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Abstract

   Network virtualization involves the cooperation of devices with a
   wide variety of capabilities such as software and hardware tunnel
   endpoints, transit fabrics, and centralized control clusters.  As a
   result of their role in tying together different elements of the
   system, the requirements on tunnels are influenced by all of these
   components.  Therefore, flexibility is the most important aspect of a
   tunneling protocol if it is to keep pace with the evolution of
   technology.  This document describes Geneve, an encapsulation
   protocol designed to recognize and accommodate these changing
   capabilities and needs.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8926.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction
     1.1.  Requirements Language
     1.2.  Terminology
   2.  Design Requirements
     2.1.  Control Plane Independence
     2.2.  Data Plane Extensibility
       2.2.1.  Efficient Implementation
     2.3.  Use of Standard IP Fabrics
   3.  Geneve Encapsulation Details
     3.1.  Geneve Packet Format over IPv4
     3.2.  Geneve Packet Format over IPv6
     3.3.  UDP Header



     3.4.  Tunnel Header Fields
     3.5.  Tunnel Options
       3.5.1.  Options Processing
   4.  Implementation and Deployment Considerations
     4.1.  Applicability Statement
     4.2.  Congestion-Control Functionality
     4.3.  UDP Checksum
       4.3.1.  Zero UDP Checksum Handling with IPv6
     4.4.  Encapsulation of Geneve in IP
       4.4.1.  IP Fragmentation
       4.4.2.  DSCP, ECN, and TTL
       4.4.3.  Broadcast and Multicast
       4.4.4.  Unidirectional Tunnels
     4.5.  Constraints on Protocol Features
       4.5.1.  Constraints on Options
     4.6.  NIC Offloads
     4.7.  Inner VLAN Handling
   5.  Transition Considerations
   6.  Security Considerations
     6.1.  Data Confidentiality
       6.1.1.  Inter-Data Center Traffic
     6.2.  Data Integrity
     6.3.  Authentication of NVE Peers
     6.4.  Options Interpretation by Transit Devices
     6.5.  Multicast/Broadcast
     6.6.  Control Plane Communications
   7.  IANA Considerations
   8.  References
     8.1.  Normative References
     8.2.  Informative References
   Acknowledgements
   Contributors
   Authors’ Addresses

1.  Introduction

   Networking has long featured a variety of tunneling, tagging, and
   other encapsulation mechanisms.  However, the advent of network
   virtualization has caused a surge of renewed interest and a
   corresponding increase in the introduction of new protocols.  The
   large number of protocols in this space -- for example, ranging all
   the way from VLANs [IEEE.802.1Q_2018] and MPLS [RFC3031] through the
   more recent VXLAN (Virtual eXtensible Local Area Network) [RFC7348]
   and NVGRE (Network Virtualization Using Generic Routing
   Encapsulation) [RFC7637] -- often leads to questions about the need
   for new encapsulation formats and what it is about network
   virtualization in particular that leads to their proliferation.  Note
   that the list of protocols presented above is non-exhaustive.

   While many encapsulation protocols seek to simply partition the
   underlay network or bridge two domains, network virtualization views
   the transit network as providing connectivity between multiple
   components of a distributed system.  In many ways, this system is
   similar to a chassis switch with the IP underlay network playing the
   role of the backplane and tunnel endpoints on the edge as line cards.
   When viewed in this light, the requirements placed on the tunneling
   protocol are significantly different in terms of the quantity of
   metadata necessary and the role of transit nodes.

   Work such as "VL2: A Scalable and Flexible Data Center Network" [VL2]
   and "NVO3 Data Plane Requirements" [NVO3-DATAPLANE] have described
   some of the properties that the data plane must have to support
   network virtualization.  However, one additional defining requirement
   is the need to carry metadata (e.g., system state) along with the
   packet data; example use cases of metadata are noted below.  The use
   of some metadata is certainly not a foreign concept -- nearly all
   protocols used for network virtualization have at least 24 bits of
   identifier space as a way to partition between tenants.  This is
   often described as overcoming the limits of 12-bit VLANs; when seen
   in that context or any context where it is a true tenant identifier,
   16 million possible entries is a large number.  However, the reality



   is that the metadata is not exclusively used to identify tenants, and
   encoding other information quickly starts to crowd the space.  In
   fact, when compared to the tags used to exchange metadata between
   line cards on a chassis switch, 24-bit identifiers start to look
   quite small.  There are nearly endless uses for this metadata,
   ranging from storing input port identifiers for simple security
   policies to sending service-based context for advanced middlebox
   applications that terminate and re-encapsulate Geneve traffic.

   Existing tunneling protocols have each attempted to solve different
   aspects of these new requirements only to be quickly rendered out of
   date by changing control plane implementations and advancements.
   Furthermore, software and hardware components and controllers all
   have different advantages and rates of evolution -- a fact that
   should be viewed as a benefit, not a liability or limitation.  This
   document describes Geneve, a protocol that seeks to avoid these
   problems by providing a framework for tunneling for network
   virtualization rather than being prescriptive about the entire
   system.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

1.2.  Terminology

   The Network Virtualization over Layer 3 (NVO3) Framework [RFC7365]
   defines many of the concepts commonly used in network virtualization.
   In addition, the following terms are specifically meaningful in this
   document:

   Checksum offload:  An optimization implemented by many NICs (Network
      Interface Controllers) that enables computation and verification
      of upper-layer protocol checksums in hardware on transmit and
      receive, respectively.  This typically includes IP and TCP/UDP
      checksums that would otherwise be computed by the protocol stack
      in software.

   Clos network:  A technique for composing network fabrics larger than
      a single switch while maintaining non-blocking bandwidth across
      connection points.  ECMP is used to divide traffic across the
      multiple links and switches that constitute the fabric.  Sometimes
      termed "leaf and spine" or "fat tree" topologies.

   ECMP:  Equal Cost Multipath.  A routing mechanism for selecting from
      among multiple best next-hop paths by hashing packet headers in
      order to better utilize network bandwidth while avoiding
      reordering of packets within a flow.

   Geneve:  Generic Network Virtualization Encapsulation.  The tunneling
      protocol described in this document.

   LRO:  Large Receive Offload.  The receiver-side equivalent function
      of LSO, in which multiple protocol segments (primarily TCP) are
      coalesced into larger data units.

   LSO:  Large Segmentation Offload.  A function provided by many
      commercial NICs that allows data units larger than the MTU to be
      passed to the NIC to improve performance, the NIC being
      responsible for creating smaller segments of a size less than or
      equal to the MTU with correct protocol headers.  When referring
      specifically to TCP/IP, this feature is often known as TSO (TCP
      Segmentation Offload).

   Middlebox:  In the context of this document, the term "middlebox"
      refers to network service functions or service interposition
      appliances that typically implement tunnel endpoint functionality,



      terminating and re-encapsulating Geneve traffic.

