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Abstract

   This document describes unknown key-share attacks on the use of
   Datagram Transport Layer Security for the Secure Real-Time Transport
   Protocol (DTLS-SRTP).  Similar attacks are described on the use of
   DTLS-SRTP with the identity bindings used in Web Real-Time
   Communications (WebRTC) and SIP identity.  These attacks are
   difficult to mount, but they cause a victim to be misled about the
   identity of a communicating peer.  This document defines mitigation
   techniques that implementations of RFC 8122 are encouraged to deploy.
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1.  Introduction

   The use of Transport Layer Security (TLS) [TLS13] with the Session
   Description Protocol (SDP) [SDP] is defined in [FINGERPRINT].
   Further use with Datagram Transport Layer Security (DTLS) [DTLS] and
   the Secure Real-time Transport Protocol (SRTP) [SRTP] is defined as
   DTLS-SRTP [DTLS-SRTP].

   In these specifications, key agreement is performed using TLS or
   DTLS, with authentication being tied back to the session description
   (or SDP) through the use of certificate fingerprints.  Communication
   peers check that a hash, or fingerprint, provided in the SDP matches
   the certificate that is used in the TLS or DTLS handshake.

   WebRTC identity (see Section 7 of [WEBRTC-SEC]) and SIP identity
   [SIP-ID] both provide a mechanism that binds an external identity to
   the certificate fingerprints from a session description.  However,
   this binding is not integrity protected and is therefore vulnerable
   to an identity misbinding attack, also known as an unknown key-share
   (UKS) attack, where the attacker binds their identity to the
   fingerprint of another entity.  A successful attack leads to the
   creation of sessions where peers are confused about the identity of
   the participants.

   This document describes a TLS extension that can be used in
   combination with these identity bindings to prevent this attack.

   A similar attack is possible with the use of certificate fingerprints
   alone.  Though attacks in this setting are likely infeasible in
   existing deployments due to the narrow preconditions (see
   Section 2.1), this document also describes mitigations for this
   attack.

   The mechanisms defined in this document are intended to strengthen
   the protocol by preventing the use of unknown key-share attacks in
   combination with other protocol or implementation vulnerabilities.
   RFC 8122 [FINGERPRINT] is updated by this document to recommend the
   use of these mechanisms.

   This document assumes that signaling is integrity protected.
   However, as Section 7 of [FINGERPRINT] explains, many deployments
   that use SDP do not guarantee integrity of session signaling and so
   are vulnerable to other attacks.  [FINGERPRINT] offers key continuity
   mechanisms as a potential means of reducing exposure to attack in the
   absence of integrity protection.  Section 2.2 provides some analysis
   of the effect of key continuity in relation to the described attacks.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Unknown Key-Share Attack

   In an unknown key-share attack [UKS], a malicious participant in a
   protocol claims to control a key that is in reality controlled by
   some other actor.  This arises when the identity associated with a
   key is not properly bound to the key.

   An endpoint that can acquire the certificate fingerprint of another
   entity can advertise that fingerprint as their own in SDP.  An
   attacker can use a copy of that fingerprint to cause a victim to



   communicate with another unaware victim, even though the first victim
   believes that it is communicating with the attacker.

   When the identity of communicating peers is established by higher-
   layer signaling constructs, such as those in SIP identity [SIP-ID] or
   WebRTC [WEBRTC-SEC], this allows an attacker to bind their own
   identity to a session with any other entity.

   The attacker obtains an identity assertion for an identity it
   controls, but binds that to the fingerprint of one peer.  The
   attacker is then able to cause a TLS connection to be established
   where two victim endpoints communicate.  The victim that has its
   fingerprint copied by the attack correctly believes that it is
   communicating with the other victim; however, the other victim
   incorrectly believes that it is communicating with the attacker.

   An unknown key-share attack does not result in the attacker having
   access to any confidential information exchanged between victims.
   However, the failure in mutual authentication can enable other
   attacks.  A victim might send information to the wrong entity as a
   result.  Where information is interpreted in context, misrepresenting
   that context could lead to the information being misinterpreted.

