
ï»¿

Internet Engineering Task Force (IETF) X. Liu
Request for Comments: 8652 Volta Networks
Category: Standards Track F. Guo
ISSN: 2070-1721 Huawei
 M. Sivakumar
 Juniper
 P. McAllister
 Metaswitch Networks
 A. Peter
 IP Infusion India
 November 2019

 A YANG Data Model for the Internet Group Management Protocol (IGMP)
 and Multicast Listener Discovery (MLD)

Abstract

 This document defines a YANG data model that can be used to configure
 and manage Internet Group Management Protocol (IGMP) and Multicast
 Listener Discovery (MLD) devices.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8652.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Terminology
 1.2. Conventions Used in This Document
 1.3. Tree Diagrams
 1.4. Prefixes in Data Node Names
 2. Design of the Data Model
 2.1. Scope of Model
 2.1.1. Parameters Not Covered at the Global Level
 2.1.2. Parameters Not Covered at the Interface Level
 2.2. Optional Capabilities
 2.3. Position of Address Family in Hierarchy
 3. Module Structure
 3.1. IGMP Configuration and Operational State
 3.2. MLD Configuration and Operational State

 3.3. IGMP and MLD Actions
 4. IGMP and MLD YANG Module
 5. Security Considerations
 6. IANA Considerations
 7. References
 7.1. Normative References
 7.2. Informative References
 Acknowledgments
 Contributors
 Authors’ Addresses

1. Introduction

 YANG [RFC6020] [RFC7950] is a data definition language that was
 introduced to model the configuration and running state of a device
 managed using network management protocols such as NETCONF [RFC6241]
 or RESTCONF [RFC8040]. YANG is now also being used as a component of
 wider management interfaces, such as command-line interfaces (CLIs).

 This document defines a YANG data model that can be used to configure
 and manage Internet Group Management Protocol (IGMP) and Multicast
 Listener Discovery (MLD) devices. The protocol versions include
 IGMPv1 [RFC1112], IGMPv2 [RFC2236], IGMPv3 [RFC3376], MLDv1
 [RFC2710], and MLDv2 [RFC3810]. The core features of the IGMP and
 MLD protocols are defined as required. Non-core features are defined
 as optional in the provided data model.

 The YANG data model in this document conforms to the Network
 Management Datastore Architecture (NMDA) [RFC8342].

1.1. Terminology

 The terminology for describing YANG data models is found in [RFC6020]
 and [RFC7950], including:

 * augment

 * data model

 * data node

 * identity

 * module

 The following abbreviations are used in this document and the defined
 model:

 IGMP: Internet Group Management Protocol [RFC3376].

 MLD: Multicast Listener Discovery [RFC3810].

 SSM: Source-Specific Multicast service model [RFC3569] [RFC4607].

1.2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.3. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

1.4. Prefixes in Data Node Names

 In this document, names of data nodes, actions, and other data model
 objects are often used without a prefix, as long as it is clear from

 the context in which YANG module each name is defined. Otherwise,
 names are prefixed using the standard prefix associated with the
 corresponding YANG module, as shown in Table 1.

 +----------+--------------------------+-----------+
 | Prefix | YANG module | Reference |
 +==========+==========================+===========+
 | yang | ietf-yang-types | [RFC6991] |
 +----------+--------------------------+-----------+
 | inet | ietf-inet-types | [RFC6991] |
 +----------+--------------------------+-----------+
 | if | ietf-interfaces | [RFC8343] |
 +----------+--------------------------+-----------+
 | ip | ietf-ip | [RFC8344] |
 +----------+--------------------------+-----------+
 | rt | ietf-routing | [RFC8349] |
 +----------+--------------------------+-----------+
 | rt-types | ietf-routing-types | [RFC8294] |
 +----------+--------------------------+-----------+
 | acl | ietf-access-control-list | [RFC8519] |
 +----------+--------------------------+-----------+

 Table 1: Prefixes and Corresponding YANG Modules

2. Design of the Data Model

2.1. Scope of Model

 The model covers IGMPv1 [RFC1112], IGMPv2 [RFC2236], IGMPv3
 [RFC3376], MLDv1 [RFC2710], and MLDv2 [RFC3810].

