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Abstract

   This document describes the minimal framework required for a new
   device, called a "pledge", to securely join a 6TiSCH (IPv6 over the
   Time-Slotted Channel Hopping mode of IEEE 802.15.4) network.  The
   framework requires that the pledge and the JRC (Join Registrar/
   Coordinator, a central entity), share a symmetric key.  How this key
   is provisioned is out of scope of this document.  Through a single
   CoAP (Constrained Application Protocol) request-response exchange
   secured by OSCORE (Object Security for Constrained RESTful
   Environments), the pledge requests admission into the network, and
   the JRC configures it with link-layer keying material and other
   parameters.  The JRC may at any time update the parameters through
   another request-response exchange secured by OSCORE.  This
   specification defines the Constrained Join Protocol and its CBOR
   (Concise Binary Object Representation) data structures, and it
   describes how to configure the rest of the 6TiSCH communication stack
   for this join process to occur in a secure manner.  Additional
   security mechanisms may be added on top of this minimal framework.
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1.  Introduction

   This document defines a "secure join" solution for a new device,
   called a "pledge", to securely join a 6TiSCH network.  The term
   "secure join" refers to network access authentication, authorization,
   and parameter distribution as defined in [RFC9030].  The Constrained
   Join Protocol (CoJP) defined in this document handles parameter
   distribution needed for a pledge to become a joined node.  Mutual
   authentication during network access and implicit authorization are
   achieved through the use of a secure channel as configured according
   to this document.  This document also specifies a configuration of
   different layers of the 6TiSCH protocol stack that reduces the Denial
   of Service (DoS) attack surface during the join process.

   This document presumes a 6TiSCH network as described by [RFC7554] and
   [RFC8180].  By design, nodes in a 6TiSCH network [RFC7554] have their
   radio turned off most of the time in order to conserve energy.  As a
   consequence, the link used by a new device for joining the network
   has limited bandwidth [RFC8180].  The secure join solution defined in
   this document therefore keeps the number of over-the-air exchanges to
   a minimum.

   The microcontrollers at the heart of 6TiSCH nodes have small amounts
   of code memory.  It is therefore paramount to reuse existing
   protocols available as part of the 6TiSCH stack.  At the application
   layer, the 6TiSCH stack already relies on CoAP [RFC7252] for web
   transfer and on OSCORE [RFC8613] for its end-to-end security.  The
   secure join solution defined in this document therefore reuses those
   two protocols as its building blocks.

   CoJP is a generic protocol that can be used as-is in all modes of
   IEEE Std 802.15.4 [IEEE802.15.4], including the Time-Slotted Channel
   Hopping (TSCH) mode on which 6TiSCH is based.  CoJP may also be used
   in other (low-power) networking technologies where efficiency in
   terms of communication overhead and code footprint is important.  In
   such a case, it may be necessary to define through companion
   documents the configuration parameters specific to the technology in



   question.  The overall process is described in Section 4, and the
   configuration of the stack is specific to 6TiSCH.

   CoJP assumes the presence of a Join Registrar/Coordinator (JRC), a
   central entity.  The configuration defined in this document assumes
   that the pledge and the JRC share a unique symmetric cryptographic
   key, called PSK (pre-shared key).  The PSK is used to configure
   OSCORE to provide a secure channel to CoJP.  How the PSK is installed
   is out of scope of this document: this may happen during the
   provisioning phase or by a key exchange protocol that may precede the
   execution of CoJP.

   When the pledge seeks admission to a 6TiSCH network, it first
   synchronizes to it by initiating the passive scan defined in
   [IEEE802.15.4].  The pledge then exchanges CoJP messages with the
   JRC; for this end-to-end communication to happen, the messages are
   forwarded by nodes, called Join Proxies, that are already part of the
   6TiSCH network.  The messages exchanged allow the JRC and the pledge
   to mutually authenticate based on the properties provided by OSCORE.
   They also allow the JRC to configure the pledge with link-layer
   keying material, a short identifier, and other parameters.  After
   this secure join process successfully completes, the joined node can
   interact with its neighbors to request additional bandwidth using the
   6TiSCH Operation Sublayer (6top) Protocol [RFC8480] and can start
   sending application traffic.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The reader is expected to be familiar with the terms and concepts
   defined in [RFC9030], [RFC7252], [RFC8613], and [RFC8152].

   The specification also includes a set of informative specifications
   using the Concise Data Definition Language (CDDL) [RFC8610].

   The following terms defined in [RFC9030] are used extensively
   throughout this document:

   *  pledge

   *  joined node

   *  Join Proxy (JP)

   *  Join Registrar/Coordinator (JRC)

   *  Enhanced Beacon (EB)

   *  join protocol

   *  join process

   The following terms defined in [RFC8505] are also used throughout
   this document:

   *  6LoWPAN Border Router (6LBR)

   *  6LoWPAN Node (6LN)

   The term "6LBR" is used interchangeably with the term "DODAG root"
   defined in [RFC6550] on the assumption that the two entities are co-
   located, as recommended by [RFC9030].

   The term "pledge", as used throughout the document, explicitly
   denotes non-6LBR devices attempting to join the network using their
   IEEE Std 802.15.4 network interface.  The device that attempts to



   join as the 6LBR of the network and does so over another network
   interface is explicitly denoted as the "6LBR pledge".  When the text
   applies equally to the pledge and the 6LBR pledge, the "(6LBR)
   pledge" form is used.

   In addition, we use generic terms "pledge identifier" and "network
   identifier".  See Section 3.

3.  Provisioning Phase

   The (6LBR) pledge is provisioned with certain parameters before
   attempting to join the network, and the same parameters are
   provisioned to the JRC.  There are many ways by which this
   provisioning can be done.  Physically, the parameters can be written
   into the (6LBR) pledge with a number of mechanisms, such as using a
   JTAG (Joint Test Action Group) interface, using a serial (craft)
   console interface, pushing buttons simultaneously on different
   devices, configuring over-the-air in a Faraday cage, etc.  The
   provisioning can be done by the vendor, the manufacturer, the
   integrator, etc.

   Details of how this provisioning is done are out of scope of this
   document.  What is assumed is that there can be a secure, private
   conversation between the JRC and the (6LBR) pledge, and that the two
   devices can exchange the parameters.

   Parameters that are provisioned to the (6LBR) pledge include:

   pledge identifier:  The pledge identifier identifies the (6LBR)
      pledge.  The pledge identifier MUST be unique in the set of all
      pledge identifiers managed by a JRC.  The pledge identifier
      uniqueness is an important security requirement, as discussed in
      Section 9.  The pledge identifier is typically the globally unique
      64-bit Extended Unique Identifier (EUI-64) of the IEEE Std
      802.15.4 device, in which case it is provisioned by the hardware
      manufacturer.  The pledge identifier is used to generate the IPv6
      addresses of the (6LBR) pledge and to identify it during the
      execution of the join protocol.  Depending on the configuration,
      the pledge identifier may also be used after the join process to
      identify the joined node.  For privacy reasons (see Section 10),
      it is possible to use a pledge identifier different from the EUI-
      64.  For example, a pledge identifier may be a random byte string,
      but care needs to be taken that such a string meets the uniqueness
      requirement.

   Pre-Shared Key (PSK):  A symmetric cryptographic key shared between
      the (6LBR) pledge and the JRC.  To look up the PSK for a given
      pledge, the JRC additionally needs to store the corresponding
      pledge identifier.  Each (6LBR) pledge MUST be provisioned with a
      unique PSK.  The PSK MUST be a cryptographically strong key, with
      at least 128 bits of entropy, indistinguishable by feasible
      computation from a random uniform string of the same length.  How
      the PSK is generated and/or provisioned is out of scope of this
      specification.  This could be done during a provisioning step, or
      companion documents can specify the use of a key-agreement
      protocol.  Common pitfalls when generating PSKs are discussed in
      Section 9.  In the case of recommissioning a device to a new
      owner, the PSK MUST be changed.  Note that the PSK is different
      from the link-layer keys K1 and K2 specified in [RFC8180].  The
      PSK is a long-term secret used to protect the execution of the
      secure join protocol specified in this document; the link-layer
      keys are transported as part of the secure join protocol.

   Optionally, a network identifier:  The network identifier identifies
      the 6TiSCH network.  The network identifier MUST be carried within
      Enhanced Beacon (EB) frames.  Typically, the 16-bit Personal Area
      Network Identifier (PAN ID) defined in [IEEE802.15.4] is used as
      the network identifier.  However, PAN ID is not considered a
      stable network identifier as it may change during network lifetime
      if a collision with another network is detected.  Companion
      documents can specify the use of a different network identifier



      for join purposes, but this is out of scope of this specification.
      Provisioning the network identifier to a pledge is RECOMMENDED.
      However, due to operational constraints, the network identifier
      may not be known at the time of provisioning.  If this parameter
      is not provisioned to the pledge, the pledge will attempt to join
      one advertised network at a time, which significantly prolongs the
      join process.  This parameter MUST be provisioned to the 6LBR
      pledge.

   Optionally, any non-default algorithms:  The default algorithms are
      specified in Section 7.3.3.  When algorithm identifiers are not
      provisioned, the use of these default algorithms is implied.

   Additionally, the 6LBR pledge that is not co-located with the JRC
   needs to be provisioned with the following:

   Global IPv6 address of the JRC:  This address is used by the 6LBR
      pledge to address the JRC during the join process.  The 6LBR
      pledge may also obtain the IPv6 address of the JRC through other
      available mechanisms, such as DHCPv6 [RFC8415], Generic Autonomic
      Signaling Protocol (GRASP) [RFC8990], or Multicast DNS (mDNS)
      [RFC6762]; the use of these mechanisms is out of scope of this
      document.  Pledges do not need to be provisioned with this address
      as they discover it dynamically through CoJP.

4.  Join Process Overview

   This section describes the steps taken by a pledge in a 6TiSCH
   network.  When a pledge seeks admission to a 6TiSCH network, the
   following exchange occurs:

   1.  The pledge listens for an Enhanced Beacon (EB) frame
       [IEEE802.15.4].  This frame provides network synchronization
       information, telling the device when it can send a frame to the
       node sending the beacons, which acts as a Join Proxy (JP) for the
       pledge, and when it can expect to receive a frame.  The EB
       provides the link-layer address of the JP, and it may also
       provide its link-local IPv6 address.

   2.  The pledge configures its link-local IPv6 address and advertises
       it to the JP using Neighbor Discovery.  The advertisement step
       may be omitted if the link-local address has been derived from a
       known unique interface identifier, such as an EUI-64 address.

   3.  The pledge sends a Join Request to the JP in order to securely
       identify itself to the network.  The Join Request is forwarded to
       the JRC.

   4.  In the case of successful processing of the request, the pledge
       receives a Join Response from the JRC (via the JP).  The Join
       Response contains configuration parameters necessary for the
       pledge to join the network.

   From the pledge’s perspective, joining is a local phenomenon -- the
   pledge only interacts with the JP, and it needs not know how far it
   is from the 6LBR or how to route to the JRC.  Only after establishing
   one or more link-layer keys does it need to know about the
   particulars of a 6TiSCH network.