   A similar attack can be mounted based solely on the SDP "fingerprint"
   attribute [FINGERPRINT] without compromising the integrity of the
   signaling channel.

   This attack is an aspect of SDP-based protocols upon which the
   technique known as third-party call control (3PCC) [RFC3725] relies.
   3PCC exploits the potential for the identity of a signaling peer to
   be different than the media peer, allowing the media peer to be
   selected by the signaling peer.  Section 2.3 describes the
   consequences of the mitigations described here for systems that use
   3PCC.

2.1.  Limits on Attack Feasibility

   The use of TLS with SDP depends on the integrity of session
   signaling.  Assuming signaling integrity limits the capabilities of
   an attacker in several ways.  In particular:

   1.  An attacker can only modify the parts of the session signaling
       that they are responsible for producing, namely their own offers
       and answers.

   2.  No entity will successfully establish a session with a peer
       unless they are willing to participate in a session with that
       peer.

   The combination of these two constraints make the spectrum of
   possible attacks quite limited.  An attacker is only able to switch
   its own certificate fingerprint for a valid certificate that is
   acceptable to its peer.  Attacks therefore rely on joining two
   separate sessions into a single session.  Section 4 describes an
   attack on SDP signaling under these constraints.

   Systems that rely on strong identity bindings, such as those defined
   in [WEBRTC] or [SIP-ID], have a different threat model, which admits
   the possibility of attack by an entity with access to the signaling
   channel.  Attacks under these conditions are more feasible as an
   attacker is assumed to be able both to observe and to modify
   signaling messages.  Section 3 describes an attack that assumes this
   threat model.

2.2.  Interactions with Key Continuity

   Systems that use key continuity (as defined in Section 15.1 of [ZRTP]
   or as recommended in Section 7 of [FINGERPRINT]) might be able to
   detect an unknown key-share attack if a session with either the
   attacker or the genuine peer (i.e., the victim whose fingerprint was
   copied by an attacker) was established in the past.  Whether this is



   possible depends on how key continuity is implemented.

   Implementations that maintain a single database of identities with an
   index of peer keys could discover that the identity saved for the
   peer key does not match the claimed identity.  Such an implementation
   could notice the disparity between the actual keys (those copied from
   a victim) and the expected keys (those of the attacker).

   In comparison, implementations that first match based on peer
   identity could treat an unknown key-share attack as though their peer
   had used a newly configured device.  The apparent addition of a new
   device could generate user-visible notices (e.g., "Mallory appears to
   have a new device").  However, such an event is not always considered
   alarming; some implementations might silently save a new key.

2.3.  Third-Party Call Control

   Third-party call control (3PCC) [RFC3725] is a technique where a
   signaling peer establishes a call that is terminated by a different
   entity.  An unknown key-share attack is very similar in effect to
   some 3PCC practices, so use of 3PCC could appear to be an attack.
   However, 3PCC that follows RFC 3725 guidance is unaffected, and peers
   that are aware of changes made by a 3PCC controller can correctly
   distinguish actions of a 3PCC controller from an attack.

   3PCC as described in RFC 3725 is incompatible with SIP identity
   [SIP-ID], as SIP Identity relies on creating a binding between SIP
   requests and SDP.  The controller is the only entity that generates
   SIP requests in RFC 3725.  Therefore, in a 3PCC context, only the use
   of the "fingerprint" attribute without additional bindings or WebRTC
   identity [WEBRTC-SEC] is possible.

   The attack mitigation mechanisms described in this document will
   prevent the use of 3PCC if peers have different views of the involved
   identities or the value of SDP "tls-id" attributes.

   For 3PCC to work with the proposed mechanisms, TLS peers need to be
   aware of the signaling so that they can correctly generate and check
   the TLS extensions.  For a connection to be successfully established,
   a 3PCC controller needs either to forward SDP without modification or
   to avoid modifications to "fingerprint", "tls-id", and "identity"
   attributes.  A controller that follows the best practices in RFC 3725
   is expected to forward SDP without modification, thus ensuring the
   integrity of these attributes.