 This model does not cover other IGMP- and MLD-related protocols such
 as IGMP/MLD Proxy [RFC4605] or IGMP/MLD Snooping [RFC4541] etc.,
 which will be specified in separate documents.

 This model can be used to configure and manage various versions of
 IGMP and MLD protocols. The operational state data and statistics
 can be retrieved by this model. Even though no protocol-specific
 notifications are defined in this model, the subscription and push
 mechanism defined in [RFC8639] and [RFC8641] can be implemented by
 the user to subscribe to notifications on the data nodes in this
 model.

 The model contains all the basic configuration parameters to operate
 the protocols listed above. Depending on the implementation choices,
 some systems may not allow some of the advanced parameters to be
 configurable. The occasionally implemented parameters are modeled as
 optional features in this model, while the rarely implemented
 parameters are not included in this model and left for augmentation.
 This model can be extended, and it has been structured in a way that
 such extensions can be conveniently made.

 The protocol parameters covered in this model can been seen from the
 model structure described in Section 3.

 The protocol parameters that were considered but are not covered in
 this model are described in the following sections.

2.1.1. Parameters Not Covered at the Global Level

 The configuration parameters and operational states not covered on an
 IGMP instance or an MLD instance are:

 * Explicit tracking

 * Maximum transmit rate

 * Last member query count

 * Other querier present time

 * Send router alert

 * Startup query interval

 * Startup query count

2.1.2. Parameters Not Covered at the Interface Level

 The configuration parameters and operational states not covered on an
 IGMP interface or an MLD interface are:

 * Disable router alert check

 * Drop IGMP version 1, IGMP version 2, or MLD version 1

 * Last member query count

 * Maximum number of sources

 * Other querier present time

 * Passive mode

 * Promiscuous mode

 * Query before immediate leave

 * Send router alert

2.2. Optional Capabilities

 This model is designed to represent the capabilities of IGMP and MLD
 devices with various specifications, including the basic capability
 subsets of the IGMP and MLD protocols. The main design goals of this
 document are that the basic capabilities described in the model are
 supported by any major now-existing implementation, and that the
 configuration of all implementations meeting the specifications is
 easy to express through some combination of the optional features in
 the model and simple vendor augmentations.

 There is also value in widely supported features being standardized,
 to provide a standardized way to access these features, to save work
 for individual vendors, and so that mapping between different
 vendors’ configuration is not needlessly complicated. Therefore,
 this model declares a number of features representing capabilities
 that not all deployed devices support.

 The extensive use of feature declarations should also substantially
 simplify the capability negotiation process for a vendor’s IGMP and
 MLD implementations.

 On the other hand, operational state parameters are not so widely
 designated as features, as there are many cases where the defaulting
 of an operational state parameter would not cause any harm to the
 system, and it is much more likely that an implementation without
 native support for a piece of operational state would be able to
 derive a suitable value for a state variable that is not natively
 supported.

2.3. Position of Address Family in Hierarchy

 The protocol IGMP only supports IPv4, while the protocol MLD only
 supports IPv6. The data model defined in this document can be used
 for both IPv4 and IPv6 address families.

 This document defines IGMP and MLD as separate schema branches in the
 structure. The benefits are:

 * The model can support IGMP (IPv4), MLD (IPv6), or both optionally
 and independently. Such flexibility cannot be achieved cleanly
 with a combined branch.

 * The structure is consistent with other YANG data models such as
 RFC 8344, which uses separate branches for IPv4 and IPv6.

 * The separate branches for IGMP and MLD can accommodate their
 differences better and cleaner. The two branches can better
 support different features and node types.

3. Module Structure

 This model augments the core routing data model specified in
 [RFC8349].

 +--rw routing
 +--rw router-id?
 +--rw control-plane-protocols
 | +--rw control-plane-protocol* [type name]
 | +--rw type
 | +--rw name
 | +--rw igmp <= Augmented by this Model
 ...
 | +--rw mld <= Augmented by this Model
 ...

 The "igmp" container instantiates an IGMP protocol of version IGMPv1,
 IGMPv2, or IGMPv3. The "mld" container instantiates an MLD protocol
 of version MLDv1 or MLDv2.

 The YANG data model defined in this document conforms to the Network
 Management Datastore Architecture (NMDA) [RFC8342]. The operational
 state data is combined with the associated configuration data in the
 same hierarchy [RFC8407].

