
ï»¿

Internet Engineering Task Force (IETF) M. Boucadair, Ed.
Request for Comments: 8783 Orange
Category: Standards Track T. Reddy.K, Ed.
ISSN: 2070-1721 McAfee
 May 2020

Distributed Denial-of-Service Open Threat Signaling (DOTS) Data Channel
 Specification

Abstract

 The document specifies a Distributed Denial-of-Service Open Threat
 Signaling (DOTS) data channel used for bulk exchange of data that
 cannot easily or appropriately communicated through the DOTS signal
 channel under attack conditions.

 This is a companion document to "Distributed Denial-of-Service Open
 Threat Signaling (DOTS) Signal Channel Specification" (RFC 8782).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8783.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 3. DOTS Data Channel
 3.1. Design Overview
 3.2. DOTS Server(s) Discovery
 3.3. DOTS Gateways
 3.4. Detecting and Preventing Infinite Loops
 3.5. Preventing Stale Entries
 4. DOTS Data Channel YANG Module
 4.1. Generic Tree Structure
 4.2. Filtering Fields
 4.3. YANG Module
 5. Managing DOTS Clients
 5.1. Registering DOTS Clients
 5.2. De-registering DOTS Clients
 6. Managing DOTS Aliases

 6.1. Creating Aliases
 6.2. Retrieving Installed Aliases
 6.3. Deleting Aliases
 7. Managing DOTS Filtering Rules
 7.1. Retrieving DOTS Filtering Capabilities
 7.2. Installing Filtering Rules
 7.3. Retrieving Installed Filtering Rules
 7.4. Removing Filtering Rules
 8. Operational Considerations
 9. IANA Considerations
 10. Security Considerations
 11. References
 11.1. Normative References
 11.2. Informative References
 Appendix A. Examples: Filtering Fragments
 Appendix B. Examples: Filtering TCP Messages
 B.1. Discard TCP Null Attack
 B.2. Rate-Limit SYN Flooding
 B.3. Rate-Limit ACK Flooding
 Acknowledgements
 Contributors
 Authors’ Addresses

1. Introduction

 A distributed denial-of-service (DDoS) attack is an attempt to make
 machines or network resources unavailable to their intended users.
 In most cases, sufficient scale can be achieved by compromising
 enough end hosts and using those infected hosts to perpetrate and
 amplify the attack. The victim of such an attack can be an
 application server, a router, a firewall, an entire network, etc.

 As discussed in [RFC8612], the lack of a common method to coordinate
 a real-time response among involved actors and network domains
 inhibits the speed and effectiveness of DDoS attack mitigation. From
 that standpoint, DDoS Open Threat Signaling (DOTS) defines an
 architecture that allows a DOTS client to send requests to a DOTS
 server for DDoS attack mitigation [DOTS-ARCH]. The DOTS approach is
 thus meant to minimize the impact of DDoS attacks, thereby
 contributing to the enforcement of more efficient defensive if not
 proactive security strategies. To that aim, DOTS defines two
 channels: the signal channel and the data channel (Figure 1).

 +---------------+ +---------------+
	<------- Signal Channel ------>	
DOTS Client		DOTS Server
	<======= Data Channel ======>	
 +---------------+ +---------------+

 Figure 1: DOTS Channels

 The DOTS signal channel is used to carry information about a device
 or a network (or a part thereof) that is under a DDoS attack. Such
 information is sent by a DOTS client to an upstream DOTS server so
 that appropriate mitigation actions are undertaken on traffic deemed
 suspicious. The DOTS signal channel is further elaborated in
 [RFC8782].

 The DOTS data channel is used for infrequent bulk data exchange
 between DOTS agents to significantly improve the coordination of all
 the parties involved in the response to the attack. Section 2 of
 [DOTS-ARCH] mentions that the DOTS data channel is used to perform
 the following tasks:

 * Creation of aliases for resources for which mitigation may be
 requested.

 A DOTS client may submit to its DOTS server a collection of
 prefixes to which it would like to refer by an alias when
 requesting mitigation. The DOTS server can respond to this
 request with either a success or failure response (see Section 2

 of [DOTS-ARCH]).

 Refer to Section 6 for more details.

 * Policy management, which enables a DOTS client to request the
 installation or withdrawal of traffic filters, the dropping or
 rate-limiting of unwanted traffic, and the permitting of accept-
 listed traffic. A DOTS client is entitled to instruct filtering
 rules only on IP resources that belong to its domain.

 Sample use cases for populating drop- or accept-list filtering
 rules are detailed hereafter:

 - If a network resource (DOTS client) is informed about a
 potential DDoS attack from a set of IP addresses, the DOTS
 client informs its servicing DOTS gateway of all suspect IP
 addresses that need to be drop-listed for further
 investigation. The DOTS client could also specify a list of
 protocols and port numbers in the drop-list rule.

 The DOTS gateway then propagates the drop-listed IP addresses
 to a DOTS server, which will undertake appropriate actions so
 that traffic originated by these IP addresses to the target
 network (specified by the DOTS client) is blocked.

 - A network that has partner sites from which only legitimate
 traffic arrives may want to ensure that the traffic from these
 sites is not subjected to DDoS attack mitigation. The DOTS
 client uses the DOTS data channel to convey the accept-listed
 IP prefixes of the partner sites to its DOTS server.

 The DOTS server uses this information to accept-list flows
 originated by such IP prefixes and which reach the network.

 Refer to Section 7 for more details.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The reader should be familiar with the terms defined in [RFC8612].

 The terminology for describing YANG modules is defined in [RFC7950].
 The meaning of the symbols in the tree diagrams is defined in
 [RFC8340].

 This document generalizes the notion of Access Control List (ACL) so
 that it is not device specific [RFC8519]. As such, this document
 defines an ACL as an ordered set of rules that is used to filter
 traffic. Each rule is represented by an Access Control Entry (ACE).
 ACLs communicated via the DOTS data channel are not bound to a device
 interface.

 For the sake of simplicity, the examples in this document use
 "/restconf" as the discovered RESTCONF API root path. Within the
 examples, many protocol header lines and message-body text are split
 into multiple lines for display purposes only. When a line ends with
 backslash (’\’) as the last character, the line is wrapped for
 display purposes. It is to be considered to be joined to the next
 line by deleting the backslash, the following line break, and the
 leading whitespace of the next line.

3. DOTS Data Channel

3.1. Design Overview

 Unlike the DOTS signal channel, which must remain operational even

 when confronted with signal degradation due to packet loss, the DOTS
 data channel is not expected to be fully operational at all times,
 especially when a DDoS attack is underway. The requirements for a
 DOTS data channel protocol are documented in [RFC8612].

 This specification does not require an order of DOTS signal and data
 channel creation nor does it mandate a time interval between them.
 These considerations are implementation and deployment specific.

 As the primary function of the data channel is data exchange, a
 reliable transport mode is required in order for DOTS agents to
 detect data delivery success or failure. This document uses RESTCONF
 [RFC8040] over TLS over TCP as the DOTS data channel protocol. The
 abstract layering of the DOTS data channel is shown in Figure 2.

 +-------------------+
 | DOTS Data Channel |
 +-------------------+
 | RESTCONF |
 +-------------------+
 | TLS |
 +-------------------+
 | TCP |
 +-------------------+
 | IP |
 +-------------------+

 Figure 2: Abstract Layering of DOTS Data Channel

 The HTTP POST, PUT, PATCH, and DELETE methods are used to edit data
 resources represented by DOTS data channel YANG modules. These basic
 edit operations allow a DOTS client to alter the running
 configuration of the DOTS data channel. Rules for generating and
 processing RESTCONF methods are defined in Section 4 of [RFC8040].

 DOTS data channel configuration information as well as state
 information can be retrieved with the GET method. An HTTP status-
 line is returned for each request to report success or failure for
 RESTCONF operations (Section 5.4 of [RFC8040]). The error-tag
 provides more information about encountered errors (Section 7 of
 [RFC8040]).

 DOTS clients perform the root resource discovery procedure discussed
 in Section 3.1 of [RFC8040] to determine the root of the RESTCONF
 API. After discovering the RESTCONF API root, a DOTS client uses
 this value as the initial part of the path in the request URI in any
 subsequent request to the DOTS server. The DOTS server may support
 the retrieval of the YANG modules it supports (Section 3.7 of
 [RFC8040]). For example, a DOTS client may use RESTCONF to retrieve
 the vendor-specific YANG modules supported by its DOTS server.

 JavaScript Object Notation (JSON) [RFC8259] payloads are used to
 propagate the DOTS data-channel-specific payload messages that carry
 request parameters and response information, such as errors. This
 specification uses the encoding rules defined in [RFC7951] for
 representing DOTS data channel configuration data using YANG
 (Section 4) as JSON text.

 A DOTS client registers itself with its DOTS server(s) in order to
 set up DOTS data channel-related configuration data and to receive
 state data (i.e., non-configuration data) from the DOTS server(s)
 (Section 5). Mutual authentication considerations are specified in
 Section 8 of [RFC8782]. The coupling of signal and data channels is
 discussed in Section 4.4.1 of [RFC8782].

 A DOTS client can either maintain a persistent connection or initiate
 periodic connections with its DOTS server(s). If the DOTS client
 needs to frequently update the drop-list or accept-list filtering
 rules or aliases, it maintains a persistent connection with the DOTS
 server. For example, CAPTCHA and cryptographic puzzles can be used
 by the mitigation service in the DOTS client domain to determine

 whether or not the IP address is used for legitimate purpose, and the
 DOTS client can frequently update the drop-list filtering rules. A
 persistent connection is also useful if the DOTS client subscribes to
 event notifications (Section 6.3 of [RFC8040]). Additional
 considerations related to RESTCONF connection management (including,
 configuring the connection type or the reconnect strategy) can be
 found in [RESTCONF-MODELS].

 A single DOTS data channel between DOTS agents can be used to
 exchange multiple requests and multiple responses. To reduce DOTS
 client and DOTS server workload, DOTS clients SHOULD reuse the same
 TLS session. While the communication to the DOTS server is
 quiescent, the DOTS client MAY probe the server to ensure it has
 maintained cryptographic state. Such probes can also keep alive
 firewall and/or NAT bindings. A TLS heartbeat [RFC6520] verifies
 that the DOTS server still has TLS state by returning a TLS message.

 A DOTS server may detect conflicting filtering requests from distinct
 DOTS clients that belong to the same domain. For example, a DOTS
 client could request to drop-list a prefix by specifying the source
 prefix, while another DOTS client could request to accept-list that
 same source prefix, but both having the same destination prefix.
 DOTS servers SHOULD support a configuration parameter to indicate the
 behavior to follow when a conflict is detected (e.g., reject all,
 reject the new request, notify an administrator for validation).
 Section 7.2 specifies a default behavior when no instruction is
 supplied to a DOTS server.

