
ï»¿

Internet Engineering Task Force (IETF) J. Gross, Ed.
Request for Comments: 8926
Category: Standards Track I. Ganga, Ed.
ISSN: 2070-1721 Intel
 T. Sridhar, Ed.
 VMware
 November 2020

 Geneve: Generic Network Virtualization Encapsulation

Abstract

 Network virtualization involves the cooperation of devices with a
 wide variety of capabilities such as software and hardware tunnel
 endpoints, transit fabrics, and centralized control clusters. As a
 result of their role in tying together different elements of the
 system, the requirements on tunnels are influenced by all of these
 components. Therefore, flexibility is the most important aspect of a
 tunneling protocol if it is to keep pace with the evolution of
 technology. This document describes Geneve, an encapsulation
 protocol designed to recognize and accommodate these changing
 capabilities and needs.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8926.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Requirements Language
 1.2. Terminology
 2. Design Requirements
 2.1. Control Plane Independence
 2.2. Data Plane Extensibility
 2.2.1. Efficient Implementation
 2.3. Use of Standard IP Fabrics
 3. Geneve Encapsulation Details
 3.1. Geneve Packet Format over IPv4
 3.2. Geneve Packet Format over IPv6
 3.3. UDP Header

 3.4. Tunnel Header Fields
 3.5. Tunnel Options
 3.5.1. Options Processing
 4. Implementation and Deployment Considerations
 4.1. Applicability Statement
 4.2. Congestion-Control Functionality
 4.3. UDP Checksum
 4.3.1. Zero UDP Checksum Handling with IPv6
 4.4. Encapsulation of Geneve in IP
 4.4.1. IP Fragmentation
 4.4.2. DSCP, ECN, and TTL
 4.4.3. Broadcast and Multicast
 4.4.4. Unidirectional Tunnels
 4.5. Constraints on Protocol Features
 4.5.1. Constraints on Options
 4.6. NIC Offloads
 4.7. Inner VLAN Handling
 5. Transition Considerations
 6. Security Considerations
 6.1. Data Confidentiality
 6.1.1. Inter-Data Center Traffic
 6.2. Data Integrity
 6.3. Authentication of NVE Peers
 6.4. Options Interpretation by Transit Devices
 6.5. Multicast/Broadcast
 6.6. Control Plane Communications
 7. IANA Considerations
 8. References
 8.1. Normative References
 8.2. Informative References
 Acknowledgements
 Contributors
 Authors’ Addresses

1. Introduction

 Networking has long featured a variety of tunneling, tagging, and
 other encapsulation mechanisms. However, the advent of network
 virtualization has caused a surge of renewed interest and a
 corresponding increase in the introduction of new protocols. The
 large number of protocols in this space -- for example, ranging all
 the way from VLANs [IEEE.802.1Q_2018] and MPLS [RFC3031] through the
 more recent VXLAN (Virtual eXtensible Local Area Network) [RFC7348]
 and NVGRE (Network Virtualization Using Generic Routing
 Encapsulation) [RFC7637] -- often leads to questions about the need
 for new encapsulation formats and what it is about network
 virtualization in particular that leads to their proliferation. Note
 that the list of protocols presented above is non-exhaustive.

 While many encapsulation protocols seek to simply partition the
 underlay network or bridge two domains, network virtualization views
 the transit network as providing connectivity between multiple
 components of a distributed system. In many ways, this system is
 similar to a chassis switch with the IP underlay network playing the
 role of the backplane and tunnel endpoints on the edge as line cards.
 When viewed in this light, the requirements placed on the tunneling
 protocol are significantly different in terms of the quantity of
 metadata necessary and the role of transit nodes.

 Work such as "VL2: A Scalable and Flexible Data Center Network" [VL2]
 and "NVO3 Data Plane Requirements" [NVO3-DATAPLANE] have described
 some of the properties that the data plane must have to support
 network virtualization. However, one additional defining requirement
 is the need to carry metadata (e.g., system state) along with the
 packet data; example use cases of metadata are noted below. The use
 of some metadata is certainly not a foreign concept -- nearly all
 protocols used for network virtualization have at least 24 bits of
 identifier space as a way to partition between tenants. This is
 often described as overcoming the limits of 12-bit VLANs; when seen
 in that context or any context where it is a true tenant identifier,
 16 million possible entries is a large number. However, the reality

 is that the metadata is not exclusively used to identify tenants, and
 encoding other information quickly starts to crowd the space. In
 fact, when compared to the tags used to exchange metadata between
 line cards on a chassis switch, 24-bit identifiers start to look
 quite small. There are nearly endless uses for this metadata,
 ranging from storing input port identifiers for simple security
 policies to sending service-based context for advanced middlebox
 applications that terminate and re-encapsulate Geneve traffic.

 Existing tunneling protocols have each attempted to solve different
 aspects of these new requirements only to be quickly rendered out of
 date by changing control plane implementations and advancements.
 Furthermore, software and hardware components and controllers all
 have different advantages and rates of evolution -- a fact that
 should be viewed as a benefit, not a liability or limitation. This
 document describes Geneve, a protocol that seeks to avoid these
 problems by providing a framework for tunneling for network
 virtualization rather than being prescriptive about the entire
 system.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 The Network Virtualization over Layer 3 (NVO3) Framework [RFC7365]
 defines many of the concepts commonly used in network virtualization.
 In addition, the following terms are specifically meaningful in this
 document:

 Checksum offload: An optimization implemented by many NICs (Network
 Interface Controllers) that enables computation and verification
 of upper-layer protocol checksums in hardware on transmit and
 receive, respectively. This typically includes IP and TCP/UDP
 checksums that would otherwise be computed by the protocol stack
 in software.

 Clos network: A technique for composing network fabrics larger than
 a single switch while maintaining non-blocking bandwidth across
 connection points. ECMP is used to divide traffic across the
 multiple links and switches that constitute the fabric. Sometimes
 termed "leaf and spine" or "fat tree" topologies.

 ECMP: Equal Cost Multipath. A routing mechanism for selecting from
 among multiple best next-hop paths by hashing packet headers in
 order to better utilize network bandwidth while avoiding
 reordering of packets within a flow.

 Geneve: Generic Network Virtualization Encapsulation. The tunneling
 protocol described in this document.

 LRO: Large Receive Offload. The receiver-side equivalent function
 of LSO, in which multiple protocol segments (primarily TCP) are
 coalesced into larger data units.

 LSO: Large Segmentation Offload. A function provided by many
 commercial NICs that allows data units larger than the MTU to be
 passed to the NIC to improve performance, the NIC being
 responsible for creating smaller segments of a size less than or
 equal to the MTU with correct protocol headers. When referring
 specifically to TCP/IP, this feature is often known as TSO (TCP
 Segmentation Offload).

 Middlebox: In the context of this document, the term "middlebox"
 refers to network service functions or service interposition
 appliances that typically implement tunnel endpoint functionality,

 terminating and re-encapsulating Geneve traffic.

 NIC: Network Interface Controller. Also called "Network Interface
 Card" or "Network Adapter". A NIC could be part of a tunnel
 endpoint or transit device and can either process or aid in the
 processing of Geneve packets.

 Transit device: A forwarding element (e.g., router or switch) along
 the path of the tunnel making up part of the underlay network. A
 transit device may be capable of understanding the Geneve packet
 format but does not originate or terminate Geneve packets.

 Tunnel endpoint: A component performing encapsulation and
 decapsulation of packets, such as Ethernet frames or IP datagrams,
 in Geneve headers. As the ultimate consumer of any tunnel
 metadata, tunnel endpoints have the highest level of requirements
 for parsing and interpreting tunnel headers. Tunnel endpoints may
 consist of either software or hardware implementations or a
 combination of the two. Tunnel endpoints are frequently a
 component of a Network Virtualization Edge (NVE) but may also be
 found in middleboxes or other elements making up an NVO3 network.