 A configuration data node is marked as mandatory only when its value
 must be provided by the user. Where nodes are not essential to
 protocol operation, they are marked as optional. Some other nodes
 are essential but have a default specified, so that they are also
 optional and need not be configured explicitly.

3.1. IGMP Configuration and Operational State

 The IGMP data is modeled as a schema subtree augmenting the "control-
 plane-protocol" data node under "/rt:routing/rt:control-plane-
 protocols" in the module ietf-routing, following the convention
 described in [RFC8349]. The augmentation to the module ietf-routing
 allows this model to support multiple instances of IGMP, but a
 restriction MAY be added depending on the implementation and the
 device. The identity "igmp" is derived from the "rt:control-plane-
 protocol" base identity and indicates that a control-plane-protocol
 instance is IGMP.

 The IGMP subtree is a three-level hierarchy structure as listed
 below:

 Global level: Including IGMP configuration and operational state
 attributes for the entire IGMP protocol instance in this router.

 Interface-global level: Including configuration data nodes that are
 applicable to all the interfaces whose corresponding nodes are not
 defined or not configured at the interface level. For such a node
 at the interface level, the system uses the same value of the
 corresponding node at the interface-global level.

 Interface level: Including IGMP configuration and operational state
 attributes specific to the given interface. For a configuration
 node at the interface level, there may exist a corresponding
 configuration node with the same name at the interface-global
 level. The value configured on a node at the interface level
 overrides the value configured on the corresponding node at the
 interface-global level.

 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw igmp {feature-igmp}?
 +--rw global
 | +--rw enabled? boolean {global-admin-enable}?
 | +--rw max-entries? uint32 {global-max-entries}?
 | +--rw max-groups? uint32 {global-max-groups}?
 | +--ro entries-count? uint32
 | +--ro groups-count? uint32
 | +--ro statistics
 | +--ro discontinuity-time? yang:date-and-time
 | +--ro error
 | | +--ro total? yang:counter64
 | | +--ro query? yang:counter64
 | | +--ro report? yang:counter64
 | | +--ro leave? yang:counter64
 | | +--ro checksum? yang:counter64
 | | +--ro too-short? yang:counter64
 | +--ro received
 | | +--ro total? yang:counter64
 | | +--ro query? yang:counter64
 | | +--ro report? yang:counter64
 | | +--ro leave? yang:counter64
 | +--ro sent
 | +--ro total? yang:counter64
 | +--ro query? yang:counter64
 | +--ro report? yang:counter64
 | +--ro leave? yang:counter64
 +--rw interfaces
 +--rw last-member-query-interval? uint16
 +--rw query-interval? uint16
 +--rw query-max-response-time? uint16
 +--rw require-router-alert? boolean
 | {intf-require-router-alert}?
 +--rw robustness-variable? uint8
 +--rw version? uint8
 +--rw max-groups-per-interface? uint32
 | {intf-max-groups}?
 +--rw interface* [interface-name]
 +--rw interface-name if:interface-ref
 +--rw last-member-query-interval? uint16
 +--rw query-interval? uint16
 +--rw query-max-response-time? uint16
 +--rw require-router-alert? boolean
 | {intf-require-router-alert}?
 +--rw robustness-variable? uint8
 +--rw version? uint8
 +--rw enabled? boolean
 | {intf-admin-enable}?
 +--rw group-policy?
 | -> /acl:acls/acl/name
 +--rw immediate-leave? empty
 | {intf-immediate-leave}?
 +--rw max-groups? uint32
 | {intf-max-groups}?
 +--rw max-group-sources? uint32
 | {intf-max-group-sources}?
 +--rw source-policy?
 | -> /acl:acls/acl/name {intf-source-policy}?
 +--rw verify-source-subnet? empty
 | {intf-verify-source-subnet}?
 +--rw explicit-tracking? empty
 | {intf-explicit-tracking}?
 +--rw lite-exclude-filter? empty
 | {intf-lite-exclude-filter}?
 +--rw join-group*
 | rt-types:ipv4-multicast-group-address
 | {intf-join-group}?
 +--rw ssm-map*
 | [ssm-map-source-addr ssm-map-group-policy]
 | {intf-ssm-map}?