 How a DOTS client synchronizes its configuration with the one
 maintained by its DOTS server(s) is implementation specific. For
 example:

 * A DOTS client can systematically send a GET message before and/or
 after a configuration change request.

 * A DOTS client can reestablish the disconnected DOTS session after
 an attack is mitigated. Then, it sends a GET message before a
 configuration change request.

 NAT considerations for the DOTS data channel are similar to those
 discussed in Section 3 of [RFC8782].

 The translation of filtering rules instantiated on a DOTS server into
 network configuration actions is out of scope of this specification.

 Some of the fields introduced in Section 4 are also discussed in
 Sections 5, 6, and 7. These sections are authoritative for these
 fields.

3.2. DOTS Server(s) Discovery

 This document assumes that DOTS clients are provisioned with the
 knowledge of how to reach their DOTS server(s), which could occur by
 a variety of means (e.g., local configuration or dynamic means such
 as DHCP [DOTS-SERVER-DISC]). The specification of such means are out
 of scope of this document.

 Likewise, it is out of scope of this document to specify the behavior
 to be followed by a DOTS client to send DOTS requests when multiple
 DOTS servers are provisioned (e.g., contact all DOTS servers, select
 one DOTS server among the list).

3.3. DOTS Gateways

 When a server-domain DOTS gateway is involved in DOTS data channel
 exchanges, the same considerations for manipulating the ’cdid’
 (client domain identifier) parameter specified in [RFC8782] MUST be
 followed by DOTS agents. As a reminder, ’cdid’ is meant to assist
 the DOTS server in enforcing some policies (e.g., limit the number of
 filtering rules per DOTS client or per DOTS client domain). A loop
 detection mechanism for DOTS gateways is specified in Section 3.4.

 If a DOTS gateway is involved, the DOTS gateway verifies that the
 DOTS client is authorized to undertake a data channel action (e.g.,
 instantiate filtering rules). If the DOTS client is authorized, it
 propagates the rules to the upstream DOTS server. Likewise, the DOTS
 server verifies that the DOTS gateway is authorized to relay data
 channel actions. For example, to create or purge filters, a DOTS
 client sends its request to its DOTS gateway. The DOTS gateway
 validates the rules in the request and proxies the requests
 containing the filtering rules to its DOTS server. When the DOTS
 gateway receives the associated response from the DOTS server, it
 propagates the response back to the DOTS client.

3.4. Detecting and Preventing Infinite Loops

 In order to detect and prevent infinite loops, DOTS gateways MUST
 support the procedure defined in Section 5.7.1 of [RFC7230]. In
 particular, each intermediate DOTS gateway MUST check that none of
 its own information (e.g., server names, literal IP addresses) is
 present in the Via header field of a DOTS message it receives:

 * If it detects that its own information is present in the Via
 header field, the DOTS gateway MUST NOT forward the DOTS message.
 Messages that cannot be forwarded because of a loop SHOULD be
 logged with a "508 Loop Detected" status-line returned to the DOTS
 peer. The structure of the reported error is depicted in
 Figure 3.

 error-app-tag: loop-detected
 error-tag: operation-failed
 error-type: transport, application
 error-info: <via-header> : A copy of the Via header field when
 the loop was detected.
 Description: An infinite loop has been detected when forwarding
 a requests via a proxy.

 Figure 3: Loop Detected Error

 It is RECOMMENDED that DOTS clients and gateways support methods
 to alert administrators about loop errors so that appropriate
 actions are undertaken.

 * Otherwise, the DOTS agent MUST update or insert the Via header
 field by appending its own information.

 Unless configured otherwise, DOTS gateways at the boundaries of a
 DOTS client domain SHOULD remove the previous Via header field
 information after checking for a loop before forwarding. This
 behavior is required for topology hiding purposes but can also serve
 to minimize potential conflicts that may arise if overlapping
 information is used in distinct DOTS domains (e.g., private IPv4
 addresses, aliases that are not globally unique).

3.5. Preventing Stale Entries

 In order to avoid stale entries, a lifetime is associated with alias
 and filtering entries created by DOTS clients. Also, DOTS servers
 may track the inactivity timeout of DOTS clients to detect stale
 entries.

4. DOTS Data Channel YANG Module

4.1. Generic Tree Structure

 The DOTS data channel YANG module ’ietf-dots-data-channel’ provides a
 method for DOTS clients to manage aliases for resources for which
 mitigation may be requested. Such aliases may be used in subsequent
 DOTS signal channel exchanges to refer more efficiently to the
 resources under attack.

 Note that the full module’s tree has been split across several

 figures to aid the exposition of the various subtrees.

 The tree structure for the DOTS alias is depicted in Figure 4.

 module: ietf-dots-data-channel
 +--rw dots-data
 +--rw dots-client* [cuid]
 | +--rw cuid string
 | +--rw cdid? string
 | +--rw aliases
 | | +--rw alias* [name]
 | | +--rw name string
 | | +--rw target-prefix* inet:ip-prefix
 | | +--rw target-port-range* [lower-port]
 | | | +--rw lower-port inet:port-number
 | | | +--rw upper-port? inet:port-number
 | | +--rw target-protocol* uint8
 | | +--rw target-fqdn* inet:domain-name
 | | +--rw target-uri* inet:uri
 | | +--ro pending-lifetime? int32
 | +--rw acls
 | ...
 +--ro capabilities
 ...

 Figure 4: DOTS Alias Subtree

 Also, the ’ietf-dots-data-channel’ YANG module provides a method for
 DOTS clients to manage filtering rules. Examples of filtering
 management in a DOTS context include, but are not limited to:

 * Drop-list management, which enables a DOTS client to inform a DOTS
 server about sources from which traffic should be discarded.

 * Accept-list management, which enables a DOTS client to inform a
 DOTS server about sources from which traffic should always be
 accepted.

 * Policy management, which enables a DOTS client to request the
 installation or withdrawal of traffic filters, the dropping or
 rate-limiting of unwanted traffic, and the allowance of accept-
 listed traffic.

 The tree structure for the DOTS filtering entries is depicted in
 Figure 5.

 Investigations into the prospect of augmenting ’ietf-access-control-
 list’ to meet DOTS requirements concluded that such a design approach
 did not support many of the DOTS requirements, for example:

 * Retrieve a filtering entry (or all entries) created by a DOTS
 client.

 * Delete a filtering entry that was instantiated by a DOTS client.

 Accordingly, new DOTS filtering entries (i.e., ACL) are defined that
 mimic the structure specified in [RFC8519]. Concretely, DOTS agents
 are assumed to manipulate an ordered list of ACLs; each ACL contains
 a separately ordered list of ACEs. Each ACE has a group of match and
 a group of action criteria.

 Once all of the ACE entries have been iterated though with no match,
 then all of the following ACL’s ACE entries are iterated through
 until the first match, at which point the specified action is
 applied. If there is no match during ’idle’ time (i.e., no
 mitigation is active), then there is no further action to be taken
 against the packet. If there is no match during active mitigation,
 then the packet will still be scrubbed by the DDoS mitigator.

 module: ietf-dots-data-channel
 +--rw dots-data

 +--rw dots-client* [cuid]
 | +--rw cuid string
 | +--rw cdid? string
 | +--rw aliases
 | | ...
 | +--rw acls
 | +--rw acl* [name]
 | +--rw name string
 | +--rw type? ietf-acl:acl-type
 | +--rw activation-type? activation-type
 | +--ro pending-lifetime? int32
 | +--rw aces
 | +--rw ace* [name]
 | +--rw name string
 | +--rw matches
 | | +--rw (l3)?
 | | | +--:(ipv4)
 | | | | ...
 | | | +--:(ipv6)
 | | | ...
 | | +--rw (l4)?
 | | +--:(tcp)
 | | | ...
 | | +--:(udp)
 | | | ...
 | | +--:(icmp)
 | | ...
 | +--rw actions
 | | +--rw forwarding identityref
 | | +--rw rate-limit? decimal64
 | +--ro statistics
 | +--ro matched-packets? yang:counter64
 | +--ro matched-octets? yang:counter64
 +--ro capabilities
 ...

 Figure 5: DOTS ACLs Subtree

 Filtering rules instructed by a DOTS client assume a default
 direction: the destination is the DOTS client domain.

 DOTS forwarding actions can be ’accept’ (i.e., accept matching
 traffic) or ’drop’ (i.e., drop matching traffic without sending any
 ICMP error message). Accepted traffic can be subject to rate-
 limiting ’rate-limit’. Note that ’reject’ action (i.e., drop
 matching traffic and send an ICMP error message to the source) is not
 supported in ’ietf-dots-data-channel’ because it is not appropriate
 in the context of DDoS mitigation. Generating ICMP messages to
 notify of drops when mitigating a DDoS attack will exacerbate the
 DDoS attack. Furthermore, these ICMP messages will be used by an
 attacker as an explicit signal that the traffic is being blocked.

4.2. Filtering Fields

 The ’ietf-dots-data-channel’ module reuses the packet fields module
 ’ietf-packet-fields’ [RFC8519], which defines matching on fields in
 the packet including IPv4, IPv6, and transport layer fields. The
 ’ietf-dots-data-channel’ module can be augmented, for example, to
 support additional protocol-specific matching fields.

 This specification defines a new IPv4/IPv6 matching field called
 ’fragment’ to efficiently handle fragment-related filtering rules.
 Indeed, [RFC8519] does not support such capability for IPv6 but
 offers a partial support for IPv4 by means of ’flags’. Nevertheless,
 the use of ’flags’ is problematic since it does not allow a bitmask
 to be defined. For example, setting other bits not covered by the
 ’flags’ filtering clause in a packet will allow that packet to get
 through (because it won’t match the ACE). Examples to illustrate how
 ’fragment’ can be used are provided in Appendix A.

 Figure 6 shows the IPv4 match subtree.

 module: ietf-dots-data-channel
 +--rw dots-data
 +--rw dots-client* [cuid]
 | ...
 | +--rw acls
 | +--rw acl* [name]
 | ...
 | +--rw aces
 | +--rw ace* [name]
 | +--rw name string
 | +--rw matches
 | | +--rw (l3)?
 | | | +--:(ipv4)
 | | | | +--rw ipv4
 | | | | +--rw dscp? inet:dscp
 | | | | +--rw ecn? uint8
 | | | | +--rw length? uint16
 | | | | +--rw ttl? uint8
 | | | | +--rw protocol? uint8
 | | | | +--rw ihl? uint8
 | | | | +--rw flags? bits
 | | | | +--rw offset? uint16
 | | | | +--rw identification? uint16
 | | | | +--rw (destination-network)?
 | | | | | +--:(destination-ipv4-network)
 | | | | | +--rw destination-ipv4-network?
 | | | | | inet:ipv4-prefix
 | | | | +--rw (source-network)?
 | | | | | +--:(source-ipv4-network)
 | | | | | +--rw source-ipv4-network?
 | | | | | inet:ipv4-prefix
 | | | | +--rw fragment
 | | | | +--rw operator? operator
 | | | | +--rw type fragment-type
 | | | +--:(ipv6)
 | | | ...
 | | +--rw (l4)?
 | | ...
 | +--rw actions
 | | ...
 | +--ro statistics
 | ...
 +--ro capabilities
 ...