3.  Unknown Key-Share Attack with Identity Bindings

   The identity assertions used for WebRTC (Section 7 of [WEBRTC-SEC])
   and the Personal Assertion Token (PASSporT) used in SIP identity
   ([SIP-ID], [PASSPORT]) are bound to the certificate fingerprint of an
   endpoint.  An attacker can cause an identity binding to be created
   that binds an identity they control to the fingerprint of a first
   victim.

   An attacker can thereby cause a second victim to believe that they
   are communicating with an attacker-controlled identity, when they are
   really talking to the first victim.  The attacker does this by
   creating an identity assertion that covers a certificate fingerprint
   of the first victim.

   A variation on the same technique can be used to cause both victims
   to believe they are talking to the attacker when they are talking to
   each other.  In this case, the attacker performs the identity
   misbinding once for each victim.

   The authority certifying the identity binding is not required to
   verify that the entity requesting the binding actually controls the
   keys associated with the fingerprints, and this might appear to be
   the cause of the problem.  SIP and WebRTC identity providers are not
   required to perform this validation.



   A simple solution to this problem is suggested by [SIGMA].  The
   identity of endpoints is included under a message authentication code
   (MAC) during the cryptographic handshake.  Endpoints then validate
   that their peer has provided an identity that matches their
   expectations.  In TLS, the Finished message provides a MAC over the
   entire handshake, so that including the identity in a TLS extension
   is sufficient to implement this solution.

   Rather than include a complete identity binding, which could be
   sizable, a collision- and preimage-resistant hash of the binding is
   included in a TLS extension as described in Section 3.2.  Endpoints
   then need only validate that the extension contains a hash of the
   identity binding they received in signaling.  If the identity binding
   is successfully validated, the identity of a peer is verified and
   bound to the session.

   This form of unknown key-share attack is possible without
   compromising signaling integrity, unless the defenses described in
   Section 4 are used.  In order to prevent both forms of attack,
   endpoints MUST use the "external_session_id" extension (see
   Section 4.3) in addition to the "external_id_hash" (Section 3.2) so
   that two calls between the same parties can’t be altered by an
   attacker.

3.1.  Example

   In the example shown in Figure 1, it is assumed that the attacker
   also controls the signaling channel.

   Mallory (the attacker) presents two victims, Norma and Patsy, with
   two separate sessions.  In the first session, Norma is presented with
   the option to communicate with Mallory; a second session with Norma
   is presented to Patsy.

     Norma                   Mallory                   Patsy
     (fp=N)                   -----                    (fp=P)
       |                        |                        |
       |<---- Signaling1 ------>|                        |
       |   Norma=N Mallory=P    |                        |
       |                        |<---- Signaling2 ------>|
       |                        |   Norma=N Patsy=P      |
       |                                                 |
       |<=================DTLS (fp=N,P)=================>|
       |                                                 |
     (peer = Mallory!)                         (peer = Norma)

               Figure 1: Example Attack on Identity Bindings

   The attack requires that Mallory obtain an identity binding for her
   own identity with the fingerprints presented by Patsy (P), which
   Mallory might have obtained previously.  This false binding is then
   presented to Norma (’Signaling1’ in Figure 1).

   Patsy could be similarly duped, but in this example, a correct
   binding between Norma’s identity and fingerprint (N) is faithfully
   presented by Mallory.  This session (’Signaling2’ in Figure 1) can be
   entirely legitimate.

   A DTLS session is established directly between Norma and Patsy.  In
   order for this to happen, Mallory can substitute transport-level
   information in both sessions, though this is not necessary if Mallory
   is on the network path between Norma and Patsy.

   As a result, Patsy correctly believes that she is communicating with
   Norma.  However, Norma incorrectly believes that she is talking to
   Mallory.  As stated in Section 2, Mallory cannot access media, but
   Norma might send information to Patsy that Norma might not intend or
   that Patsy might misinterpret.

3.2.  The "external_id_hash" TLS Extension



   The "external_id_hash" TLS extension carries a hash of the identity
   assertion that the endpoint sending the extension has asserted to its
   peer.  Both peers include a hash of their own identity assertion.