   NIC:  Network Interface Controller.  Also called "Network Interface
      Card" or "Network Adapter".  A NIC could be part of a tunnel
      endpoint or transit device and can either process or aid in the
      processing of Geneve packets.

   Transit device:  A forwarding element (e.g., router or switch) along
      the path of the tunnel making up part of the underlay network.  A
      transit device may be capable of understanding the Geneve packet
      format but does not originate or terminate Geneve packets.

   Tunnel endpoint:  A component performing encapsulation and
      decapsulation of packets, such as Ethernet frames or IP datagrams,
      in Geneve headers.  As the ultimate consumer of any tunnel
      metadata, tunnel endpoints have the highest level of requirements
      for parsing and interpreting tunnel headers.  Tunnel endpoints may
      consist of either software or hardware implementations or a
      combination of the two.  Tunnel endpoints are frequently a
      component of a Network Virtualization Edge (NVE) but may also be
      found in middleboxes or other elements making up an NVO3 network.

   VM:  Virtual Machine.

2.  Design Requirements

   Geneve is designed to support network virtualization use cases for
   data center environments.  In these situations, tunnels are typically
   established to act as a backplane between the virtual switches
   residing in hypervisors, physical switches, or middleboxes or other
   appliances.  An arbitrary IP network can be used as an underlay,
   although Clos networks composed using ECMP links are a common choice
   to provide consistent bisectional bandwidth across all connection
   points.  Many of the concepts of network virtualization overlays over
   IP networks are described in the NVO3 Framework [RFC7365].  Figure 1
   shows an example of a hypervisor, a top-of-rack switch for
   connectivity to physical servers, and a WAN uplink connected using
   Geneve tunnels over a simplified Clos network.  These tunnels are
   used to encapsulate and forward frames from the attached components,
   such as VMs or physical links.

     +---------------------+           +-------+  +------+
     | +--+  +-------+---+ |           |Transit|--|Top of|==Physical
     | |VM|--|       |   | | +------+ /|Router |  | Rack |==Servers
     | +--+  |Virtual|NIC|---|Top of|/ +-------+\/+------+
     | +--+  |Switch |   | | | Rack |\ +-------+/\+------+
     | |VM|--|       |   | | +------+ \|Transit|  |Uplink|   WAN
     | +--+  +-------+---+ |           |Router |--|      |=========>
     +---------------------+           +-------+  +------+
            Hypervisor

                 ()===================================()
                         Switch-Switch Geneve Tunnels

                     Figure 1: Sample Geneve Deployment

   To support the needs of network virtualization, the tunneling
   protocol should be able to take advantage of the differing (and
   evolving) capabilities of each type of device in both the underlay
   and overlay networks.  This results in the following requirements
   being placed on the data plane tunneling protocol:

   *  The data plane is generic and extensible enough to support current
      and future control planes.

   *  Tunnel components are efficiently implementable in both hardware
      and software without restricting capabilities to the lowest common
      denominator.

   *  High performance over existing IP fabrics is maintained.



   These requirements are described further in the following
   subsections.

2.1.  Control Plane Independence

   Although some protocols for network virtualization have included a
   control plane as part of the tunnel format specification (most
   notably, VXLAN [RFC7348] prescribed a multicast-learning-based
   control plane), these specifications have largely been treated as
   describing only the data format.  The VXLAN packet format has
   actually seen a wide variety of control planes built on top of it.

   There is a clear advantage in settling on a data format: most of the
   protocols are only superficially different and there is little
   advantage in duplicating effort.  However, the same cannot be said of
   control planes, which are diverse in very fundamental ways.  The case
   for standardization is also less clear given the wide variety in
   requirements, goals, and deployment scenarios.

   As a result of this reality, Geneve is a pure tunnel format
   specification that is capable of fulfilling the needs of many control
   planes by explicitly not selecting any one of them.  This
   simultaneously promotes a shared data format and reduces the chance
   of obsolescence by future control plane enhancements.

2.2.  Data Plane Extensibility

   Achieving the level of flexibility needed to support current and
   future control planes effectively requires an options infrastructure
   to allow new metadata types to be defined, deployed, and either
   finalized or retired.  Options also allow for differentiation of
   products by encouraging independent development in each vendor’s core
   specialty, leading to an overall faster pace of advancement.  By far,
   the most common mechanism for implementing options is the Type-
   Length-Value (TLV) format.

   It should be noted that, while options can be used to support non-
   wirespeed control packets, they are equally important in data packets
   as well for segregating and directing forwarding.  (For instance, the
   examples given before regarding input-port-based security policies
   and terminating/re-encapsulating service interposition both require
   tags to be placed on data packets.)  Therefore, while it would be
   desirable to limit the extensibility to only control packets for the
   purposes of simplifying the datapath, that would not satisfy the
   design requirements.

2.2.1.  Efficient Implementation

   There is often a conflict between software flexibility and hardware
   performance that is difficult to resolve.  For a given set of
   functionality, it is obviously desirable to maximize performance.
   However, that does not mean new features that cannot be run at a
   desired speed today should be disallowed.  Therefore, for a protocol
   to be considered efficiently implementable, it is expected to have a
   set of common capabilities that can be reasonably handled across
   platforms as well as a graceful mechanism to handle more advanced
   features in the appropriate situations.

   The use of a variable-length header and options in a protocol often
   raises questions about whether the protocol is truly efficiently
   implementable in hardware.  To answer this question in the context of
   Geneve, it is important to first divide "hardware" into two
   categories: tunnel endpoints and transit devices.

   Tunnel endpoints must be able to parse the variable-length header,
   including any options, and take action.  Since these devices are
   actively participating in the protocol, they are the most affected by
   Geneve.  However, as tunnel endpoints are the ultimate consumers of
   the data, transmitters can tailor their output to the capabilities of
   the recipient.



   Transit devices may be able to interpret the options; however, as
   non-terminating devices, transit devices do not originate or
   terminate the Geneve packet.  Hence, they MUST NOT modify Geneve
   headers and MUST NOT insert or delete options, as that is the
   responsibility of tunnel endpoints.  Options, if present in the
   packet, MUST only be generated and terminated by tunnel endpoints.
   The participation of transit devices in interpreting options is
   OPTIONAL.

   Further, either tunnel endpoints or transit devices MAY use offload
   capabilities of NICs, such as checksum offload, to improve the
   performance of Geneve packet processing.  The presence of a Geneve
   variable-length header should not prevent the tunnel endpoints and
   transit devices from using such offload capabilities.

2.3.  Use of Standard IP Fabrics

   IP has clearly cemented its place as the dominant transport
   mechanism, and many techniques have evolved over time to make it
   robust, efficient, and inexpensive.  As a result, it is natural to
   use IP fabrics as a transit network for Geneve.  Fortunately, the use
   of IP encapsulation and addressing is enough to achieve the primary
   goal of delivering packets to the correct point in the network
   through standard switching and routing.

