
ï»¿

Internet Engineering Task Force (IETF) M. Nottingham

Request for Comments: 8820 June 2020

BCP: 190

Obsoletes: 7320

Updates: 3986

Category: Best Current Practice

ISSN: 2070-1721

 URI Design and Ownership

Abstract

 Section 1.1.1 of RFC 3986 defines URI syntax as "a federated and

 extensible naming system wherein each scheme’s specification may

 further restrict the syntax and semantics of identifiers using that

 scheme." In other words, the structure of a URI is defined by its

 scheme. While it is common for schemes to further delegate their

 substructure to the URI’s owner, publishing independent standards

 that mandate particular forms of substructure in URIs is often

 problematic.

 This document provides guidance on the specification of URI

 substructure in standards.

 This document obsoletes RFC 7320 and updates RFC 3986.

Status of This Memo

 This memo documents an Internet Best Current Practice.

 This document is a product of the Internet Engineering Task Force

 (IETF). It represents the consensus of the IETF community. It has

 received public review and has been approved for publication by the

 Internet Engineering Steering Group (IESG). Further information on

 BCPs is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,

 and how to provide feedback on it may be obtained at

 https://www.rfc-editor.org/info/rfc8820.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction

 1.1. Intended Audience

 1.2. Notational Conventions

 2. Best Current Practices for Standardizing Structured URIs

 2.1. URI Schemes

 2.2. URI Authorities

 2.3. URI Paths

 2.4. URI Queries

 2.5. URI Fragment Identifiers

 3. Alternatives to Specifying Structure in URIs

 4. Security Considerations

 5. IANA Considerations

 6. References

 6.1. Normative References

 6.2. Informative References

 Appendix A. Changes from RFC 7320

 Acknowledgments

 Author’s Address

1. Introduction

 URIs [RFC3986] very often include structured application data. This

 might include artifacts from filesystems (often occurring in the path

 component) and user information (often in the query component). In

 some cases, there can even be application-specific data in the

 authority component (e.g., some applications are spread across

 several hostnames to enable a form of partitioning or dispatch).

 Implementations can impose further constraints upon the structure of

 URIs; for example, many web servers use the filename extension of the

 last path segment to determine the media type of the response.

 Likewise, prepackaged applications often have highly structured URIs

 that can only be changed in limited ways (often, just the hostname

 and port on which they are deployed).

 Because the owner of the URI (as defined in [webarch],

 Section 2.2.2.1) is choosing to use the server or the application,

 this can be seen as reasonable delegation of authority. However,

 when such conventions are mandated by a party other than the owner,

 it can have several potentially detrimental effects:

 * Collisions - As more ad hoc conventions for URI structure become

 standardized, it becomes more likely that there will be collisions

 between them (especially considering that servers, applications,

 and individual deployments will have their own conventions).

 * Dilution - When the information added to a URI is ephemeral, this

 dilutes its utility by reducing its stability (see [webarch],

 Section 3.5.1) and can cause several alternate forms of the URI to

 exist (see [webarch], Section 2.3.1).

 * Rigidity - Fixed URI syntax often interferes with desired

 deployment patterns. For example, if an authority wishes to offer

 several applications on a single hostname, it becomes difficult to

 impossible to do if their URIs do not allow the required

 flexibility.

 * Operational Difficulty - Supporting some URI conventions can be

 difficult in some implementations. For example, specifying that a

 particular query parameter be used with "http" URIs can preclude

 the use of web servers that serve the response from a filesystem.

 Likewise, an application that fixes a base path for its operation

 (e.g., "/v1") makes it impossible to deploy other applications

 with the same prefix on the same host.

 * Client Assumptions - When conventions are standardized, some

 clients will inevitably assume that the standards are in use when

 those conventions are seen. This can lead to interoperability

 problems; for example, if a specification documents that the "sig"

 URI query parameter indicates that its payload is a cryptographic

 signature for the URI, it can lead to undesirable behavior.

 Publishing a standard that constrains an existing URI structure in

 ways that aren’t explicitly allowed by [RFC3986] (usually, by

 updating the URI scheme definition) is therefore sometimes

 problematic, both for these reasons and because the structure of a

 URI needs to be firmly under the control of its owner.

 This document explains some best current practices for establishing

 URI structures, conventions, and formats in standards. It also

 offers strategies for specifications in Section 3.