   The "extension_data" for the "external_id_hash" extension contains a
   "ExternalIdentityHash" struct, described below using the syntax
   defined in Section 3 of [TLS13]:

      struct {
         opaque binding_hash<0..32>;
      } ExternalIdentityHash;

   Where an identity assertion has been asserted by a peer, this
   extension includes a SHA-256 hash of the assertion.  An empty value
   is used to indicate support for the extension.

   Note:  For both types of identity assertion, if SHA-256 should prove
      to be inadequate in the future (see [AGILITY]), a new TLS
      extension that uses a different hash function can be defined.

   Identity bindings might be provided by only one peer.  An endpoint
   that does not produce an identity binding MUST generate an empty
   "external_id_hash" extension in its ClientHello or -- if a client
   provides the extension -- in ServerHello or EncryptedExtensions.  An
   empty extension has a zero-length "binding_hash" field.

   A peer that receives an "external_id_hash" extension that does not
   match the value of the identity binding from its peer MUST
   immediately fail the TLS handshake with an "illegal_parameter" alert.
   The absence of an identity binding does not relax this requirement;
   if a peer provided no identity binding, a zero-length extension MUST
   be present to be considered valid.

   Implementations written prior to the definition of the extensions in
   this document will not support this extension for some time.  A peer
   that receives an identity binding but does not receive an
   "external_id_hash" extension MAY accept a TLS connection rather than
   fail a connection where the extension is absent.

   The endpoint performs the validation of the "external_id_hash"
   extension in addition to the validation required by [FINGERPRINT] and
   any verification of the identity assertion [WEBRTC-SEC] [SIP-ID].  An
   endpoint MUST validate any external_session_id value that is present;
   see Section 4.3.

   An "external_id_hash" extension with a "binding_hash" field that is
   any length other than 0 or 32 is invalid and MUST cause the receiving
   endpoint to generate a fatal "decode_error" alert.

   In TLS 1.3, an "external_id_hash" extension sent by a server MUST be
   sent in the EncryptedExtensions message.

3.2.1.  Calculating "external_id_hash" for WebRTC Identity

   A WebRTC identity assertion (Section 7 of [WEBRTC-SEC]) is provided
   as a JSON [JSON] object that is encoded into a JSON text.  The JSON
   text is encoded using UTF-8 [UTF8] as described by Section 8.1 of
   [JSON].  The content of the "external_id_hash" extension is produced
   by hashing the resulting octets with SHA-256 [SHA].  This produces
   the 32 octets of the "binding_hash" parameter, which is the sole
   contents of the extension.

   The SDP "identity" attribute includes the base64 [BASE64] encoding of
   the UTF-8 encoding of the same JSON text.  The "external_id_hash"
   extension is validated by performing base64 decoding on the value of
   the SDP "identity" attribute, hashing the resulting octets using
   SHA-256, and comparing the results with the content of the extension.
   In pseudocode form, using the "identity-assertion-value" field from
   the SDP "identity" attribute grammar as defined in [WEBRTC-SEC]:

   external_id_hash = SHA-256(b64decode(identity-assertion-value))



   Note:  The base64 of the SDP "identity" attribute is decoded to avoid
      capturing variations in padding.  The base64-decoded identity
      assertion could include leading or trailing whitespace octets.
      WebRTC identity assertions are not canonicalized; all octets are
      hashed.

3.2.2.  Calculating external_id_hash for PASSporT

   Where the compact form of PASSporT [PASSPORT] is used, it MUST be
   expanded into the full form.  The base64 encoding used in the SIP
   Identity (or ’y’) header field MUST be decoded then used as input to
   SHA-256.  This produces the 32-octet "binding_hash" value used for
   creating or validating the extension.  In pseudocode, using the
   "signed-identity-digest" parameter from the "Identity" header field
   grammar defined [SIP-ID]:

   external_id_hash = SHA-256(b64decode(signed-identity-digest))

4.  Unknown Key-Share Attack with Fingerprints

   An attack on DTLS-SRTP is possible because the identity of peers
   involved is not established prior to establishing the call.
   Endpoints use certificate fingerprints as a proxy for authentication,
   but as long as fingerprints are used in multiple calls, they are
   vulnerable to attack.