   In addition, nearly all underlay fabrics are designed to exploit
   parallelism in traffic to spread load across multiple links without
   introducing reordering in individual flows.  These ECMP techniques
   typically involve parsing and hashing the addresses and port numbers
   from the packet to select an outgoing link.  However, the use of
   tunnels often results in poor ECMP performance, as without additional
   knowledge of the protocol, the encapsulated traffic is hidden from
   the fabric by design, and only tunnel endpoint addresses are
   available for hashing.

   Since it is desirable for Geneve to perform well on these existing
   fabrics, it is necessary for entropy from encapsulated packets to be
   exposed in the tunnel header.  The most common technique for this is
   to use the UDP source port, which is discussed further in
   Section 3.3.

3.  Geneve Encapsulation Details

   The Geneve packet format consists of a compact tunnel header
   encapsulated in UDP over either IPv4 or IPv6.  A small fixed tunnel
   header provides control information plus a base level of
   functionality and interoperability with a focus on simplicity.  This
   header is then followed by a set of variable-length options to allow
   for future innovation.  Finally, the payload consists of a protocol
   data unit of the indicated type, such as an Ethernet frame.  Sections
   3.1 and 3.2 illustrate the Geneve packet format transported (for
   example) over Ethernet along with an Ethernet payload.

3.1.  Geneve Packet Format over IPv4

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   Outer Ethernet Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Outer Destination MAC Address                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Outer Destination MAC Address |   Outer Source MAC Address    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Outer Source MAC Address                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Optional Ethertype=C-Tag 802.1Q|  Outer VLAN Tag Information   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Ethertype = 0x0800 IPv4    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   Outer IPv4 Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Version|  IHL  |Type of Service|          Total Length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Identification        |Flags|      Fragment Offset    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Time to Live |Protocol=17 UDP|         Header Checksum       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Outer Source IPv4 Address                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Outer Destination IPv4 Address              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Outer UDP Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Source Port = xxxx      |    Dest Port = 6081 Geneve    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           UDP Length          |        UDP Checksum           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Geneve Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Ver|  Opt Len  |O|C|    Rsvd.  |          Protocol Type        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Virtual Network Identifier (VNI)       |    Reserved   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ˜                    Variable-Length Options                    ˜
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Inner Ethernet Header (example payload):
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Inner Destination MAC Address                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Inner Destination MAC Address |   Inner Source MAC Address    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Inner Source MAC Address                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Optional Ethertype=C-Tag 802.1Q|  Inner VLAN Tag Information   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Payload:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Ethertype of Original Payload |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
      |                                  Original Ethernet Payload    |
      |                                                               |
      ˜ (Note that the original Ethernet frame’s preamble, start      ˜
      | frame delimiter (SFD), and frame check sequence (FCS) are not |
      | included, and the Ethernet payload need not be 4-byte aligned)|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Frame Check Sequence:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   New Frame Check Sequence (FCS) for Outer Ethernet Frame     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 2: Geneve Packet Format over IPv4

3.2.  Geneve Packet Format over IPv6

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   Outer Ethernet Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Outer Destination MAC Address                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Outer Destination MAC Address |   Outer Source MAC Address    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



      |                   Outer Source MAC Address                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Optional Ethertype=C-Tag 802.1Q|  Outer VLAN Tag Information   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Ethertype = 0x86DD IPv6    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Outer IPv6 Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Version| Traffic Class |           Flow Label                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Payload Length        | NxtHdr=17 UDP |   Hop Limit   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                                                               +
      |                                                               |
      +                     Outer Source IPv6 Address                 +
      |                                                               |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                                                               +
      |                                                               |
      +                  Outer Destination IPv6 Address               +
      |                                                               |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Outer UDP Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Source Port = xxxx      |    Dest Port = 6081 Geneve    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           UDP Length          |        UDP Checksum           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Geneve Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Ver|  Opt Len  |O|C|    Rsvd.  |          Protocol Type        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Virtual Network Identifier (VNI)       |    Reserved   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ˜                    Variable-Length Options                    ˜
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Inner Ethernet Header (example payload):
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Inner Destination MAC Address                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Inner Destination MAC Address |   Inner Source MAC Address    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Inner Source MAC Address                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Optional Ethertype=C-Tag 802.1Q|  Inner VLAN Tag Information   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Payload:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Ethertype of Original Payload |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
      |                                  Original Ethernet Payload    |
      |                                                               |
      ˜ (Note that the original Ethernet frame’s preamble, start      ˜
      | frame delimiter (SFD), and frame check sequence (FCS) are not |
      | included, and the Ethernet payload need not be 4-byte aligned)|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Frame Check Sequence:



      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   New Frame Check Sequence (FCS) for Outer Ethernet Frame     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 3: Geneve Packet Format over IPv6

3.3.  UDP Header

   The use of an encapsulating UDP [RFC0768] header follows the
   connectionless semantics of Ethernet and IP in addition to providing
   entropy to routers performing ECMP.  Therefore, header fields are
   interpreted as follows:

   Source Port:  A source port selected by the originating tunnel
      endpoint.  This source port SHOULD be the same for all packets
      belonging to a single encapsulated flow to prevent reordering due
      to the use of different paths.  To encourage an even distribution
      of flows across multiple links, the source port SHOULD be
      calculated using a hash of the encapsulated packet headers using,
      for example, a traditional 5-tuple.  Since the port represents a
      flow identifier rather than a true UDP connection, the entire
      16-bit range MAY be used to maximize entropy.  In addition to
      setting the source port, for IPv6, the flow label MAY also be used
      for providing entropy.  For an example of using the IPv6 flow
      label for tunnel use cases, see [RFC6438].

      If Geneve traffic is shared with other UDP listeners on the same
      IP address, tunnel endpoints SHOULD implement a mechanism to
      ensure ICMP return traffic arising from network errors is directed
      to the correct listener.  The definition of such a mechanism is
      beyond the scope of this document.

   Dest Port:  IANA has assigned port 6081 as the fixed well-known
      destination port for Geneve.  Although the well-known value should
      be used by default, it is RECOMMENDED that implementations make
      this configurable.  The chosen port is used for identification of
      Geneve packets and MUST NOT be reversed for different ends of a
      connection as is done with TCP.  It is the responsibility of the
      control plane to manage any reconfiguration of the assigned port
      and its interpretation by respective devices.  The definition of
      the control plane is beyond the scope of this document.

   UDP Length:  The length of the UDP packet including the UDP header.

   UDP Checksum:  In order to protect the Geneve header, options, and
      payload from potential data corruption, the UDP checksum SHOULD be
      generated as specified in [RFC0768] and [RFC1122] when Geneve is
      encapsulated in IPv4.  To protect the IP header, Geneve header,
      options, and payload from potential data corruption, the UDP
      checksum MUST be generated by default as specified in [RFC0768]
      and [RFC8200] when Geneve is encapsulated in IPv6, except under
      certain conditions, which are outlined in the next paragraph.
      Upon receiving such packets with a non-zero UDP checksum, the
      receiving tunnel endpoints MUST validate the checksum.  If the
      checksum is not correct, the packet MUST be dropped; otherwise,
      the packet MUST be accepted for decapsulation.