 Figure 6: DOTS ACLs Subtree (IPv4 Match)

 Figure 7 shows the IPv6 match subtree.

 module: ietf-dots-data-channel
 +--rw dots-data
 +--rw dots-client* [cuid]
 | ...
 | +--rw acls
 | +--rw acl* [name]
 | ...
 | +--rw aces
 | +--rw ace* [name]
 | +--rw name string
 | +--rw matches
 | | +--rw (l3)?
 | | | +--:(ipv4)
 | | | | ...
 | | | +--:(ipv6)
 | | | +--rw ipv6
 | | | +--rw dscp? inet:dscp
 | | | +--rw ecn? uint8
 | | | +--rw length? uint16
 | | | +--rw ttl? uint8
 | | | +--rw protocol? uint8

 | | | +--rw (destination-network)?
 | | | | +--:(destination-ipv6-network)
 | | | | +--rw destination-ipv6-network?
 | | | | inet:ipv6-prefix
 | | | +--rw (source-network)?
 | | | | +--:(source-ipv6-network)
 | | | | +--rw source-ipv6-network?
 | | | | inet:ipv6-prefix
 | | | +--rw flow-label?
 | | | | inet:ipv6-flow-label
 | | | +--rw fragment
 | | | +--rw operator? operator
 | | | +--rw type fragment-type
 | | +--rw (l4)?
 | | ...
 | +--rw actions
 | | ...
 | +--ro statistics
 | ...
 +--ro capabilities
 ...

 Figure 7: DOTS ACLs Subtree (IPv6 Match)

 Figure 8 shows the TCP match subtree. In addition to the fields
 defined in [RFC8519], this specification defines a new TCP matching
 field, called ’flags-bitmask’, to efficiently handle TCP flags
 filtering rules. Some examples are provided in Appendix B.

 +--rw matches
 | +--rw (l3)?
 | | ...
 | +--rw (l4)?
 | +--:(tcp)
 | | +--rw tcp
 | | +--rw sequence-number? uint32
 | | +--rw acknowledgement-number? uint32
 | | +--rw data-offset? uint8
 | | +--rw reserved? uint8
 | | +--rw flags? bits
 | | +--rw window-size? uint16
 | | +--rw urgent-pointer? uint16
 | | +--rw options? binary
 | | +--rw flags-bitmask
 | | | +--rw operator? operator
 | | | +--rw bitmask uint16
 | | +--rw (source-port)?
 | | | +--:(source-port-range-or-operator)
 | | | +--rw source-port-range-or-operator
 | | | +--rw (port-range-or-operator)?
 | | | +--:(range)
 | | | | +--rw lower-port
 | | | | | inet:port-number
 | | | | +--rw upper-port
 | | | | inet:port-number
 | | | +--:(operator)
 | | | +--rw operator?
 | | | | operator
 | | | +--rw port
 | | | inet:port-number
 | | +--rw (destination-port)?
 | | +--:(destination-port-range-or-operator)
 | | +--rw destination-port-range-or-operator
 | | +--rw (port-range-or-operator)?
 | | +--:(range)
 | | | +--rw lower-port
 | | | | inet:port-number
 | | | +--rw upper-port
 | | | inet:port-number
 | | +--:(operator)
 | | +--rw operator?

 | | | operator
 | | +--rw port
 | | inet:port-number
 | +--:(udp)
 | | ...
 | +--:(icmp)
 | ...
 +--rw actions
 | ...

 Figure 8: DOTS ACLs Subtree (TCP Match)

 Figure 9 shows the UDP and ICMP match subtrees. The same structure
 is used for both ICMP and ICMPv6. The indication whether an ACL is
 about ICMP or ICMPv6 is governed by the ’l3’ match or the ACL type.

 +--rw matches
 | +--rw (l3)?
 | | ...
 | +--rw (l4)?
 | +--:(tcp)
 | | ...
 | +--:(udp)
 | | +--rw udp
 | | +--rw length? uint16
 | | +--rw (source-port)?
 | | | +--:(source-port-range-or-operator)
 | | | +--rw source-port-range-or-operator
 | | | +--rw (port-range-or-operator)?
 | | | +--:(range)
 | | | | +--rw lower-port
 | | | | | inet:port-number
 | | | | +--rw upper-port
 | | | | inet:port-number
 | | | +--:(operator)
 | | | +--rw operator?
 | | | | operator
 | | | +--rw port
 | | | inet:port-number
 | | +--rw (destination-port)?
 | | +--:(destination-port-range-or-operator)
 | | +--rw destination-port-range-or-operator
 | | +--rw (port-range-or-operator)?
 | | +--:(range)
 | | | +--rw lower-port
 | | | | inet:port-number
 | | | +--rw upper-port
 | | | inet:port-number
 | | +--:(operator)
 | | +--rw operator?
 | | | operator
 | | +--rw port
 | | inet:port-number
 | +--:(icmp)
 | +--rw icmp
 | +--rw type? uint8
 | +--rw code? uint8
 | +--rw rest-of-header? binary
 +--rw actions
 | ...

 Figure 9: DOTS ACLs Subtree (UDP and ICMP Match)

 DOTS implementations MUST support the following matching criteria:

 Match based on the IP header (IPv4 and IPv6), match based on the
 transport header (TCP, UDP, and ICMP), and match based on any
 combination thereof. The same matching fields are used for both
 ICMP and ICMPv6.

 The following match fields MUST be supported by DOTS implementations

 (Table 1):

 +-----------+---+
 | ACL Match | Mandatory Fields |
 +===========+===+
 | ipv4 | length, protocol, destination-ipv4-network, |
 | | source-ipv4-network, and fragment |
 +-----------+---+
 | ipv6 | length, protocol, destination-ipv6-network, |
 | | source-ipv6-network, and fragment |
 +-----------+---+
 | tcp | flags-bitmask, source-port-range-or-operator, |
 | | and destination-port-range-or-operator |
 +-----------+---+
 | udp | length, source-port-range-or-operator, and |
 | | destination-port-range-or-operator |
 +-----------+---+
 | icmp | type and code |
 +-----------+---+

 Table 1: Mandatory DOTS Channel Match Fields

 Implementations MAY support other filtering match fields and actions.
 The ’ietf-dots-data-channel’ YANG module provides a method for an
 implementation to expose its filtering capabilities. The tree
 structure of the ’capabilities’ is shown in Figure 10. DOTS clients
 that support both ’fragment’ and ’flags’ (or ’flags-bitmask’ and
 ’flags’) matching fields MUST NOT set these fields in the same
 request.

 module: ietf-dots-data-channel
 +--rw dots-data
 ...
 +--ro capabilities
 +--ro address-family* enumeration
 +--ro forwarding-actions* identityref
 +--ro rate-limit? boolean
 +--ro transport-protocols* uint8
 +--ro ipv4
 | +--ro dscp? boolean
 | +--ro ecn? boolean
 | +--ro length? boolean
 | +--ro ttl? boolean
 | +--ro protocol? boolean
 | +--ro ihl? boolean
 | +--ro flags? boolean
 | +--ro offset? boolean
 | +--ro identification? boolean
 | +--ro source-prefix? boolean
 | +--ro destination-prefix? boolean
 | +--ro fragment? boolean
 +--ro ipv6
 | +--ro dscp? boolean
 | +--ro ecn? boolean
 | +--ro length? boolean
 | +--ro hoplimit? boolean
 | +--ro protocol? boolean
 | +--ro destination-prefix? boolean
 | +--ro source-prefix? boolean
 | +--ro flow-label? boolean
 | +--ro fragment? boolean
 +--ro tcp
 | +--ro sequence-number? boolean
 | +--ro acknowledgement-number? boolean
 | +--ro data-offset? boolean
 | +--ro reserved? boolean
 | +--ro flags? boolean
 | +--ro window-size? boolean
 | +--ro urgent-pointer? boolean
 | +--ro options? boolean
 | +--ro flags-bitmask? boolean

 | +--ro source-port? boolean
 | +--ro destination-port? boolean
 | +--ro port-range? boolean
 +--ro udp
 | +--ro length? boolean
 | +--ro source-port? boolean
 | +--ro destination-port? boolean
 | +--ro port-range? boolean
 +--ro icmp
 +--ro type? boolean
 +--ro code? boolean
 +--ro rest-of-header? boolean

 Figure 10: Filtering Capabilities Subtree

4.3. YANG Module

 This module uses the common YANG types defined in [RFC6991] and types
 defined in [RFC8519].

 <CODE BEGINS> file "ietf-dots-data-channel@2020-05-28.yang"
 module ietf-dots-data-channel {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-dots-data-channel";
 prefix data-channel;

 import ietf-inet-types {
 prefix inet;
 reference
 "Section 4 of RFC 6991";
 }
 import ietf-access-control-list {
 prefix ietf-acl;
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs)";
 }
 import ietf-packet-fields {
 prefix packet-fields;
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs)";
 }

 organization
 "IETF DDoS Open Threat Signaling (DOTS) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/dots/>
 WG List: <mailto:dots@ietf.org>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>

 Editor: Konda, Tirumaleswar Reddy.K
 <mailto:TirumaleswarReddy_Konda@McAfee.com>

 Author: Jon Shallow
 <mailto:jon.shallow@nccgroup.com>

 Author: Kaname Nishizuka
 <mailto:kaname@nttv6.jp>

 Author: Liang Xia
 <mailto:frank.xialiang@huawei.com>

 Author: Prashanth Patil
 <mailto:praspati@cisco.com>

 Author: Andrew Mortensen
 <mailto:amortensen@arbor.net>

 Author: Nik Teague
 <mailto:nteague@ironmountain.co.uk>";
 description
 "This module contains YANG definition for configuring
 aliases for resources and filtering rules using DOTS
 data channel.