   Even if the integrity of session signaling can be relied upon, an
   attacker might still be able to create a session where there is
   confusion about the communicating endpoints by substituting the
   fingerprint of a communicating endpoint.

   An endpoint that is configured to reuse a certificate can be attacked
   if it is willing to initiate two calls at the same time, one of which
   is with an attacker.  The attacker can arrange for the victim to
   incorrectly believe that it is calling the attacker when it is in
   fact calling a second party.  The second party correctly believes
   that it is talking to the victim.

   As with the attack on identity bindings, this can be used to cause
   two victims to both believe they are talking to the attacker when
   they are talking to each other.

4.1.  Example

   To mount this attack, two sessions need to be created with the same
   endpoint at almost precisely the same time.  One of those sessions is
   initiated with the attacker, the second session is created toward
   another honest endpoint.  The attacker convinces the first endpoint
   that their session with the attacker has been successfully
   established, but media is exchanged with the other honest endpoint.
   The attacker permits the session with the other honest endpoint to
   complete only to the extent necessary to convince the other honest
   endpoint to participate in the attacked session.

   In addition to the constraints described in Section 2.1, the attacker
   in this example also needs the ability to view and drop packets
   between victims.  That is, the attacker needs to be on path for
   media.

   The attack shown in Figure 2 depends on a somewhat implausible set of
   conditions.  It is intended to demonstrate what sort of attack is
   possible and what conditions are necessary to exploit this weakness
   in the protocol.

     Norma                   Mallory                 Patsy
     (fp=N)                   -----                  (fp=P)
       |                        |                      |
       +---Signaling1 (fp=N)--->|                      |
       +-----Signaling2 (fp=N)------------------------>|
       |<-------------------------Signaling2 (fp=P)----+



       |<---Signaling1 (fp=P)---+                      |
       |                        |                      |
       |=======DTLS1=======>(Forward)======DTLS1======>|
       |<======DTLS2========(Forward)<=====DTLS2=======|
       |=======Media1======>(Forward)======Media1=====>|
       |<======Media2=======(Forward)<=====Media2======|
       |                       |                       |
       |=======DTLS2========>(Drop)                    |
       |                       |                       |

            Figure 2: Example Attack Scenario Using Fingerprints

   In this scenario, there are two sessions initiated at the same time
   by Norma.  Signaling is shown with single lines (’-’), DTLS and media
   with double lines (’=’).

   The first session is established with Mallory, who falsely uses
   Patsy’s certificate fingerprint (denoted with ’fp=P’).  A second
   session is initiated between Norma and Patsy.  Signaling for both
   sessions is permitted to complete.

   Once signaling is complete on the first session, a DTLS connection is
   established.  Ostensibly, this connection is between Mallory and
   Norma, but Mallory forwards DTLS and media packets sent to her by
   Norma to Patsy.  These packets are denoted ’DTLS1’ because Norma
   associates these with the first signaling session (’Signaling1’).

   Mallory also intercepts packets from Patsy and forwards those to
   Norma at the transport address that Norma associates with Mallory.
   These packets are denoted ’DTLS2’ to indicate that Patsy associates
   these with the second signaling session (’Signaling2’); however,
   Norma will interpret these as being associated with the first
   signaling session (’Signaling1’).

   The second signaling exchange (’Signaling2’), which is between Norma
   and Patsy, is permitted to continue to the point where Patsy believes
   that it has succeeded.  This ensures that Patsy believes that she is
   communicating with Norma.  In the end, Norma believes that she is
   communicating with Mallory, when she is really communicating with
   Patsy.  Just like the example in Section 3.1, Mallory cannot access
   media, but Norma might send information to Patsy that Norma might not
   intend or that Patsy might misinterpret.