      Under certain conditions, the UDP checksum MAY be set to zero on
      transmit for packets encapsulated in both IPv4 and IPv6 [RFC8200].
      See Section 4.3 for additional requirements that apply when using
      zero UDP checksum with IPv4 and IPv6.  Disabling the use of UDP
      checksums is an operational consideration that should take into
      account the risks and effects of packet corruption.

3.4.  Tunnel Header Fields

   Ver (2 bits):  The current version number is 0.  Packets received by
      a tunnel endpoint with an unknown version MUST be dropped.
      Transit devices interpreting Geneve packets with an unknown
      version number MUST treat them as UDP packets with an unknown
      payload.



   Opt Len (6 bits):  The length of the option fields, expressed in
      4-byte multiples, not including the 8-byte fixed tunnel header.
      This results in a minimum total Geneve header size of 8 bytes and
      a maximum of 260 bytes.  The start of the payload headers can be
      found using this offset from the end of the base Geneve header.

      Transit devices MUST maintain consistent forwarding behavior
      irrespective of the value of ’Opt Len’, including ECMP link
      selection.

   O (1 bit):  Control packet.  This packet contains a control message.
      Control messages are sent between tunnel endpoints.  Tunnel
      endpoints MUST NOT forward the payload, and transit devices MUST
      NOT attempt to interpret it.  Since control messages are less
      frequent, it is RECOMMENDED that tunnel endpoints direct these
      packets to a high-priority control queue (for example, to direct
      the packet to a general purpose CPU from a forwarding Application-
      Specific Integrated Circuit (ASIC) or to separate out control
      traffic on a NIC).  Transit devices MUST NOT alter forwarding
      behavior on the basis of this bit, such as ECMP link selection.

   C (1 bit):  Critical options present.  One or more options has the
      critical bit set (see Section 3.5).  If this bit is set, then
      tunnel endpoints MUST parse the options list to interpret any
      critical options.  On tunnel endpoints where option parsing is not
      supported, the packet MUST be dropped on the basis of the ’C’ bit
      in the base header.  If the bit is not set, tunnel endpoints MAY
      strip all options using ’Opt Len’ and forward the decapsulated
      packet.  Transit devices MUST NOT drop packets on the basis of
      this bit.

   Rsvd. (6 bits):  Reserved field, which MUST be zero on transmission
      and MUST be ignored on receipt.

   Protocol Type (16 bits):  The type of protocol data unit appearing
      after the Geneve header.  This follows the Ethertype [ETYPES]
      convention, with Ethernet itself being represented by the value
      0x6558.

   Virtual Network Identifier (VNI) (24 bits):  An identifier for a
      unique element of a virtual network.  In many situations, this may
      represent an L2 segment; however, the control plane defines the
      forwarding semantics of decapsulated packets.  The VNI MAY be used
      as part of ECMP forwarding decisions or MAY be used as a mechanism
      to distinguish between overlapping address spaces contained in the
      encapsulated packet when load balancing across CPUs.

   Reserved (8 bits):  Reserved field, which MUST be zero on
      transmission and ignored on receipt.

3.5.  Tunnel Options

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Option Class         |      Type     |R|R|R| Length  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ˜                  Variable-Length Option Data                  ˜
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 4: Geneve Option

   The base Geneve header is followed by zero or more options in Type-
   Length-Value format.  Each option consists of a 4-byte option header
   and a variable amount of option data interpreted according to the
   type.

   Option Class (16 bits):  Namespace for the ’Type’ field.  IANA has



      created a "Geneve Option Class" registry to allocate identifiers
      for organizations, technologies, and vendors that have an interest
      in creating types for options.  Each organization may allocate
      types independently to allow experimentation and rapid innovation.
      It is expected that, over time, certain options will become well
      known, and a given implementation may use option types from a
      variety of sources.  In addition, IANA has reserved specific
      ranges for allocation by IETF Review and for Experimental Use (see
      Section 7).

   Type (8 bits):  Type indicating the format of the data contained in
      this option.  Options are primarily designed to encourage future
      extensibility and innovation, and standardized forms of these
      options will be defined in separate documents.

      The high-order bit of the option type indicates that this is a
      critical option.  If the receiving tunnel endpoint does not
      recognize the option and this bit is set, then the packet MUST be
      dropped.  If this bit is set in any option, then the ’C’ bit in
      the Geneve base header MUST also be set.  Transit devices MUST NOT
      drop packets on the basis of this bit.  The following figure shows
      the location of the ’C’ bit in the ’Type’ field:

      0 1 2 3 4 5 6 7 8
      +-+-+-+-+-+-+-+-+
      |C|    Type     |
      +-+-+-+-+-+-+-+-+

                   Figure 5: ’C’ Bit in the ’Type’ Field

      The requirement to drop a packet with an unknown option with the
      ’C’ bit set applies to the entire tunnel endpoint system and not a
      particular component of the implementation.  For example, in a
      system comprised of a forwarding ASIC and a general purpose CPU,
      this does not mean that the packet must be dropped in the ASIC.
      An implementation may send the packet to the CPU using a rate-
      limited control channel for slow-path exception handling.

   R (3 bits):  Option control flags reserved for future use.  These
      bits MUST be zero on transmission and MUST be ignored on receipt.

   Length (5 bits):  Length of the option, expressed in 4-byte
      multiples, excluding the option header.  The total length of each
      option may be between 4 and 128 bytes.  A value of 0 in the
      ’Length’ field implies an option with only an option header and no
      option data.  Packets in which the total length of all options is
      not equal to the ’Opt Len’ in the base header are invalid and MUST
      be silently dropped if received by a tunnel endpoint that
      processes the options.

   Variable-Length Option Data:  Option data interpreted according to
      ’Type’.

3.5.1.  Options Processing

   Geneve options are intended to be originated and processed by tunnel
   endpoints.  However, options MAY be interpreted by transit devices
   along the tunnel path.  Transit devices not interpreting Geneve
   headers (which may or may not include options) MUST handle Geneve
   packets as any other UDP packet and maintain consistent forwarding
   behavior.

   In tunnel endpoints, the generation and interpretation of options is
   determined by the control plane, which is beyond the scope of this
   document.  However, to ensure interoperability between heterogeneous
   devices, some requirements are imposed on options and the devices
   that process them:

   *  Receiving tunnel endpoints MUST drop packets containing unknown
      options with the ’C’ bit set in the option type.  Conversely,
      transit devices MUST NOT drop packets as a result of encountering



      unknown options, including those with the ’C’ bit set.

   *  The contents of the options and their ordering MUST NOT be
      modified by transit devices.