 VM: Virtual Machine.

2. Design Requirements

 Geneve is designed to support network virtualization use cases for
 data center environments. In these situations, tunnels are typically
 established to act as a backplane between the virtual switches
 residing in hypervisors, physical switches, or middleboxes or other
 appliances. An arbitrary IP network can be used as an underlay,
 although Clos networks composed using ECMP links are a common choice
 to provide consistent bisectional bandwidth across all connection
 points. Many of the concepts of network virtualization overlays over
 IP networks are described in the NVO3 Framework [RFC7365]. Figure 1
 shows an example of a hypervisor, a top-of-rack switch for
 connectivity to physical servers, and a WAN uplink connected using
 Geneve tunnels over a simplified Clos network. These tunnels are
 used to encapsulate and forward frames from the attached components,
 such as VMs or physical links.

 +---------------------+ +-------+ +------+
 | +--+ +-------+---+ | |Transit|--|Top of|==Physical
 | |VM|--| | | | +------+ /|Router | | Rack |==Servers
 | +--+ |Virtual|NIC|---|Top of|/ +-------+\/+------+
 | +--+ |Switch | | | | Rack |\ +-------+/\+------+
 | |VM|--| | | | +------+ \|Transit| |Uplink| WAN
 | +--+ +-------+---+ | |Router |--| |=========>
 +---------------------+ +-------+ +------+
 Hypervisor

 ()===================================()
 Switch-Switch Geneve Tunnels

 Figure 1: Sample Geneve Deployment

 To support the needs of network virtualization, the tunneling
 protocol should be able to take advantage of the differing (and
 evolving) capabilities of each type of device in both the underlay
 and overlay networks. This results in the following requirements
 being placed on the data plane tunneling protocol:

 * The data plane is generic and extensible enough to support current
 and future control planes.

 * Tunnel components are efficiently implementable in both hardware
 and software without restricting capabilities to the lowest common
 denominator.

 * High performance over existing IP fabrics is maintained.

 These requirements are described further in the following
 subsections.

2.1. Control Plane Independence

 Although some protocols for network virtualization have included a
 control plane as part of the tunnel format specification (most
 notably, VXLAN [RFC7348] prescribed a multicast-learning-based
 control plane), these specifications have largely been treated as
 describing only the data format. The VXLAN packet format has
 actually seen a wide variety of control planes built on top of it.

 There is a clear advantage in settling on a data format: most of the
 protocols are only superficially different and there is little
 advantage in duplicating effort. However, the same cannot be said of
 control planes, which are diverse in very fundamental ways. The case
 for standardization is also less clear given the wide variety in
 requirements, goals, and deployment scenarios.

 As a result of this reality, Geneve is a pure tunnel format
 specification that is capable of fulfilling the needs of many control
 planes by explicitly not selecting any one of them. This
 simultaneously promotes a shared data format and reduces the chance
 of obsolescence by future control plane enhancements.

2.2. Data Plane Extensibility

 Achieving the level of flexibility needed to support current and
 future control planes effectively requires an options infrastructure
 to allow new metadata types to be defined, deployed, and either
 finalized or retired. Options also allow for differentiation of
 products by encouraging independent development in each vendor’s core
 specialty, leading to an overall faster pace of advancement. By far,
 the most common mechanism for implementing options is the Type-
 Length-Value (TLV) format.

 It should be noted that, while options can be used to support non-
 wirespeed control packets, they are equally important in data packets
 as well for segregating and directing forwarding. (For instance, the
 examples given before regarding input-port-based security policies
 and terminating/re-encapsulating service interposition both require
 tags to be placed on data packets.) Therefore, while it would be
 desirable to limit the extensibility to only control packets for the
 purposes of simplifying the datapath, that would not satisfy the
 design requirements.

2.2.1. Efficient Implementation

 There is often a conflict between software flexibility and hardware
 performance that is difficult to resolve. For a given set of
 functionality, it is obviously desirable to maximize performance.
 However, that does not mean new features that cannot be run at a
 desired speed today should be disallowed. Therefore, for a protocol
 to be considered efficiently implementable, it is expected to have a
 set of common capabilities that can be reasonably handled across
 platforms as well as a graceful mechanism to handle more advanced
 features in the appropriate situations.

 The use of a variable-length header and options in a protocol often
 raises questions about whether the protocol is truly efficiently
 implementable in hardware. To answer this question in the context of
 Geneve, it is important to first divide "hardware" into two
 categories: tunnel endpoints and transit devices.

 Tunnel endpoints must be able to parse the variable-length header,
 including any options, and take action. Since these devices are
 actively participating in the protocol, they are the most affected by
 Geneve. However, as tunnel endpoints are the ultimate consumers of
 the data, transmitters can tailor their output to the capabilities of
 the recipient.

 Transit devices may be able to interpret the options; however, as
 non-terminating devices, transit devices do not originate or
 terminate the Geneve packet. Hence, they MUST NOT modify Geneve
 headers and MUST NOT insert or delete options, as that is the
 responsibility of tunnel endpoints. Options, if present in the
 packet, MUST only be generated and terminated by tunnel endpoints.
 The participation of transit devices in interpreting options is
 OPTIONAL.

 Further, either tunnel endpoints or transit devices MAY use offload
 capabilities of NICs, such as checksum offload, to improve the
 performance of Geneve packet processing. The presence of a Geneve
 variable-length header should not prevent the tunnel endpoints and
 transit devices from using such offload capabilities.

2.3. Use of Standard IP Fabrics

 IP has clearly cemented its place as the dominant transport
 mechanism, and many techniques have evolved over time to make it
 robust, efficient, and inexpensive. As a result, it is natural to
 use IP fabrics as a transit network for Geneve. Fortunately, the use
 of IP encapsulation and addressing is enough to achieve the primary
 goal of delivering packets to the correct point in the network
 through standard switching and routing.

 In addition, nearly all underlay fabrics are designed to exploit
 parallelism in traffic to spread load across multiple links without
 introducing reordering in individual flows. These ECMP techniques
 typically involve parsing and hashing the addresses and port numbers
 from the packet to select an outgoing link. However, the use of
 tunnels often results in poor ECMP performance, as without additional
 knowledge of the protocol, the encapsulated traffic is hidden from
 the fabric by design, and only tunnel endpoint addresses are
 available for hashing.

 Since it is desirable for Geneve to perform well on these existing
 fabrics, it is necessary for entropy from encapsulated packets to be
 exposed in the tunnel header. The most common technique for this is
 to use the UDP source port, which is discussed further in
 Section 3.3.

3. Geneve Encapsulation Details

 The Geneve packet format consists of a compact tunnel header
 encapsulated in UDP over either IPv4 or IPv6. A small fixed tunnel
 header provides control information plus a base level of
 functionality and interoperability with a focus on simplicity. This
 header is then followed by a set of variable-length options to allow
 for future innovation. Finally, the payload consists of a protocol
 data unit of the indicated type, such as an Ethernet frame. Sections
 3.1 and 3.2 illustrate the Geneve packet format transported (for
 example) over Ethernet along with an Ethernet payload.