 Copyright (c) 2020 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8783; see
 the RFC itself for full legal notices.";

 revision 2020-05-28 {
 description
 "Initial revision.";
 reference
 "RFC 8783: Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Data Channel Specification";
 }

 typedef activation-type {
 type enumeration {
 enum activate-when-mitigating {
 value 1;
 description
 "The Access Control List (ACL) is installed only when
 a mitigation is active for the DOTS client.";
 }
 enum immediate {
 value 2;
 description
 "The ACL is immediately activated.";
 }
 enum deactivate {
 value 3;
 description
 "The ACL is maintained by the DOTS server, but it is
 deactivated.";
 }
 }
 description
 "Indicates the activation type of an ACL.";
 }

 typedef operator {
 type bits {
 bit not {
 position 0;
 description
 "If set, logical negation of operation.";
 }
 bit match {
 position 1;
 description
 "Match bit. This is a bitwise match operation
 defined as ’(data & value) == value’.";
 }
 bit any {
 position 3;
 description
 "Any bit. This is a match on any of the bits in
 bitmask. It evaluates to ’true’ if any of the bits

 in the value mask are set in the data,
 i.e., ’(data & value) != 0’.";
 }
 }
 description
 "Specifies how to apply the defined bitmask.
 ’any’ and ’match’ bits must not be set simultaneously.";
 }

 grouping tcp-flags {
 leaf operator {
 type operator;
 default "match";
 description
 "Specifies how to interpret the TCP flags.";
 }
 leaf bitmask {
 type uint16;
 mandatory true;
 description
 "The bitmask matches the last 4 bits of byte 12
 and byte 13 of the TCP header. For clarity, the 4 bits
 of byte 12 corresponding to the TCP data offset field
 are not included in any matching.";
 }
 description
 "Operations on TCP flags.";
 }

 typedef fragment-type {
 type bits {
 bit df {
 position 0;
 description
 "Don’t fragment bit for IPv4.
 Must be set to 0 when it appears in an IPv6 filter.";
 }
 bit isf {
 position 1;
 description
 "Is a fragment.";
 }
 bit ff {
 position 2;
 description
 "First fragment.";
 }
 bit lf {
 position 3;
 description
 "Last fragment.";
 }
 }
 description
 "Different fragment types to match against.";
 }

 grouping target {
 description
 "Specifies the targets of the mitigation request.";
 leaf-list target-prefix {
 type inet:ip-prefix;
 description
 "IPv4 or IPv6 prefix identifying the target.";
 }
 list target-port-range {
 key "lower-port";
 description
 "Port range. When only lower-port is
 present, it represents a single port number.";
 leaf lower-port {

 type inet:port-number;
 mandatory true;
 description
 "Lower port number of the port range.";
 }
 leaf upper-port {
 type inet:port-number;
 must ’. >= ../lower-port’ {
 error-message
 "The upper-port number must be greater than
 or equal to the lower-port number.";
 }
 description
 "Upper port number of the port range.";
 }
 }
 leaf-list target-protocol {
 type uint8;
 description
 "Identifies the target protocol number.

 Values are taken from the IANA protocol registry:
 https://www.iana.org/assignments/protocol-numbers/

 For example, 6 for TCP or 17 for UDP.";
 }
 leaf-list target-fqdn {
 type inet:domain-name;
 description
 "FQDN identifying the target.";
 }
 leaf-list target-uri {
 type inet:uri;
 description
 "URI identifying the target.";
 }
 }

 grouping fragment-fields {
 leaf operator {
 type operator;
 default "match";
 description
 "Specifies how to interpret the fragment type.";
 }
 leaf type {
 type fragment-type;
 mandatory true;
 description
 "Indicates what fragment type to look for.";
 }
 description
 "Operations on fragment types.";
 }

 grouping aliases {
 description
 "Top-level container for aliases.";
 list alias {
 key "name";
 description
 "List of aliases.";
 leaf name {
 type string;
 description
 "The name of the alias.";
 }
 uses target;
 leaf pending-lifetime {
 type int32;
 units "minutes";

 config false;
 description
 "Indicates the pending validity lifetime of the alias
 entry.";
 }
 }
 }

 grouping ports {
 choice source-port {
 container source-port-range-or-operator {
 uses packet-fields:port-range-or-operator;
 description
 "Source port definition.";
 }
 description
 "Choice of specifying the source port or referring to
 a group of source port numbers.";
 }
 choice destination-port {
 container destination-port-range-or-operator {
 uses packet-fields:port-range-or-operator;
 description
 "Destination port definition.";
 }
 description
 "Choice of specifying a destination port or referring
 to a group of destination port numbers.";
 }
 description
 "Choice of specifying a source or destination port numbers.";
 }

 grouping access-lists {
 description
 "Specifies the ordered set of Access Control Lists.";
 list acl {
 key "name";
 ordered-by user;
 description
 "An ACL is an ordered list of Access Control Entries (ACE).
 Each ACE has a list of match criteria and a list of
 actions.";
 leaf name {
 type string {
 length "1..64";
 }
 description
 "The name of the access list.";
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs)";
 }
 leaf type {
 type ietf-acl:acl-type;
 description
 "Type of access control list. Indicates the primary
 intended type of match criteria (e.g., IPv4, IPv6)
 used in the list instance.";
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs)";
 }
 leaf activation-type {
 type activation-type;
 default "activate-when-mitigating";
 description
 "Indicates the activation type of an ACL. An ACL can be
 deactivated, installed immediately, or installed when
 a mitigation is active.";
 }

 leaf pending-lifetime {
 type int32;
 units "minutes";
 config false;
 description
 "Indicates the pending validity lifetime of the ACL
 entry.";
 }
 container aces {
 description
 "The Access Control Entries container contains
 a list of ACEs.";
 list ace {
 key "name";
 ordered-by user;
 description
 "List of access list entries.";
 leaf name {
 type string {
 length "1..64";
 }
 description
 "A unique name identifying this ACE.";
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs)";
 }
 container matches {
 description
 "The rules in this set determine what fields will be
 matched upon before any action is taken on them.

 If no matches are defined in a particular container,
 then any packet will match that container.

 If no matches are specified at all in an ACE, then any
 packet will match the ACE.";
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs)";
 choice l3 {
 container ipv4 {
 when "derived-from(../../../../type, "
 + "’ietf-acl:ipv4-acl-type’)";
 uses packet-fields:acl-ip-header-fields;
 uses packet-fields:acl-ipv4-header-fields;
 container fragment {
 description
 "Indicates how to handle IPv4 fragments.";
 uses fragment-fields;
 }
 description
 "Rule set that matches IPv4 header.";
 }
 container ipv6 {
 when "derived-from(../../../../type, "
 + "’ietf-acl:ipv6-acl-type’)";
 uses packet-fields:acl-ip-header-fields;
 uses packet-fields:acl-ipv6-header-fields;
 container fragment {
 description
 "Indicates how to handle IPv6 fragments.";
 uses fragment-fields;
 }
 description
 "Rule set that matches IPv6 header.";
 }
 description
 "Either IPv4 or IPv6.";
 }
 choice l4 {

 container tcp {
 uses packet-fields:acl-tcp-header-fields;
 container flags-bitmask {
 description
 "Indicates how to handle TCP flags.";
 uses tcp-flags;
 }
 uses ports;
 description
 "Rule set that matches TCP header.";
 }
 container udp {
 uses packet-fields:acl-udp-header-fields;
 uses ports;
 description
 "Rule set that matches UDP header.";
 }
 container icmp {
 uses packet-fields:acl-icmp-header-fields;
 description
 "Rule set that matches ICMP/ICMPv6 header.";
 }
 description
 "Can be TCP, UDP, or ICMP/ICMPv6";
 }
 }
 container actions {
 description
 "Definitions of action for this ACE.";
 leaf forwarding {
 type identityref {
 base ietf-acl:forwarding-action;
 }
 mandatory true;
 description
 "Specifies the forwarding action per ACE.";
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs)";
 }
 leaf rate-limit {
 when "../forwarding = ’ietf-acl:accept’" {
 description
 "Rate-limit is valid only when accept action is
 used.";
 }
 type decimal64 {
 fraction-digits 2;
 }
 units "bytes per second";
 description
 "Specifies how to rate-limit the traffic.";
 }
 }
 container statistics {
 config false;
 description
 "Aggregate statistics.";
 uses ietf-acl:acl-counters;
 }
 }
 }
 }
 }

 container dots-data {
 description
 "Main container for DOTS data channel.";
 list dots-client {
 key "cuid";
 description

 "List of DOTS clients.";
 leaf cuid {
 type string;
 description
 "A unique identifier that is generated by a DOTS client
 to prevent request collisions.";
 reference
 "RFC 8782: Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Signal Channel Specification";
 }
 leaf cdid {
 type string;
 description
 "A client domain identifier conveyed by a
 server-domain DOTS gateway to a remote DOTS server.";
 reference
 "RFC 8782: Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Signal Channel Specification";
 }
 container aliases {
 description
 "Set of aliases that are bound to a DOTS client.";
 uses aliases;
 }
 container acls {
 description
 "Access lists that are bound to a DOTS client.";
 uses access-lists;
 }
 }
 container capabilities {
 config false;
 description
 "Match capabilities";
 leaf-list address-family {
 type enumeration {
 enum ipv4 {
 description
 "IPv4 is supported.";
 }
 enum ipv6 {
 description
 "IPv6 is supported.";
 }
 }
 description
 "Indicates the IP address families supported by
 the DOTS server.";
 }
 leaf-list forwarding-actions {
 type identityref {
 base ietf-acl:forwarding-action;
 }
 description
 "Supported forwarding action(s).";
 }
 leaf rate-limit {
 type boolean;
 description
 "Support of rate-limit action.";
 }
 leaf-list transport-protocols {
 type uint8;
 description
 "Upper-layer protocol associated with a filtering rule.

 Values are taken from the IANA protocol registry:
 https://www.iana.org/assignments/protocol-numbers/

 For example, this field contains 1 for ICMP, 6 for TCP
 17 for UDP, or 58 for ICMPv6.";

 }
 container ipv4 {
 description
 "Indicates IPv4 header fields that are supported to enforce
 ACLs.";
 leaf dscp {
 type boolean;
 description
 "Support of filtering based on Differentiated Services
 Code Point (DSCP).";
 }
 leaf ecn {
 type boolean;
 description
 "Support of filtering based on Explicit Congestion
 Notification (ECN).";
 }
 leaf length {
 type boolean;
 description
 "Support of filtering based on the Total Length.";
 }
 leaf ttl {
 type boolean;
 description
 "Support of filtering based on the Time to Live (TTL).";
 }
 leaf protocol {
 type boolean;
 description
 "Support of filtering based on protocol field.";
 }
 leaf ihl {
 type boolean;
 description
 "Support of filtering based on the Internet Header
 Length (IHL).";
 }
 leaf flags {
 type boolean;
 description
 "Support of filtering based on the ’flags’.";
 }
 leaf offset {
 type boolean;
 description
 "Support of filtering based on the ’offset’.";
 }
 leaf identification {
 type boolean;
 description
 "Support of filtering based on the ’identification’.";
 }
 leaf source-prefix {
 type boolean;
 description
 "Support of filtering based on the source prefix.";
 }
 leaf destination-prefix {
 type boolean;
 description
 "Support of filtering based on the destination prefix.";
 }
 leaf fragment {
 type boolean;
 description
 "Indicates the capability of a DOTS server to
 enforce filters on IPv4 fragments. That is, the match
 functionality based on the Layer 3 ’fragment’ clause
 is supported.";
 }