   *  If a tunnel endpoint receives a Geneve packet with an ’Opt Len’
      (the total length of all options) that exceeds the options-
      processing capability of the tunnel endpoint, then the tunnel
      endpoint MUST drop such packets.  An implementation may raise an
      exception to the control plane in such an event.  It is the
      responsibility of the control plane to ensure the communicating
      peer tunnel endpoints have the processing capability to handle the
      total length of options.  The definition of the control plane is
      beyond the scope of this document.

   When designing a Geneve option, it is important to consider how the
   option will evolve in the future.  Once an option is defined, it is
   reasonable to expect that implementations may come to depend on a
   specific behavior.  As a result, the scope of any future changes must
   be carefully described upfront.

   Architecturally, options are intended to be self descriptive and
   independent.  This enables parallelism in options processing and
   reduces implementation complexity.  However, the control plane may
   impose certain ordering restrictions, as described in Section 4.5.1.

   Unexpectedly significant interoperability issues may result from
   changing the length of an option that was defined to be a certain
   size.  A particular option is specified to have either a fixed
   length, which is constant, or a variable length, which may change
   over time or for different use cases.  This property is part of the
   definition of the option and is conveyed by the ’Type’.  For fixed-
   length options, some implementations may choose to ignore the
   ’Length’ field in the option header and instead parse based on the
   well-known length associated with the type.  In this case, redefining
   the length will impact not only the parsing of the option in question
   but also any options that follow.  Therefore, options that are
   defined to be a fixed length in size MUST NOT be redefined to a
   different length.  Instead, a new ’Type’ should be allocated.  Actual
   definition of the option type is beyond the scope of this document.
   The option type and its interpretation should be defined by the
   entity that owns the option class.

   Options may be processed by NIC hardware utilizing offloads (e.g.,
   LSO and LRO) as described in Section 4.6.  Careful consideration
   should be given to how the offload capabilities outlined in
   Section 4.6 impact an option’s design.

4.  Implementation and Deployment Considerations

4.1.  Applicability Statement

   Geneve is a UDP-based network virtualization overlay encapsulation
   protocol designed to establish tunnels between NVEs over an existing
   IP network.  It is intended for use in public or private data center
   environments, for deploying multi-tenant overlay networks over an
   existing IP underlay network.

   As a UDP-based protocol, Geneve adheres to the UDP usage guidelines
   as specified in [RFC8085].  The applicability of these guidelines is
   dependent on the underlay IP network and the nature of the Geneve
   payload protocol (for example, TCP/IP, IP/Ethernet).

   Geneve is intended to be deployed in a data center network
   environment operated by a single operator or an adjacent set of
   cooperating network operators that fits with the definition of
   controlled environments in [RFC8085].  A network in a controlled
   environment can be managed to operate under certain conditions,
   whereas in the general Internet, this cannot be done.  Hence,
   requirements for a tunneling protocol operating under a controlled
   environment can be less restrictive than the requirements of the



   general Internet.

   For the purpose of this document, a traffic-managed controlled
   environment (TMCE) is defined as an IP network that is traffic
   engineered and/or otherwise managed (e.g., via use of traffic rate
   limiters) to avoid congestion.  The concept of a TMCE is outlined in
   [RFC8086].  Significant portions of the text in Section 4.1 through
   Section 4.3 are based on [RFC8086] as applicable to Geneve.

   It is the responsibility of the operator to ensure that the
   guidelines/requirements in this section are followed as applicable to
   their Geneve deployment(s).

4.2.  Congestion-Control Functionality

   Geneve does not natively provide congestion-control functionality and
   relies on the payload protocol traffic for congestion control.  As
   such, Geneve MUST be used with congestion-controlled traffic or
   within a TMCE to avoid congestion.  An operator of a TMCE may avoid
   congestion through careful provisioning of their networks, rate-
   limiting user data traffic, and managing traffic engineering
   according to path capacity.

4.3.  UDP Checksum

   The outer UDP checksum SHOULD be used with Geneve when transported
   over IPv4; this is to provide integrity for the Geneve headers,
   options, and payload in case of data corruption (for example, to
   avoid misdelivery of the payload to different tenant systems).  The
   UDP checksum provides a statistical guarantee that a payload was not
   corrupted in transit.  These integrity checks are not strong from a
   coding or cryptographic perspective and are not designed to detect
   physical-layer errors or malicious modification of the datagram (see
   Section 3.4 of [RFC8085]).  In deployments where such a risk exists,
   an operator SHOULD use additional data integrity mechanisms such as
   those offered by IPsec (see Section 6.2).

   An operator MAY choose to disable UDP checksums and use zero UDP
   checksum if Geneve packet integrity is provided by other data
   integrity mechanisms, such as IPsec or additional checksums, or if
   one of the conditions (a, b, or c) in Section 4.3.1 is met.

   By default, UDP checksums MUST be used when Geneve is transported
   over IPv6.  A tunnel endpoint MAY be configured for use with zero UDP
   checksum if additional requirements in Section 4.3.1 are met.

4.3.1.  Zero UDP Checksum Handling with IPv6

   When Geneve is used over IPv6, the UDP checksum is used to protect
   IPv6 headers, UDP headers, and Geneve headers, options, and payload
   from potential data corruption.  As such, by default, Geneve MUST use
   UDP checksums when transported over IPv6.  An operator MAY choose to
   configure zero UDP checksum if operating in a TMCE as stated in
   Section 4.1 if one of the following conditions is met.

   a.  It is known that packet corruption is exceptionally unlikely
       (perhaps based on knowledge of equipment types in their underlay
       network) and the operator is willing to risk undetected packet
       corruption.

   b.  It is judged through observational measurements (perhaps through
       historic or current traffic flows that use non-zero checksum)
       that the level of packet corruption is tolerably low and is where
       the operator is willing to risk undetected corruption.

   c.  The Geneve payload is carrying applications that are tolerant of
       misdelivered or corrupted packets (perhaps through higher-layer
       checksum validation and/or reliability through retransmission).

   In addition, Geneve tunnel implementations using zero UDP checksum
   MUST meet the following requirements:



   1.  Use of UDP checksum over IPv6 MUST be the default configuration
       for all Geneve tunnels.

   2.  If Geneve is used with zero UDP checksum over IPv6, then such a
       tunnel endpoint implementation MUST meet all the requirements
       specified in Section 4 of [RFC6936] and requirement 1 as
       specified in Section 5 of [RFC6936] since it is relevant to
       Geneve.

   3.  The Geneve tunnel endpoint that decapsulates the tunnel SHOULD
       check that the source and destination IPv6 addresses are valid
       for the Geneve tunnel that is configured to receive zero UDP
       checksum and discard other packets for which such a check fails.