3.1. Geneve Packet Format over IPv4

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 Outer Ethernet Header:
 +-+
 | Outer Destination MAC Address |
 +-+
 | Outer Destination MAC Address | Outer Source MAC Address |
 +-+
 | Outer Source MAC Address |
 +-+
 |Optional Ethertype=C-Tag 802.1Q| Outer VLAN Tag Information |
 +-+
 | Ethertype = 0x0800 IPv4 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Outer IPv4 Header:
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live |Protocol=17 UDP| Header Checksum |
 +-+
 | Outer Source IPv4 Address |
 +-+
 | Outer Destination IPv4 Address |
 +-+

 Outer UDP Header:
 +-+
 | Source Port = xxxx | Dest Port = 6081 Geneve |
 +-+
 | UDP Length | UDP Checksum |
 +-+

 Geneve Header:
 +-+
 |Ver| Opt Len |O|C| Rsvd. | Protocol Type |
 +-+
 | Virtual Network Identifier (VNI) | Reserved |
 +-+
 | |
 ˜ Variable-Length Options ˜
 | |
 +-+

 Inner Ethernet Header (example payload):
 +-+
 | Inner Destination MAC Address |
 +-+
 | Inner Destination MAC Address | Inner Source MAC Address |
 +-+
 | Inner Source MAC Address |
 +-+
 |Optional Ethertype=C-Tag 802.1Q| Inner VLAN Tag Information |
 +-+

 Payload:
 +-+
 | Ethertype of Original Payload | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | Original Ethernet Payload |
 | |
 ˜ (Note that the original Ethernet frame’s preamble, start ˜
 | frame delimiter (SFD), and frame check sequence (FCS) are not |
 | included, and the Ethernet payload need not be 4-byte aligned)|
 +-+

 Frame Check Sequence:
 +-+
 | New Frame Check Sequence (FCS) for Outer Ethernet Frame |
 +-+

 Figure 2: Geneve Packet Format over IPv4

3.2. Geneve Packet Format over IPv6

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 Outer Ethernet Header:
 +-+
 | Outer Destination MAC Address |
 +-+
 | Outer Destination MAC Address | Outer Source MAC Address |
 +-+

 | Outer Source MAC Address |
 +-+
 |Optional Ethertype=C-Tag 802.1Q| Outer VLAN Tag Information |
 +-+
 | Ethertype = 0x86DD IPv6 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Outer IPv6 Header:
 +-+
 |Version| Traffic Class | Flow Label |
 +-+
 | Payload Length | NxtHdr=17 UDP | Hop Limit |
 +-+
 | |
 + +
 | |
 + Outer Source IPv6 Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Outer Destination IPv6 Address +
 | |
 + +
 | |
 +-+

 Outer UDP Header:
 +-+
 | Source Port = xxxx | Dest Port = 6081 Geneve |
 +-+
 | UDP Length | UDP Checksum |
 +-+

 Geneve Header:
 +-+
 |Ver| Opt Len |O|C| Rsvd. | Protocol Type |
 +-+
 | Virtual Network Identifier (VNI) | Reserved |
 +-+
 | |
 ˜ Variable-Length Options ˜
 | |
 +-+

 Inner Ethernet Header (example payload):
 +-+
 | Inner Destination MAC Address |
 +-+
 | Inner Destination MAC Address | Inner Source MAC Address |
 +-+
 | Inner Source MAC Address |
 +-+
 |Optional Ethertype=C-Tag 802.1Q| Inner VLAN Tag Information |
 +-+

 Payload:
 +-+
 | Ethertype of Original Payload | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | Original Ethernet Payload |
 | |
 ˜ (Note that the original Ethernet frame’s preamble, start ˜
 | frame delimiter (SFD), and frame check sequence (FCS) are not |
 | included, and the Ethernet payload need not be 4-byte aligned)|
 +-+

 Frame Check Sequence:

 +-+
 | New Frame Check Sequence (FCS) for Outer Ethernet Frame |
 +-+

 Figure 3: Geneve Packet Format over IPv6

3.3. UDP Header

 The use of an encapsulating UDP [RFC0768] header follows the
 connectionless semantics of Ethernet and IP in addition to providing
 entropy to routers performing ECMP. Therefore, header fields are
 interpreted as follows:

 Source Port: A source port selected by the originating tunnel
 endpoint. This source port SHOULD be the same for all packets
 belonging to a single encapsulated flow to prevent reordering due
 to the use of different paths. To encourage an even distribution
 of flows across multiple links, the source port SHOULD be
 calculated using a hash of the encapsulated packet headers using,
 for example, a traditional 5-tuple. Since the port represents a
 flow identifier rather than a true UDP connection, the entire
 16-bit range MAY be used to maximize entropy. In addition to
 setting the source port, for IPv6, the flow label MAY also be used
 for providing entropy. For an example of using the IPv6 flow
 label for tunnel use cases, see [RFC6438].

 If Geneve traffic is shared with other UDP listeners on the same
 IP address, tunnel endpoints SHOULD implement a mechanism to
 ensure ICMP return traffic arising from network errors is directed
 to the correct listener. The definition of such a mechanism is
 beyond the scope of this document.

 Dest Port: IANA has assigned port 6081 as the fixed well-known
 destination port for Geneve. Although the well-known value should
 be used by default, it is RECOMMENDED that implementations make
 this configurable. The chosen port is used for identification of
 Geneve packets and MUST NOT be reversed for different ends of a
 connection as is done with TCP. It is the responsibility of the
 control plane to manage any reconfiguration of the assigned port
 and its interpretation by respective devices. The definition of
 the control plane is beyond the scope of this document.

 UDP Length: The length of the UDP packet including the UDP header.

 UDP Checksum: In order to protect the Geneve header, options, and
 payload from potential data corruption, the UDP checksum SHOULD be
 generated as specified in [RFC0768] and [RFC1122] when Geneve is
 encapsulated in IPv4. To protect the IP header, Geneve header,
 options, and payload from potential data corruption, the UDP
 checksum MUST be generated by default as specified in [RFC0768]
 and [RFC8200] when Geneve is encapsulated in IPv6, except under
 certain conditions, which are outlined in the next paragraph.
 Upon receiving such packets with a non-zero UDP checksum, the
 receiving tunnel endpoints MUST validate the checksum. If the
 checksum is not correct, the packet MUST be dropped; otherwise,
 the packet MUST be accepted for decapsulation.

 Under certain conditions, the UDP checksum MAY be set to zero on
 transmit for packets encapsulated in both IPv4 and IPv6 [RFC8200].
 See Section 4.3 for additional requirements that apply when using
 zero UDP checksum with IPv4 and IPv6. Disabling the use of UDP
 checksums is an operational consideration that should take into
 account the risks and effects of packet corruption.

3.4. Tunnel Header Fields

 Ver (2 bits): The current version number is 0. Packets received by
 a tunnel endpoint with an unknown version MUST be dropped.
 Transit devices interpreting Geneve packets with an unknown
 version number MUST treat them as UDP packets with an unknown
 payload.

 Opt Len (6 bits): The length of the option fields, expressed in
 4-byte multiples, not including the 8-byte fixed tunnel header.
 This results in a minimum total Geneve header size of 8 bytes and
 a maximum of 260 bytes. The start of the payload headers can be
 found using this offset from the end of the base Geneve header.

 Transit devices MUST maintain consistent forwarding behavior
 irrespective of the value of ’Opt Len’, including ECMP link
 selection.

 O (1 bit): Control packet. This packet contains a control message.
 Control messages are sent between tunnel endpoints. Tunnel
 endpoints MUST NOT forward the payload, and transit devices MUST
 NOT attempt to interpret it. Since control messages are less
 frequent, it is RECOMMENDED that tunnel endpoints direct these
 packets to a high-priority control queue (for example, to direct
 the packet to a general purpose CPU from a forwarding Application-
 Specific Integrated Circuit (ASIC) or to separate out control
 traffic on a NIC). Transit devices MUST NOT alter forwarding
 behavior on the basis of this bit, such as ECMP link selection.

 C (1 bit): Critical options present. One or more options has the
 critical bit set (see Section 3.5). If this bit is set, then
 tunnel endpoints MUST parse the options list to interpret any
 critical options. On tunnel endpoints where option parsing is not
 supported, the packet MUST be dropped on the basis of the ’C’ bit
 in the base header. If the bit is not set, tunnel endpoints MAY
 strip all options using ’Opt Len’ and forward the decapsulated
 packet. Transit devices MUST NOT drop packets on the basis of
 this bit.