   The join process is shown as a transaction diagram in Figure 1:

     +--------+                 +-------+                 +--------+
     | pledge |                 |  JP   |                 |  JRC   |
     |        |                 |       |                 |        |
     +--------+                 +-------+                 +--------+
        |                          |                          |
        |<---Enhanced Beacon (1)---|                          |
        |                          |                          |
        |<-Neighbor Discovery (2)->|                          |
        |                          |                          |
        |-----Join Request (3a)----|----Join Request (3a)---->| \



        |                          |                          | | CoJP
        |<----Join Response (3b)---|----Join Response (3b)----| /
        |                          |                          |

              Figure 1: Overview of a successful join process.

   As for other nodes in the network, the 6LBR node may act as the JP.
   The 6LBR may in addition be co-located with the JRC.

   The details of each step are described in the following sections.

4.1.  Step 1 - Enhanced Beacon

   The pledge synchronizes to the network by listening for, and
   receiving, an EB sent by a node already in the network.  This process
   is entirely defined by [IEEE802.15.4] and described in [RFC7554].

   Once the pledge hears an EB, it synchronizes to the joining schedule
   using the cells contained in the EB.  The pledge can hear multiple
   EBs; the selection of which EB to use is out of the scope for this
   document and is discussed in [RFC7554].  Implementers should make use
   of information such as the following: which network identifier the EB
   contains, the value of the Join Metric field within EBs, whether the
   source link-layer address of the EB has been tried before, at which
   signal strength the different EBs were received, etc.  In addition,
   the pledge may be preconfigured to search for EBs with a specific
   network identifier.

   If the pledge is not provisioned with the network identifier, it
   attempts to join one network at a time, as described in
   Section 8.1.1.

   Once the pledge selects the EB, it synchronizes to it and transitions
   into a low-power mode.  It follows the schedule information contained
   in the EB, which indicates the slots that the pledge may use for the
   join process.  During the remainder of the join process, the node
   that has sent the EB to the pledge acts as the JP.

   At this point, the pledge may either proceed to step 2 or continue to
   listen for additional EBs.

4.2.  Step 2 - Neighbor Discovery

   The pledge forms its link-local IPv6 address based on the interface
   identifier per [RFC4944].  The pledge MAY perform the Neighbor
   Solicitation / Neighbor Advertisement exchange with the JP per
   Section 5.6 of [RFC8505].  Per [RFC8505], there is no need to perform
   duplicate address detection for the link-local address.  The pledge
   and the JP use their link-local IPv6 addresses for all subsequent
   communication during the join process.

   Note that Neighbor Discovery exchanges at this point are not
   protected with link-layer security as the pledge is not in possession
   of the keys.  How the JP accepts these unprotected frames is
   discussed in Section 5.

4.3.  Step 3 - Constrained Join Protocol (CoJP) Execution

   The pledge triggers the join exchange of the Constrained Join
   Protocol (CoJP).  The join exchange consists of two messages: the
   Join Request message (Step 3a (Section 4.3.1)) and the Join Response
   message, conditioned on the successful security processing of the
   request (Step 3b (Section 4.3.2)).

   All CoJP messages are exchanged over a secure end-to-end channel that
   provides confidentiality, data authenticity, and replay protection.
   Frames carrying CoJP messages are not protected with link-layer
   security when exchanged between the pledge and the JP as the pledge
   is not in possession of the link-layer keys in use.  How the JP and
   pledge accept these unprotected frames is discussed in Section 5.
   When frames carrying CoJP messages are exchanged between nodes that



   have already joined the network, the link-layer security is applied
   according to the security configuration used in the network.

4.3.1.  Step 3a - Join Request

   The Join Request is a message sent from the pledge to the JP, and
   which the JP forwards to the JRC.  The pledge indicates in the Join
   Request the role it requests to play in the network, as well as the
   identifier of the network it requests to join.  The JP forwards the
   Join Request to the JRC on the existing links.  How exactly this
   happens is out of scope of this document; some networks may wish to
   dedicate specific link-layer resources for this join traffic.

4.3.2.  Step 3b - Join Response

   The Join Response is sent by the JRC to the pledge, and it is
   forwarded through the JP.  The packet containing the Join Response
   travels from the JRC to the JP using the operating routes in the
   network.  The JP delivers it to the pledge.  The JP operates as an
   application-layer proxy, see Section 7.

   The Join Response contains various parameters needed by the pledge to
   become a fully operational network node.  These parameters include
   the link-layer key(s) currently in use in the network, the short
   address assigned to the pledge, the IPv6 address of the JRC needed by
   the pledge to operate as the JP, among others.

4.4.  The Special Case of the 6LBR Pledge Joining

   The 6LBR pledge performs Section 4.3 of the join process just like
   any other pledge, albeit over a different network interface.  There
   is no JP intermediating the communication between the 6LBR pledge and
   the JRC, as described in Section 6.  The other steps of the described
   join process do not apply to the 6LBR pledge.  How the 6LBR pledge
   obtains an IPv6 address and triggers the execution of CoJP is out of
   scope of this document.

5.  Link-Layer Configuration

   In an operational 6TiSCH network, all frames use link-layer frame
   security [RFC8180].  The IEEE Std 802.15.4 security attributes
   include frame authenticity and optionally frame confidentiality
   (i.e., encryption).

   Any node sending EB frames MUST be prepared to act as a JP for
   potential pledges.

   The pledge does not initially perform an authenticity check of the EB
   frames because it does not possess the link-layer key(s) in use.  The
   pledge is still able to parse the contents of the received EBs and
   synchronize to the network, as EBs are not encrypted [RFC8180].

   When sending frames during the join process, the pledge sends
   unencrypted and unauthenticated frames at the link layer.  In order
   for the join process to be possible, the JP must accept these
   unsecured frames for the duration of the join process.  This behavior
   may be implemented by setting the "secExempt" attribute in the IEEE
   Std 802.15.4 security configuration tables.  It is expected that the
   lower layer provides an interface to indicate to the upper layer that
   unsecured frames are being received from a device.  The upper layer
   can use that information to determine that a join process is in place
   and that the unsecured frames should be processed.  How the JP makes
   such a determination and interacts with the lower layer is out of
   scope of this specification.  The JP can additionally use information
   such as the value of the join rate parameter (Section 8.4.2) set by
   the JRC, physical button press, etc.

   When the pledge initially synchronizes with the network, it has no
   means of verifying the authenticity of EB frames.  Because an
   attacker can craft a frame that looks like a legitimate EB frame,
   this opens up a DoS vector, as discussed in Section 9.



5.1.  Distribution of Time

   Nodes in a 6TiSCH network keep a global notion of time known as the
   Absolute Slot Number.  The Absolute Slot Number is used in the
   construction of the link-layer nonce, as defined in [IEEE802.15.4].
   The pledge initially synchronizes with the EB frame sent by the JP
   and uses the value of the Absolute Slot Number found in the TSCH
   Synchronization Information Element.  At the time of the
   synchronization, the EB frame can neither be authenticated nor its
   freshness verified.  During the join process, the pledge sends frames
   that are unprotected at the link-layer and protected end-to-end
   instead.  The pledge does not obtain the time information as the
   output of the join process as this information is local to the
   network and may not be known at the JRC.

   This enables an attack on the pledge where the attacker replays to
   the pledge legitimate EB frames obtained from the network and acts as
   a man-in-the-middle between the pledge and the JP.  The EB frames
   will make the pledge believe that the replayed Absolute Slot Number
   value is the current notion of time in the network.  By forwarding
   the join traffic to the legitimate JP, the attacker enables the
   pledge to join the network.  Under different conditions relating to
   the reuse of the pledge’s short address by the JRC or its attempt to
   rejoin the network, this may cause the pledge to reuse the link-layer
   nonce in the first frame it sends protected after the join process is
   completed.

   For this reason, all frames originated at the JP and destined to the
   pledge during the join process MUST be authenticated at the link
   layer using the key that is normally in use in the network.  Link-
   layer security processing at the pledge for these frames will fail as
   the pledge is not yet in possession of the key.  The pledge
   acknowledges these frames without link-layer security, and JP accepts
   the unsecured acknowledgment due to the secExempt attribute set for
   the pledge.  The frames should be passed to the upper layer for
   processing using the promiscuous mode of [IEEE802.15.4] or another
   appropriate mechanism.  When the upper-layer processing on the pledge
   is completed, and the link-layer keys are configured, the upper layer
   MUST trigger the security processing of the corresponding frame.
   Once the security processing of the frame carrying the Join Response
   message is successful, the current Absolute Slot Number kept locally
   at the pledge SHALL be declared as valid.

6.  Network-Layer Configuration

   The pledge and the JP SHOULD keep a separate neighbor cache for
   untrusted entries and use it to store each other’s information during
   the join process.  Mixing neighbor entries belonging to pledges and
   nodes that are part of the network opens up the JP to a DoS attack,
   as the attacker may fill the JP’s neighbor table and prevent the
   discovery of legitimate neighbors.

   Once the pledge obtains link-layer keys and becomes a joined node, it
   is able to securely communicate with its neighbors, obtain the
   network IPv6 prefix, and form its global IPv6 address.  The joined
   node then undergoes an independent process to bootstrap its neighbor
   cache entries, possibly with a node that formerly acted as a JP,
   following [RFC8505].  From the point of view of the JP, there is no
   relationship between the neighbor cache entry belonging to a pledge
   and the joined node that formerly acted as a pledge.

   The pledge does not communicate with the JRC at the network layer.
   This allows the pledge to join without knowing the IPv6 address of
   the JRC.  Instead, the pledge communicates with the JP at the network
   layer using link-local addressing, and with the JRC at the
   application layer, as specified in Section 7.

   The JP communicates with the JRC over global IPv6 addresses.  The JP
   discovers the network IPv6 prefix and configures its global IPv6
   address upon successful completion of the join process and the



   obtention of link-layer keys.  The pledge learns the IPv6 address of
   the JRC from the Join Response, as specified in Section 8.1.2; it
   uses it once joined in order to operate as a JP.

   As a special case, the 6LBR pledge may have an additional network
   interface that it uses in order to obtain the configuration
   parameters from the JRC and to start advertising the 6TiSCH network.
   This additional interface needs to be configured with a global IPv6
   address, by a mechanism that is out of scope of this document.  The
   6LBR pledge uses this interface to directly communicate with the JRC
   using global IPv6 addressing.

   The JRC can be co-located on the 6LBR.  In this special case, the
   IPv6 address of the JRC can be omitted from the Join Response message
   for space optimization.  The 6LBR then MUST set the DODAGID field in
   the RPL DODAG Information Objects (DIOs) [RFC6550] to its IPv6
   address.  The pledge learns the address of the JRC once joined and
   upon the reception of the first RPL DIO message, and uses it to
   operate as a JP.

6.1.  Identification of Unauthenticated Traffic

   The traffic that is proxied by the JP comes from unauthenticated
   pledges, and there may be an arbitrary amount of it.  In particular,
   an attacker may send fraudulent traffic in an attempt to overwhelm
   the network.

