
ï»¿

Internet Engineering Task Force (IETF) R.B. Shoemaker
Request for Comments: 8737 ISRG
Category: Standards Track February 2020
ISSN: 2070-1721

 Automated Certificate Management Environment (ACME) TLS
 Application-Layer Protocol Negotiation (ALPN) Challenge Extension

Abstract

 This document specifies a new challenge for the Automated Certificate
 Management Environment (ACME) protocol that allows for domain control
 validation using TLS.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8737.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 3. TLS with Application-Layer Protocol Negotiation (TLS ALPN)
 Challenge
 4. acme-tls/1 Protocol Definition
 5. Security Considerations
 6. IANA Considerations
 6.1. SMI Security for PKIX Certificate Extension OID
 6.2. ALPN Protocol ID
 6.3. ACME Validation Method
 7. Normative References
 Appendix A. Design Rationale
 Acknowledgments
 Author’s Address

1. Introduction

 The Automatic Certificate Management Environment (ACME) [RFC8555]
 specification describes methods for validating control of domain
 names via HTTP and DNS. Deployment experience has shown it is also
 useful to be able to validate domain control using the TLS layer

 alone. In particular, this allows hosting providers, Content
 Distribution Networks (CDNs), and TLS-terminating load balancers to
 validate domain control without modifying the HTTP handling behavior
 of their backends.

 This document specifies a new TLS-based challenge type, tls-alpn-01.
 This challenge requires negotiating a new application-layer protocol
 using the TLS Application-Layer Protocol Negotiation (ALPN) Extension
 [RFC7301]. Because this protocol does not build on a pre-existing
 deployment base, the ability to complete tls-alpn-01 challenges
 requires changes by service providers, making it explicitly an opt-in
 process. Because service providers must proactively deploy new code
 in order to implement tls-alpn-01, we can specify stronger controls
 in that code, resulting in a stronger validation method.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. TLS with Application-Layer Protocol Negotiation (TLS ALPN) Challenge

 The TLS with Application-Layer Protocol Negotiation (TLS ALPN)
 validation method proves control over a domain name by requiring the
 ACME client to configure a TLS server to respond to specific
 connection attempts using the ALPN extension with identifying
 information. The ACME server validates control of the domain name by
 connecting to a TLS server at one of the addresses resolved for the
 domain name and verifying that a certificate with specific content is
 presented.

 The tls-alpn-01 ACME challenge object has the following format:

 type (required, string): The string "tls-alpn-01"

 token (required, string): A random value that uniquely identifies
 the challenge. This value MUST have at least 128 bits of entropy.
 It MUST NOT contain any characters outside the base64url alphabet
 as described in Section 5 of [RFC4648]. Trailing ’=’ padding
 characters MUST be stripped. See [RFC4086] for additional
 information on randomness requirements.

 The client prepares for validation by constructing a self-signed
 certificate that MUST contain an acmeIdentifier extension and a
 subjectAlternativeName extension [RFC5280]. The
 subjectAlternativeName extension MUST contain a single dNSName entry
 where the value is the domain name being validated. The
 acmeIdentifier extension MUST contain the SHA-256 digest [FIPS180-4]
 of the key authorization [RFC8555] for the challenge. The
 acmeIdentifier extension MUST be critical so that the certificate
 isn’t inadvertently used by non-ACME software.

 The acmeIdentifier extension is identified by the id-pe-
 acmeIdentifier object identifier (OID) in the id-pe arc [RFC5280]:

 id-pe-acmeIdentifier OBJECT IDENTIFIER ::= { id-pe 31 }

 The extension has the following ASN.1 [X.680] format :

 Authorization ::= OCTET STRING (SIZE (32))

 The extnValue of the id-pe-acmeIdentifier extension is the ASN.1 DER
 encoding [X.690] of the Authorization structure, which contains the
 SHA-256 digest of the key authorization for the challenge.

 Once this certificate has been created, it MUST be provisioned such
 that it is returned during a TLS handshake where the "acme-tls/1"
 application-layer protocol has been negotiated and a Server Name

 Indication (SNI) extension [RFC6066] has been provided containing the
 domain name being validated.

 A client responds by POSTing an empty JSON object ({}) to the
 challenge URL to acknowledge that the challenge is ready to be
 validated by the server. The base64url encoding of the protected
 headers and payload is described in Section 6.1 of [RFC8555].