 }
 container ipv6 {
 description
 "Indicates IPv6 header fields that are supported to enforce
 ACLs.";
 leaf dscp {
 type boolean;
 description
 "Support of filtering based on DSCP.";
 }
 leaf ecn {
 type boolean;
 description
 "Support of filtering based on ECN.";
 }
 leaf length {
 type boolean;
 description
 "Support of filtering based on the Payload Length.";
 }
 leaf hoplimit {
 type boolean;
 description
 "Support of filtering based on the Hop Limit.";
 }
 leaf protocol {
 type boolean;
 description
 "Support of filtering based on the Next Header field.";
 }
 leaf destination-prefix {
 type boolean;
 description
 "Support of filtering based on the destination prefix.";
 }
 leaf source-prefix {
 type boolean;
 description
 "Support of filtering based on the source prefix.";
 }
 leaf flow-label {
 type boolean;
 description
 "Support of filtering based on the Flow Label.";
 }
 leaf fragment {
 type boolean;
 description
 "Indicates the capability of a DOTS server to
 enforce filters on IPv6 fragments.";
 }
 }
 container tcp {
 description
 "Set of TCP fields that are supported by the DOTS server
 to enforce filters.";
 leaf sequence-number {
 type boolean;
 description
 "Support of filtering based on the TCP sequence number.";
 }
 leaf acknowledgement-number {
 type boolean;
 description
 "Support of filtering based on the TCP acknowledgement
 number.";
 }
 leaf data-offset {
 type boolean;
 description
 "Support of filtering based on the TCP data-offset.";

 }
 leaf reserved {
 type boolean;
 description
 "Support of filtering based on the TCP reserved field.";
 }
 leaf flags {
 type boolean;
 description
 "Support of filtering, as defined in RFC 8519, based
 on the TCP flags.";
 }
 leaf window-size {
 type boolean;
 description
 "Support of filtering based on the TCP window size.";
 }
 leaf urgent-pointer {
 type boolean;
 description
 "Support of filtering based on the TCP urgent pointer.";
 }
 leaf options {
 type boolean;
 description
 "Support of filtering based on the TCP options.";
 }
 leaf flags-bitmask {
 type boolean;
 description
 "Support of filtering based on the TCP flags bitmask.";
 }
 leaf source-port {
 type boolean;
 description
 "Support of filtering based on the source port number.";
 }
 leaf destination-port {
 type boolean;
 description
 "Support of filtering based on the destination port
 number.";
 }
 leaf port-range {
 type boolean;
 description
 "Support of filtering based on a port range.

 This includes filtering based on a source port range,
 destination port range, or both. All operators
 (i.e, less than or equal to, greater than or equal to,
 equal to, and not equal to) are supported.

 In particular, this means that the implementation
 supports filtering based on
 source-port-range-or-operator and
 destination-port-range-or-operator.";
 }
 }
 container udp {
 description
 "Set of UDP fields that are supported by the DOTS server
 to enforce filters.";
 leaf length {
 type boolean;
 description
 "Support of filtering based on the UDP length.";
 }
 leaf source-port {
 type boolean;
 description

 "Support of filtering based on the source port number.";
 }
 leaf destination-port {
 type boolean;
 description
 "Support of filtering based on the destination port
 number.";
 }
 leaf port-range {
 type boolean;
 description
 "Support of filtering based on a port range.

 This includes filtering based on a source port range,
 destination port range, or both. All operators
 (i.e, less than or equal, greater than or equal,
 equal to, and not equal to) are supported.

 In particular, this means that the implementation
 supports filtering based on
 source-port-range-or-operator and
 destination-port-range-or-operator.";
 }
 }
 container icmp {
 description
 "Set of ICMP/ICMPv6 fields that are supported by the DOTS
 server to enforce filters.";
 leaf type {
 type boolean;
 description
 "Support of filtering based on the ICMP/ICMPv6 type.";
 }
 leaf code {
 type boolean;
 description
 "Support of filtering based on the ICMP/ICMPv6 code.";
 }
 leaf rest-of-header {
 type boolean;
 description
 "Support of filtering based on the ICMP four-byte
 field / the ICMPv6 message body.";
 }
 }
 }
 }
 }
 <CODE ENDS>

5. Managing DOTS Clients

5.1. Registering DOTS Clients

 In order to make use of the DOTS data channel, a DOTS client MUST
 register with its DOTS server(s) by creating a DOTS client (’dots-
 client’) resource. To that aim, DOTS clients SHOULD send a POST
 request (shown in Figure 11).

 POST /restconf/data/ietf-dots-data-channel:dots-data HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:dots-client": [
 {
 "cuid": "string"
 }
]
 }

 Figure 11: POST to Register Schema

 The ’cuid’ (client unique identifier) parameter is described below:

 cuid: A globally unique identifier that is meant to prevent
 collisions among DOTS clients. This attribute has the same
 meaning, syntax, and processing rules as the ’cuid’ attribute
 defined in [RFC8782].

 DOTS clients MUST use the same ’cuid’ for both signal and data
 channels.

 This is a mandatory attribute.

 In deployments where server-domain DOTS gateways are enabled,
 identity information about the origin source client domain SHOULD be
 supplied to the DOTS server. That information is meant to assist the
 DOTS server to enforce some policies. These policies can be enforced
 per client, per client domain, or both. Figure 12 shows a schema of
 a register request relayed by a server-domain DOTS gateway.

 POST /restconf/data/ietf-dots-data-channel:dots-data HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:dots-client": [
 {
 "cuid": "string",
 "cdid": "string"
 }
]
 }

 Figure 12: POST to Register Schema (via a Server-Domain DOTS Gateway)

 A server-domain DOTS gateway SHOULD add the following attribute:

 cdid: This attribute has the same meaning, syntax, and processing
 rules as the ’cdid’ attribute defined in [RFC8782].

 In deployments where server-domain DOTS gateways are enabled,
 ’cdid’ does not need to be inserted when relaying DOTS methods to
 manage aliases (Section 6) or filtering rules (Section 7). DOTS
 servers are responsible for maintaining the association between
 ’cdid’ and ’cuid’ for policy enforcement purposes.

 This is an optional attribute.

 An example request to create a ’dots-client’ resource is depicted in
 Figure 13. This request is relayed by a server-domain DOTS gateway
 as hinted by the presence of the ’cdid’ attribute.

 POST /restconf/data/ietf-dots-data-channel:dots-data HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:dots-client": [
 {
 "cuid": "dz6pHjaADkaFTbjr0JGBpw",
 "cdid": "7eeaf349529eb55ed50113"
 }
]
 }

 Figure 13: POST to Register (DOTS gateway)

 As a reminder, DOTS gateways may rewrite the ’cuid’ used by peer DOTS
 clients (Section 4.4.1 of [RFC8782]).

 DOTS servers can identify the DOTS client domain using the ’cdid’
 parameter or using the client’s DNS name specified in the Subject
 Alternative Name extension’s dNSName type in the client certificate
 [RFC6125].

 DOTS servers MUST limit the number of ’dots-client’ resources to be
 created by the same DOTS client to 1 per request. Requests with
 multiple ’dots-client’ resources MUST be rejected by DOTS servers.
 To that aim, the DOTS server MUST rely on the same procedure to
 unambiguously identify a DOTS client as discussed in Section 4.4.1 of
 [RFC8782].

 The DOTS server indicates the result of processing the POST request
 using status-line codes. Status codes in the "2xx" range are
 success, "4xx" codes are some sort of invalid requests and "5xx"
 codes are returned if the DOTS server has erred or is incapable of
 accepting the creation of the ’dots-client’ resource. In particular,

 * "201 Created" status-line is returned in the response if the DOTS
 server has accepted the request.

 * "400 Bad Request" status-line is returned by the DOTS server if
 the request does not include a ’cuid’ parameter. The error-tag
 "missing-attribute" is used in this case.

 * "409 Conflict" status-line is returned to the requesting DOTS
 client if the data resource already exists. The error-tag
 "resource-denied" is used in this case.

 Once a DOTS client registers itself with a DOTS server, it can
 create/delete/retrieve aliases (Section 6) and filtering rules
 (Section 7).

 A DOTS client MAY use the PUT request (Section 4.5 of [RFC8040]) to
 register a DOTS client within the DOTS server. An example is shown
 in Figure 14.

 PUT /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:dots-client": [
 {
 "cuid": "dz6pHjaADkaFTbjr0JGBpw"
 }
]
 }

 Figure 14: PUT to Register

 The DOTS gateway that inserted a ’cdid’ in a PUT request MUST strip
 the ’cdid’ parameter in the corresponding response before forwarding
 the response to the DOTS client.

5.2. De-registering DOTS Clients

 A DOTS client de-registers from its DOTS server(s) by deleting the
 ’cuid’ resource(s). Resources bound to this DOTS client will be
 deleted by the DOTS server. An example of a de-register request is
 shown in Figure 15.

 DELETE /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: example.com

 Figure 15: De-register a DOTS Client

6. Managing DOTS Aliases

 The following subsections define the means for a DOTS client to
 create aliases (Section 6.1), to retrieve one or a list of aliases
 (Section 6.2), and to delete an alias (Section 6.3).

6.1. Creating Aliases

 A POST or PUT request is used by a DOTS client to create aliases for
 resources for which a mitigation may be requested. Such aliases may
 be used in subsequent DOTS signal channel exchanges to refer more
 efficiently to the resources under attack.

 DOTS clients within the same domain can create different aliases for
 the same resource.

 The structure of POST requests used to create aliases is shown in
 Figure 16.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=cuid HTTP/1.1
 Host: {host}:{port}
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:aliases": {
 "alias": [
 {
 "name": "string",
 "target-prefix": [
 "string"
],
 "target-port-range": [
 {
 "lower-port": integer,
 "upper-port": integer
 }
],
 "target-protocol": [
 integer
],
 "target-fqdn": [
 "string"
],
 "target-uri": [
 "string"
]
 }
]
 }
 }

 Figure 16: POST to Create Aliases (Request Schema)

 The parameters are described below:

 name: Name of the alias.

 This is a mandatory attribute.

 target-prefix: Prefixes are separated by commas. Prefixes are
 represented using Classless Inter-domain Routing (CIDR) notation
 [RFC4632]. As a reminder, the prefix length must be less than or
 equal to 32 for IPv4 or 128 for IPv6.

 The prefix list MUST NOT include broadcast, loopback, or multicast
 addresses. These addresses are considered as invalid values. In
 addition, the DOTS server MUST validate that these prefixes are
 within the scope of the DOTS client domain. Other validation
 checks may be supported by DOTS servers.

 This is an optional attribute.

 target-port-range: A range of port numbers.

 The port range is defined by two bounds, a lower port number
 (’lower-port’) and an upper port number (’upper-port’). The range
 is considered to include both the lower and upper bounds.