   Though Patsy needs to believe that the second signaling session has
   been successfully established, Mallory has no real interest in seeing
   that session also be established.  Mallory only needs to ensure that
   Patsy maintains the active session and does not abandon the session
   prematurely.  For this reason, it might be necessary to permit the
   signaling from Patsy to reach Norma in order to allow Patsy to
   receive a call setup completion signal, such as a SIP ACK.  Once the
   second session is established, Mallory might cause DTLS packets sent
   by Norma to Patsy to be dropped.  However, if Mallory allows DTLS
   packets to pass, it is likely that Patsy will discard them as Patsy
   will already have a successful DTLS connection established.

   For the attacked session to be sustained beyond the point that Norma
   detects errors in the second session, Mallory also needs to block any
   signaling that Norma might send to Patsy asking for the call to be
   abandoned.  Otherwise, Patsy might receive a notice that the call has
   failed and thereby abort the call.

   This attack creates an asymmetry in the beliefs about the identity of
   peers.  However, this attack is only possible if the victim (Norma)
   is willing to conduct two sessions nearly simultaneously; if the
   attacker (Mallory) is on the network path between the victims; and if
   the same certificate -- and therefore the SDP "fingerprint" attribute
   value -- is used by Norma for both sessions.

   Where Interactive Connectivity Establishment (ICE) [ICE] is used,
   Mallory also needs to ensure that connectivity checks between Patsy
   and Norma succeed, either by forwarding checks or by answering and



   generating the necessary messages.

4.2.  Unique Session Identity Solution

   The solution to this problem is to assign a new identifier to
   communicating peers.  Each endpoint assigns their peer a unique
   identifier during call signaling.  The peer echoes that identifier in
   the TLS handshake, binding that identity into the session.  Including
   this new identity in the TLS handshake means that it will be covered
   by the TLS Finished message, which is necessary to authenticate it
   (see [SIGMA]).

   Successfully validating that the identifier matches the expected
   value means that the connection corresponds to the signaled session
   and is therefore established between the correct two endpoints.

   This solution relies on the unique identifier given to DTLS sessions
   using the SDP "tls-id" attribute [DTLS-SDP].  This field is already
   required to be unique.  Thus, no two offers or answers from the same
   client will have the same value.

   A new "external_session_id" extension is added to the TLS or DTLS
   handshake for connections that are established as part of the same
   call or real-time session.  This carries the value of the "tls-id"
   attribute and provides integrity protection for its exchange as part
   of the TLS or DTLS handshake.

4.3.  The external_session_id TLS Extension

   The "external_session_id" TLS extension carries the unique identifier
   that an endpoint selects.  When used with SDP, the value MUST include
   the "tls-id" attribute from the SDP that the endpoint generated when
   negotiating the session.  This document only defines use of this
   extension for SDP; other methods of external session negotiation can
   use this extension to include a unique session identifier.

   The "extension_data" for the "external_session_id" extension contains
   an ExternalSessionId struct, described below using the syntax defined
   in [TLS13]:

      struct {
         opaque session_id<20..255>;
      } ExternalSessionId;

   For SDP, the "session_id" field of the extension includes the value
   of the "tls-id" SDP attribute as defined in [DTLS-SDP] (that is, the
   "tls-id-value" ABNF production).  The value of the "tls-id" attribute
   is encoded using ASCII [ASCII].

   Where RTP and RTCP [RTP] are not multiplexed, it is possible that the
   two separate DTLS connections carrying RTP and RTCP can be switched.
   This is considered benign since these protocols are designed to be
   distinguishable as SRTP [SRTP] provides key separation.  Using RTP/
   RTCP multiplexing [RTCP-MUX] further avoids this problem.

   The "external_session_id" extension is included in a ClientHello, and
   if the extension is present in the ClientHello, either ServerHello
   (for TLS and DTLS versions older than 1.3) or EncryptedExtensions
   (for TLS 1.3).

   Endpoints MUST check that the "session_id" parameter in the extension
   that they receive includes the "tls-id" attribute value that they
   received in their peer’s session description.  Endpoints can perform
   string comparison by ASCII decoding the TLS extension value and
   comparing it to the SDP attribute value or by comparing the encoded
   TLS extension octets with the encoded SDP attribute value.  An
   endpoint that receives an "external_session_id" extension that is not
   identical to the value that it expects MUST abort the connection with
   a fatal "illegal_parameter" alert.