1.1. Intended Audience

 This document’s guidelines and requirements target the authors of

 specifications that constrain the syntax or structure of URIs or

 parts of them. Two classes of such specifications are called out

 specifically:

 * Protocol Extensions ("Extensions") - specifications that offer new

 capabilities that could apply to any identifier or to a large

 subset of possible identifiers, e.g., a new signature mechanism

 for "http" URIs, metadata for any URI, or a new format.

 * Applications Using URIs ("Applications") - specifications that use

 URIs to meet specific needs, e.g., an HTTP interface to particular

 information on a host.

 Requirements that target the generic class "Specifications" apply to

 all specifications, including both those enumerated above and others.

 Note that this specification ought not be interpreted as preventing

 the allocation of control of URIs by parties that legitimately own

 them or have delegated that ownership; for example, a specification

 might legitimately define the semantics of a URI on IANA’s web site

 as part of the establishment of a registry.

 There may be existing IETF specifications that already deviate from

 the guidance in this document. In these cases, it is up to the

 relevant communities (i.e., those of the URI scheme as well as any

 relevant community that produced the specification in question) to

 determine an appropriate outcome, e.g., updating the scheme

 definition or changing the specification.

1.2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

2. Best Current Practices for Standardizing Structured URIs

 This section updates [RFC3986] by advising Specifications how they

 should define structure and semantics within URIs. Best practices

 differ, depending on the URI component in question, as described

 below.

2.1. URI Schemes

 Applications and Extensions can require the use of one or more

 specific URI schemes; for example, it is perfectly acceptable to

 require that an Application support "http" and "https" URIs.

 However, Applications ought not preclude the use of other URI schemes

 in the future, unless they are clearly only usable with the nominated

 schemes.

 A Specification that defines substructure for URI schemes overall

 (e.g., a prefix or suffix for URI scheme names) MUST do so by

 modifying [BCP35] (an exceptional circumstance).

2.2. URI Authorities

 Scheme definitions define the presence, format, and semantics of an

 authority component in URIs; all other Specifications MUST NOT

 constrain or define the structure or the semantics for URI

 authorities, unless they update the scheme registration itself or the

 structures it relies upon (e.g., DNS name syntax, as defined in

 Section 3.5 of [RFC1034]).

 For example, an Extension or Application cannot say that the "foo"

 prefix in "https://foo_app.example.com" is meaningful or triggers

 special handling in URIs, unless they update either the "http" URI

 scheme or the DNS hostname syntax.

 Applications can nominate or constrain the port they use, when

 applicable. For example, BarApp could run over port nnnn (provided

 that it is properly registered).

2.3. URI Paths

 Scheme definitions define the presence, format, and semantics of a

 path component in URIs, although these are often delegated to the

 Application(s) in a given deployment.

 To avoid collisions, rigidity, and erroneous client assumptions,

 Specifications MUST NOT define a fixed prefix for their URI paths --

 for example, "/myapp" -- unless allowed by the scheme definition.

 One such exception to this requirement is registered "well-known"

 URIs, as specified by [RFC8615]. See that document for a description

 of the applicability of that mechanism.

 Note that this does not apply to Applications defining a structure of

 a URI’s path "under" a resource controlled by the server. Because

 the prefix is under control of the party deploying the Application,

 collisions and rigidity are avoided, and the risk of erroneous client

 assumptions is reduced.

 For example, an Application might define "app_root" as a deployment-

 controlled URI prefix. Application-defined resources might then be

 assumed to be present at "{app_root}/foo" and "{app_root}/bar".

 Extensions MUST NOT define a structure within individual URI

 components (e.g., a prefix or suffix), again to avoid collisions and

 erroneous client assumptions.

2.4. URI Queries

 The presence, format, and semantics of the query component of URIs

 are dependent upon many factors and can be constrained by a scheme

 definition. Often, they are determined by the implementation of a

 resource itself.

 Applications can specify the syntax of queries for the resources

 under their control. However, doing so can cause operational

 difficulties for deployments that do not support a particular form of

 a query. For example, a site may wish to support an Application

 using "static" files that do not support query parameters.

 Extensions MUST NOT constrain the format or semantics of queries, to

 avoid collisions and erroneous client assumptions. For example, an

 Extension that indicates that all query parameters with the name

 "sig" indicate a cryptographic signature would collide with

 potentially preexisting query parameters on sites and lead clients to

 assume that any matching query parameter is a signature.