 POST /acme/authz/1234/1
 Host: example.com
 Content-Type: application/jose+json

 {
 "protected": base64url({
 "alg": "ES256",
 "kid": "https://example.com/acme/acct/1",
 "nonce": "JHb54aT_KTXBWQOzGYkt9A",
 "url": "https://example.com/acme/authz/1234/1"
 }),
 "payload": base64url({}),
 "signature": "Q1bURgJoEslbD1c5...3pYdSMLio57mQNN4"
 }

 On receiving this request from a client, the server constructs and
 stores the key authorization from the challenge "token" value and the
 current client account key.

 The server then verifies the client’s control over the domain by
 verifying that the TLS server was configured as expected using the
 following steps:

 1. The ACME server computes the expected SHA-256 digest of the key
 authorization.

 2. The ACME server resolves the domain name being validated and
 chooses one of the IP addresses returned for validation (the
 server MAY validate against multiple addresses if more than one
 is returned).

 3. The ACME server initiates a TLS connection to the chosen IP
 address. This connection MUST use TCP port 443. The ACME server
 MUST provide an ALPN extension with the single protocol name
 "acme-tls/1" and an SNI extension containing only the domain name
 being validated during the TLS handshake.

 4. The ACME server verifies that during the TLS handshake the
 application-layer protocol "acme-tls/1" was successfully
 negotiated (and that the ALPN extension contained only the value
 "acme-tls/1") and that the certificate returned contains:

 * a subjectAltName extension containing the dNSName being
 validated and no other entries

 * a critical acmeIdentifier extension containing the expected
 SHA-256 digest computed in step 1

 The comparison of dNSNames MUST be case insensitive [RFC4343]. Note
 that as ACME doesn’t support Unicode identifiers, all dNSNames MUST
 be encoded using the rules of [RFC3492].

 If all of the above steps succeed, then the validation is successful.
 Otherwise, it fails.

4. acme-tls/1 Protocol Definition

 The "acme-tls/1" protocol MUST only be used for validating ACME tls-
 alpn-01 challenges. The protocol consists of a TLS handshake in
 which the required validation information is transmitted. The "acme-
 tls/1" protocol does not carry application data. Once the handshake
 is completed, the client MUST NOT exchange any further data with the
 server and MUST immediately close the connection. While this

 protocol uses X.509 certificates, it does not use the authentication
 method described in [RFC5280] and, as such, does not require a valid
 signature on the provided certificate nor require the TLS handshake
 to complete successfully. An ACME server may wish to use an off-the-
 shelf TLS stack where it is not simple to allow these divergences in
 the protocol as defined. Because of this, an ACME server MAY choose
 to withhold authorization if either the certificate signature is
 invalid or the handshake doesn’t fully complete.

 ACME servers that implement "acme-tls/1" MUST only negotiate TLS 1.2
 [RFC5246] or higher when connecting to clients for validation.

5. Security Considerations

 The design of this challenge relies on some assumptions centered
 around how an HTTPS server behaves during validation.

 The first assumption is that when an HTTPS server is being used to
 serve content for multiple DNS names from a single IP address, it
 properly segregates control of those names to the users that own
 them. This means that if User A registers Host A and User B
 registers Host B, the HTTPS server should not allow a TLS request
 using an SNI value for Host A to be served by User B or a TLS
 connection with a server_name extension identifying Host B to be
 answered by User A. If the HTTPS server allows User B to serve this
 request, it allows them to illegitimately validate control of Host A
 to the ACME server.

 The second assumption is that a server will not violate [RFC7301] by
 blindly agreeing to use the "acme-tls/1" protocol without actually
 understanding it.

 To further mitigate the risk of users claiming domain names used by
 other users on the same infrastructure hosting providers, CDNs, and
 other service providers SHOULD NOT allow users to provide their own
 certificates for the TLS ALPN validation process. If providers wish
 to implement TLS ALPN validation, they SHOULD only generate
 certificates used for validation themselves and not expose this
 functionality to users.

 The extensions to the ACME protocol described in this document build
 upon the Security Considerations and threat model defined in
 Section 10.1 of [RFC8555].

6. IANA Considerations

6.1. SMI Security for PKIX Certificate Extension OID

 Within the "Structure of Management Information (SMI) Numbers (MIB
 Module Registrations)" registry, the following entry has been added
 to the "SMI Security for PKIX Certificate Extension"
 (1.3.6.1.5.5.7.1) table.