 Rsvd. (6 bits): Reserved field, which MUST be zero on transmission
 and MUST be ignored on receipt.

 Protocol Type (16 bits): The type of protocol data unit appearing
 after the Geneve header. This follows the Ethertype [ETYPES]
 convention, with Ethernet itself being represented by the value
 0x6558.

 Virtual Network Identifier (VNI) (24 bits): An identifier for a
 unique element of a virtual network. In many situations, this may
 represent an L2 segment; however, the control plane defines the
 forwarding semantics of decapsulated packets. The VNI MAY be used
 as part of ECMP forwarding decisions or MAY be used as a mechanism
 to distinguish between overlapping address spaces contained in the
 encapsulated packet when load balancing across CPUs.

 Reserved (8 bits): Reserved field, which MUST be zero on
 transmission and ignored on receipt.

3.5. Tunnel Options

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Option Class | Type |R|R|R| Length |
 +-+
 | |
 ˜ Variable-Length Option Data ˜
 | |
 +-+

 Figure 4: Geneve Option

 The base Geneve header is followed by zero or more options in Type-
 Length-Value format. Each option consists of a 4-byte option header
 and a variable amount of option data interpreted according to the
 type.

 Option Class (16 bits): Namespace for the ’Type’ field. IANA has

 created a "Geneve Option Class" registry to allocate identifiers
 for organizations, technologies, and vendors that have an interest
 in creating types for options. Each organization may allocate
 types independently to allow experimentation and rapid innovation.
 It is expected that, over time, certain options will become well
 known, and a given implementation may use option types from a
 variety of sources. In addition, IANA has reserved specific
 ranges for allocation by IETF Review and for Experimental Use (see
 Section 7).

 Type (8 bits): Type indicating the format of the data contained in
 this option. Options are primarily designed to encourage future
 extensibility and innovation, and standardized forms of these
 options will be defined in separate documents.

 The high-order bit of the option type indicates that this is a
 critical option. If the receiving tunnel endpoint does not
 recognize the option and this bit is set, then the packet MUST be
 dropped. If this bit is set in any option, then the ’C’ bit in
 the Geneve base header MUST also be set. Transit devices MUST NOT
 drop packets on the basis of this bit. The following figure shows
 the location of the ’C’ bit in the ’Type’ field:

 0 1 2 3 4 5 6 7 8
 +-+-+-+-+-+-+-+-+
 |C| Type |
 +-+-+-+-+-+-+-+-+

 Figure 5: ’C’ Bit in the ’Type’ Field

 The requirement to drop a packet with an unknown option with the
 ’C’ bit set applies to the entire tunnel endpoint system and not a
 particular component of the implementation. For example, in a
 system comprised of a forwarding ASIC and a general purpose CPU,
 this does not mean that the packet must be dropped in the ASIC.
 An implementation may send the packet to the CPU using a rate-
 limited control channel for slow-path exception handling.

 R (3 bits): Option control flags reserved for future use. These
 bits MUST be zero on transmission and MUST be ignored on receipt.

 Length (5 bits): Length of the option, expressed in 4-byte
 multiples, excluding the option header. The total length of each
 option may be between 4 and 128 bytes. A value of 0 in the
 ’Length’ field implies an option with only an option header and no
 option data. Packets in which the total length of all options is
 not equal to the ’Opt Len’ in the base header are invalid and MUST
 be silently dropped if received by a tunnel endpoint that
 processes the options.

 Variable-Length Option Data: Option data interpreted according to
 ’Type’.

3.5.1. Options Processing

 Geneve options are intended to be originated and processed by tunnel
 endpoints. However, options MAY be interpreted by transit devices
 along the tunnel path. Transit devices not interpreting Geneve
 headers (which may or may not include options) MUST handle Geneve
 packets as any other UDP packet and maintain consistent forwarding
 behavior.

 In tunnel endpoints, the generation and interpretation of options is
 determined by the control plane, which is beyond the scope of this
 document. However, to ensure interoperability between heterogeneous
 devices, some requirements are imposed on options and the devices
 that process them:

 * Receiving tunnel endpoints MUST drop packets containing unknown
 options with the ’C’ bit set in the option type. Conversely,
 transit devices MUST NOT drop packets as a result of encountering

 unknown options, including those with the ’C’ bit set.

 * The contents of the options and their ordering MUST NOT be
 modified by transit devices.

 * If a tunnel endpoint receives a Geneve packet with an ’Opt Len’
 (the total length of all options) that exceeds the options-
 processing capability of the tunnel endpoint, then the tunnel
 endpoint MUST drop such packets. An implementation may raise an
 exception to the control plane in such an event. It is the
 responsibility of the control plane to ensure the communicating
 peer tunnel endpoints have the processing capability to handle the
 total length of options. The definition of the control plane is
 beyond the scope of this document.

 When designing a Geneve option, it is important to consider how the
 option will evolve in the future. Once an option is defined, it is
 reasonable to expect that implementations may come to depend on a
 specific behavior. As a result, the scope of any future changes must
 be carefully described upfront.

 Architecturally, options are intended to be self descriptive and
 independent. This enables parallelism in options processing and
 reduces implementation complexity. However, the control plane may
 impose certain ordering restrictions, as described in Section 4.5.1.

 Unexpectedly significant interoperability issues may result from
 changing the length of an option that was defined to be a certain
 size. A particular option is specified to have either a fixed
 length, which is constant, or a variable length, which may change
 over time or for different use cases. This property is part of the
 definition of the option and is conveyed by the ’Type’. For fixed-
 length options, some implementations may choose to ignore the
 ’Length’ field in the option header and instead parse based on the
 well-known length associated with the type. In this case, redefining
 the length will impact not only the parsing of the option in question
 but also any options that follow. Therefore, options that are
 defined to be a fixed length in size MUST NOT be redefined to a
 different length. Instead, a new ’Type’ should be allocated. Actual
 definition of the option type is beyond the scope of this document.
 The option type and its interpretation should be defined by the
 entity that owns the option class.

 Options may be processed by NIC hardware utilizing offloads (e.g.,
 LSO and LRO) as described in Section 4.6. Careful consideration
 should be given to how the offload capabilities outlined in
 Section 4.6 impact an option’s design.

4. Implementation and Deployment Considerations

4.1. Applicability Statement

 Geneve is a UDP-based network virtualization overlay encapsulation
 protocol designed to establish tunnels between NVEs over an existing
 IP network. It is intended for use in public or private data center
 environments, for deploying multi-tenant overlay networks over an
 existing IP underlay network.

 As a UDP-based protocol, Geneve adheres to the UDP usage guidelines
 as specified in [RFC8085]. The applicability of these guidelines is
 dependent on the underlay IP network and the nature of the Geneve
 payload protocol (for example, TCP/IP, IP/Ethernet).

 Geneve is intended to be deployed in a data center network
 environment operated by a single operator or an adjacent set of
 cooperating network operators that fits with the definition of
 controlled environments in [RFC8085]. A network in a controlled
 environment can be managed to operate under certain conditions,
 whereas in the general Internet, this cannot be done. Hence,
 requirements for a tunneling protocol operating under a controlled
 environment can be less restrictive than the requirements of the

 general Internet.

 For the purpose of this document, a traffic-managed controlled
 environment (TMCE) is defined as an IP network that is traffic
 engineered and/or otherwise managed (e.g., via use of traffic rate
 limiters) to avoid congestion. The concept of a TMCE is outlined in
 [RFC8086]. Significant portions of the text in Section 4.1 through
 Section 4.3 are based on [RFC8086] as applicable to Geneve.