   When operating as part of a 6TiSCH minimal network [RFC8180] using
   distributed scheduling algorithms, the traffic from unauthenticated
   pledges may cause intermediate nodes to request additional bandwidth.
   An attacker could use this property to cause the network to
   overcommit bandwidth (and energy) to the join process.

   The JP is aware of what traffic originates from unauthenticated
   pledges, and so can avoid allocating additional bandwidth itself.
   The JP implements a data cap on outgoing join traffic by implementing
   the recommendation of 1 packet per 3 seconds in Section 3.1.3 of
   [RFC8085].  This can be achieved with the congestion control
   mechanism specified in Section 4.7 of [RFC7252].  This cap will not
   protect intermediate nodes as they cannot tell join traffic from
   regular traffic.  Despite the data cap implemented separately on each
   JP, the aggregate join traffic from many JPs may cause intermediate
   nodes to decide to allocate additional cells.  It is undesirable to
   do so in response to the traffic originated from unauthenticated
   pledges.  In order to permit the intermediate nodes to avoid this,
   the traffic needs to be tagged.  [RFC2597] defines a set of per-hop
   behaviors that may be encoded into the Diffserv Code Points (DSCPs).
   Based on the DSCP, intermediate nodes can decide whether to act on a
   given packet.

6.1.1.  Traffic from JP to JRC

   The JP SHOULD set the DSCP of packets that it produces as part of the
   forwarding process to AF43 code point (See Section 6 of [RFC2597]).
   A JP that does not require a specific DSCP value on forwarded traffic
   should set it to zero so that it is compressed out.

   A Scheduling Function (SF) running on 6TiSCH nodes SHOULD NOT
   allocate additional cells as a result of traffic with code point
   AF43.  Companion SF documents SHOULD specify how this recommended
   behavior is achieved.

6.1.2.  Traffic from JRC to JP

   The JRC SHOULD set the DSCP of Join Response packets addressed to the
   JP to the AF42 code point.  AF42 has lower drop probability than
   AF43, giving this traffic priority in buffers over the traffic going
   towards the JRC.

   The 6LBR links are often the most congested within a DODAG, and from
   that point down, there is progressively less (or equal) congestion.



   If the 6LBR paces itself when sending Join Response traffic, then it
   ought to never exceed the bandwidth allocated to the best effort
   traffic cells.  If the 6LBR has the capacity (if it is not
   constrained), then it should provide some buffers in order to satisfy
   the Assured Forwarding behavior.

   Companion SF documents SHOULD specify how traffic with code point
   AF42 is handled with respect to cell allocation.  If the recommended
   behavior described in this section is not followed, the network may
   become prone to the attack discussed in Section 6.1.

7.  Application-Layer Configuration

   The CoJP join exchange in Figure 1 is carried over CoAP [RFC7252] and
   the secure channel provided by OSCORE [RFC8613].  The (6LBR) pledge
   acts as a CoAP client; the JRC acts as a CoAP server.  The JP
   implements CoAP forward proxy functionality [RFC7252].  Because the
   JP can also be a constrained device, it cannot implement a cache.

   The pledge designates a JP as a proxy by including the Proxy-Scheme
   option in the CoAP requests that it sends to the JP.  The pledge also
   includes in the requests the Uri-Host option with its value set to
   the well-known JRC’s alias, as specified in Section 8.1.1.

   The JP resolves the alias to the IPv6 address of the JRC that it
   learned when it acted as a pledge and joined the network.  This
   allows the JP to reach the JRC at the network layer and forward the
   requests on behalf of the pledge.

7.1.  Statelessness of the JP

   The CoAP proxy defined in [RFC7252] keeps per-client state
   information in order to forward the response towards the originator
   of the request.  This state information includes at least the CoAP
   token, the IPv6 address of the client, and the UDP source port
   number.  Since the JP can be a constrained device that acts as a CoAP
   proxy, memory limitations make it prone to a DoS attack.

   This DoS vector on the JP can be mitigated by making the JP act as a
   stateless CoAP proxy, where "state" encompasses the information
   related to individual pledges.  The JP can wrap the state it needs to
   keep for a given pledge throughout the network stack in a "state
   object" and include it as a CoAP token in the forwarded request to
   the JRC.  The JP may use the CoAP token as defined in [RFC7252], if
   the size of the serialized state object permits, or use the extended
   CoAP token defined in [RFC8974] to transport the state object.  The
   JRC and any other potential proxy on the JP-JRC path MUST support
   extended token lengths, as defined in [RFC8974].  Since the CoAP
   token is echoed back in the response, the JP is able to decode the
   state object and configure the state needed to forward the response
   to the pledge.  The information that the JP needs to encode in the
   state object to operate in a fully stateless manner with respect to a
   given pledge is implementation specific.

   It is RECOMMENDED that the JP operates in a stateless manner and
   signals the per-pledge state within the CoAP token for every request
   that it forwards into the network on behalf of unauthenticated
   pledges.  When the JP is operating in a stateless manner, the
   security considerations from [RFC8974] apply, and the type of the
   CoAP message that the JP forwards on behalf of the pledge MUST be
   non-confirmable (NON), regardless of the message type received from
   the pledge.  The use of a non-confirmable message by the JP
   alleviates the JP from keeping CoAP message exchange state.  The
   retransmission burden is then entirely shifted to the pledge.  A JP
   that operates in a stateless manner still needs to keep congestion
   control state with the JRC, see Section 9.  Recommended values of
   CoAP settings for use during the join process, both by the pledge and
   the JP, are given in Section 7.2.

   Note that in some networking stack implementations, a fully (per-
   pledge) stateless operation of the JP may be challenging from the



   implementation’s point of view.  In those cases, the JP may operate
   as a stateful proxy that stores the per-pledge state until the
   response is received or timed out, but this comes at a price of a DoS
   vector.

7.2.  Recommended Settings

   This section gives RECOMMENDED values of CoAP settings during the
   join process.

                   +===================+===============+
                   | Name              | Default Value |
                   +===================+===============+
                   | ACK_TIMEOUT       | 10 seconds    |
                   +-------------------+---------------+
                   | ACK_RANDOM_FACTOR | 1.5           |
                   +-------------------+---------------+
                   | MAX_RETRANSMIT    | 4             |
                   +-------------------+---------------+
                   | NSTART            | 1             |
                   +-------------------+---------------+
                   | DEFAULT_LEISURE   | 5 seconds     |
                   +-------------------+---------------+
                   | PROBING_RATE      | 1 byte/second |
                   +-------------------+---------------+

                    Table 1: Recommended CoAP settings.

   These values may be configured to values specific to the deployment.
   The default values have been chosen to accommodate a wide range of
   deployments, taking into account dense networks.

   The PROBING_RATE value at the JP is controlled by the join rate
   parameter, see Section 8.4.2.  Following [RFC7252], the average data
   rate in sending to the JRC must not exceed PROBING_RATE.  For
   security reasons, the average data rate SHOULD be measured over a
   rather short window, e.g., ACK_TIMEOUT, see Section 9.

7.3.  OSCORE

   Before the (6LBR) pledge and the JRC start exchanging CoAP messages
   protected with OSCORE, they need to derive the OSCORE security
   context from the provisioned parameters, as discussed in Section 3.

   The OSCORE security context MUST be derived per Section 3 of
   [RFC8613].

   *  The Master Secret MUST be the PSK.

   *  The Master Salt MUST be the empty byte string.

   *  The ID Context MUST be set to the pledge identifier.

   *  The ID of the pledge MUST be set to the empty byte string.  This
      identifier is used as the OSCORE Sender ID of the pledge in the
      security context derivation, since the pledge initially acts as a
      CoAP client.

   *  The ID of the JRC MUST be set to the byte string 0x4a5243 ("JRC"
      in ASCII).  This identifier is used as the OSCORE Recipient ID of
      the pledge in the security context derivation, as the JRC
      initially acts as a CoAP server.

   *  The Algorithm MUST be set to the value from [RFC8152], agreed to
      out-of-band by the same mechanism used to provision the PSK.  The
      default is AES-CCM-16-64-128.

   *  The key derivation function MUST be agreed out-of-band by the same
      mechanism used to provision the PSK.  Default is HKDF SHA-256
      [RFC5869].



   Since the pledge’s OSCORE Sender ID is the empty byte string, when
   constructing the OSCORE option, the pledge sets the ’kid’ flag in the
   OSCORE flag bits but indicates a 0-length ’kid’.  The pledge
   transports its pledge identifier within the ’kid context’ field of
   the OSCORE option.  The derivation in [RFC8613] results in OSCORE
   keys and a Common Initialization Vector (IV) for each side of the
   conversation.  Nonces are constructed by XORing the Common IV with
   the current sequence number.  For details on nonce and OSCORE option
   construction, refer to [RFC8613].

   Implementations MUST ensure that multiple CoAP requests, including to
   different JRCs, are properly incrementing the sequence numbers, so
   that the same sequence number is never reused in distinct requests
   protected under the same PSK.  The pledge typically sends requests to
   different JRCs if it is not provisioned with the network identifier
   and attempts to join one network at a time.  Failure to comply will
   break the security guarantees of the Authenticated Encryption with
   Associated Data (AEAD) algorithm because of nonce reuse.

   This OSCORE security context is used for the initial joining of the
   (6LBR) pledge, where the (6LBR) pledge acts as a CoAP client, as well
   as for any later parameter updates, where the JRC acts as a CoAP
   client and the joined node as a CoAP server, as discussed in
   Section 8.2.  Note that when the (6LBR) pledge and the JRC change
   roles between CoAP client and CoAP server, the same OSCORE security
   context as initially derived remains in use, and the derived
   parameters are unchanged, for example, Sender ID when sending and
   Recipient ID when receiving (see Section 3.1 of [RFC8613]).  A (6LBR)
   pledge is expected to have exactly one OSCORE security context with
   the JRC.

7.3.1.  Replay Window and Persistency

   Both the (6LBR) pledge and the JRC MUST implement a replay-protection
   mechanism.  The use of the default OSCORE replay-protection mechanism
   specified in Section 3.2.2 of [RFC8613] is RECOMMENDED.

   Implementations MUST ensure that mutable OSCORE context parameters
   (Sender Sequence Number, Replay Window) are stored in persistent
   memory.  A technique detailed in Appendix B.1.1 of [RFC8613] that
   prevents reuse of sequence numbers MUST be implemented.  Each update
   of the OSCORE Replay Window MUST be written to persistent memory.

   This is an important security requirement in order to guarantee nonce
   uniqueness and resistance to replay attacks across reboots and
   rejoins.  Traffic between the (6LBR) pledge and the JRC is rare,
   making security outweigh the cost of writing to persistent memory.

7.3.2.  OSCORE Error Handling

   Errors raised by OSCORE during the join process MUST be silently
   dropped, with no error response being signaled.  The pledge MUST
   silently discard any response not protected with OSCORE, including
   error codes.

   Such errors may happen for a number of reasons, including failed
   lookup of an appropriate security context (e.g., the pledge
   attempting to join a wrong network), failed decryption, positive
   Replay Window lookup, formatting errors (possibly due to malicious
   alterations in transit).  Silently dropping OSCORE messages prevents
   a DoS attack on the pledge where the attacker could send bogus error
   responses, forcing the pledge to attempt joining one network at a
   time, until all networks have been tried.