 | +--rw ssm-map-source-addr ssm-map-ipv4-addr-type
 | +--rw ssm-map-group-policy string
 +--rw static-group* [group-addr source-addr]
 | {intf-static-group}?
 | +--rw group-addr
 | | rt-types:ipv4-multicast-group-address
 | +--rw source-addr
 | rt-types:ipv4-multicast-source-address
 +--ro oper-status enumeration
 +--ro querier inet:ipv4-address
 +--ro joined-group*
 | rt-types:ipv4-multicast-group-address
 | {intf-join-group}?
 +--ro group* [group-address]
 +--ro group-address
 | rt-types:ipv4-multicast-group-address
 +--ro expire uint32
 +--ro filter-mode enumeration
 +--ro up-time uint32
 +--ro last-reporter? inet:ipv4-address
 +--ro source* [source-address]
 +--ro source-address inet:ipv4-address
 +--ro expire uint32
 +--ro up-time uint32
 +--ro host-count? uint32
 | {intf-explicit-tracking}?
 +--ro last-reporter? inet:ipv4-address
 +--ro host* [host-address]
 {intf-explicit-tracking}?
 +--ro host-address inet:ipv4-address
 +--ro host-filter-mode enumeration

3.2. MLD Configuration and Operational State

 The MLD data is modeled as a schema subtree augmenting the "control-
 plane-protocol" data node under "/rt:routing/rt:control-plane-
 protocols" in the module ietf-routing, following the convention
 described in [RFC8349]. The augmentation to the module ietf-routing
 allows this model to support multiple instances of MLD, but a
 restriction MAY be added depending on the implementation and the
 device. The identity "mld" is derived from the "rt:control-plane-
 protocol" base identity and indicates that a control-plane-protocol
 instance is MLD.

 The MLD subtree is a three-level hierarchy structure as listed below:

 Global level: Including MLD configuration and operational state
 attributes for the entire MLD protocol instance in this router.

 Interface-global level: Including configuration data nodes that are
 applicable to all the interfaces whose corresponding nodes are not
 defined or not configured at the interface level. For such a node
 at the interface level, the system uses the same value of the
 corresponding node at the interface-global level.

 Interface level: Including MLD configuration and operational state
 attributes specific to the given interface. For a configuration
 node at the interface level, there may exist a corresponding
 configuration node with the same name at the interface-global
 level. The value configured on a node at the interface level
 overrides the value configured on the corresponding node at the
 interface-global level.

 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw mld {feature-mld}?
 +--rw global
 | +--rw enabled? boolean {global-admin-enable}?
 | +--rw max-entries? uint32 {global-max-entries}?
 | +--rw max-groups? uint32 {global-max-groups}?
 | +--ro entries-count? uint32

 | +--ro groups-count? uint32
 | +--ro statistics
 | +--ro discontinuity-time? yang:date-and-time
 | +--ro error
 | | +--ro total? yang:counter64
 | | +--ro query? yang:counter64
 | | +--ro report? yang:counter64
 | | +--ro leave? yang:counter64
 | | +--ro checksum? yang:counter64
 | | +--ro too-short? yang:counter64
 | +--ro received
 | | +--ro total? yang:counter64
 | | +--ro query? yang:counter64
 | | +--ro report? yang:counter64
 | | +--ro leave? yang:counter64
 | +--ro sent
 | +--ro total? yang:counter64
 | +--ro query? yang:counter64
 | +--ro report? yang:counter64
 | +--ro leave? yang:counter64
 +--rw interfaces
 +--rw last-member-query-interval? uint16
 +--rw query-interval? uint16
 +--rw query-max-response-time? uint16
 +--rw require-router-alert? boolean
 | {intf-require-router-alert}?
 +--rw robustness-variable? uint8
 +--rw version? uint8
 +--rw max-groups-per-interface? uint32
 | {intf-max-groups}?
 +--rw interface* [interface-name]
 +--rw interface-name if:interface-ref
 +--rw last-member-query-interval? uint16
 +--rw query-interval? uint16
 +--rw query-max-response-time? uint16
 +--rw require-router-alert? boolean
 | {intf-require-router-alert}?
 +--rw robustness-variable? uint8
 +--rw version? uint8
 +--rw enabled? boolean
 | {intf-admin-enable}?
 +--rw group-policy?
 | -> /acl:acls/acl/name
 +--rw immediate-leave? empty
 | {intf-immediate-leave}?
 +--rw max-groups? uint32
 | {intf-max-groups}?
 +--rw max-group-sources? uint32
 | {intf-max-group-sources}?
 +--rw source-policy?
 | -> /acl:acls/acl/name {intf-source-policy}?
 +--rw verify-source-subnet? empty
 | {intf-verify-source-subnet}?
 +--rw explicit-tracking? empty
 | {intf-explicit-tracking}?
 +--rw lite-exclude-filter? empty
 | {intf-lite-exclude-filter}?
 +--rw join-group*
 | rt-types:ipv6-multicast-group-address
 | {intf-join-group}?
 +--rw ssm-map*
 | [ssm-map-source-addr ssm-map-group-policy]
 | {intf-ssm-map}?
 | +--rw ssm-map-source-addr ssm-map-ipv6-addr-type
 | +--rw ssm-map-group-policy string
 +--rw static-group* [group-addr source-addr]
 | {intf-static-group}?
 | +--rw group-addr
 | | rt-types:ipv6-multicast-group-address
 | +--rw source-addr
 | rt-types:ipv6-multicast-source-address