 It is the responsibility of the operator to ensure that the
 guidelines/requirements in this section are followed as applicable to
 their Geneve deployment(s).

4.2. Congestion-Control Functionality

 Geneve does not natively provide congestion-control functionality and
 relies on the payload protocol traffic for congestion control. As
 such, Geneve MUST be used with congestion-controlled traffic or
 within a TMCE to avoid congestion. An operator of a TMCE may avoid
 congestion through careful provisioning of their networks, rate-
 limiting user data traffic, and managing traffic engineering
 according to path capacity.

4.3. UDP Checksum

 The outer UDP checksum SHOULD be used with Geneve when transported
 over IPv4; this is to provide integrity for the Geneve headers,
 options, and payload in case of data corruption (for example, to
 avoid misdelivery of the payload to different tenant systems). The
 UDP checksum provides a statistical guarantee that a payload was not
 corrupted in transit. These integrity checks are not strong from a
 coding or cryptographic perspective and are not designed to detect
 physical-layer errors or malicious modification of the datagram (see
 Section 3.4 of [RFC8085]). In deployments where such a risk exists,
 an operator SHOULD use additional data integrity mechanisms such as
 those offered by IPsec (see Section 6.2).

 An operator MAY choose to disable UDP checksums and use zero UDP
 checksum if Geneve packet integrity is provided by other data
 integrity mechanisms, such as IPsec or additional checksums, or if
 one of the conditions (a, b, or c) in Section 4.3.1 is met.

 By default, UDP checksums MUST be used when Geneve is transported
 over IPv6. A tunnel endpoint MAY be configured for use with zero UDP
 checksum if additional requirements in Section 4.3.1 are met.

4.3.1. Zero UDP Checksum Handling with IPv6

 When Geneve is used over IPv6, the UDP checksum is used to protect
 IPv6 headers, UDP headers, and Geneve headers, options, and payload
 from potential data corruption. As such, by default, Geneve MUST use
 UDP checksums when transported over IPv6. An operator MAY choose to
 configure zero UDP checksum if operating in a TMCE as stated in
 Section 4.1 if one of the following conditions is met.

 a. It is known that packet corruption is exceptionally unlikely
 (perhaps based on knowledge of equipment types in their underlay
 network) and the operator is willing to risk undetected packet
 corruption.

 b. It is judged through observational measurements (perhaps through
 historic or current traffic flows that use non-zero checksum)
 that the level of packet corruption is tolerably low and is where
 the operator is willing to risk undetected corruption.

 c. The Geneve payload is carrying applications that are tolerant of
 misdelivered or corrupted packets (perhaps through higher-layer
 checksum validation and/or reliability through retransmission).

 In addition, Geneve tunnel implementations using zero UDP checksum
 MUST meet the following requirements:

 1. Use of UDP checksum over IPv6 MUST be the default configuration
 for all Geneve tunnels.

 2. If Geneve is used with zero UDP checksum over IPv6, then such a
 tunnel endpoint implementation MUST meet all the requirements
 specified in Section 4 of [RFC6936] and requirement 1 as
 specified in Section 5 of [RFC6936] since it is relevant to
 Geneve.

 3. The Geneve tunnel endpoint that decapsulates the tunnel SHOULD
 check that the source and destination IPv6 addresses are valid
 for the Geneve tunnel that is configured to receive zero UDP
 checksum and discard other packets for which such a check fails.

 4. The Geneve tunnel endpoint that encapsulates the tunnel MAY use
 different IPv6 source addresses for each Geneve tunnel that uses
 zero UDP checksum mode in order to strengthen the decapsulator’s
 check of the IPv6 source address (i.e., the same IPv6 source
 address is not to be used with more than one IPv6 destination
 address, irrespective of whether that destination address is a
 unicast or multicast address). When this is not possible, it is
 RECOMMENDED to use each source address for as few Geneve tunnels
 that use zero UDP checksum as is feasible.

 Note that for requirements 3 and 4, the receiving tunnel endpoint
 can apply these checks only if it has out-of-band knowledge that
 the encapsulating tunnel endpoint is applying the indicated
 behavior. One possibility to obtain this out-of-band knowledge
 is through signaling by the control plane. The definition of the
 control plane is beyond the scope of this document.

 5. Measures SHOULD be taken to prevent Geneve traffic over IPv6 with
 zero UDP checksum from escaping into the general Internet.
 Examples of such measures include employing packet filters at the
 gateways or edge of the Geneve network and/or keeping logical or
 physical separation of the Geneve network from networks carrying
 general Internet traffic.

 The above requirements do not change the requirements specified in
 either [RFC8200] or [RFC6936].

 The use of the source IPv6 address in addition to the destination
 IPv6 address, plus the recommendation against reuse of source IPv6
 addresses among Geneve tunnels, collectively provide some mitigation
 for the absence of UDP checksum coverage of the IPv6 header. A
 traffic-managed controlled environment that satisfies at least one of
 the three conditions listed at the beginning of this section provides
 additional assurance.

4.4. Encapsulation of Geneve in IP

 As an IP-based tunneling protocol, Geneve shares many properties and
 techniques with existing protocols. The application of some of these
 are described in further detail, although, in general, most concepts
 applicable to the IP layer or to IP tunnels generally also function
 in the context of Geneve.

4.4.1. IP Fragmentation

 It is RECOMMENDED that Path MTU Discovery (see [RFC1191] and
 [RFC8201]) be used to prevent or minimize fragmentation. The use of
 Path MTU Discovery on the transit network provides the encapsulating
 tunnel endpoint with soft-state information about the link that it
 may use to prevent or minimize fragmentation depending on its role in
 the virtualized network. The NVE can maintain this state (the MTU
 size of the tunnel link(s) associated with the tunnel endpoint), so
 if a tenant system sends large packets that, when encapsulated,
 exceed the MTU size of the tunnel link, the tunnel endpoint can
 discard such packets and send exception messages to the tenant
 system(s). If the tunnel endpoint is associated with a routing or

 forwarding function and/or has the capability to send ICMP messages,
 the encapsulating tunnel endpoint MAY send ICMP fragmentation needed
 [RFC0792] or Packet Too Big [RFC4443] messages to the tenant
 system(s). When determining the MTU size of a tunnel link, the
 maximum length of options MUST be assumed as options may vary on a
 per-packet basis. Recommendations and guidance for handling
 fragmentation in similar overlay encapsulation services like
 Pseudowire Emulation Edge-to-Edge (PWE3) are provided in Section 5.3
 of [RFC3985].

 Note that some implementations may not be capable of supporting
 fragmentation or other less common features of the IP header, such as
 options and extension headers. Some of the issues associated with
 MTU size and fragmentation in IP tunneling and use of ICMP messages
 are outlined in Section 4.2 of [INTAREA-TUNNELS].

4.4.2. DSCP, ECN, and TTL

 When encapsulating IP (including over Ethernet) packets in Geneve,
 there are several considerations for propagating Differentiated
 Services Code Point (DSCP) and Explicit Congestion Notification (ECN)
 bits from the inner header to the tunnel on transmission and the
 reverse on reception.

 [RFC2983] provides guidance for mapping DSCP between inner and outer
 IP headers. Network virtualization is typically more closely aligned
 with the Pipe model described, where the DSCP value on the tunnel
 header is set based on a policy (which may be a fixed value, one
 based on the inner traffic class or some other mechanism for grouping
 traffic). Aspects of the Uniform model (which treats the inner and
 outer DSCP values as a single field by copying on ingress and egress)
 may also apply, such as the ability to re-mark the inner header on
 tunnel egress based on transit marking. However, the Uniform model
 is not conceptually consistent with network virtualization, which
 seeks to provide strong isolation between encapsulated traffic and
 the physical network.