 When only ’lower-port’ is present, it represents a single port
 number.

 For TCP, UDP, Stream Control Transmission Protocol (SCTP)
 [RFC4960], or Datagram Congestion Control Protocol (DCCP)
 [RFC4340], the range of port numbers can be, for example,
 1024-65535.

 This is an optional attribute.

 target-protocol: A list of protocols. Values are taken from the
 IANA protocol registry [IANA-PROTO].

 If ’target-protocol’ is not specified, then the request applies to
 any protocol.

 This is an optional attribute.

 target-fqdn: A list of Fully Qualified Domain Names (FQDNs)
 identifying resources under attack [RFC8499].

 How a name is passed to an underlying name resolution library is
 implementation and deployment specific. Nevertheless, once the
 name is resolved into one or multiple IP addresses, DOTS servers
 MUST apply the same validation checks as those for ’target-
 prefix’.

 The use of FQDNs may be suboptimal because it does not guarantee
 that the DOTS server will resolve a name to the same IP addresses
 that the DOTS client does.

 This is an optional attribute.

 target-uri: A list of Uniform Resource Identifiers (URIs) [RFC3986].

 The same validation checks used for ’target-fqdn’ MUST be followed
 by DOTS servers to validate a target URI.

 This is an optional attribute.

 In POST or PUT requests, at least one of the ’target-prefix’,
 ’target-fqdn’, or ’target-uri’ attributes MUST be present. DOTS
 agents can safely ignore vendor-specific parameters they don’t
 understand.

 If more than one ’target-*’ scope types (e.g., ’target-prefix’ and
 ’target-fqdn’ or ’target-fqdn’ and ’target-uri’) are included in a
 POST or PUT request, the DOTS server binds all resulting IP
 addresses/prefixes to the same resource.

 Figure 17 shows a POST request to create an alias called "https1" for
 HTTPS servers with IP addresses 2001:db8:6401::1 and 2001:db8:6401::2
 listening on TCP port number 443.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:aliases": {
 "alias": [
 {
 "name": "https1",
 "target-protocol": [

 6
],
 "target-prefix": [
 "2001:db8:6401::1/128",
 "2001:db8:6401::2/128"
],
 "target-port-range": [
 {
 "lower-port": 443
 }
]
 }
]
 }
 }

 Figure 17: Example of a POST to Create an Alias

 A "201 Created" status-line MUST be returned in the response if the
 DOTS server has accepted the alias.

 A "409 Conflict" status-line MUST be returned to the requesting DOTS
 client, if the request is conflicting with an existing alias name.
 The error-tag "resource-denied" is used in this case.

 If the request is missing a mandatory attribute or it contains an
 invalid or unknown parameter, a "400 Bad Request" status-line MUST be
 returned by the DOTS server. The error-tag is set to "missing-
 attribute", "invalid-value", or "unknown-element" as a function of
 the encountered error.

 If the request is received via a server-domain DOTS gateway, but the
 DOTS server does not maintain a ’cdid’ for this ’cuid’ while a ’cdid’
 is expected to be supplied, the DOTS server MUST reply with a "403
 Forbidden" status-line and the error-tag "access-denied". Upon
 receipt of this message, the DOTS client MUST register (Section 5).

 A DOTS client uses the PUT request to modify the aliases in the DOTS
 server. In particular, a DOTS client MUST update its alias entries
 upon change of the prefix indicated in the ’target-prefix’.

 A DOTS server MUST maintain an alias for at least 10080 minutes (1
 week). If no refresh request is seen from the DOTS client, the DOTS
 server removes expired entries.

6.2. Retrieving Installed Aliases

 A GET request is used to retrieve one or all installed aliases by a
 DOTS client from a DOTS server (Section 3.3.1 of [RFC8040]). If no
 ’name’ is included in the request, this indicates that the request is
 about retrieving all aliases instantiated by the DOTS client.

 Figure 18 shows an example to retrieve all the aliases that were
 instantiated by the requesting DOTS client. The "content" query
 parameter and its permitted values are defined in Section 4.8.1 of
 [RFC8040].

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw\
 /aliases?content=all HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json

 Figure 18: GET to Retrieve All Installed Aliases

 Figure 19 shows an example of the response message body that includes
 all the aliases that are maintained by the DOTS server for the DOTS
 client identified by the ’cuid’ parameter.

 {
 "ietf-dots-data-channel:aliases": {

 "alias": [
 {
 "name": "Server1",
 "target-protocol": [
 6
],
 "target-prefix": [
 "2001:db8:6401::1/128",
 "2001:db8:6401::2/128"
],
 "target-port-range": [
 {
 "lower-port": 443
 }
],
 "pending-lifetime": 3596
 },
 {
 "name": "Server2",
 "target-protocol": [
 6
],
 "target-prefix": [
 "2001:db8:6401::10/128",
 "2001:db8:6401::20/128"
],
 "target-port-range": [
 {
 "lower-port": 80
 }
],
 "pending-lifetime": 9869
 }
]
 }
 }

 Figure 19: An Example of a Response Body Listing All Installed
 Aliases

 Figure 20 shows an example of a GET request to retrieve the alias
 "Server2" that was instantiated by the DOTS client.

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw\
 /aliases/alias=Server2?content=all HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json

 Figure 20: GET to Retrieve an Alias

 If an alias name (’name’) is included in the request, but the DOTS
 server does not find that alias name for this DOTS client in its
 configuration data, it MUST respond with a "404 Not Found" status-
 line.

6.3. Deleting Aliases

 A DELETE request is used to delete an alias maintained by a DOTS
 server.

 If the DOTS server does not find the alias name that was conveyed in
 the DELETE request in its configuration data for this DOTS client, it
 MUST respond with a "404 Not Found" status-line.

 The DOTS server successfully acknowledges a DOTS client’s request to
 remove the alias using "204 No Content" status-line in the response.

 Figure 21 shows an example of a request to delete an alias.

 DELETE /restconf/data/ietf-dots-data-channel:dots-data\

 /dots-client=dz6pHjaADkaFTbjr0JGBpw\
 /aliases/alias=Server1 HTTP/1.1
 Host: example.com

 Figure 21: Delete an Alias

7. Managing DOTS Filtering Rules

 The following subsections define the means for a DOTS client to
 retrieve DOTS filtering capabilities (Section 7.1), to create
 filtering rules (Section 7.2), to retrieve active filtering rules
 (Section 7.3), and to delete a filtering rule (Section 7.4).

7.1. Retrieving DOTS Filtering Capabilities

 A DOTS client MAY send a GET request to retrieve the filtering
 capabilities supported by a DOTS server. Figure 22 shows an example
 of such request.

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /capabilities HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json

 Figure 22: GET to Retrieve the Capabilities of a DOTS Server

 A DOTS client, which issued a GET request to retrieve the filtering
 capabilities supported by its DOTS server, SHOULD NOT request
 filtering actions that are not supported by that DOTS server.

 Figure 23 shows an example of a response body received from a DOTS
 server which supports:

 * IPv4, IPv6, TCP, UDP, ICMP, and ICMPv6 mandatory match criteria
 listed in Section 4.2.

 * ’accept’, ’drop’, and ’rate-limit’ actions.

 {
 "ietf-dots-data-channel:capabilities": {
 "address-family": ["ipv4", "ipv6"],
 "forwarding-actions": ["drop", "accept"],
 "rate-limit": true,
 "transport-protocols": [1, 6, 17, 58],
 "ipv4": {
 "length": true,
 "protocol": true,
 "destination-prefix": true,
 "source-prefix": true,
 "fragment": true
 },
 "ipv6": {
 "length": true,
 "protocol": true,
 "destination-prefix": true,
 "source-prefix": true,
 "fragment": true
 },
 "tcp": {
 "flags-bitmask": true,
 "source-port": true,
 "destination-port": true,
 "port-range": true
 },
 "udp": {
 "length": true,
 "source-port": true,
 "destination-port": true,
 "port-range": true
 },
 "icmp": {

 "type": true,
 "code": true
 }
 }
 }

 Figure 23: Reply to a GET Request with Filtering Capabilities
 (Message Body)

7.2. Installing Filtering Rules

 A POST or PUT request is used by a DOTS client to communicate
 filtering rules to a DOTS server.

 Figure 24 shows an example of a POST request to block traffic from
 192.0.2.0/24 and destined to 198.51.100.0/24. Other examples are
 discussed in Appendix A.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "sample-ipv4-acl",
 "type": "ipv4-acl-type",
 "activation-type": "activate-when-mitigating",
 "aces": {
 "ace": [
 {
 "name": "rule1",
 "matches": {
 "ipv4": {
 "destination-ipv4-network": "198.51.100.0/24",
 "source-ipv4-network": "192.0.2.0/24"
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }
]
 }
 }
]
 }
 }

 Figure 24: POST to Install Filtering Rules

 The meaning of these parameters is as follows:

 name: The name of the access list.

 This is a mandatory attribute.

 type: Indicates the primary intended type of match criteria (e.g.,
 IPv4, IPv6). It is set to ’ipv4-acl-type’ in the example of
 Figure 24.

 This is an optional attribute.

 activation-type: Indicates whether an ACL has to be activated
 (immediately or during mitigation time) or instantiated without
 being activated (deactivated). Deactivated ACLs can be activated
 using a variety of means, such as manual configuration on a DOTS
 server or by using the DOTS data channel.

 If this attribute is not provided, the DOTS server MUST use
 ’activate-when-mitigating’ as the default value.

 When a mitigation is in progress, the DOTS server MUST only
 activate ’activate-when-mitigating’ filters that are bound to the
 DOTS client that triggered the mitigation.

 This is an optional attribute.

 matches: Defines criteria used to identify a flow on which to apply
 the rule. It can be "l3" (IPv4, IPv6) or "l4" (TCP, UDP, ICMP).
 The detailed match parameters are specified in Section 4.

 In the example depicted in Figure 24, an IPv4 matching criteria is
 used.

 This is an optional attribute.

 destination-ipv4-network: The destination IPv4 prefix. DOTS servers
 MUST validate that these prefixes are within the scope of the DOTS
 client domain. Other validation checks may be supported by DOTS
 servers. If this attribute is not provided, the DOTS server
 enforces the ACL on any destination IP address that belongs to the
 DOTS client domain.

 This is a mandatory attribute in requests with an ’activation-
 type’ set to ’immediate’.

 source-ipv4-network: The source IPv4 prefix.

 This is an optional attribute.

 actions: Actions in the forwarding ACL category can be ’drop’ or
 ’accept’. The ’accept’ action is used to accept-list traffic.
 The "drop" action is used to drop-list traffic.

 Accepted traffic may be subject to ’rate-limit’; the allowed
 traffic rate is represented in bytes per second. This unit is the
 same as the one used for "traffic-rate" in [RFC5575].