   4.  The Geneve tunnel endpoint that encapsulates the tunnel MAY use
       different IPv6 source addresses for each Geneve tunnel that uses
       zero UDP checksum mode in order to strengthen the decapsulator’s
       check of the IPv6 source address (i.e., the same IPv6 source
       address is not to be used with more than one IPv6 destination
       address, irrespective of whether that destination address is a
       unicast or multicast address).  When this is not possible, it is
       RECOMMENDED to use each source address for as few Geneve tunnels
       that use zero UDP checksum as is feasible.

       Note that for requirements 3 and 4, the receiving tunnel endpoint
       can apply these checks only if it has out-of-band knowledge that
       the encapsulating tunnel endpoint is applying the indicated
       behavior.  One possibility to obtain this out-of-band knowledge
       is through signaling by the control plane.  The definition of the
       control plane is beyond the scope of this document.

   5.  Measures SHOULD be taken to prevent Geneve traffic over IPv6 with
       zero UDP checksum from escaping into the general Internet.
       Examples of such measures include employing packet filters at the
       gateways or edge of the Geneve network and/or keeping logical or
       physical separation of the Geneve network from networks carrying
       general Internet traffic.

   The above requirements do not change the requirements specified in
   either [RFC8200] or [RFC6936].

   The use of the source IPv6 address in addition to the destination
   IPv6 address, plus the recommendation against reuse of source IPv6
   addresses among Geneve tunnels, collectively provide some mitigation
   for the absence of UDP checksum coverage of the IPv6 header.  A
   traffic-managed controlled environment that satisfies at least one of
   the three conditions listed at the beginning of this section provides
   additional assurance.

4.4.  Encapsulation of Geneve in IP

   As an IP-based tunneling protocol, Geneve shares many properties and
   techniques with existing protocols.  The application of some of these
   are described in further detail, although, in general, most concepts
   applicable to the IP layer or to IP tunnels generally also function
   in the context of Geneve.

4.4.1.  IP Fragmentation

   It is RECOMMENDED that Path MTU Discovery (see [RFC1191] and
   [RFC8201]) be used to prevent or minimize fragmentation.  The use of
   Path MTU Discovery on the transit network provides the encapsulating
   tunnel endpoint with soft-state information about the link that it
   may use to prevent or minimize fragmentation depending on its role in
   the virtualized network.  The NVE can maintain this state (the MTU
   size of the tunnel link(s) associated with the tunnel endpoint), so
   if a tenant system sends large packets that, when encapsulated,
   exceed the MTU size of the tunnel link, the tunnel endpoint can
   discard such packets and send exception messages to the tenant
   system(s).  If the tunnel endpoint is associated with a routing or



   forwarding function and/or has the capability to send ICMP messages,
   the encapsulating tunnel endpoint MAY send ICMP fragmentation needed
   [RFC0792] or Packet Too Big [RFC4443] messages to the tenant
   system(s).  When determining the MTU size of a tunnel link, the
   maximum length of options MUST be assumed as options may vary on a
   per-packet basis.  Recommendations and guidance for handling
   fragmentation in similar overlay encapsulation services like
   Pseudowire Emulation Edge-to-Edge (PWE3) are provided in Section 5.3
   of [RFC3985].

   Note that some implementations may not be capable of supporting
   fragmentation or other less common features of the IP header, such as
   options and extension headers.  Some of the issues associated with
   MTU size and fragmentation in IP tunneling and use of ICMP messages
   are outlined in Section 4.2 of [INTAREA-TUNNELS].

4.4.2.  DSCP, ECN, and TTL

   When encapsulating IP (including over Ethernet) packets in Geneve,
   there are several considerations for propagating Differentiated
   Services Code Point (DSCP) and Explicit Congestion Notification (ECN)
   bits from the inner header to the tunnel on transmission and the
   reverse on reception.

   [RFC2983] provides guidance for mapping DSCP between inner and outer
   IP headers.  Network virtualization is typically more closely aligned
   with the Pipe model described, where the DSCP value on the tunnel
   header is set based on a policy (which may be a fixed value, one
   based on the inner traffic class or some other mechanism for grouping
   traffic).  Aspects of the Uniform model (which treats the inner and
   outer DSCP values as a single field by copying on ingress and egress)
   may also apply, such as the ability to re-mark the inner header on
   tunnel egress based on transit marking.  However, the Uniform model
   is not conceptually consistent with network virtualization, which
   seeks to provide strong isolation between encapsulated traffic and
   the physical network.

   [RFC6040] describes the mechanism for exposing ECN capabilities on IP
   tunnels and propagating congestion markers to the inner packets.
   This behavior MUST be followed for IP packets encapsulated in Geneve.

   Though either the Uniform or Pipe models could be used for handling
   TTL (or Hop Limit in case of IPv6) when tunneling IP packets, the
   Pipe model is more consistent with network virtualization.  [RFC2003]
   provides guidance on handling TTL between inner IP header and outer
   IP tunnels; this model is similar to the Pipe model and is
   RECOMMENDED for use with Geneve for network virtualization
   applications.

4.4.3.  Broadcast and Multicast

   Geneve tunnels may either be point-to-point unicast between two
   tunnel endpoints or utilize broadcast or multicast addressing.  It is
   not required that inner and outer addressing match in this respect.
   For example, in physical networks that do not support multicast,
   encapsulated multicast traffic may be replicated into multiple
   unicast tunnels or forwarded by policy to a unicast location
   (possibly to be replicated there).

   With physical networks that do support multicast, it may be desirable
   to use this capability to take advantage of hardware replication for
   encapsulated packets.  In this case, multicast addresses may be
   allocated in the physical network corresponding to tenants,
   encapsulated multicast groups, or some other factor.  The allocation
   of these groups is a component of the control plane and, therefore,
   is beyond the scope of this document.

   When physical multicast is in use, devices with heterogeneous
   capabilities may be present in the same group.  Some options may only
   be interpretable by a subset of the devices in the group.  Other
   devices can safely ignore such options unless the ’C’ bit is set to



   mark the unknown option as critical.  The requirements outlined in
   Section 3.4 apply for critical options.

   In addition, [RFC8293] provides examples of various mechanisms that
   can be used for multicast handling in network virtualization overlay
   networks.

4.4.4.  Unidirectional Tunnels

   Generally speaking, a Geneve tunnel is a unidirectional concept.  IP
   is not a connection-oriented protocol, and it is possible for two
   tunnel endpoints to communicate with each other using different paths
   or to have one side not transmit anything at all.  As Geneve is an
   IP-based protocol, the tunnel layer inherits these same
   characteristics.

   It is possible for a tunnel to encapsulate a protocol, such as TCP,
   that is connection oriented and maintains session state at that
   layer.  In addition, implementations MAY model Geneve tunnels as
   connected, bidirectional links, for example, to provide the
   abstraction of a virtual port.  In both of these cases,
   bidirectionality of the tunnel is handled at a higher layer and does
   not affect the operation of Geneve itself.