 [RFC6040] describes the mechanism for exposing ECN capabilities on IP
 tunnels and propagating congestion markers to the inner packets.
 This behavior MUST be followed for IP packets encapsulated in Geneve.

 Though either the Uniform or Pipe models could be used for handling
 TTL (or Hop Limit in case of IPv6) when tunneling IP packets, the
 Pipe model is more consistent with network virtualization. [RFC2003]
 provides guidance on handling TTL between inner IP header and outer
 IP tunnels; this model is similar to the Pipe model and is
 RECOMMENDED for use with Geneve for network virtualization
 applications.

4.4.3. Broadcast and Multicast

 Geneve tunnels may either be point-to-point unicast between two
 tunnel endpoints or utilize broadcast or multicast addressing. It is
 not required that inner and outer addressing match in this respect.
 For example, in physical networks that do not support multicast,
 encapsulated multicast traffic may be replicated into multiple
 unicast tunnels or forwarded by policy to a unicast location
 (possibly to be replicated there).

 With physical networks that do support multicast, it may be desirable
 to use this capability to take advantage of hardware replication for
 encapsulated packets. In this case, multicast addresses may be
 allocated in the physical network corresponding to tenants,
 encapsulated multicast groups, or some other factor. The allocation
 of these groups is a component of the control plane and, therefore,
 is beyond the scope of this document.

 When physical multicast is in use, devices with heterogeneous
 capabilities may be present in the same group. Some options may only
 be interpretable by a subset of the devices in the group. Other
 devices can safely ignore such options unless the ’C’ bit is set to

 mark the unknown option as critical. The requirements outlined in
 Section 3.4 apply for critical options.

 In addition, [RFC8293] provides examples of various mechanisms that
 can be used for multicast handling in network virtualization overlay
 networks.

4.4.4. Unidirectional Tunnels

 Generally speaking, a Geneve tunnel is a unidirectional concept. IP
 is not a connection-oriented protocol, and it is possible for two
 tunnel endpoints to communicate with each other using different paths
 or to have one side not transmit anything at all. As Geneve is an
 IP-based protocol, the tunnel layer inherits these same
 characteristics.

 It is possible for a tunnel to encapsulate a protocol, such as TCP,
 that is connection oriented and maintains session state at that
 layer. In addition, implementations MAY model Geneve tunnels as
 connected, bidirectional links, for example, to provide the
 abstraction of a virtual port. In both of these cases,
 bidirectionality of the tunnel is handled at a higher layer and does
 not affect the operation of Geneve itself.

4.5. Constraints on Protocol Features

 Geneve is intended to be flexible for use with a wide range of
 current and future applications. As a result, certain constraints
 may be placed on the use of metadata or other aspects of the protocol
 in order to optimize for a particular use case. For example, some
 applications may limit the types of options that are supported or
 enforce a maximum number or length of options. Other applications
 may only handle certain encapsulated payload types, such as Ethernet
 or IP. These optimizations can be implemented either globally
 (throughout the system) or locally (for example, restricted to
 certain classes of devices or network paths).

 These constraints may be communicated to tunnel endpoints either
 explicitly through a control plane or implicitly by the nature of the
 application. As Geneve is defined as a data plane protocol that is
 control plane agnostic, definition of such mechanisms is beyond the
 scope of this document.

4.5.1. Constraints on Options

 While Geneve options are flexible, a control plane may restrict the
 number of option TLVs as well as the order and size of the TLVs
 between tunnel endpoints to make it simpler for a data plane
 implementation in software or hardware to handle (see [NVO3-ENCAP]).
 For example, there may be some critical information, such as a secure
 hash, that must be processed in a certain order to provide the lowest
 latency, or there may be other scenarios where the options must be
 processed in a given order due to protocol semantics.

 A control plane may negotiate a subset of option TLVs and certain TLV
 ordering; it may also limit the total number of option TLVs present
 in the packet, for example, to accommodate hardware capable of
 processing fewer options. Hence, a control plane needs to have the
 ability to describe the supported TLV subset and its ordering to the
 tunnel endpoints. In the absence of a control plane, alternative
 configuration mechanisms may be used for this purpose. Such
 mechanisms are beyond the scope of this document.

4.6. NIC Offloads

 Modern NICs currently provide a variety of offloads to enable the
 efficient processing of packets. The implementation of many of these
 offloads requires only that the encapsulated packet be easily parsed
 (for example, checksum offload). However, optimizations such as LSO
 and LRO involve some processing of the options themselves since they
 must be replicated/merged across multiple packets. In these

 situations, it is desirable not to require changes to the offload
 logic to handle the introduction of new options. To enable this,
 some constraints are placed on the definitions of options to allow
 for simple processing rules:

 * When performing LSO, a NIC MUST replicate the entire Geneve header
 and all options, including those unknown to the device, onto each
 resulting segment unless an option allows an exception.
 Conversely, when performing LRO, a NIC may assume that a binary
 comparison of the options (including unknown options) is
 sufficient to ensure equality and MAY merge packets with equal
 Geneve headers.

 * Options MUST NOT be reordered during the course of offload
 processing, including when merging packets for the purpose of LRO.

 * NICs performing offloads MUST NOT drop packets with unknown
 options, including those marked as critical, unless explicitly
 configured to do so.

 There is no requirement that a given implementation of Geneve employ
 the offloads listed as examples above. However, as these offloads
 are currently widely deployed in commercially available NICs, the
 rules described here are intended to enable efficient handling of
 current and future options across a variety of devices.

4.7. Inner VLAN Handling

 Geneve is capable of encapsulating a wide range of protocols;
 therefore, a given implementation is likely to support only a small
 subset of the possibilities. However, as Ethernet is expected to be
 widely deployed, it is useful to describe the behavior of VLANs
 inside encapsulated Ethernet frames.

 As with any protocol, support for inner VLAN headers is OPTIONAL. In
 many cases, the use of encapsulated VLANs may be disallowed due to
 security or implementation considerations. However, in other cases,
 the trunking of VLAN frames across a Geneve tunnel can prove useful.
 As a result, the processing of inner VLAN tags upon ingress or egress
 from a tunnel endpoint is based upon the configuration of the tunnel
 endpoint and/or control plane and is not explicitly defined as part
 of the data format.

5. Transition Considerations

 Viewed exclusively from the data plane, Geneve is compatible with
 existing IP networks as it appears to most devices as UDP packets.
 However, as there are already a number of tunneling protocols
 deployed in network virtualization environments, there is a practical
 question of transition and coexistence.

 Since Geneve builds on the base data plane functionality provided by
 the most common protocols used for network virtualization (VXLAN and
 NVGRE), it should be straightforward to port an existing control
 plane to run on top of it with minimal effort. With both the old and
 new packet formats supporting the same set of capabilities, there is
 no need for a hard transition; tunnel endpoints directly
 communicating with each other can use any common protocol, which may
 be different even within a single overall system. As transit devices
 are primarily forwarding packets on the basis of the IP header, all
 protocols appear to be similar, and these devices do not introduce
 additional interoperability concerns.

 To assist with this transition, it is strongly suggested that
 implementations support simultaneous operation of both Geneve and
 existing tunneling protocols, as it is expected to be common for a
 single node to communicate with a mixture of other nodes.
 Eventually, older protocols may be phased out as they are no longer
 in use.

6. Security Considerations

 As it is encapsulated within a UDP/IP packet, Geneve does not have
 any inherent security mechanisms. As a result, an attacker with
 access to the underlay network transporting the IP packets has the
 ability to snoop on, alter, or inject packets. Compromised tunnel
 endpoints or transit devices may also spoof identifiers in the tunnel
 header to gain access to networks owned by other tenants.