 This is a mandatory attribute.

 The DOTS server indicates the result of processing the POST request
 using the status-line. Concretely, a "201 Created" status-line MUST
 be returned in the response if the DOTS server has accepted the
 filtering rules. If the request is missing a mandatory attribute or
 contains an invalid or unknown parameter (e.g., a match field not
 supported by the DOTS server), a "400 Bad Request" status-line MUST
 be returned by the DOTS server in the response. The error-tag is set
 to "missing-attribute", "invalid-value", or "unknown-element" as a
 function of the encountered error.

 If the request is received via a server-domain DOTS gateway, but the
 DOTS server does not maintain a ’cdid’ for this ’cuid’ while a ’cdid’
 is expected to be supplied, the DOTS server MUST reply with a "403
 Forbidden" status-line and the error-tag "access-denied". Upon
 receipt of this message, the DOTS client MUST register (Figure 11).

 If the request is conflicting with an existing filtering installed by
 another DOTS client of the domain, absent any local policy, the DOTS
 server returns a "409 Conflict" status-line to the requesting DOTS
 client. The error-tag "resource-denied" is used in this case.

 The "insert" query parameter (Section 4.8.5 of [RFC8040]) MAY be used
 to specify how an access control entry is inserted within an ACL and
 how an ACL is inserted within an ACL set.

 The DOTS client uses the PUT request to modify its filtering rules
 maintained by the DOTS server. In particular, a DOTS client MUST
 update its filtering entries upon change of the destination prefix.
 How such change is detected is out of scope.

 A DOTS server MUST maintain a filtering rule for at least 10080
 minutes (1 week). If no refresh request is seen from the DOTS
 client, the DOTS server removes expired entries. Typically, a
 refresh request is a PUT request that echoes the content of a
 response to a GET request with all of the read-only parameters
 stripped out (e.g., ’pending-lifetime’).

7.3. Retrieving Installed Filtering Rules

 A DOTS client periodically queries its DOTS server to check the
 counters for installed filtering rules. A GET request is used to
 retrieve filtering rules from a DOTS server. In order to indicate
 which type of data is requested in a GET request, the DOTS client
 sets adequately the "content" query parameter.

 If the DOTS server does not find the access list name conveyed in the
 GET request in its configuration data for this DOTS client, it
 responds with a "404 Not Found" status-line.

 In order to illustrate the intended behavior, consider the example
 depicted in Figure 25. In reference to this example, the DOTS client
 requests the creation of an immediate ACL called "test-acl-ipv6-udp".

 PUT /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=paL8p4Zqo4SLv64TLPXrxA/acls\
 /acl=test-acl-ipv6-udp HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "test-acl-ipv6-udp",
 "type": "ipv6-acl-type",
 "activation-type": "immediate",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8:6401::2/127",
 "source-ipv6-network": "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port-range-or-operator": {
 "operator": "lte",
 "port": 80
 },
 "destination-port-range-or-operator": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 25: Example of a PUT Request to Create a Filtering

 The peer DOTS server follows the procedure specified in Section 7.2
 to process the request. We consider in the following that a positive
 response is sent back to the requesting DOTS client to confirm that
 the "test-acl-ipv6-udp" ACL is successfully installed by the DOTS
 server.

 The DOTS client can issue a GET request to retrieve all its filtering
 rules and the number of matches for the installed filtering rules as
 illustrated in Figure 26. The "content" query parameter is set to
 ’all’. The message body of the response to this GET request is shown
 in Figure 27.

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw\
 /acls?content=all HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json

 Figure 26: Retrieve the Configuration Data and State Data for the
 Filtering Rules (GET Request)

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "test-acl-ipv6-udp",
 "type": "ipv6-acl-type",
 "activation-type": "immediate",
 "pending-lifetime":9080,
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8:6401::2/127",
 "source-ipv6-network": "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port-range-or-operator": {
 "operator": "lte",
 "port": 80
 },
 "destination-port-range-or-operator": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 27: Retrieve the Configuration Data and State Data for the
 Filtering Rules (Response Message Body)

 Also, a DOTS client can issue a GET request to retrieve only
 configuration data related to an ACL as shown in Figure 28. It does
 so by setting the "content" query parameter to ’config’.

 GET /restconf/data/ietf-dots-data-channel:dots-data\

 /dots-client=paL8p4Zqo4SLv64TLPXrxA/acls\
 /acl=test-acl-ipv6-udp?content=config HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json

 Figure 28: Retrieve the Configuration Data for a Filtering Rule
 (GET Request)

 A response to this GET request is shown in Figure 29.

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "test-acl-ipv6-udp",
 "type": "ipv6-acl-type",
 "activation-type": "immediate",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8:6401::2/127",
 "source-ipv6-network": "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port-range-or-operator": {
 "operator": "lte",
 "port": 80
 },
 "destination-port-range-or-operator": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 29: Retrieve the Configuration Data for a Filtering Rule
 (Response Message Body)

 A DOTS client can also issue a GET request with a "content" query
 parameter set to ’non-config’ to exclusively retrieve non-
 configuration data bound to a given ACL as shown in Figure 30. A
 response to this GET request is shown in Figure 31.

 GET /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=paL8p4Zqo4SLv64TLPXrxA/acls\
 /acl=test-acl-ipv6-udp?content=non-config HTTP/1.1
 Host: example.com
 Accept: application/yang-data+json

 Figure 30: Retrieve the Non-Configuration Data for a Filtering
 Rule (GET Request)

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {

 "name": "test-acl-ipv6-udp",
 "pending-lifetime": 8000,
 "aces": {
 "ace": [
 {
 "name": "my-test-ace"
 }
]
 }
 }
]
 }
 }

 Figure 31: Retrieve the Non-Configuration Data for a Filtering
 Rule (Response Message Body)

7.4. Removing Filtering Rules

 A DELETE request is used by a DOTS client to delete filtering rules
 from a DOTS server.

 If the DOTS server does not find the access list name carried in the
 DELETE request in its configuration data for this DOTS client, it
 MUST respond with a "404 Not Found" status-line. The DOTS server
 successfully acknowledges a DOTS client’s request to withdraw the
 filtering rules using a "204 No Content" status-line, and removes the
 filtering rules accordingly.

 Figure 32 shows an example of a request to remove the IPv4 ACL
 "sample-ipv4-acl" created in Section 7.2.

 DELETE /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw/acls\
 /acl=sample-ipv4-acl HTTP/1.1
 Host: example.com

 Figure 32: Remove a Filtering Rule (DELETE Request)

 Figure 33 shows an example of a response received from the DOTS
 server to confirm the deletion of "sample-ipv4-acl".

 HTTP/1.1 204 No Content
 Server: Apache
 Date: Fri, 27 Jul 2018 10:05:15 GMT
 Cache-Control: no-cache
 Content-Type: application/yang-data+json
 Content-Length: 0
 Connection: Keep-Alive

 Figure 33: Remove a Filtering Rule (Response)

8. Operational Considerations

 The following operational considerations should be taken into
 account:

 * DOTS servers MUST NOT enable both DOTS data channel and direct
 configuration, to avoid race conditions and inconsistent
 configurations arising from simultaneous updates from multiple
 sources.

 * DOTS agents SHOULD enable the DOTS data channel to configure
 aliases and ACLs, and only use direct configuration as a stop-gap
 mechanism to test DOTS signal channel with aliases and ACLs.
 Further, direct configuration SHOULD only be used when the on-path
 DOTS agents are within the same domain.

 * If a DOTS server has enabled direct configuration, it can reject
 the DOTS data channel connection using hard ICMP error [RFC1122]

 or RST (Reset) bit in the TCP header or reject the RESTCONF
 request using an error response containing a "503 Service
 Unavailable" status-line.

9. IANA Considerations

 IANA has registered the following URI in the "ns" subregistry within
 the "IETF XML Registry" [RFC3688]:

 ID: yang:ietf-dots-data-channel
 URI: urn:ietf:params:xml:ns:yang:ietf-dots-data-channel
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.
 Reference: RFC 8783

 IANA has registered the following YANG module in the "YANG Module
 Names" subregistry [RFC7950] within the "YANG Parameters" registry.

 Name: ietf-dots-data-channel
 Namespace: urn:ietf:params:xml:ns:yang:ietf-dots-data-channel
 Prefix: data-channel
 Reference: RFC 8783

 This module is not maintained by IANA.

10. Security Considerations

 RESTCONF security considerations are discussed in [RFC8040]. In
 particular, DOTS agents MUST follow the security recommendations in
 Sections 2 and 12 of [RFC8040]. Also, DOTS agents MUST support the
 mutual authentication TLS profile discussed in Sections 7.1 and 8 of
 [RFC8782].

 Authenticated encryption MUST be used for data confidentiality and
 message integrity. The interaction between the DOTS agents requires
 Transport Layer Security (TLS) with a cipher suite offering
 confidentiality protection, and the guidance given in [RFC7525] MUST
 be followed to avoid attacks on TLS.

 The installation of drop-list or accept-list rules using RESTCONF
 over TLS reveals the attacker IP addresses and legitimate IP
 addresses only to the DOTS server trusted by the DOTS client. The
 secure communication channel between DOTS agents provides privacy and
 prevents a network eavesdropper from directly gaining access to the
 drop-listed and accept-listed IP addresses.

 An attacker may be able to inject RST packets, bogus application
 segments, etc., regardless of whether TLS authentication is used.
 Because the application data is TLS protected, this will not result
 in the application receiving bogus data, but it will constitute a DoS
 on the connection. This attack can be countered by using TCP
 Authentication Option (TCP-AO) [RFC5925]. If TCP-AO is used, then
 any bogus packets injected by an attacker will be rejected by the
 TCP-AO integrity check and therefore will never reach the TLS layer.

 In order to prevent leaking internal information outside a client
 domain, client-side DOTS gateways SHOULD NOT reveal the identity of
 internal DOTS clients (e.g., source IP address, client’s hostname)
 unless explicitly configured to do so.

 DOTS servers MUST verify that requesting DOTS clients are entitled to
 enforce filtering rules on a given IP prefix. That is, only
 filtering rules on IP resources that belong to the DOTS client domain
 can be authorized by a DOTS server. The exact mechanism for the DOTS
 servers to validate that the target prefixes are within the scope of
 the DOTS client domain is deployment specific.

 Rate-limiting DOTS requests, including those with new ’cuid’ values,
 from the same DOTS client defends against DoS attacks that would
 result from varying the ’cuid’ to exhaust DOTS server resources.
 Rate-limit policies SHOULD be enforced on DOTS gateways (if deployed)

 and DOTS servers.

 Applying resources quota per DOTS client and/or per DOTS client
 domain (e.g., limiting the number of aliases and filters to be
 installed by DOTS clients) prevents DOTS server resources from being
 aggressively used by some DOTS clients and therefore ensures DDoS
 mitigation usage fairness. Additionally, DOTS servers may limit the
 number of DOTS clients that can be enabled per domain.