 +--ro oper-status enumeration
 +--ro querier inet:ipv6-address
 +--ro joined-group*
 | rt-types:ipv6-multicast-group-address
 | {intf-join-group}?
 +--ro group* [group-address]
 +--ro group-address
 | rt-types:ipv6-multicast-group-address
 +--ro expire uint32
 +--ro filter-mode enumeration
 +--ro up-time uint32
 +--ro last-reporter? inet:ipv6-address
 +--ro source* [source-address]
 +--ro source-address inet:ipv6-address
 +--ro expire uint32
 +--ro up-time uint32
 +--ro host-count? uint32
 | {intf-explicit-tracking}?
 +--ro last-reporter? inet:ipv6-address
 +--ro host* [host-address]
 {intf-explicit-tracking}?
 +--ro host-address inet:ipv6-address
 +--ro host-filter-mode enumeration

3.3. IGMP and MLD Actions

 IGMP and MLD each have one action that clears the group membership
 cache entries for that protocol.

 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw igmp {feature-igmp}?
 +---x clear-groups {action-clear-groups}?
 +---w input
 +---w (interface)
 | +--:(name)
 | | +---w interface-name? leafref
 | +--:(all)
 | +---w all-interfaces? empty
 +---w group-address union
 +---w source-address
 rt-types:ipv4-multicast-source-address

 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw mld {feature-mld}?
 +---x clear-groups {action-clear-groups}?
 +---w input
 +---w (interface)
 | +--:(name)
 | | +---w interface-name? leafref
 | +--:(all)
 | +---w all-interfaces? empty
 +---w group-address? union
 +---w source-address?
 rt-types:ipv6-multicast-source-address

4. IGMP and MLD YANG Module

 This module references [RFC1112], [RFC2236], [RFC2710], [RFC3376],
 [RFC3810], [RFC5790], [RFC6636], [RFC6991], [RFC8294], [RFC8343],
 [RFC8344], [RFC8349], and [RFC8519].

 <CODE BEGINS> file "ietf-igmp-mld@2019-11-01.yang"
 module ietf-igmp-mld {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-igmp-mld";
 prefix igmp-mld;

 import ietf-inet-types {
 prefix inet;

 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-routing-types {
 prefix rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }
 import ietf-access-control-list {
 prefix acl;
 reference
 "RFC 8519: YANG Data Model for Network Access Control Lists
 (ACLs)";
 }
 import ietf-routing {
 prefix rt;
 reference
 "RFC 8349: A YANG Data Model for Routing Management (NMDA
 Version)";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }
 import ietf-ip {
 prefix ip;
 reference
 "RFC 8344: A YANG Data Model for IP Management";
 }

 organization
 "IETF PIM Working Group";
 contact
 "WG Web: <http://datatracker.ietf.org/wg/pim/>
 WG List: <mailto:pim@ietf.org>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Feng Guo
 <mailto:guofeng@huawei.com>