 Within a particular security domain, such as a data center operated
 by a single service provider, the most common and highest-performing
 security mechanism is isolation of trusted components. Tunnel
 traffic can be carried over a separate VLAN and filtered at any
 untrusted boundaries.

 When crossing an untrusted link, such as the general Internet, VPN
 technologies such as IPsec [RFC4301] should be used to provide
 authentication and/or encryption of the IP packets formed as part of
 Geneve encapsulation (see Section 6.1.1).

 Geneve does not otherwise affect the security of the encapsulated
 packets. As per the guidelines of BCP 72 [RFC3552], the following
 sections describe potential security risks that may be applicable to
 Geneve deployments and approaches to mitigate such risks. It is also
 noted that not all such risks are applicable to all Geneve deployment
 scenarios, i.e., only a subset may be applicable to certain
 deployments. An operator has to make an assessment based on their
 network environment, determine the risks that are applicable to their
 specific environment, and use appropriate mitigation approaches as
 applicable.

6.1. Data Confidentiality

 Geneve is a network virtualization overlay encapsulation protocol
 designed to establish tunnels between NVEs over an existing IP
 network. It can be used to deploy multi-tenant overlay networks over
 an existing IP underlay network in a public or private data center.
 The overlay service is typically provided by a service provider, such
 as a cloud service provider or a private data center operator. This
 may or not may be the same provider as an underlay service provider.
 Due to the nature of multi-tenancy in such environments, a tenant
 system may expect data confidentiality to ensure its packet data is
 not tampered with (i.e., active attack) in transit or is a target of
 unauthorized monitoring (i.e., passive attack), for example, by other
 tenant systems or underlay service provider. A compromised network
 node or a transit device within a data center may passively monitor
 Geneve packet data between NVEs or route traffic for further
 inspection. A tenant may expect the overlay service provider to
 provide data confidentiality as part of the service, or a tenant may
 bring its own data confidentiality mechanisms like IPsec or TLS to
 protect the data end to end between its tenant systems. The overlay
 provider is expected to provide cryptographic protection in cases
 where the underlay provider is not the same as the overlay provider
 to ensure the payload is not exposed to the underlay.

 If an operator determines data confidentiality is necessary in their
 environment based on their risk analysis -- for example, in multi-
 tenant environments -- then an encryption mechanism SHOULD be used to
 encrypt the tenant data end to end between the NVEs. The NVEs may
 use existing well-established encryption mechanisms, such as IPsec,
 DTLS, etc.

6.1.1. Inter-Data Center Traffic

 A tenant system in a customer premises (private data center) may want
 to connect to tenant systems on their tenant overlay network in a
 public cloud data center, or a tenant may want to have its tenant
 systems located in multiple geographically separated data centers for
 high availability. Geneve data traffic between tenant systems across
 such separated networks should be protected from threats when
 traversing public networks. Any Geneve overlay data leaving the data
 center network beyond the operator’s security domain SHOULD be

 secured by encryption mechanisms, such as IPsec or other VPN
 technologies, to protect the communications between the NVEs when
 they are geographically separated over untrusted network links.
 Specification of data protection mechanisms employed between data
 centers is beyond the scope of this document.

 The principles described in Section 4 regarding controlled
 environments still apply to the geographically separated data center
 usage outlined in this section.

6.2. Data Integrity

 Geneve encapsulation is used between NVEs to establish overlay
 tunnels over an existing IP underlay network. In a multi-tenant data
 center, a rogue or compromised tenant system may try to launch a
 passive attack, such as monitoring the traffic of other tenants, or
 an active attack, such as trying to inject unauthorized Geneve
 encapsulated traffic such as spoofing, replay, etc., into the
 network. To prevent such attacks, an NVE MUST NOT propagate Geneve
 packets beyond the NVE to tenant systems and SHOULD employ packet-
 filtering mechanisms so as not to forward unauthorized traffic
 between tenant systems in different tenant networks. An NVE MUST NOT
 interpret Geneve packets from tenant systems other than as frames to
 be encapsulated.

 A compromised network node or a transit device within a data center
 may launch an active attack trying to tamper with the Geneve packet
 data between NVEs. Malicious tampering of Geneve header fields may
 cause the packet from one tenant to be forwarded to a different
 tenant network. If an operator determines there is a possibility of
 such a threat in their environment, the operator may choose to employ
 data integrity mechanisms between NVEs. In order to prevent such
 risks, a data integrity mechanism SHOULD be used in such environments
 to protect the integrity of Geneve packets, including packet headers,
 options, and payload on communications between NVE pairs. A
 cryptographic data protection mechanism, such as IPsec, may be used
 to provide data integrity protection. A data center operator may
 choose to deploy any other data integrity mechanisms as applicable
 and supported in their underlay networks, although non-cryptographic
 mechanisms may not protect the Geneve portion of the packet from
 tampering.

6.3. Authentication of NVE Peers

 A rogue network device or a compromised NVE in a data center
 environment might be able to spoof Geneve packets as if it came from
 a legitimate NVE. In order to mitigate such a risk, an operator
 SHOULD use an authentication mechanism, such as IPsec, to ensure that
 the Geneve packet originated from the intended NVE peer in
 environments where the operator determines spoofing or rogue devices
 are potential threats. Other simpler source checks, such as ingress
 filtering for VLAN/MAC/IP addresses, reverse path forwarding checks,
 etc., may be used in certain trusted environments to ensure Geneve
 packets originated from the intended NVE peer.

6.4. Options Interpretation by Transit Devices

 Options, if present in the packet, are generated and terminated by
 tunnel endpoints. As indicated in Section 2.2.1, transit devices may
 interpret the options. However, if the packet is protected by
 encryption from tunnel endpoint to tunnel endpoint (for example,
 through IPsec), transit devices will not have visibility into the
 Geneve header or options in the packet. In such cases, transit
 devices MUST handle Geneve packets as any other IP packet and
 maintain consistent forwarding behavior. In cases where options are
 interpreted by transit devices, the operator MUST ensure that transit
 devices are trusted and not compromised. The definition of a
 mechanism to ensure this trust is beyond the scope of this document.

6.5. Multicast/Broadcast

 In typical data center networks where IP multicasting is not
 supported in the underlay network, multicasting may be supported
 using multiple unicast tunnels. The same security requirements as
 described in the above sections can be used to protect Geneve
 communications between NVE peers. If IP multicasting is supported in
 the underlay network and the operator chooses to use it for multicast
 traffic among tunnel endpoints, then the operator in such
 environments may use data protection mechanisms, such as IPsec with
 multicast extensions [RFC5374], to protect multicast traffic among
 Geneve NVE groups.

6.6. Control Plane Communications

 A Network Virtualization Authority (NVA) as outlined in [RFC8014] may
 be used as a control plane for configuring and managing the Geneve
 NVEs. The data center operator is expected to use security
 mechanisms to protect the communications between the NVA and NVEs and
 to use authentication mechanisms to detect any rogue or compromised
 NVEs within their administrative domain. Data protection mechanisms
 for control plane communication or authentication mechanisms between
 the NVA and NVEs are beyond the scope of this document.