 When FQDNs are used as targets, the DOTS server MUST rely upon DNS
 privacy enabling protocols (e.g., DNS over TLS [RFC7858] or DNS over
 HTTPS (DoH) [RFC8484]) to prevent eavesdroppers from possibly
 identifying the target resources protected by the DDoS mitigation
 service, and means to ensure the target FQDN resolution is authentic
 (e.g., DNSSEC [RFC4034]).

 The presence of DOTS gateways may lead to infinite forwarding loops,
 which is undesirable. To prevent and detect such loops, a mechanism
 is defined in Section 3.4.

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. The DOTS data channel is responsible
 for exchanging configuration data that affect traffic filtering
 during DDoS attack mitigation, in particular. Appropriate security
 measures are recommended to prevent illegitimate users from invoking
 DOTS data channel primitives on writable data nodes. Nevertheless,
 an attacker who can access a DOTS client is technically capable of
 launching various attacks, such as:

 * Setting an arbitrarily low rate-limit, which may prevent
 legitimate traffic from being forwarded (rate-limit).

 * Setting an arbitrarily high rate-limit, which may lead to the
 forwarding of illegitimate DDoS traffic (rate-limit).

 * Communicating invalid aliases to the server (alias), which will
 cause the failure of associating both data and signal channels.

 * Setting invalid ACL entries, which may prevent legitimate traffic
 from being forwarded. Likewise, invalid ACL entries may lead to
 forward DDoS traffic.

 This module reuses YANG structures from [RFC8519], and the security
 considerations for those nodes continue to apply for this usage.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing
 (CIDR): The Internet Address Assignment and Aggregation
 Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
 2006, <https://www.rfc-editor.org/info/rfc4632>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8519] Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,

 "YANG Data Model for Network Access Control Lists (ACLs)",
 RFC 8519, DOI 10.17487/RFC8519, March 2019,
 <https://www.rfc-editor.org/info/rfc8519>.

 [RFC8782] Reddy.K, T., Ed., Boucadair, M., Ed., Patil, P.,
 Mortensen, A., and N. Teague, "Distributed Denial-of-
 Service Open Threat Signaling (DOTS) Signal Channel
 Specification", RFC 8782, DOI 10.17487/RFC8782, May 2020,
 <https://www.rfc-editor.org/info/rfc8782>.

11.2. Informative References

 [DOTS-ARCH]
 Mortensen, A., Reddy.K, T., Andreasen, F., Teague, N., and
 R. Compton, "Distributed-Denial-of-Service Open Threat
 Signaling (DOTS) Architecture", Work in Progress,
 Internet-Draft, draft-ietf-dots-architecture-18, 6 March
 2020, <https://tools.ietf.org/html/draft-ietf-dots-
 architecture-18>.

 [DOTS-SERVER-DISC]
 Boucadair, M. and T. Reddy.K, "Distributed-Denial-of-
 Service Open Threat Signaling (DOTS) Agent Discovery",
 Work in Progress, Internet-Draft, draft-ietf-dots-server-
 discovery-10, 7 February 2020,
 <https://tools.ietf.org/html/draft-ietf-dots-server-
 discovery-10>.

 [IANA-PROTO]
 IANA, "Protocol Numbers",
 <http://www.iana.org/assignments/protocol-numbers>.

 [RESTCONF-MODELS]
 Watsen, K., "RESTCONF Client and Server Models", Work in
 Progress, Internet-Draft, draft-ietf-netconf-restconf-
 client-server-19, 20 May 2020,
 <https://tools.ietf.org/html/draft-ietf-netconf-restconf-
 client-server-19>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <https://www.rfc-editor.org/info/rfc4340>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5575] Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J.,
 and D. McPherson, "Dissemination of Flow Specification
 Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009,
 <https://www.rfc-editor.org/info/rfc5575>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520,
 DOI 10.17487/RFC6520, February 2012,
 <https://www.rfc-editor.org/info/rfc6520>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8484] Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
 <https://www.rfc-editor.org/info/rfc8484>.

 [RFC8499] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
 January 2019, <https://www.rfc-editor.org/info/rfc8499>.

 [RFC8612] Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
 Threat Signaling (DOTS) Requirements", RFC 8612,
 DOI 10.17487/RFC8612, May 2019,
 <https://www.rfc-editor.org/info/rfc8612>.

Appendix A. Examples: Filtering Fragments

 This specification strongly recommends the use of ’fragment’ for
 handling fragments.

 Figure 34 shows the content of the POST request to be issued by a
 DOTS client to its DOTS server to allow the traffic destined to
 198.51.100.0/24 and UDP port number 53, but to drop all fragmented
 packets. The following ACEs are defined (in this order):

 * "drop-all-fragments" ACE: discards all fragments.

 * "allow-dns-packets" ACE: accepts DNS packets destined to
 198.51.100.0/24.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv4-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv4": {
 "fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },

 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv4": {
 "destination-ipv4-network": "198.51.100.0/24"
 },
 "udp": {
 "destination-port-range-or-operator": {
 "operator": "eq",
 "port": 53
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
 }
]
 }
 }
]
 }
 }

 Figure 34: Filtering IPv4 Fragmented Packets

 Figure 35 shows an example of a POST request issued by a DOTS client
 to its DOTS server to allow the traffic destined to 2001:db8::/32 and
 UDP port number 53, but to drop all fragmented packets. The
 following ACEs are defined (in this order):

 * "drop-all-fragments" ACE: discards all fragments (including atomic
 fragments). That is, IPv6 packets that include a Fragment header
 (44) are dropped.

 * "allow-dns-packets" ACE: accepts DNS packets destined to
 2001:db8::/32.

 POST /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv6": {
 "fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8::/32"
 },

 "udp": {
 "destination-port-range-or-operator": {
 "operator": "eq",
 "port": 53
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 35: Filtering IPv6 Fragmented Packets

Appendix B. Examples: Filtering TCP Messages

 This section provides examples to illustrate TCP-specific filtering
 based on the flag bits. These examples should not be interpreted as
 recommended filtering behaviors under specific DDoS attacks.

B.1. Discard TCP Null Attack

 Figure 36 shows an example of a DOTS request sent by a DOTS client to
 install immediately a filter to discard incoming TCP messages having
 all flags unset. The bitmask can be set to 255 to check against the
 (CWR, ECE, URG, ACK, PSH, RST, SYN, FIN) flags.

 PUT /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=paL8p4Zqo4SLv64TLPXrxA/acls\
 /acl=tcp-flags-example HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:acls": {
 "acl": [{
 "name": "tcp-flags-example",
 "activation-type": "immediate",
 "aces": {
 "ace": [{
 "name": "null-attack",
 "matches": {
 "tcp": {
 "flags-bitmask": {
 "operator": "not any",
 "bitmask": 4095
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }]
 }
 }]
 }
 }

 Figure 36: Example of a DOTS Request to Deny TCP Null Attack Messages

B.2. Rate-Limit SYN Flooding

 Figure 37 shows an ACL example to rate-limit incoming SYNs during a
 SYN flood attack.

 PUT /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=paL8p4Zqo4SLv64TLPXrxA/acls\
 /acl=tcp-flags-example HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:acls": {
 "acl": [{
 "name": "tcp-flags-example",
 "activation-type": "activate-when-mitigating",
 "aces": {
 "ace": [{
 "name": "rate-limit-syn",
 "matches": {
 "tcp": {
 "flags-bitmask": {
 "operator": "match",
 "bitmask": 2
 }
 }
 },
 "actions": {
 "forwarding": "accept",
 "rate-limit": "20.00"
 }
 }]
 }
 }]
 }
 }

 Figure 37: Example of DOTS Request to Rate-Limit Incoming TCP SYNs

B.3. Rate-Limit ACK Flooding

 Figure 38 shows an ACL example to rate-limit incoming ACKs during an
 ACK flood attack.

 PUT /restconf/data/ietf-dots-data-channel:dots-data\
 /dots-client=paL8p4Zqo4SLv64TLPXrxA/acls\
 /acl=tcp-flags-example HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-dots-data-channel:acls": {
 "acl": [{
 "name": "tcp-flags-example",
 "type": "ipv4-acl-type",
 "activation-type": "activate-when-mitigating",
 "aces": {
 "ace": [{
 "name": "rate-limit-ack",
 "matches": {
 "tcp": {
 "flags-bitmask": {
 "operator": "match",
 "bitmask": 16
 }
 }
 },
 "actions": {
 "forwarding": "accept",
 "rate-limit": "20.00"
 }
 }]
 }
 }]
 }
 }

 Figure 38: Example of DOTS Request to Rate-Limit Incoming TCP ACKs

Acknowledgements

 Thanks to Christian Jacquenet, Roland Dobbins, Roman Danyliw, Ehud
 Doron, Russ White, Gilbert Clark, Kathleen Moriarty, Nesredien
 Suleiman, Roni Even, and Brian Trammel for the discussion and
 comments.

 The authors would like to give special thanks to Kaname Nishizuka and
 Jon Shallow for their efforts in implementing the protocol and
 performing interop testing at IETF Hackathons.

 Many thanks to Benjamin Kaduk for the detailed AD review.

 Thanks to Martin BjÃ¶rklund for the guidance on RESTCONF.

 Thanks to Alexey Melnikov, Adam Roach, Suresh Krishnan, Mirja
 KÃ¼hlewind, and Warren Kumari for the review.

Contributors

 The following people contributed substantially to the content of this
 document and should be considered coauthors:

 Kaname Nishizuka
 NTT Communications
 GranPark 16F 3-4-1 Shibaura, Minato-ku, Tokyo
 108-8118
 Japan

 Email: kaname@nttv6.jp

 Liang Xia
 Huawei
 101 Software Avenue, Yuhuatai District
 Nanjing
 Jiangsu, 210012
 China

 Email: frank.xialiang@huawei.com

 Prashanth Patil
 Cisco Systems, Inc.

 Email: praspati@cisco.com

 Andrew Mortensen
 Arbor Networks, Inc.
 2727 S. State Street
 Ann Arbor, Michigan 48104
 United States of America

 Email: andrew@moretension.com

 Nik Teague
 Iron Mountain Data Centers
 United Kingdom

 Email: nteague@ironmountain.co.uk

 The following individuals have contributed to this document:

 Dan Wing

 Email: dwing-ietf@fuggles.com

 Jon Shallow
 NCC Group

 Email: jon.shallow@nccgroup.com

Authors’ Addresses

 Mohamed Boucadair (editor)
 Orange
 35000 Rennes
 France

 Email: mohamed.boucadair@orange.com

 Tirumaleswar Reddy.K (editor)
 McAfee, Inc.
 Embassy Golf Link Business Park
 Bangalore 560071
 Karnataka
 India

 Email: kondtir@gmail.com