7.3.3.  Mandatory-to-Implement Algorithms

   The mandatory-to-implement AEAD algorithm for use with OSCORE is AES-
   CCM-16-64-128 from [RFC8152].  This is the algorithm used for
   securing IEEE Std 802.15.4 frames, and hardware acceleration for it
   is present in virtually all compliant radio chips.  With this choice,
   CoAP messages are protected with an 8-byte CCM authentication tag,



   and the algorithm uses 13-byte long nonces.

   The mandatory-to-implement hash algorithm is SHA-256 [RFC4231].  The
   mandatory-to-implement key derivation function is HKDF [RFC5869],
   instantiated with a SHA-256 hash.  See Appendix B for implementation
   guidance when code footprint is important.

8.  Constrained Join Protocol (CoJP)

   The Constrained Join Protocol (CoJP) is a lightweight protocol over
   CoAP [RFC7252] and a secure channel provided by OSCORE [RFC8613].
   CoJP allows a (6LBR) pledge to request admission into a network
   managed by the JRC.  It enables the JRC to configure the pledge with
   the necessary parameters.  The JRC may update the parameters at any
   time, by reaching out to the joined node that formerly acted as a
   (6LBR) pledge.  For example, network-wide rekeying can be implemented
   by updating the keying material on each node.

   CoJP relies on the security properties provided by OSCORE.  This
   includes end-to-end confidentiality, data authenticity, replay
   protection, and a secure binding of responses to requests.

               +-----------------------------------+
               |  Constrained Join Protocol (CoJP) |
               +-----------------------------------+
               +-----------------------------------+  \
               |         Requests / Responses      |  |
               |-----------------------------------|  |
               |               OSCORE              |  | CoAP
               |-----------------------------------|  |
               |           Messaging Layer         |  |
               +-----------------------------------+  /
               +-----------------------------------+
               |                UDP                |
               +-----------------------------------+

                    Figure 2: Abstract layering of CoJP.

   When a (6LBR) pledge requests admission to a given network, it
   undergoes the CoJP join exchange that consists of:

   *  The Join Request message, sent by the (6LBR) pledge to the JRC,
      potentially proxied by the JP.  The Join Request message and its
      mapping to CoAP is specified in Section 8.1.1.

   *  The Join Response message, sent by the JRC to the (6LBR) pledge,
      if the JRC successfully processes the Join Request using OSCORE
      and it determines through a mechanism that is out of scope of this
      specification that the (6LBR) pledge is authorized to join the
      network.  The Join Response message is potentially proxied by the
      JP.  The Join Response message and its mapping to CoAP is
      specified in Section 8.1.2.

   When the JRC needs to update the parameters of a joined node that
   formerly acted as a (6LBR) pledge, it executes the CoJP parameter
   update exchange that consists of the following:

   *  The Parameter Update message, sent by the JRC to the joined node
      that formerly acted as a (6LBR) pledge.  The Parameter Update
      message and its mapping to CoAP is specified in Section 8.2.1.

   The payload of CoJP messages is encoded with CBOR [RFC8949].  The
   CBOR data structures that may appear as the payload of different CoJP
   messages are specified in Section 8.4.

8.1.  Join Exchange

   This section specifies the messages exchanged when the (6LBR) pledge
   requests admission and configuration parameters from the JRC.

8.1.1.  Join Request Message



   The Join Request message that the (6LBR) pledge sends SHALL be mapped
   to a CoAP request:

   *  The request method is POST.

   *  The type is Confirmable (CON).

   *  The Proxy-Scheme option is set to "coap".

   *  The Uri-Host option is set to "6tisch.arpa".  This is an anycast
      type of identifier of the JRC that is resolved to its IPv6 address
      by the JP or the 6LBR pledge.

   *  The Uri-Path option is set to "j".

   *  The OSCORE option SHALL be set according to [RFC8613].  The OSCORE
      security context used is the one derived in Section 7.3.  The
      OSCORE ’kid context’ allows the JRC to retrieve the security
      context for a given pledge.

   *  The payload is a Join_Request CBOR object, as defined in
      Section 8.4.1.

   Since the Join Request is a confirmable message, the transmission at
   (6LBR) pledge will be controlled by CoAP’s retransmission mechanism.
   The JP, when operating in a stateless manner, forwards this Join
   Request as a non-confirmable (NON) CoAP message, as specified in
   Section 7.  If the CoAP implementation at the (6LBR) pledge declares
   the message transmission a failure, the (6LBR) pledge SHOULD attempt
   to join a 6TiSCH network advertised with a different network
   identifier.  See Section 7.2 for recommended values of CoAP settings
   to use during the join exchange.

   If all join attempts to advertised networks have failed, the (6LBR)
   pledge SHOULD signal the presence of an error condition, through some
   out-of-band mechanism.

   BCP 190 [RFC8820] provides guidelines on URI design and ownership.
   It recommends that whenever a third party wants to mandate a URI to
   web authority that it SHOULD go under "/.well-known" (per [RFC8615]).
   In the case of CoJP, the Uri-Host option is always set to
   "6tisch.arpa", and based upon the recommendations in Section 1 of
   [RFC8820], it is asserted that this document is the owner of the CoJP
   service.  As such, the concerns of [RFC8820] do not apply, and thus
   the Uri-Path is only "j".

8.1.2.  Join Response Message

   The Join Response message that the JRC sends SHALL be mapped to a
   CoAP response:

   *  The Response Code is 2.04 (Changed).

   *  The payload is a Configuration CBOR object, as defined in
      Section 8.4.2.

8.2.  Parameter Update Exchange

   During the network lifetime, parameters returned as part of the Join
   Response may need to be updated.  One typical example is the update
   of link-layer keying material for the network, a process known as
   rekeying.  This section specifies a generic mechanism when this
   parameter update is initiated by the JRC.

   At the time of the join, the (6LBR) pledge acts as a CoAP client and
   requests the network parameters through a representation of the "/j"
   resource exposed by the JRC.  In order for the update of these
   parameters to happen, the JRC needs to asynchronously contact the
   joined node.  The use of the CoAP Observe option for this purpose is
   not feasible due to the change in the IPv6 address when the pledge



   becomes the joined node and obtains a global address.

   Instead, once the (6LBR) pledge receives and successfully validates
   the Join Response and so becomes a joined node, it becomes a CoAP
   server.  The joined node creates a CoAP service at the Uri-Host value
   of "6tisch.arpa", and the joined node exposes the "/j" resource that
   is used by the JRC to update the parameters.  Consequently, the JRC
   operates as a CoAP client when updating the parameters.  The request/
   response exchange between the JRC and the (6LBR) pledge happens over
   the already-established OSCORE secure channel.

8.2.1.  Parameter Update Message

   The Parameter Update message that the JRC sends to the joined node
   SHALL be mapped to a CoAP request:

   *  The request method is POST.

   *  The type is Confirmable (CON).

   *  The Uri-Host option is set to "6tisch.arpa".

   *  The Uri-Path option is set to "j".

   *  The OSCORE option SHALL be set according to [RFC8613].  The OSCORE
      security context used is the one derived in Section 7.3.  When a
      joined node receives a request with the Sender ID set to 0x4a5243
      (ID of the JRC), it is able to correctly retrieve the security
      context with the JRC.

   *  The payload is a Configuration CBOR object, as defined in
      Section 8.4.2.

   The JRC has implicit knowledge of the global IPv6 address of the
   joined node, as it knows the pledge identifier that the joined node
   used when it acted as a pledge and the IPv6 network prefix.  The JRC
   uses this implicitly derived IPv6 address of the joined node to
   directly address CoAP messages to it.

   If the JRC does not receive a response to a Parameter Update message,
   it attempts multiple retransmissions as configured by the underlying
   CoAP retransmission mechanism triggered for confirmable messages.
   Finally, if the CoAP implementation declares the transmission a
   failure, the JRC may consider this as a hint that the joined node is
   no longer in the network.  How the JRC decides when to stop
   attempting to contact a previously joined node is out of scope of
   this specification, but the security considerations on the reuse of
   assigned resources apply, as discussed in Section 9.

8.3.  Error Handling

8.3.1.  CoJP CBOR Object Processing

   CoJP CBOR objects are transported within both CoAP requests and
   responses.  This section describes handling the cases in which
   certain CoJP CBOR object parameters are not supported by the
   implementation or their processing fails.  See Section 7.3.2 for the
   handling of errors that may be raised by the underlying OSCORE
   implementation.

   When such a parameter is detected in a CoAP request (Join Request
   message, Parameter Update message), a Diagnostic Response message
   MUST be returned.  A Diagnostic Response message maps to a CoAP
   response and is specified in Section 8.3.2.

   When a parameter that cannot be acted upon is encountered while
   processing a CoJP object in a CoAP response (Join Response message),
   a (6LBR) pledge SHOULD reattempt to join.  In this case, the (6LBR)
   pledge SHOULD include the Unsupported Configuration CBOR object
   within the Join Request object in the following Join Request message.
   The Unsupported Configuration CBOR object is self-contained and



   enables the (6LBR) pledge to signal any parameters that the
   implementation of the networking stack may not support.  A (6LBR)
   pledge MUST NOT attempt more than COJP_MAX_JOIN_ATTEMPTS number of
   attempts to join if the processing of the Join Response message fails
   each time.  If the COJP_MAX_JOIN_ATTEMPTS number of attempts is
   reached without success, the (6LBR) pledge SHOULD signal the presence
   of an error condition through some out-of-band mechanism.

   Note that COJP_MAX_JOIN_ATTEMPTS relates to the application-layer
   handling of the CoAP response and is different from CoAP’s
   MAX_RETRANSMIT setting, which drives the retransmission mechanism of
   the underlying CoAP message.

8.3.2.  Diagnostic Response Message

   The Diagnostic Response message is returned for any CoJP request when
   the processing of the payload failed.  The Diagnostic Response
   message is protected by OSCORE as any other CoJP message.

   The Diagnostic Response message SHALL be mapped to a CoAP response:

   *  The Response Code is 4.00 (Bad Request).

   *  The payload is an Unsupported Configuration CBOR object, as
      defined in Section 8.4.5, containing more information about the
      parameter that triggered the sending of this message.

8.3.3.  Failure Handling

   The parameter update exchange may be triggered at any time during the
   network lifetime, which may span several years.  During this period,
   a joined node or the JRC may experience unexpected events such as
   reboots or complete failures.

   This document mandates that the mutable parameters in the security
   context are written to persistent memory (see Section 7.3.1) by both
   the JRC and pledges (joined nodes).  As the pledge (joined node) is
   typically a constrained device that handles the write operations to
   persistent memory in a predictable manner, the retrieval of mutable
   security-context parameters is feasible across reboots such that
   there is no risk of AEAD nonce reuse due to reinitialized Sender
   Sequence Numbers or of a replay attack due to the reinitialized
   Replay Window.  The JRC may be hosted on a generic machine where the
   write operation to persistent memory may lead to unpredictable delays
   due to caching.  If a reboot event occurs at the JRC before the
   cached data is written to persistent memory, the loss of mutable
   security-context parameters is likely, which consequently poses the
   risk of AEAD nonce reuse.