4.5.  Constraints on Protocol Features

   Geneve is intended to be flexible for use with a wide range of
   current and future applications.  As a result, certain constraints
   may be placed on the use of metadata or other aspects of the protocol
   in order to optimize for a particular use case.  For example, some
   applications may limit the types of options that are supported or
   enforce a maximum number or length of options.  Other applications
   may only handle certain encapsulated payload types, such as Ethernet
   or IP.  These optimizations can be implemented either globally
   (throughout the system) or locally (for example, restricted to
   certain classes of devices or network paths).

   These constraints may be communicated to tunnel endpoints either
   explicitly through a control plane or implicitly by the nature of the
   application.  As Geneve is defined as a data plane protocol that is
   control plane agnostic, definition of such mechanisms is beyond the
   scope of this document.

4.5.1.  Constraints on Options

   While Geneve options are flexible, a control plane may restrict the
   number of option TLVs as well as the order and size of the TLVs
   between tunnel endpoints to make it simpler for a data plane
   implementation in software or hardware to handle (see [NVO3-ENCAP]).
   For example, there may be some critical information, such as a secure
   hash, that must be processed in a certain order to provide the lowest
   latency, or there may be other scenarios where the options must be
   processed in a given order due to protocol semantics.

   A control plane may negotiate a subset of option TLVs and certain TLV
   ordering; it may also limit the total number of option TLVs present
   in the packet, for example, to accommodate hardware capable of
   processing fewer options.  Hence, a control plane needs to have the
   ability to describe the supported TLV subset and its ordering to the
   tunnel endpoints.  In the absence of a control plane, alternative
   configuration mechanisms may be used for this purpose.  Such
   mechanisms are beyond the scope of this document.

4.6.  NIC Offloads

   Modern NICs currently provide a variety of offloads to enable the
   efficient processing of packets.  The implementation of many of these
   offloads requires only that the encapsulated packet be easily parsed
   (for example, checksum offload).  However, optimizations such as LSO
   and LRO involve some processing of the options themselves since they
   must be replicated/merged across multiple packets.  In these



   situations, it is desirable not to require changes to the offload
   logic to handle the introduction of new options.  To enable this,
   some constraints are placed on the definitions of options to allow
   for simple processing rules:

   *  When performing LSO, a NIC MUST replicate the entire Geneve header
      and all options, including those unknown to the device, onto each
      resulting segment unless an option allows an exception.
      Conversely, when performing LRO, a NIC may assume that a binary
      comparison of the options (including unknown options) is
      sufficient to ensure equality and MAY merge packets with equal
      Geneve headers.

   *  Options MUST NOT be reordered during the course of offload
      processing, including when merging packets for the purpose of LRO.

   *  NICs performing offloads MUST NOT drop packets with unknown
      options, including those marked as critical, unless explicitly
      configured to do so.

   There is no requirement that a given implementation of Geneve employ
   the offloads listed as examples above.  However, as these offloads
   are currently widely deployed in commercially available NICs, the
   rules described here are intended to enable efficient handling of
   current and future options across a variety of devices.

4.7.  Inner VLAN Handling

   Geneve is capable of encapsulating a wide range of protocols;
   therefore, a given implementation is likely to support only a small
   subset of the possibilities.  However, as Ethernet is expected to be
   widely deployed, it is useful to describe the behavior of VLANs
   inside encapsulated Ethernet frames.

   As with any protocol, support for inner VLAN headers is OPTIONAL.  In
   many cases, the use of encapsulated VLANs may be disallowed due to
   security or implementation considerations.  However, in other cases,
   the trunking of VLAN frames across a Geneve tunnel can prove useful.
   As a result, the processing of inner VLAN tags upon ingress or egress
   from a tunnel endpoint is based upon the configuration of the tunnel
   endpoint and/or control plane and is not explicitly defined as part
   of the data format.

5.  Transition Considerations

   Viewed exclusively from the data plane, Geneve is compatible with
   existing IP networks as it appears to most devices as UDP packets.
   However, as there are already a number of tunneling protocols
   deployed in network virtualization environments, there is a practical
   question of transition and coexistence.

   Since Geneve builds on the base data plane functionality provided by
   the most common protocols used for network virtualization (VXLAN and
   NVGRE), it should be straightforward to port an existing control
   plane to run on top of it with minimal effort.  With both the old and
   new packet formats supporting the same set of capabilities, there is
   no need for a hard transition; tunnel endpoints directly
   communicating with each other can use any common protocol, which may
   be different even within a single overall system.  As transit devices
   are primarily forwarding packets on the basis of the IP header, all
   protocols appear to be similar, and these devices do not introduce
   additional interoperability concerns.

   To assist with this transition, it is strongly suggested that
   implementations support simultaneous operation of both Geneve and
   existing tunneling protocols, as it is expected to be common for a
   single node to communicate with a mixture of other nodes.
   Eventually, older protocols may be phased out as they are no longer
   in use.

6.  Security Considerations



   As it is encapsulated within a UDP/IP packet, Geneve does not have
   any inherent security mechanisms.  As a result, an attacker with
   access to the underlay network transporting the IP packets has the
   ability to snoop on, alter, or inject packets.  Compromised tunnel
   endpoints or transit devices may also spoof identifiers in the tunnel
   header to gain access to networks owned by other tenants.

   Within a particular security domain, such as a data center operated
   by a single service provider, the most common and highest-performing
   security mechanism is isolation of trusted components.  Tunnel
   traffic can be carried over a separate VLAN and filtered at any
   untrusted boundaries.

   When crossing an untrusted link, such as the general Internet, VPN
   technologies such as IPsec [RFC4301] should be used to provide
   authentication and/or encryption of the IP packets formed as part of
   Geneve encapsulation (see Section 6.1.1).

   Geneve does not otherwise affect the security of the encapsulated
   packets.  As per the guidelines of BCP 72 [RFC3552], the following
   sections describe potential security risks that may be applicable to
   Geneve deployments and approaches to mitigate such risks.  It is also
   noted that not all such risks are applicable to all Geneve deployment
   scenarios, i.e., only a subset may be applicable to certain
   deployments.  An operator has to make an assessment based on their
   network environment, determine the risks that are applicable to their
   specific environment, and use appropriate mitigation approaches as
   applicable.

6.1.  Data Confidentiality

   Geneve is a network virtualization overlay encapsulation protocol
   designed to establish tunnels between NVEs over an existing IP
   network.  It can be used to deploy multi-tenant overlay networks over
   an existing IP underlay network in a public or private data center.
   The overlay service is typically provided by a service provider, such
   as a cloud service provider or a private data center operator.  This
   may or not may be the same provider as an underlay service provider.
   Due to the nature of multi-tenancy in such environments, a tenant
   system may expect data confidentiality to ensure its packet data is
   not tampered with (i.e., active attack) in transit or is a target of
   unauthorized monitoring (i.e., passive attack), for example, by other
   tenant systems or underlay service provider.  A compromised network
   node or a transit device within a data center may passively monitor
   Geneve packet data between NVEs or route traffic for further
   inspection.  A tenant may expect the overlay service provider to
   provide data confidentiality as part of the service, or a tenant may
   bring its own data confidentiality mechanisms like IPsec or TLS to
   protect the data end to end between its tenant systems.  The overlay
   provider is expected to provide cryptographic protection in cases
   where the underlay provider is not the same as the overlay provider
   to ensure the payload is not exposed to the underlay.