 Per the "Form submission" section of [HTML5], HTML constrains the

 syntax of query strings used in form submission. New form languages

 are encouraged to allow creation of a broader variety of URIs (e.g.,

 by allowing the form to create new path components, and so forth).

2.5. URI Fragment Identifiers

 Section 3.5 of [RFC3986] specifies fragment identifiers’ syntax and

 semantics as being dependent upon the media type of a potentially

 retrieved resource. As a result, other Specifications MUST NOT

 define structure within the fragment identifier, unless they are

 explicitly defining one for reuse by media types in their definitions

 (for example, as JSON Pointer [RFC6901] does).

 An Application that defines common fragment identifiers across media

 types not controlled by it would engender interoperability problems

 with handlers for those media types (because the new, non-standard

 syntax is not expected).

3. Alternatives to Specifying Structure in URIs

 Given the issues described in Section 1, the most successful strategy

 for Applications and Extensions that wish to use URIs is to use them

 in the fashion for which they were designed: as links that are

 exchanged as part of the protocol, rather than statically specified

 syntax. Several existing specifications can aid in this.

 [RFC8288] specifies relation types for web links. By providing a

 framework for linking on the Web, where every link has a relation

 type, context, and target, it allows Applications to define a link’s

 semantics and connectivity.

 [RFC6570] provides a standard syntax for URI Templates that can be

 used to dynamically insert Application-specific variables into a URI

 to enable such Applications while avoiding impinging upon URI owners’

 control of them.

 [RFC8615] allows specific paths to be "reserved" for standard use on

 URI schemes that opt into that mechanism ("http" and "https" by

 default). Note, however, that this is not a general "escape valve"

 for Applications that need structured URIs; see that specification

 for more information.

 Specifying more elaborate structures in an attempt to avoid

 collisions is not an acceptable solution and does not address the

 issues described in Section 1. For example, prefixing query

 parameters with "myapp_" does not help, because the prefix itself is

 subject to the risk of collision (since it is not "reserved").

4. Security Considerations

 This document does not introduce new protocol artifacts with security

 considerations. It prohibits some practices that might lead to

 vulnerabilities; for example, if a security-sensitive mechanism is

 introduced by assuming that a URI path component or query string has

 a particular meaning, false positives might be encountered (due to

 sites that already use the chosen string). See also [RFC6943].

5. IANA Considerations

 This document has no IANA actions.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

 Resource Identifier (URI): Generic Syntax", STD 66,

 RFC 3986, DOI 10.17487/RFC3986, January 2005,

 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [webarch] Jacobs, I. and N. Walsh, "Architecture of the World Wide

 Web, Volume One", December 2004,

 <https://www.w3.org/TR/2004/REC-webarch-20041215>.

6.2. Informative References

 [BCP35] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines

 and Registration Procedures for New URI Schemes", BCP 35,

 RFC 7595, June 2015,

 <https://www.rfc-editor.org/info/bcp35>.

 [HTML5] WHATWG, "HTML - Living Standard", Section 4.10.21, June

 2020, <https://html.spec.whatwg.org/#form-submission>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",

 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,

 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

 and D. Orchard, "URI Template", RFC 6570,

 DOI 10.17487/RFC6570, March 2012,

 <https://www.rfc-editor.org/info/rfc6570>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

 "JavaScript Object Notation (JSON) Pointer", RFC 6901,

 DOI 10.17487/RFC6901, April 2013,

 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC6943] Thaler, D., Ed., "Issues in Identifier Comparison for

 Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May

 2013, <https://www.rfc-editor.org/info/rfc6943>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,

 DOI 10.17487/RFC8288, October 2017,

 <https://www.rfc-editor.org/info/rfc8288>.

 [RFC8615] Nottingham, M., "Well-Known Uniform Resource Identifiers

 (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,

 <https://www.rfc-editor.org/info/rfc8615>.

Appendix A. Changes from RFC 7320

 Many of the requirements of RFC 7320 were removed, in the spirit of

 making this BCP guidance rather than rules.

Acknowledgments

 Thanks to David Booth, Dave Crocker, Tim Bray, Anne van Kesteren,

 Martin Thomson, Erik Wilde, Dave Thaler, and Barry Leiba for their

 suggestions and feedback.

Author’s Address

 Mark Nottingham

 Email: mnot@mnot.net

 URI: https://www.mnot.net/