   In the event of a complete device failure, where the mutable
   security-context parameters cannot be retrieved, it is expected that
   a failed joined node will be replaced with a new physical device,
   using a new pledge identifier and a PSK.  When such a failure event
   occurs at the JRC, it is possible that the static information on
   provisioned pledges, like PSKs and pledge identifiers, can be
   retrieved through available backups.  However, it is likely that the
   information about joined nodes, their assigned short identifiers and
   mutable security-context parameters, is lost.  If this is the case,
   the network administrator MUST force all the networks managed by the
   failed JRC to rejoin through out-of-band means during the process of
   JRC reinitialization, e.g., reinitialize the 6LBR nodes and freshly
   generate dynamic cryptographic keys and other parameters that
   influence the security properties of the network.

   In order to recover from such a failure event, the reinitialized JRC
   can trigger the renegotiation of the OSCORE security context through
   the procedure described in Appendix B.2 of [RFC8613].  Aware of the
   failure event, the reinitialized JRC responds to the first Join
   Request of each pledge it is managing with a 4.01 (Unauthorized)
   error and a random nonce.  The pledge verifies the error response and
   then initiates the CoJP join exchange using a new OSCORE security



   context derived from an ID Context consisting of the concatenation of
   two nonces, one that it received from the JRC and the other that the
   pledge generates locally.  After verifying the Join Request with the
   new ID Context and the derived OSCORE security context, the JRC
   should consequently map the new ID Context to the previously used
   pledge identifier.  How the JRC handles this mapping is out of scope
   of this document.

   The use of the procedure specified in Appendix B.2 of [RFC8613] is
   RECOMMENDED in order to handle the failure events or any other event
   that may lead to the loss of mutable security-context parameters.
   The length of nonces exchanged using this procedure MUST be at least
   8 bytes.

   The procedure requires both the pledge and the JRC to have good
   sources of randomness.  While this is typically not an issue at the
   JRC side, the constrained device hosting the pledge may pose
   limitations in this regard.  If the procedure outlined in
   Appendix B.2 of [RFC8613] is not supported by the pledge, the network
   administrator MUST reprovision the concerned devices with freshly
   generated parameters through out-of-band means.

8.4.  CoJP Objects

   This section specifies the structure of CoJP CBOR objects that may be
   carried as the payload of CoJP messages.  Some of these objects may
   be received both as part of the CoJP join exchange when the device
   operates as a (CoJP) pledge or as part of the parameter update
   exchange when the device operates as a joined (6LBR) node.

8.4.1.  Join Request Object

   The Join_Request structure is built on a CBOR map object.

   The set of parameters that can appear in a Join_Request object is
   summarized below.  The labels can be found in the "Constrained Join
   Protocol (CoJP) Parameters" registry, Section 11.1.

   role:  The identifier of the role that the pledge requests to play in
      the network once it joins, encoded as an unsigned integer.
      Possible values are specified in Table 3.  This parameter MAY be
      included.  If the parameter is omitted, the default value of 0,
      i.e., the role "6TiSCH Node", MUST be assumed.

   network identifier:  The identifier of the network, as discussed in
      Section 3, encoded as a CBOR byte string.  When present in the
      Join_Request, it hints to the JRC which network the pledge is
      requesting to join, enabling the JRC to manage multiple networks.
      The pledge obtains the value of the network identifier from the
      received EB frames.  This parameter MUST be included in a
      Join_Request object regardless of the role parameter value.

   unsupported configuration:  The identifier of the parameters that are
      not supported by the implementation, encoded as an
      Unsupported_Configuration object described in Section 8.4.5.  This
      parameter MAY be included.  If a (6LBR) pledge previously
      attempted to join and received a valid Join Response message over
      OSCORE but failed to act on its payload (Configuration object), it
      SHOULD include this parameter to facilitate the recovery and
      debugging.

   Table 2 summarizes the parameters that may appear in a Join_Request
   object.

         +===========================+=======+==================+
         | Name                      | Label | CBOR Type        |
         +===========================+=======+==================+
         | role                      | 1     | unsigned integer |
         +---------------------------+-------+------------------+
         | network identifier        | 5     | byte string      |
         +---------------------------+-------+------------------+



         | unsupported configuration | 8     | array            |
         +---------------------------+-------+------------------+

               Table 2: Summary of Join_Request parameters.

   The CDDL fragment that represents the text above for the Join_Request
   follows:

   Join_Request = {
       ? 1 : uint,                       ; role
         5 : bstr,                       ; network identifier
       ? 8 : Unsupported_Configuration   ; unsupported configuration
   }

       +========+=======+==============================+===========+
       | Name   | Value | Description                  | Reference |
       +========+=======+==============================+===========+
       | 6TiSCH | 0     | The pledge requests to play  | RFC 9031  |
       | Node   |       | the role of a regular 6TiSCH |           |
       |        |       | node, i.e., non-6LBR node.   |           |
       +--------+-------+------------------------------+-----------+
       | 6LBR   | 1     | The pledge requests to play  | RFC 9031  |
       |        |       | the role of 6LoWPAN Border   |           |
       |        |       | Router (6LBR).               |           |
       +--------+-------+------------------------------+-----------+

                           Table 3: Role values.

8.4.2.  Configuration Object

   The Configuration structure is built on a CBOR map object.  The set
   of parameters that can appear in a Configuration object is summarized
   below.  The labels can be found in "Constrained Join Protocol (CoJP)
   Parameters" registry, Section 11.1.

   link-layer key set:  An array encompassing a set of cryptographic
      keys and their identifiers that are currently in use in the
      network or that are scheduled to be used in the future.  The
      encoding of individual keys is described in Section 8.4.3.  The
      link-layer key set parameter MAY be included in a Configuration
      object.  When present, the link-layer key set parameter MUST
      contain at least one key.  This parameter is also used to
      implement rekeying in the network.  The installation and use of
      keys differs for the 6LBR and other (regular) nodes, and this is
      explained in Sections 8.4.3.1 and 8.4.3.2.

   short identifier:  A compact identifier assigned to the pledge.  The
      short identifier structure is described in Section 8.4.4.  The
      short identifier parameter MAY be included in a Configuration
      object.

   JRC address:  The IPv6 address of the JRC, encoded as a byte string,
      with the length of 16 bytes.  If the length of the byte string is
      different from 16, the parameter MUST be discarded.  If the JRC is
      not co-located with the 6LBR and has a different IPv6 address than
      the 6LBR, this parameter MUST be included.  In the special case
      where the JRC is co-located with the 6LBR and has the same IPv6
      address as the 6LBR, this parameter MAY be included.  If the JRC
      address parameter is not present in the Configuration object, this
      indicates that the JRC has the same IPv6 address as the 6LBR.  The
      joined node can then discover the IPv6 address of the JRC through
      network control traffic.  See Section 6.

   blacklist:  An array encompassing a list of pledge identifiers that
      are blacklisted by the JRC, with each pledge identifier encoded as
      a byte string.  The blacklist parameter MAY be included in a
      Configuration object.  When present, the array MUST contain zero
      or more byte strings encoding pledge identifiers.  The joined node
      MUST silently drop any link-layer frames originating from the
      pledge identifiers enclosed in the blacklist parameter.  When this
      parameter is received, its value MUST overwrite any previously set



      values.  This parameter allows the JRC to configure the node
      acting as a JP to filter out traffic from misconfigured or
      malicious pledges before their traffic is forwarded into the
      network.  If the JRC decides to remove a given pledge identifier
      from a blacklist, it omits the pledge identifier in the blacklist
      parameter value it sends next.  Since the blacklist parameter
      carries the pledge identifiers, privacy considerations apply.  See
      Section 10.

   join rate:  The average data rate (in units of bytes/second) of join
      traffic forwarded into the network that should not be exceeded
      when a joined node operates as a JP, encoded as an unsigned
      integer.  The join rate parameter MAY be included in a
      Configuration object.  This parameter allows the JRC to configure
      different nodes in the network to operate as JP and to act in case
      of an attack by throttling the rate at which JP forwards
      unauthenticated traffic into the network.  When this parameter is
      present in a Configuration object, the value MUST be used to set
      the PROBING_RATE of CoAP at the joined node for communication with
      the JRC.  If this parameter is set to zero, a joined node MUST
      silently drop any join traffic coming from unauthenticated
      pledges.  If this parameter is omitted, the value of positive
      infinity SHOULD be assumed.  A node operating as a JP MAY use
      another mechanism that is out of scope of this specification to
      configure the PROBING_RATE of CoAP in the absence of a join rate
      parameter from the Configuration object.

   Table 4 summarizes the parameters that may appear in a Configuration
   object.

             +====================+=======+==================+
             | Name               | Label | CBOR Type        |
             +====================+=======+==================+
             | link-layer key set | 2     | array            |
             +--------------------+-------+------------------+
             | short identifier   | 3     | array            |
             +--------------------+-------+------------------+
             | JRC address        | 4     | byte string      |
             +--------------------+-------+------------------+
             | blacklist          | 6     | array            |
             +--------------------+-------+------------------+
             | join rate          | 7     | unsigned integer |
             +--------------------+-------+------------------+

               Table 4: Summary of Configuration parameters.

   The CDDL fragment that represents the text above for the
   Configuration follows.  The structures Link_Layer_Key and
   Short_Identifier are specified in Sections 8.4.3 and 8.4.4,
   respectively.

   Configuration = {
       ? 2 : [ +Link_Layer_Key ],   ; link-layer key set
       ? 3 : Short_Identifier,      ; short identifier
       ? 4 : bstr,                  ; JRC address
       ? 6 : [ *bstr ],             ; blacklist
       ? 7 : uint                   ; join rate
   }

   +===============+=======+==========+====================+===========+
   | Name          | Label | CBOR     | Description        | Reference |
   |               |       | type     |                    |           |
   +===============+=======+==========+====================+===========+
   | role          | 1     | unsigned | Identifies the     | RFC 9031  |
   |               |       | integer  | role parameter     |           |
   +---------------+-------+----------+--------------------+-----------+
   | link-layer    | 2     | array    | Identifies the     | RFC 9031  |
   | key set       |       |          | array carrying     |           |
   |               |       |          | one or more        |           |
   |               |       |          | link-layer         |           |
   |               |       |          | cryptographic      |           |



   |               |       |          | keys               |           |
   +---------------+-------+----------+--------------------+-----------+
   | short         | 3     | array    | Identifies the     | RFC 9031  |
   | identifier    |       |          | assigned short     |           |
   |               |       |          | identifier         |           |
   +---------------+-------+----------+--------------------+-----------+
   | JRC address   | 4     | byte     | Identifies the     | RFC 9031  |
   |               |       | string   | IPv6 address       |           |
   |               |       |          | of the JRC         |           |
   +---------------+-------+----------+--------------------+-----------+
   | network       | 5     | byte     | Identifies the     | RFC 9031  |
   | identifier    |       | string   | network            |           |
   |               |       |          | identifier         |           |
   |               |       |          | parameter          |           |
   +---------------+-------+----------+--------------------+-----------+
   | blacklist     | 6     | array    | Identifies the     | RFC 9031  |
   |               |       |          | blacklist          |           |
   |               |       |          | parameter          |           |
   +---------------+-------+----------+--------------------+-----------+
   | join rate     | 7     | unsigned | Identifier the     | RFC 9031  |
   |               |       | integer  | join rate          |           |
   |               |       |          | parameter          |           |
   +---------------+-------+----------+--------------------+-----------+
   | unsupported   | 8     | array    | Identifies the     | RFC 9031  |
   | configuration |       |          | unsupported        |           |
   |               |       |          | configuration      |           |
   |               |       |          | parameter          |           |
   +---------------+-------+----------+--------------------+-----------+

                    Table 5: CoJP parameters map labels.