   If an operator determines data confidentiality is necessary in their
   environment based on their risk analysis -- for example, in multi-
   tenant environments -- then an encryption mechanism SHOULD be used to
   encrypt the tenant data end to end between the NVEs.  The NVEs may
   use existing well-established encryption mechanisms, such as IPsec,
   DTLS, etc.

6.1.1.  Inter-Data Center Traffic

   A tenant system in a customer premises (private data center) may want
   to connect to tenant systems on their tenant overlay network in a
   public cloud data center, or a tenant may want to have its tenant
   systems located in multiple geographically separated data centers for
   high availability.  Geneve data traffic between tenant systems across
   such separated networks should be protected from threats when
   traversing public networks.  Any Geneve overlay data leaving the data
   center network beyond the operator’s security domain SHOULD be



   secured by encryption mechanisms, such as IPsec or other VPN
   technologies, to protect the communications between the NVEs when
   they are geographically separated over untrusted network links.
   Specification of data protection mechanisms employed between data
   centers is beyond the scope of this document.

   The principles described in Section 4 regarding controlled
   environments still apply to the geographically separated data center
   usage outlined in this section.

6.2.  Data Integrity

   Geneve encapsulation is used between NVEs to establish overlay
   tunnels over an existing IP underlay network.  In a multi-tenant data
   center, a rogue or compromised tenant system may try to launch a
   passive attack, such as monitoring the traffic of other tenants, or
   an active attack, such as trying to inject unauthorized Geneve
   encapsulated traffic such as spoofing, replay, etc., into the
   network.  To prevent such attacks, an NVE MUST NOT propagate Geneve
   packets beyond the NVE to tenant systems and SHOULD employ packet-
   filtering mechanisms so as not to forward unauthorized traffic
   between tenant systems in different tenant networks.  An NVE MUST NOT
   interpret Geneve packets from tenant systems other than as frames to
   be encapsulated.

   A compromised network node or a transit device within a data center
   may launch an active attack trying to tamper with the Geneve packet
   data between NVEs.  Malicious tampering of Geneve header fields may
   cause the packet from one tenant to be forwarded to a different
   tenant network.  If an operator determines there is a possibility of
   such a threat in their environment, the operator may choose to employ
   data integrity mechanisms between NVEs.  In order to prevent such
   risks, a data integrity mechanism SHOULD be used in such environments
   to protect the integrity of Geneve packets, including packet headers,
   options, and payload on communications between NVE pairs.  A
   cryptographic data protection mechanism, such as IPsec, may be used
   to provide data integrity protection.  A data center operator may
   choose to deploy any other data integrity mechanisms as applicable
   and supported in their underlay networks, although non-cryptographic
   mechanisms may not protect the Geneve portion of the packet from
   tampering.

6.3.  Authentication of NVE Peers

   A rogue network device or a compromised NVE in a data center
   environment might be able to spoof Geneve packets as if it came from
   a legitimate NVE.  In order to mitigate such a risk, an operator
   SHOULD use an authentication mechanism, such as IPsec, to ensure that
   the Geneve packet originated from the intended NVE peer in
   environments where the operator determines spoofing or rogue devices
   are potential threats.  Other simpler source checks, such as ingress
   filtering for VLAN/MAC/IP addresses, reverse path forwarding checks,
   etc., may be used in certain trusted environments to ensure Geneve
   packets originated from the intended NVE peer.

6.4.  Options Interpretation by Transit Devices

   Options, if present in the packet, are generated and terminated by
   tunnel endpoints.  As indicated in Section 2.2.1, transit devices may
   interpret the options.  However, if the packet is protected by
   encryption from tunnel endpoint to tunnel endpoint (for example,
   through IPsec), transit devices will not have visibility into the
   Geneve header or options in the packet.  In such cases, transit
   devices MUST handle Geneve packets as any other IP packet and
   maintain consistent forwarding behavior.  In cases where options are
   interpreted by transit devices, the operator MUST ensure that transit
   devices are trusted and not compromised.  The definition of a
   mechanism to ensure this trust is beyond the scope of this document.

6.5.  Multicast/Broadcast



   In typical data center networks where IP multicasting is not
   supported in the underlay network, multicasting may be supported
   using multiple unicast tunnels.  The same security requirements as
   described in the above sections can be used to protect Geneve
   communications between NVE peers.  If IP multicasting is supported in
   the underlay network and the operator chooses to use it for multicast
   traffic among tunnel endpoints, then the operator in such
   environments may use data protection mechanisms, such as IPsec with
   multicast extensions [RFC5374], to protect multicast traffic among
   Geneve NVE groups.

6.6.  Control Plane Communications

   A Network Virtualization Authority (NVA) as outlined in [RFC8014] may
   be used as a control plane for configuring and managing the Geneve
   NVEs.  The data center operator is expected to use security
   mechanisms to protect the communications between the NVA and NVEs and
   to use authentication mechanisms to detect any rogue or compromised
   NVEs within their administrative domain.  Data protection mechanisms
   for control plane communication or authentication mechanisms between
   the NVA and NVEs are beyond the scope of this document.

7.  IANA Considerations

   IANA has allocated UDP port 6081 in the "Service Name and Transport
   Protocol Port Number Registry" [IANA-SN] as the well-known
   destination port for Geneve:

   Service Name:  geneve
   Transport Protocol(s):  UDP
   Assignee:  IESG <iesg@ietf.org>
   Contact:  IETF Chair <chair@ietf.org>
   Description:  Generic Network Virtualization Encapsulation (Geneve)
   Reference:  [RFC8926]
   Port Number:  6081

   In addition, IANA has created a new subregistry titled "Geneve Option
   Class" for option classes.  This registry has been placed under a new
   "Network Virtualization Overlay (NVO3)" heading in the IANA protocol
   registries [IANA-PR].  The "Geneve Option Class" registry consists of
   16-bit hexadecimal values along with descriptive strings, assignee/
   contact information, and references.  The registration rules for the
   new registry are (as defined by [RFC8126]):

                +===============+=========================+
                | Range         | Registration Procedures |
                +===============+=========================+
                | 0x0000-0x00FF | IETF Review             |
                +---------------+-------------------------+
                | 0x0100-0xFEFF | First Come First Served |
                +---------------+-------------------------+
                | 0xFF00-0xFFFF | Experimental Use        |
                +---------------+-------------------------+

                   Table 1: Geneve Option Class Registry
                                   Ranges
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