 +---------+----------------------+------------+
 | Decimal | Description | References |
 +=========+======================+============+
 | 31 | id-pe-acmeIdentifier | RFC 8737 |
 +---------+----------------------+------------+

 Table 1

6.2. ALPN Protocol ID

 Within the "Transport Layer Security (TLS) Extensions" registry, the
 following entry has been added to the "TLS Application-Layer Protocol
 Negotiation (ALPN) Protocol IDs" table.

 +------------+------------------------------------+-----------+
 | Protocol | Identification Sequence | Reference |
 +============+====================================+===========+
 | acme-tls/1 | 0x61 0x63 0x6d 0x65 0x2d 0x74 0x6c | RFC 8737 |

 | | 0x73 0x2f 0x31 ("acme-tls/1") | |
 +------------+------------------------------------+-----------+

 Table 2

6.3. ACME Validation Method

 Within the "Automated Certificate Management Environment (ACME)
 Protocol" registry, the following entry has been added to the "ACME
 Validation Methods" registry.

 +-------------+-----------------+------+-----------+
 | Label | Identifier Type | ACME | Reference |
 +=============+=================+======+===========+
 | tls-alpn-01 | dns | Y | RFC 8737 |
 +-------------+-----------------+------+-----------+

 Table 3

7. Normative References

 [FIPS180-4]
 National Institute of Standards and Technology (NIST),
 "Secure Hash Standard (SHS)", FIPS PUB 180-4,
 DOI 10.6028/NIST.FIPS.180-4, August 2015,
 <https://nvlpubs.nist.gov/nistpubs/FIPS/
 NIST.FIPS.180-4.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
 <https://www.rfc-editor.org/info/rfc3492>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4343] Eastlake 3rd, D., "Domain Name System (DNS) Case
 Insensitivity Clarification", RFC 4343,
 DOI 10.17487/RFC4343, January 2006,
 <https://www.rfc-editor.org/info/rfc4343>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,

 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8555] Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
 <https://www.rfc-editor.org/info/rfc8555>.

 [X.680] ITU-T, "Information technology -- Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ITU-T
 Recommendation X.680, ISO/IEC 8824-1:2015, August 2015,
 <https://www.itu.int/rec/T-REC-X.680-201508-I/en>.

 [X.690] ITU-T, "Information Technology -- ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2015,
 August 2015,
 <https://www.itu.int/rec/T-REC-X.690-201508-I/en>.

Appendix A. Design Rationale

 The TLS ALPN challenge exists to iterate on the TLS SNI challenge
 defined in the early ACME drafts. The TLS SNI challenge was
 convenient for service providers who were either operating large TLS-
 layer load balancing systems at which they wanted to perform
 validation or running servers fronting large numbers of DNS names
 from a single host as it allowed validation purely within the TLS
 layer. The value provided by the TLS SNI challenge was considered
 large enough that this document was written in order to provide a new
 challenge type that addressed the existing security concerns.

 A security issue in the TLS SNI challenge was discovered by Frans
 Rosen, which allowed users of various service providers to
 illegitimately validate control of the DNS names of other users of
 the provider. When the TLS SNI challenge was designed, it was
 assumed that a user would only be able to respond to TLS traffic via
 SNI for domain names they had registered with a service provider
 (i.e., if a user registered ’a.example’, they would only be able to
 respond to SNI requests for ’a.example’ and not for SNI requests for
 ’b.example’). It turns out that a number of large service providers
 do not honor this property. Because of this, users were able to
 respond to SNI requests for the names used by the TLS SNI challenge
 validation process. This meant that (1) if User A and User B had
 registered Host A and Host B, respectively, User A would be able to
 claim the constructed SNI challenge name for Host B, and (2) when the
 validation connection was made, User A would be able to answer,
 thereby proving ’control’ of Host B. As the SNI name used was a
 subdomain of the domain name being validated, rather than the domain
 name itself, it was likely to not already be registered with the
 service provider for traffic routing, making it much easier for a
 hijack to occur.

Acknowledgments

 The author would like to thank all those that provided design
 insights and editorial review of this document, including Richard
 Barnes, Ryan Hurst, Adam Langley, Ryan Sleevi, Jacob Hoffman-Andrews,
 Daniel McCarney, Marcin Walas, Martin Thomson, and especially Frans
 Rosen, who discovered the vulnerability in the TLS SNI method that
 necessitated the writing of this specification.

Author’s Address

 Roland Bracewell Shoemaker
 Internet Security Research Group

 Email: roland@letsencrypt.org