8.4.3.  Link-Layer Key

   The Link_Layer_Key structure encompasses the parameters needed to
   configure the link-layer security module: the key identifier; the
   value of the cryptographic key; the link-layer algorithm identifier
   and the security level and the frame types with which it should be
   used for both outgoing and incoming security operations; and any
   additional information that may be needed to configure the key.

   For encoding compactness, the Link_Layer_Key object is not enclosed
   in a top-level CBOR object.  Rather, it is transported as a sequence
   of CBOR elements [RFC8742], some being optional.

   The set of parameters that can appear in a Link_Layer_Key object is
   summarized below, in order:

   key_id:  The identifier of the key, encoded as a CBOR unsigned
      integer.  This parameter MUST be included.  If the decoded CBOR
      unsigned integer value is larger than the maximum link-layer key
      identifier, the key is considered invalid.  If the key is
      considered invalid, the key MUST be discarded, and the
      implementation MUST signal the error as specified in
      Section 8.3.1.

   key_usage:  The identifier of the link-layer algorithm, security
      level, and link-layer frame types that can be used with the key,
      encoded as an integer.  This parameter MAY be included.  Possible
      values and the corresponding link-layer settings are specified in
      the IANA "Constrained Join Protocol (CoJP) Key Usage" registry
      (Section 11.2).  If the parameter is omitted, the default value of
      0 (6TiSCH-K1K2-ENC-MIC32) from Table 6 MUST be assumed.  This
      default value has been chosen because it results in byte savings
      in the most constrained settings; its selection does not imply a
      recommendation for its general usage.

   key_value:  The value of the cryptographic key, encoded as a byte
      string.  This parameter MUST be included.  If the length of the
      byte string is different than the corresponding key length for a
      given algorithm specified by the key_usage parameter, the key MUST
      be discarded, and the implementation MUST signal the error as



      specified in Section 8.3.1.

   key_addinfo:  Additional information needed to configure the link-
      layer key, encoded as a byte string.  This parameter MAY be
      included.  The processing of this parameter is dependent on the
      link-layer technology in use and a particular keying mode.

   To be able to decode the keys that are present in the link-layer key
   set and to identify individual parameters of a single Link_Layer_Key
   object, the CBOR decoder needs to differentiate between elements
   based on the CBOR type.  For example, a uint that follows a byte
   string signals to the decoder that a new Link_Layer_Key object is
   being processed.

   The CDDL fragment for the Link_Layer_Key that represents the text
   above follows:

   Link_Layer_Key = (
         key_id             : uint,
       ? key_usage          : int,
         key_value          : bstr,
       ? key_addinfo        : bstr,
   )

   +======================+=====+======================+===============+
   |Name                  |Value|Algorithm             |Description    |
   +======================+=====+======================+===============+
   |6TiSCH-K1K2-ENC-MIC32 |0    |IEEE802154-AES-CCM-128|Use MIC-32 for |
   |                      |     |                      |EBs, ENC-MIC-32|
   |                      |     |                      |for DATA and   |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K1K2-ENC-MIC64 |1    |IEEE802154-AES-CCM-128|Use MIC-64 for |
   |                      |     |                      |EBs, ENC-MIC-64|
   |                      |     |                      |for DATA and   |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K1K2-ENC-MIC128|2    |IEEE802154-AES-CCM-128|Use MIC-128 for|
   |                      |     |                      |EBs, ENC-      |
   |                      |     |                      |MIC-128 for    |
   |                      |     |                      |DATA and       |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K1K2-MIC32     |3    |IEEE802154-AES-CCM-128|Use MIC-32 for |
   |                      |     |                      |EBs, DATA and  |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K1K2-MIC64     |4    |IEEE802154-AES-CCM-128|Use MIC-64 for |
   |                      |     |                      |EBs, DATA and  |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K1K2-MIC128    |5    |IEEE802154-AES-CCM-128|Use MIC-128 for|
   |                      |     |                      |EBs, DATA and  |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K1-MIC32       |6    |IEEE802154-AES-CCM-128|Use MIC-32 for |
   |                      |     |                      |EBs.           |
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K1-MIC64       |7    |IEEE802154-AES-CCM-128|Use MIC-64 for |
   |                      |     |                      |EBs.           |
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K1-MIC128      |8    |IEEE802154-AES-CCM-128|Use MIC-128 for|
   |                      |     |                      |EBs.           |
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K2-MIC32       |9    |IEEE802154-AES-CCM-128|Use MIC-32 for |
   |                      |     |                      |DATA and       |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K2-MIC64       |10   |IEEE802154-AES-CCM-128|Use MIC-64 for |
   |                      |     |                      |DATA and       |
   |                      |     |                      |ACKNOWLEDGMENT.|



   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K2-MIC128      |11   |IEEE802154-AES-CCM-128|Use MIC-128 for|
   |                      |     |                      |DATA and       |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K2-ENC-MIC32   |12   |IEEE802154-AES-CCM-128|Use ENC-MIC-32 |
   |                      |     |                      |for DATA and   |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K2-ENC-MIC64   |13   |IEEE802154-AES-CCM-128|Use ENC-MIC-64 |
   |                      |     |                      |for DATA and   |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+
   |6TiSCH-K2-ENC-MIC128  |14   |IEEE802154-AES-CCM-128|Use ENC-MIC-128|
   |                      |     |                      |for DATA and   |
   |                      |     |                      |ACKNOWLEDGMENT.|
   +----------------------+-----+----------------------+---------------+

                         Table 6: Key Usage values.

8.4.3.1.  Rekeying of 6LBRs

   When the 6LBR receives the Configuration object containing a link-
   layer key set, it MUST immediately install and start using the new
   keys for all outgoing traffic and remove any old keys it has
   installed from the previous key set after a delay of
   COJP_REKEYING_GUARD_TIME has passed.  This mechanism is used by the
   JRC to force the 6LBR to start sending traffic with the new key.  The
   decision is made by the JRC when it has determined that the new key
   has been made available to all (or some overwhelming majority) of
   nodes.  Any node that the JRC has not yet reached at that point is
   either nonfunctional or in extended sleep such that it will not be
   reached.  To get the key update, such a node will need to go through
   the join process anew.

8.4.3.2.  Rekeying of 6LNs

   When a regular 6LN receives the Configuration object with a link-
   layer key set, it MUST install the new keys.  The 6LN will use both
   the old and the new keys to decrypt and authenticate any incoming
   traffic that arrives based upon the key identifier in the packet.  It
   MUST continue to use the old keys for all outgoing traffic until it
   has detected that the network has switched to the new key set.

   The detection of the network switch is based upon the receipt of
   traffic secured with the new keys.  Upon the reception and the
   successful security processing of a link-layer frame secured with a
   key from the new key set, a 6LN MUST then switch to sending all
   outgoing traffic using the keys from the new set.  The 6LN MUST
   remove any keys it had installed from the previous key set after
   waiting COJP_REKEYING_GUARD_TIME since it started using the new key
   set.

   Sending traffic with the new keys signals to other downstream nodes
   to switch to their new key, causing a ripple of key updates around
   each 6LBR.

8.4.3.3.  Use in IEEE Std 802.15.4

   When Link_Layer_Key is used in the context of [IEEE802.15.4], the
   following considerations apply.

   Signaling of different keying modes of [IEEE802.15.4] is done based
   on the parameter values present in a Link_Layer_Key object.  For
   instance, the value of the key_id parameter in combination with
   key_addinfo denotes which of the four Key ID modes of [IEEE802.15.4]
   is used and how.

   Key ID Mode 0x00 (Implicit, pairwise):  The key_id parameter MUST be
      set to 0.  The key_addinfo parameter MUST be present.  The
      key_addinfo parameter MUST be set to the link-layer address(es) of



      a single peer with whom the key should be used.  Depending on the
      configuration of the network, key_addinfo may carry the peer’s
      long link-layer address (i.e., pledge identifier), short link-
      layer address, or their concatenation with the long address being
      encoded first.  Which address type(s) is carried is determined
      from the length of the byte string.

   Key ID Mode 0x01 (Key Index):  The key_id parameter MUST be set to a
      value different from 0.  The key_addinfo parameter MUST NOT be
      present.

   Key ID Mode 0x02 (4-byte Explicit Key Source):  The key_id parameter
      MUST be set to a value different from 0.  The key_addinfo
      parameter MUST be present.  The key_addinfo parameter MUST be set
      to a byte string, exactly 4 bytes long.  The key_addinfo parameter
      carries the Key Source parameter used to configure [IEEE802.15.4].

   Key ID Mode 0x03 (8-byte Explicit Key Source):  The key_id parameter
      MUST be set to a value different from 0.  The key_addinfo
      parameter MUST be present.  The key_addinfo parameter MUST be set
      to a byte string, exactly 8 bytes long.  The key_addinfo parameter
      carries the Key Source parameter used to configure [IEEE802.15.4].

   In all cases, the key_usage parameter determines how a particular key
   should be used with respect to incoming and outgoing security
   policies.

   For Key ID Modes 0x01 through 0x03, the key_id parameter sets the
   "secKeyIndex" parameter of [IEEE802.15.4] that is signaled in all
   outgoing frames secured with a given key.  The maximum value that
   key_id can have is 254.  The value of 255 is reserved in
   [IEEE802.15.4] and is therefore considered invalid.

   Key ID Mode 0x00 (Implicit, pairwise) enables the JRC to act as a
   trusted third party and assign pairwise keys between nodes in the
   network.  How the JRC learns about the network topology is out of
   scope of this specification, but it could be done through 6LBR-JRC
   signaling, for example.  Pairwise keys could also be derived through
   a key agreement protocol executed between the peers directly, where
   the authentication is based on the symmetric cryptographic material
   provided to both peers by the JRC.  Such a protocol is out of scope
   of this specification.

   Implementations MUST use different link-layer keys when using
   different authentication tag (MIC) lengths, as using the same key
   with different authentication tag lengths might be unsafe.  For
   example, this prohibits the usage of the same key for both MIC-32 and
   MIC-64 levels.  See Annex B.4.3 of [IEEE802.15.4] for more
   information.