7. IANA Considerations

 IANA has allocated UDP port 6081 in the "Service Name and Transport
 Protocol Port Number Registry" [IANA-SN] as the well-known
 destination port for Geneve:

 Service Name: geneve
 Transport Protocol(s): UDP
 Assignee: IESG <iesg@ietf.org>
 Contact: IETF Chair <chair@ietf.org>
 Description: Generic Network Virtualization Encapsulation (Geneve)
 Reference: [RFC8926]
 Port Number: 6081

 In addition, IANA has created a new subregistry titled "Geneve Option
 Class" for option classes. This registry has been placed under a new
 "Network Virtualization Overlay (NVO3)" heading in the IANA protocol
 registries [IANA-PR]. The "Geneve Option Class" registry consists of
 16-bit hexadecimal values along with descriptive strings, assignee/
 contact information, and references. The registration rules for the
 new registry are (as defined by [RFC8126]):

 +===============+=========================+
 | Range | Registration Procedures |
 +===============+=========================+
 | 0x0000-0x00FF | IETF Review |
 +---------------+-------------------------+
 | 0x0100-0xFEFF | First Come First Served |
 +---------------+-------------------------+
 | 0xFF00-0xFFFF | Experimental Use |
 +---------------+-------------------------+

 Table 1: Geneve Option Class Registry
 Ranges

8. References

8.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, DOI 10.17487/RFC0792, September 1981,
 <https://www.rfc-editor.org/info/rfc792>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,

 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 DOI 10.17487/RFC2003, October 1996,
 <https://www.rfc-editor.org/info/rfc2003>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,
 RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, DOI 10.17487/RFC6040, November
 2010, <https://www.rfc-editor.org/info/rfc6040>.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",
 RFC 6936, DOI 10.17487/RFC6936, April 2013,
 <https://www.rfc-editor.org/info/rfc6936>.

 [RFC7365] Lasserre, M., Balus, F., Morin, T., Bitar, N., and Y.
 Rekhter, "Framework for Data Center (DC) Network
 Virtualization", RFC 7365, DOI 10.17487/RFC7365, October
 2014, <https://www.rfc-editor.org/info/rfc7365>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

8.2. Informative References

 [ETYPES] IANA, "IEEE 802 Numbers",
 <https://www.iana.org/assignments/ieee-802-numbers>.

 [IANA-PR] IANA, "Protocol Registries",
 <https://www.iana.org/protocols>.

 [IANA-SN] IANA, "Service Name and Transport Protocol Port Number
 Registry", <https://www.iana.org/assignments/service-
 names-port-numbers>.

 [IEEE.802.1Q_2018]
 IEEE, "IEEE Standard for Local and Metropolitan Area
 Networks--Bridges and Bridged Networks",
 DOI 10.1109/IEEESTD.2018.8403927, IEEE 802.1Q-2018, July
 2018, <http://ieeexplore.ieee.org/servlet/
 opac?punumber=8403925>.

 [INTAREA-TUNNELS]
 Touch, J. and M. Townsley, "IP Tunnels in the Internet
 Architecture", Work in Progress, Internet-Draft, draft-
 ietf-intarea-tunnels-10, 12 September 2019,
 <https://tools.ietf.org/html/draft-ietf-intarea-tunnels-
 10>.

 [NVO3-DATAPLANE]
 Bitar, N., Lasserre, M., Balus, F., Morin, T., Jin, L.,
 and B. Khasnabish, "NVO3 Data Plane Requirements", Work in
 Progress, Internet-Draft, draft-ietf-nvo3-dataplane-
 requirements-03, 15 April 2014,
 <https://tools.ietf.org/html/draft-ietf-nvo3-dataplane-
 requirements-03>.

 [NVO3-ENCAP]
 Boutros, S., "NVO3 Encapsulation Considerations", Work in
 Progress, Internet-Draft, draft-ietf-nvo3-encap-05, 17
 February 2020,
 <https://tools.ietf.org/html/draft-ietf-nvo3-encap-05>.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
 RFC 2983, DOI 10.17487/RFC2983, October 2000,
 <https://www.rfc-editor.org/info/rfc2983>.

 [RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
 Label Switching Architecture", RFC 3031,
 DOI 10.17487/RFC3031, January 2001,
 <https://www.rfc-editor.org/info/rfc3031>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC3985] Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
 Edge-to-Edge (PWE3) Architecture", RFC 3985,
 DOI 10.17487/RFC3985, March 2005,
 <https://www.rfc-editor.org/info/rfc3985>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

 [RFC5374] Weis, B., Gross, G., and D. Ignjatic, "Multicast
 Extensions to the Security Architecture for the Internet
 Protocol", RFC 5374, DOI 10.17487/RFC5374, November 2008,
 <https://www.rfc-editor.org/info/rfc5374>.

 [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
 for Equal Cost Multipath Routing and Link Aggregation in
 Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011,
 <https://www.rfc-editor.org/info/rfc6438>.

 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
 <https://www.rfc-editor.org/info/rfc7348>.

 [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
 Virtualization Using Generic Routing Encapsulation",
 RFC 7637, DOI 10.17487/RFC7637, September 2015,

 <https://www.rfc-editor.org/info/rfc7637>.

 [RFC8014] Black, D., Hudson, J., Kreeger, L., Lasserre, M., and T.
 Narten, "An Architecture for Data-Center Network
 Virtualization over Layer 3 (NVO3)", RFC 8014,
 DOI 10.17487/RFC8014, December 2016,
 <https://www.rfc-editor.org/info/rfc8014>.

 [RFC8086] Yong, L., Ed., Crabbe, E., Xu, X., and T. Herbert, "GRE-
 in-UDP Encapsulation", RFC 8086, DOI 10.17487/RFC8086,
 March 2017, <https://www.rfc-editor.org/info/rfc8086>.

 [RFC8293] Ghanwani, A., Dunbar, L., McBride, M., Bannai, V., and R.
 Krishnan, "A Framework for Multicast in Network
 Virtualization over Layer 3", RFC 8293,
 DOI 10.17487/RFC8293, January 2018,
 <https://www.rfc-editor.org/info/rfc8293>.

 [VL2] "VL2: A Scalable and Flexible Data Center Network", ACM
 SIGCOMM Computer Communication Review,
 DOI 10.1145/1594977.1592576, August 2009,
 <https://dl.acm.org/doi/10.1145/1594977.1592576>.

Acknowledgements

 The authors wish to acknowledge Puneet Agarwal, David Black, Sami
 Boutros, Scott Bradner, MartÃ­n Casado, Alissa Cooper, Roman Danyliw,
 Bruce Davie, Anoop Ghanwani, Benjamin Kaduk, Suresh Krishnan, Mirja
 KÃ¼hlewind, Barry Leiba, Daniel Migault, Greg Mirksy, Tal Mizrahi,
 Kathleen Moriarty, Magnus NystrÃ¶m, Adam Roach, Sabrina Tanamal, Dave
 Thaler, Ã\211ric Vyncke, Magnus Westerlund, and many other members of the
 NVO3 Working Group for their reviews, comments, and suggestions.

 The authors would like to thank Sam Aldrin, Alia Atlas, Matthew
 Bocci, Benson Schliesser, and Martin Vigoureux for their guidance
 throughout the process.

Contributors

 The following individuals were authors of an earlier version of this
 document and made significant contributions:

 Pankaj Garg
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052
 United States of America

 Email: pankajg@microsoft.com

 Chris Wright
 Red Hat Inc.
 1801 Varsity Drive
 Raleigh, NC 27606
 United States of America

 Email: chrisw@redhat.com

 Kenneth Duda
 Arista Networks
 5453 Great America Parkway
 Santa Clara, CA 95054
 United States of America

 Email: kduda@arista.com

 Dinesh G. Dutt
 Independent

 Email: didutt@gmail.com

 Jon Hudson
 Independent

 Email: jon.hudson@gmail.com

 Ariel Hendel
 Facebook, Inc.
 1 Hacker Way
 Menlo Park, CA 94025
 United States of America

 Email: ahendel@fb.com

Authors’ Addresses

 Jesse Gross (editor)

 Email: jesse@kernel.org

 Ilango Ganga (editor)
 Intel Corporation
 2200 Mission College Blvd.
 Santa Clara, CA 95054
 United States of America

 Email: ilango.s.ganga@intel.com

 T. Sridhar (editor)
 VMware, Inc.
 3401 Hillview Ave.
 Palo Alto, CA 94304
 United States of America

 Email: tsridhar@utexas.edu

