Proxy-Scheme option, the well-known
 host name of the JRC in the Uri-Host option, and it uses its EUI-64
 as pledge identifier and OSCORE ’kid context’. Triggered by the
 presence of a Proxy-Scheme option, the JP forwards the request to the
 JRC and sets the CoAP token to the internally needed state. The JP
 learned the IPv6 address of the JRC when it acted as a pledge and
 joined the network. Once the JRC receives the request, it looks up
 the correct context based on the ’kid context’ parameter. The OSCORE
 data authenticity verification ensures that the request has not been
 modified in transit. In addition, replay protection is ensured
 through persistent handling of mutable context parameters.

 Once the JP receives the Join Response, it authenticates the state
 within the CoAP token before deciding where to forward. The JP sets
 its internal state to that found in the token and forwards the Join
 Response to the correct pledge. Note that the JP does not possess
 the key to decrypt the CoJP object (configuration) present in the
 payload. At the pledge, the Join Response is matched to the Join
 Request and verified for replay protection using OSCORE processing

 rules. In this example, the Join Response does not contain the IPv6
 address of the JRC, hence the pledge understands that the JRC is co-
 located with the 6LBR.

 <-----E2E OSCORE------>
 Client Proxy Server
 Pledge JP JRC
 | | |
 | Join | | Code: 0.02 (POST)
 | Request | | Token: -
 +--------->| | Proxy-Scheme: coap
 | | | Uri-Host: 6tisch.arpa
 | | | OSCORE: kid: -,
 | | | kid_context: EUI-64,
 | | | Partial IV: 1
 | | | Payload: { Code: 0.02 (POST),
 | | | Uri-Path: "j",
 | | | join_request, <Tag> }
 | | |
 | | Join | Code: 0.02 (POST)
 | | Request | Token: opaque state
 | +--------->| OSCORE: kid: -,
 | | | kid_context: EUI-64,
 | | | Partial IV: 1
 | | | Payload: { Code: 0.02 (POST),
 | | | Uri-Path: "j",
 | | | join_request, <Tag> }
 | | |
 | | |
 | | Join | Code: 2.04 (Changed)
 | | Response | Token: opaque state
 | |<---------+ OSCORE: -
 | | | Payload: { Code: 2.04 (Changed),
 | | | configuration, <Tag> }
 | | |
 | | |
 | Join | | Code: 2.04 (Changed)
 | Response | | Token: -
 |<---------+ | OSCORE: -
 | | | Payload: { Code: 2.04 (Changed),
 | | | configuration, <Tag> }
 | | |

 Figure 3: Example of a successful join protocol exchange. { ... }
 denotes authenticated encryption, <Tag> denotes the
 authentication tag.

 Where the join_request object is:

 join_request:
 {
 5 : h’cafe’ / PAN ID of the network pledge is attempting to join /
 }

 Since the role parameter is not present, the default role of "6TiSCH
 Node" is implied.

 The join_request object is converted to h’a10542cafe’ with a size of
 5 bytes.

 And the configuration object is the following:

 configuration:
 {
 2 : [/ link-layer key set /
 1, / key_id /
 h’e6bf4287c2d7618d6a9687445ffd33e6’ / key_value /
],
 3 : [/ short identifier /
 h’af93’ / assigned short address /
]

 }

 Since the key_usage parameter is not present in the link-layer key
 set object, the default value of "6TiSCH-K1K2-ENC-MIC32" is implied.
 Since the key_addinfo parameter is not present and key_id is
 different from 0, Key ID Mode 0x01 (Key Index) is implied.
 Similarly, since the lease_time parameter is not present in the short
 identifier object, the default value of positive infinity is implied.

 The configuration object is converted to the following:

 h’a202820150e6bf4287c2d7618d6a9687445ffd33e6038142af93’ with a size
 of 26 bytes.

Appendix B. Lightweight Implementation Option

 In environments where optimizing the implementation footprint is
 important, it is possible to implement this specification without
 having the implementations of HKDF [RFC5869] and SHA [RFC4231] on
 constrained devices. HKDF and SHA are used during the OSCORE
 security context derivation phase. This derivation can also be done
 by the JRC or a provisioning device on behalf of the (6LBR) pledge
 during the provisioning phase. In that case, the derived OSCORE
 security context parameters are written directly into the (6LBR)
 pledge, without requiring the PSK to be provisioned to the (6LBR)
 pledge.

 The use of HKDF to derive OSCORE security context parameters ensures
 that the resulting OSCORE keys have good security properties and are
 unique as long as the input varies for different pledges. This
 specification ensures the uniqueness by mandating unique pledge
 identifiers and a unique PSK for each (6LBR) pledge. From the AEAD
 nonce reuse viewpoint, having a unique pledge identifier is a
 sufficient condition. However, as discussed in Section 9, the use of
 a single PSK shared among many devices is a common security pitfall.
 The compromise of this shared PSK on a single device would lead to
 the compromise of the entire batch. When using the implementation/
 deployment scheme outlined above, the PSK does not need to be written
 to individual pledges. As a consequence, even if a shared PSK is
 used, the scheme offers a level of security comparable to the
 scenario in which each pledge is provisioned with a unique PSK. In
 this case, there is still a latent risk of the shared PSK being
 compromised on the provisioning device, which would compromise all
 devices in the batch.

Acknowledgments

 The work on this document has been partially supported by the
 European Union’s H2020 Programme for research, technological
 development and demonstration under grant agreements: No. 644852,
 project ARMOUR; No. 687884, project F-Interop and open-call project
 SPOTS; No. 732638, project Fed4FIRE+ and open-call project SODA.

 The following individuals provided input to this document (in
 alphabetic order): Christian AmsÃ¼ss, Tengfei Chang, Roman Danyliw,
 Linda Dunbar, Vijay Gurbani, Klaus Hartke, Barry Leiba, Benjamin
 Kaduk, Tero Kivinen, Mirja KÃ¼hlewind, John Mattsson, Hilarie Orman,
 Alvaro Retana, Adam Roach, Jim Schaad, GÃ¶ran Selander, Yasuyuki
 Tanaka, Pascal Thubert, William Vignat, Xavier Vilajosana, Ã\211ric
 Vyncke, and Thomas Watteyne.

Authors’ Addresses

 MaliÅ¡a VuÄ\215iniÄ\207 (editor)
 Inria
 2 Rue Simone Iff
 75012 Paris
 France

 Email: malisa.vucinic@inria.fr

 Jonathan Simon
 Analog Devices
 32990 Alvarado-Niles Road, Suite 910
 Union City, CA 94587
 United States of America

 Email: jonathan.simon@analog.com

 Kris Pister
 University of California Berkeley
 512 Cory Hall
 Berkeley, CA 94720
 United States of America

 Email: pister@eecs.berkeley.edu

 Michael Richardson
 Sandelman Software Works
 470 Dawson Avenue
 Ottawa ON K1Z5V7
 Canada

 Email: mcr+ietf@sandelman.ca