8.4.4.  Short Identifier

   The Short_Identifier object represents an identifier assigned to the
   pledge.  It is encoded as a CBOR array object and contains, in order:

   identifier:  The short identifier assigned to the pledge, encoded as
      a byte string.  This parameter MUST be included.  The identifier
      MUST be unique in the set of all identifiers assigned in a network
      that is managed by a JRC.  If the identifier is invalid, the
      decoder MUST silently ignore the Short_Identifier object.

   lease_time:  The validity of the identifier in hours after the
      reception of the CBOR object, encoded as a CBOR unsigned integer.
      This parameter MAY be included.  The node MUST stop using the
      assigned short identifier after the expiry of the lease_time
      interval.  It is up to the JRC to renew the lease before the
      expiry of the previous interval.  The JRC updates the lease by
      executing the parameter update exchange with the node and
      including the Short_Identifier in the Configuration object, as
      described in Section 8.2.  If the lease expires, then the node
      SHOULD initiate a new join exchange, as described in Section 8.1.



      If this parameter is omitted, then the value of positive infinity
      MUST be assumed, meaning that the identifier is valid for as long
      as the node participates in the network.

   The CDDL fragment for the Short_Identifier that represents the text
   above follows:

   Short_Identifier = [
         identifier        : bstr,
       ? lease_time        : uint
   ]

8.4.4.1.  Use in IEEE Std 802.15.4

   When the Short_Identifier is used in the context of [IEEE802.15.4],
   the following considerations apply.

   The identifier MUST be used to set the short address of the IEEE Std
   802.15.4 module.  When operating in TSCH mode, the identifier MUST be
   unique in the set of all identifiers assigned in multiple networks
   that share link-layer key(s).  If the length of the byte string
   corresponding to the identifier parameter is different from 2, the
   identifier is considered invalid.  The values 0xfffe and 0xffff are
   reserved by [IEEE802.15.4], and their use is considered invalid.

   The security properties offered by the [IEEE802.15.4] link-layer in
   TSCH mode are conditioned on the uniqueness requirement of the short
   identifier (i.e., short address).  The short address is one of the
   inputs in the construction of the nonce, which is used to protect
   link-layer frames.  If a misconfiguration occurs, and the same short
   address is assigned twice under the same link-layer key, the loss of
   security properties is imminent.  For this reason, practices where
   the pledge generates the short identifier locally are not safe and
   are likely to result in the loss of link-layer security properties.

   The JRC MUST ensure that at any given time there are never two of the
   same short identifiers being used under the same link-layer key.  If
   the lease_time parameter of a given Short_Identifier object is set to
   positive infinity, care needs to be taken that the corresponding
   identifier is not assigned to another node until the JRC is certain
   that it is no longer in use, potentially through out-of-band
   signaling.  If the lease_time parameter expires for any reason, the
   JRC should take into consideration potential ongoing transmissions by
   the joined node, which may be hanging in the queues, before assigning
   the same identifier to another node.

   Care needs to be taken on how the pledge (joined node) configures the
   expiration of the lease.  Since units of the lease_time parameter are
   in hours after the reception of the CBOR object, the pledge needs to
   convert the received time to the corresponding Absolute Slot Number
   in the network.  The joined node (pledge) MUST only use the Absolute
   Slot Number as the appropriate reference of time to determine whether
   the assigned short identifier is still valid.

8.4.5.  Unsupported Configuration Object

   The Unsupported_Configuration object is encoded as a CBOR array,
   containing at least one Unsupported_Parameter object.  Each
   Unsupported_Parameter object is a sequence of CBOR elements without
   an enclosing top-level CBOR object for compactness.  The set of
   parameters that appear in an Unsupported_Parameter object is
   summarized below, in order:

   code:  Indicates the capability of acting on the parameter signaled
      by parameter_label, encoded as an integer.  This parameter MUST be
      included.  Possible values of this parameter are specified in the
      IANA "Constrained Join Protocol (CoJP) Unsupported Configuration
      Codes" registry (Section 11.3).

   parameter_label:  Indicates the parameter.  This parameter MUST be
      included.  Possible values of this parameter are specified in the



      label column of the IANA "Constrained Join Protocol (CoJP)
      Parameters" registry" (Section 11.1).

   parameter_addinfo:  Additional information about the parameter that
      cannot be acted upon.  This parameter MUST be included.  If the
      code is set to "Unsupported", parameter_addinfo gives additional
      information to the JRC.  If the parameter indicated by
      parameter_label cannot be acted upon regardless of its value,
      parameter_addinfo MUST be set to null, signaling to the JRC that
      it SHOULD NOT attempt to configure the parameter again.  If the
      pledge can act on the parameter, but cannot configure the setting
      indicated by the parameter value, the pledge can hint this to the
      JRC.  In this case, parameter_addinfo MUST be set to the value of
      the parameter that cannot be acted upon following the normative
      parameter structure specified in this document.  For example, it
      is possible to include the link-layer key set object, signaling
      that either a subset or the entire key set that was received
      cannot be acted upon.  In that case, the value of
      parameter_addinfo follows the link-layer key set structure defined
      in Section 8.4.2.  If the code is set to "Malformed",
      parameter_addinfo MUST be set to null, signaling to the JRC that
      it SHOULD NOT attempt to configure the parameter again.

   The CDDL fragment for the Unsupported_Configuration and
   Unsupported_Parameter objects that represents the text above follows:

   Unsupported_Configuration = [
          + parameter           : Unsupported_Parameter
   ]

   Unsupported_Parameter = (
            code                : int,
            parameter_label     : int,
            parameter_addinfo   : nil / any
   )

    +=============+=======+==============================+===========+
    | Name        | Value | Description                  | Reference |
    +=============+=======+==============================+===========+
    | Unsupported | 0     | The indicated setting is not | RFC 9031  |
    |             |       | supported by the networking  |           |
    |             |       | stack implementation.        |           |
    +-------------+-------+------------------------------+-----------+
    | Malformed   | 1     | The indicated parameter      | RFC 9031  |
    |             |       | value is malformed.          |           |
    +-------------+-------+------------------------------+-----------+

             Table 7: Unsupported Configuration code values.

8.5.  Recommended Settings

   This section gives RECOMMENDED values of CoJP settings.

               +==========================+===============+
               | Name                     | Default Value |
               +==========================+===============+
               | COJP_MAX_JOIN_ATTEMPTS   | 4             |
               +--------------------------+---------------+
               | COJP_REKEYING_GUARD_TIME | 12 seconds    |
               +--------------------------+---------------+

                   Table 8: Recommended CoJP settings.

   The COJP_REKEYING_GUARD_TIME value SHOULD take into account possible
   retransmissions at the link layer due to imperfect wireless links.

9.  Security Considerations

   Since this document uses the pledge identifier to set the ID Context
   parameter of OSCORE, an important security requirement is that the
   pledge identifier is unique in the set of all pledge identifiers



   managed by a JRC.  The uniqueness of the pledge identifier ensures
   unique (key, nonce) pairs for the AEAD algorithm used by OSCORE.  It
   also allows the JRC to retrieve the correct security context upon the
   reception of a Join Request message.  The management of pledge
   identifiers is simplified if the globally unique EUI-64 is used, but
   this comes with privacy risks, as discussed in Section 10.

   This document further mandates that the (6LBR) pledge and the JRC are
   provisioned with unique PSKs.  While the process of provisioning PSKs
   to all pledges can result in a substantial operational overhead, it
   is vital to do so for the security properties of the network.  The
   PSK is used to set the OSCORE Master Secret during security context
   derivation.  This derivation process results in OSCORE keys that are
   important for mutual authentication of the (6LBR) pledge and the JRC.
   The resulting security context shared between the pledge (joined
   node) and the JRC is used for the purpose of joining and is long-
   lived in that it can be used throughout the lifetime of a joined node
   for parameter update exchanges.  Should an attacker come to know the
   PSK, then a man-in-the-middle attack is possible.

   Note that while OSCORE provides replay protection, it does not
   provide an indication of freshness in the presence of an attacker
   that can drop and/or reorder traffic.  Since the Join Request
   contains no randomness, and the sequence number is predictable, the
   JRC could in principle anticipate a Join Request from a particular
   pledge and pre-calculate the response.  In such a scenario, the JRC
   does not have to be alive at the time the request is received.  This
   could be relevant in the case when the JRC was temporarily
   compromised and control was subsequently regained by the legitimate
   owner.

   It is of utmost importance to avoid unsafe practices when generating
   and provisioning PSKs.  The use of a single PSK shared among a group
   of devices is a common pitfall that results in poor security.  In
   this case, the compromise of a single device is likely to lead to a
   compromise of the entire batch, with the attacker having the ability
   to impersonate a legitimate device and join the network, generate
   bogus data, and disturb the network operation.  Additionally, some
   vendors use methods such as scrambling or hashing device serial
   numbers or their EUI-64 identifiers to generate "unique" PSKs.
   Without any secret information involved, the effort that the attacker
   needs to invest into breaking these unsafe derivation methods is
   quite low, resulting in the possible impersonation of any device from
   the batch, without even needing to compromise a single device.  The
   use of cryptographically secure random number generators to generate
   the PSK is RECOMMENDED, see [NIST800-90A] for different mechanisms
   using deterministic methods.

   The JP forwards the unauthenticated join traffic into the network.  A
   data cap on the JP prevents it from forwarding more traffic than the
   network can handle and enables throttling in case of an attack.  Note
   that this traffic can only be directed at the JRC so that the JRC
   needs to be prepared to handle such unsanitized inputs.  The data cap
   can be configured by the JRC by including a join rate parameter in
   the Join Response, and it is implemented through the CoAP’s
   PROBING_RATE setting.  The use of a data cap at a JP forces attackers
   to use more than one JP if they wish to overwhelm the network.
   Marking the join traffic packets with a nonzero DSCP allows the
   network to carry the traffic if it has capacity, but it encourages
   the network to drop the extra traffic rather than add bandwidth due
   to that traffic.

   The shared nature of the "minimal" cell used for the join traffic
   makes the network prone to a DoS attack by congesting the JP with
   bogus traffic.  Such an attacker is limited by its maximum transmit
   power.  The redundancy in the number of deployed JPs alleviates the
   issue and also gives the pledge the possibility to use the best
   available link for joining.  How a network node decides to become a
   JP is out of scope of this specification.

   At the beginning of the join process, the pledge has no means of



   verifying the content in the EB and has to accept it at "face value".
   If the pledge tries to join an attacker’s network, the Join Response
   message will either fail the security check or time out.  The pledge
   may implement a temporary blacklist in order to filter out undesired
   EBs and try to join using the next seemingly valid EB.  This
   blacklist alleviates the issue but is effectively limited by the
   node’s available memory.  Note that this temporary blacklist is
   different from the one communicated as part of the CoJP Configuration
   object as it helps the pledge fight a DoS attack.  The bogus beacons
   prolong the join time of the pledge and so does the time spent in
   "minimal" duty cycle mode [RFC8180].  The blacklist communicated as
   part of the CoJP Configuration object helps the JP fight a DoS attack
   by a malicious pledge.

   During the network lifetime, the JRC may at any time initiate a
   parameter update exchange with a joined node.  The Parameter Update
   message uses the same OSCORE security context as is used for the join
   exchange, except that the server and client roles are interchanged.
   As a consequence, each Parameter Update message carries the well-
   known OSCORE Sender ID of the JRC.  A passive attacker may use the
   OSCORE Sender ID to identify the Parameter Update traffic if the
   link-layer protection does not provide confidentiality.  A
   countermeasure against such a traffic-analysis attack is to use
   encryption at the link layer.  Note that the join traffic does not
   undergo link-layer protection at the first hop, as the pledge is not
   yet in possession of cryptographic keys.  Similarly, EB traffic in
   the network is not encrypted.  This makes it easy for a passive
   attacker to identify these types of traffic.