   The endpoint performs the validation of the "external_id_hash"



   extension in addition to the validation required by [FINGERPRINT].

   If an endpoint communicates with a peer that does not support this
   extension, it will receive a ClientHello, ServerHello, or
   EncryptedExtensions message that does not include this extension.  An
   endpoint MAY choose to continue a session without this extension in
   order to interoperate with peers that do not implement this
   specification.

   In TLS 1.3, an "external_session_id" extension sent by a server MUST
   be sent in the EncryptedExtensions message.

   This defense is not effective if an attacker can rewrite "tls-id"
   values in signaling.  Only the mechanism in "external_id_hash" is
   able to defend against an attacker that can compromise session
   integrity.

5.  Session Concatenation

   Use of session identifiers does not prevent an attacker from
   establishing two concurrent sessions with different peers and
   forwarding signaling from those peers to each other.  Concatenating
   two signaling sessions in this way creates two signaling sessions,
   with two session identifiers, but only the TLS connections from a
   single session are established as a result.  In doing so, the
   attacker creates a situation where both peers believe that they are
   talking to the attacker when they are talking to each other.

   In the absence of any higher-level concept of peer identity, an
   attacker who is able to copy the session identifier from one
   signaling session to another can cause the peers to establish a
   direct TLS connection even while they think that they are connecting
   to the attacker.  This differs from the attack described in the
   previous section in that there is only one TLS connection rather than
   two.  This kind of attack is prevented by systems that enable peer
   authentication, such as WebRTC identity [WEBRTC-SEC] or SIP identity
   [SIP-ID]; however, these systems do not prevent establishing two
   back-to-back connections as described in the previous paragraph.

   Use of the "external_session_id" does not guarantee that the identity
   of the peer at the TLS layer is the same as the identity of the
   signaling peer.  The advantage that an attacker gains by
   concatenating sessions is limited unless data is exchanged based on
   the assumption that signaling and TLS peers are the same.  If a
   secondary protocol uses the signaling channel with the assumption
   that the signaling and TLS peers are the same, then that protocol is
   vulnerable to attack.  While out of scope for this document, a
   signaling system that can defend against session concatenation
   requires that the signaling layer is authenticated and bound to any
   TLS connections.

   It is important to note that multiple connections can be created
   within the same signaling session.  An attacker might concatenate
   only part of a session, choosing to terminate some connections (and
   optionally forward data) while arranging to have peers interact
   directly for other connections.  It is even possible to have
   different peers interact for each connection.  This means that the
   actual identity of the peer for one connection might differ from the
   peer on another connection.

   Critically, information about the identity of TLS peers provides no
   assurances about the identity of signaling peers and does not
   transfer between TLS connections in the same session.  Information
   extracted from a TLS connection therefore MUST NOT be used in a
   secondary protocol outside of that connection if that protocol
   assumes that the signaling protocol has the same peers.  Similarly,
   security-sensitive information from one TLS connection MUST NOT be
   used in other TLS connections even if they are established as a
   result of the same signaling session.

6.  Security Considerations



   When combined with identity assertions, the mitigations in this
   document ensure that there is no opportunity to misrepresent the
   identity of TLS peers.  This assurance is provided even if an
   attacker can modify signaling messages.

   Without identity assertions, the mitigations in this document prevent
   the session splicing attack described in Section 4.  Defense against
   session concatenation (Section 5) additionally requires that protocol
   peers are not able to claim the certificate fingerprints of other
   entities.

7.  IANA Considerations

   This document registers two extensions in the "TLS ExtensionType
   Values" registry established in [TLS13]:

   *  The "external_id_hash" extension defined in Section 3.2 has been
      assigned a code point of 55; it is recommended and is marked as
      "CH, EE" in TLS 1.3.

   *  The "external_session_id" extension defined in Section 4.3 has
      been assigned a code point of 56; it is recommended and is marked
      as "CH, EE" in TLS 1.3.
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