10.  Privacy Considerations

   The join solution specified in this document relies on the uniqueness
   of the pledge identifier in the set of all pledge identifiers managed
   by a JRC.  This identifier is transferred in the clear as an OSCORE
   ’kid context’.  The use of the globally unique EUI-64 as pledge
   identifier simplifies the management but comes with certain privacy
   risks.  The implications are thoroughly discussed in [RFC7721] and
   comprise correlation of activities over time, location tracking,
   address scanning, and device-specific vulnerability exploitation.
   Since the join process occurs rarely compared to the network
   lifetime, long-term threats that arise from using EUI-64 as the
   pledge identifier are minimal.  However, after the join process
   completes, the use of EUI-64 in the form of a Layer 2 or Layer 3
   address extends the aforementioned privacy threats to the long term.

   As an optional mitigation technique, the Join Response message may
   contain a short address that is assigned by the JRC to the (6LBR)
   pledge.  The assigned short address SHOULD be uncorrelated with the
   long-term pledge identifier.  The short address is encrypted in the
   response.  Once the join process completes, the new node may use the
   short addresses for all further Layer 2 (and Layer 3) operations.
   This reduces the privacy threats as the short Layer 2 address
   (visible even when the network is encrypted) does not disclose the
   manufacturer, as is the case of EUI-64.  However, an eavesdropper
   with access to the radio medium during the join process may be able
   to correlate the assigned short address with the extended address
   based on timing information with a non-negligible probability.  This
   probability decreases with an increasing number of pledges joining
   concurrently.

11.  IANA Considerations

   This document allocates a well-known name under the .arpa name space
   according to the rules given in [RFC3172] and [RFC6761].  The name
   "6tisch.arpa" is requested.  No subdomains are expected, and addition
   of any such subdomains requires the publication of an IETF Standards
   Track RFC.  No A, AAAA, or PTR record is requested.

11.1.  Constrained Join Protocol (CoJP) Parameters

   This section defines a subregistry within the "IPv6 Over the TSCH



   Mode of IEEE 802.15.4 (6TiSCH)" registry with the name "Constrained
   Join Protocol (CoJP) Parameters".

   The columns of the registry are:

   Name:  This is a descriptive name that enables an easier reference to
      the item.  It is not used in the encoding.  The name MUST be
      unique.

   Label:  The value to be used to identify this parameter.  The label
      is an integer.  The label MUST be unique.

   CBOR Type:  This field contains the CBOR type for the field.

   Description:  This field contains a brief description for the field.
      The description MUST be unique.

   Reference:  This field contains a pointer to the public specification
      for the field, if one exists.

   This registry is populated with the values in Table 5.

   The amending formula for this subregistry is: Different ranges of
   values use different registration policies [RFC8126].  Integer values
   from -256 to 255 are designated as Standards Action.  Integer values
   from -65536 to -257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than -65536 are
   marked as Private Use.

11.2.  Constrained Join Protocol (CoJP) Key Usage

   This section defines a subregistry within the "IPv6 Over the TSCH
   Mode of IEEE 802.15.4 (6TiSCH)" registry with the name "Constrained
   Join Protocol (CoJP) Key Usage".

   The columns of this registry are:

   Name:  This is a descriptive name that enables easier reference to
      the item.  It is not used in the encoding.  The name MUST be
      unique.

   Value:  This is the value used to identify the key usage setting.
      These values MUST be unique.  The value is an integer.

   Algorithm:  This is a descriptive name of the link-layer algorithm in
      use and uniquely determines the key length.  The name is not used
      in the encoding.  The algorithm MUST be unique.

   Description:  This field contains a description of the key usage
      setting.  The field should describe in enough detail how the key
      is to be used with different frame types, specific for the link-
      layer technology in question.  The description MUST be unique.

   Reference:  This contains a pointer to the public specification for
      the field, if one exists.

   This registry is populated with the values in Table 6.

   The amending formula for this subregistry is: Different ranges of
   values use different registration policies [RFC8126].  Integer values
   from -256 to 255 are designated as Standards Action.  Integer values
   from -65536 to -257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than -65536 are
   marked as Private Use.

11.3.  Constrained Join Protocol (CoJP) Unsupported Configuration Codes

   This section defines a subregistry within the "IPv6 Over the TSCH
   Mode of IEEE 802.15.4 (6TiSCH)" registry with the name "Constrained



   Join Protocol (CoJP) Unsupported Configuration Codes".

   The columns of this registry are:

   Name:  This is a descriptive name that enables easier reference to
      the item.  It is not used in the encoding.  The name MUST be
      unique.

   Value:  This is the value used to identify the diagnostic code.
      These values MUST be unique.  The value is an integer.

   Description:  This is a descriptive human-readable name.  The
      description MUST be unique.  It is not used in the encoding.

   Reference:  This contains a pointer to the public specification for
      the field, if one exists.

   This registry is to be populated with the values in Table 7.

   The amending formula for this subregistry is: Different ranges of
   values use different registration policies [RFC8126].  Integer values
   from -256 to 255 are designated as Standards Action.  Integer values
   from -65536 to -257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than -65536 are
   marked as Private Use.
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Appendix A.  Example

   Figure 3 illustrates a successful join protocol exchange.  The pledge
   instantiates the OSCORE context and derives the OSCORE keys and
   nonces from the PSK.  It uses the instantiated context to protect the
   Join Request addressed with a Proxy-Scheme option, the well-known
   host name of the JRC in the Uri-Host option, and it uses its EUI-64
   as pledge identifier and OSCORE ’kid context’.  Triggered by the
   presence of a Proxy-Scheme option, the JP forwards the request to the
   JRC and sets the CoAP token to the internally needed state.  The JP
   learned the IPv6 address of the JRC when it acted as a pledge and
   joined the network.  Once the JRC receives the request, it looks up
   the correct context based on the ’kid context’ parameter.  The OSCORE
   data authenticity verification ensures that the request has not been
   modified in transit.  In addition, replay protection is ensured
   through persistent handling of mutable context parameters.

   Once the JP receives the Join Response, it authenticates the state
   within the CoAP token before deciding where to forward.  The JP sets
   its internal state to that found in the token and forwards the Join
   Response to the correct pledge.  Note that the JP does not possess
   the key to decrypt the CoJP object (configuration) present in the
   payload.  At the pledge, the Join Response is matched to the Join
   Request and verified for replay protection using OSCORE processing



   rules.  In this example, the Join Response does not contain the IPv6
   address of the JRC, hence the pledge understands that the JRC is co-
   located with the 6LBR.

      <-----E2E OSCORE------>
    Client      Proxy     Server
    Pledge       JP        JRC
      |          |          |
      |  Join    |          |            Code: 0.02 (POST)
      | Request  |          |           Token: -
      +--------->|          |    Proxy-Scheme: coap
      |          |          |        Uri-Host: 6tisch.arpa
      |          |          |          OSCORE: kid: -,
      |          |          |                  kid_context: EUI-64,
      |          |          |                  Partial IV: 1
      |          |          |         Payload: { Code: 0.02 (POST),
      |          |          |                    Uri-Path: "j",
      |          |          |                    join_request, <Tag> }
      |          |          |
      |          |  Join    |            Code: 0.02 (POST)
      |          | Request  |           Token: opaque state
      |          +--------->|          OSCORE: kid: -,
      |          |          |                  kid_context: EUI-64,
      |          |          |                  Partial IV: 1
      |          |          |         Payload: { Code: 0.02 (POST),
      |          |          |                    Uri-Path: "j",
      |          |          |                    join_request, <Tag> }
      |          |          |
      |          |          |
      |          |  Join    |            Code: 2.04 (Changed)
      |          | Response |           Token: opaque state
      |          |<---------+          OSCORE: -
      |          |          |         Payload: { Code: 2.04 (Changed),
      |          |          |                    configuration, <Tag> }
      |          |          |
      |          |          |
      |  Join    |          |            Code: 2.04 (Changed)
      | Response |          |           Token: -
      |<---------+          |          OSCORE: -
      |          |          |         Payload: { Code: 2.04 (Changed),
      |          |          |                    configuration, <Tag> }
      |          |          |

     Figure 3: Example of a successful join protocol exchange. { ... }
            denotes authenticated encryption, <Tag> denotes the
                            authentication tag.

   Where the join_request object is:

   join_request:
   {
      5 : h’cafe’ / PAN ID of the network pledge is attempting to join /
   }

   Since the role parameter is not present, the default role of "6TiSCH
   Node" is implied.

   The join_request object is converted to h’a10542cafe’ with a size of
   5 bytes.

   And the configuration object is the following:

   configuration:
   {
      2 : [           / link-layer key set /
            1,        / key_id /
            h’e6bf4287c2d7618d6a9687445ffd33e6’ / key_value /
          ],
      3 : [           / short identifier /
            h’af93’   / assigned short address /
          ]



   }

   Since the key_usage parameter is not present in the link-layer key
   set object, the default value of "6TiSCH-K1K2-ENC-MIC32" is implied.
   Since the key_addinfo parameter is not present and key_id is
   different from 0, Key ID Mode 0x01 (Key Index) is implied.
   Similarly, since the lease_time parameter is not present in the short
   identifier object, the default value of positive infinity is implied.

   The configuration object is converted to the following:

   h’a202820150e6bf4287c2d7618d6a9687445ffd33e6038142af93’ with a size
   of 26 bytes.

Appendix B.  Lightweight Implementation Option

   In environments where optimizing the implementation footprint is
   important, it is possible to implement this specification without
   having the implementations of HKDF [RFC5869] and SHA [RFC4231] on
   constrained devices.  HKDF and SHA are used during the OSCORE
   security context derivation phase.  This derivation can also be done
   by the JRC or a provisioning device on behalf of the (6LBR) pledge
   during the provisioning phase.  In that case, the derived OSCORE
   security context parameters are written directly into the (6LBR)
   pledge, without requiring the PSK to be provisioned to the (6LBR)
   pledge.

   The use of HKDF to derive OSCORE security context parameters ensures
   that the resulting OSCORE keys have good security properties and are
   unique as long as the input varies for different pledges.  This
   specification ensures the uniqueness by mandating unique pledge
   identifiers and a unique PSK for each (6LBR) pledge.  From the AEAD
   nonce reuse viewpoint, having a unique pledge identifier is a
   sufficient condition.  However, as discussed in Section 9, the use of
   a single PSK shared among many devices is a common security pitfall.
   The compromise of this shared PSK on a single device would lead to
   the compromise of the entire batch.  When using the implementation/
   deployment scheme outlined above, the PSK does not need to be written
   to individual pledges.  As a consequence, even if a shared PSK is
   used, the scheme offers a level of security comparable to the
   scenario in which each pledge is provisioned with a unique PSK.  In
   this case, there is still a latent risk of the shared PSK being
   compromised on the provisioning device, which would compromise all
   devices in the batch.
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