 Editor: Mahesh Sivakumar
 <mailto:sivakumar.mahesh@gmail.com>

 Editor: Pete McAllister
 <mailto:pete.mcallister@metaswitch.com>

 Editor: Anish Peter
 <mailto:anish.ietf@gmail.com>";
 description
 "The module defines the configuration and operational state for
 the Internet Group Management Protocol (IGMP) and Multicast
 Listener Discovery (MLD) protocols.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8652; see the
 RFC itself for full legal notices.";

 revision 2019-11-01 {
 description
 "Initial revision.";
 reference
 "RFC 8652: A YANG Data Model for the Internet Group Management
 Protocol (IGMP) and Multicast Listener Discovery (MLD)";
 }

 /*
 * Features
 */

 feature feature-igmp {
 description
 "Support IGMP protocol for IPv4 group membership record.";
 }

 feature feature-mld {
 description
 "Support MLD protocol for IPv6 group membership record.";
 }

 feature global-admin-enable {
 description
 "Support global configuration to enable or disable protocol.";
 }

 feature global-max-entries {
 description
 "Support configuration of global max-entries.";
 }

 feature global-max-groups {
 description
 "Support configuration of global max-groups.";
 }

 feature interface-global-config {
 description
 "Support global configuration applied for all interfaces.";
 }

 feature intf-admin-enable {
 description
 "Support configuration of interface administrative enabling.";
 }

 feature intf-immediate-leave {
 description
 "Support configuration of interface immediate-leave.";
 }

 feature intf-join-group {
 description
 "Support configuration of interface join-group.";
 }

 feature intf-max-groups {
 description
 "Support configuration of interface max-groups.";
 }

 feature intf-max-group-sources {
 description
 "Support configuration of interface max-group-sources.";
 }

 feature intf-require-router-alert {
 description
 "Support configuration of interface require-router-alert.";
 }

 feature intf-source-policy {
 description
 "Support configuration of interface source policy.";
 }

 feature intf-ssm-map {
 description
 "Support configuration of interface ssm-map.";
 }

 feature intf-static-group {
 description
 "Support configuration of interface static-group.";
 }

 feature intf-verify-source-subnet {
 description
 "Support configuration of interface verify-source-subnet.";
 }

 feature intf-explicit-tracking {
 description
 "Support configuration of interface explicit-tracking hosts.";
 }

 feature intf-lite-exclude-filter {
 description
 "Support configuration of interface lite-exclude-filter.";
 }

 feature per-interface-config {
 description
 "Support per-interface configuration.";
 }

 feature action-clear-groups {
 description
 "Support actions to clear groups.";
 }

 /*
 * Typedefs
 */

 typedef ssm-map-ipv4-addr-type {
 type union {
 type enumeration {
 enum policy {
 description
 "Source address is specified in SSM map policy.";
 }
 }
 type inet:ipv4-address;
 }
 description
 "Multicast source IP address type for SSM map.";
 }
 // source-ipv4-addr-type

 typedef ssm-map-ipv6-addr-type {
 type union {

 type enumeration {
 enum policy {
 description
 "Source address is specified in SSM map policy.";
 }
 }
 type inet:ipv6-address;
 }
 description
 "Multicast source IP address type for SSM map.";
 }
 // source-ipv6-addr-type

 /*
 * Identities
 */

 identity igmp {
 if-feature "feature-igmp";
 base rt:control-plane-protocol;
 description
 "IGMP protocol.";
 reference
 "RFC 3376: Internet Group Management Protocol, Version 3";
 }

 identity mld {
 if-feature "feature-mld";
 base rt:control-plane-protocol;
 description
 "MLD protocol.";
 reference
 "RFC 3810: Multicast Listener Discovery Version 2 (MLDv2) for
 IPv6";
 }

 /*
 * Groupings
 */

 grouping global-config-attributes {
 description
 "This grouping is used in either IGMP schema or MLD schema.
 When used in IGMP schema, this grouping contains the global
 configuration for IGMP;
 when used in MLD schema, this grouping contains the global
 configuration for MLD.";
 leaf enabled {
 if-feature "global-admin-enable";
 type boolean;
 default "true";
 description
 "When this grouping is used for IGMP, this leaf indicates
 whether IGMP is enabled (’true’) or disabled (’false’)
 in the routing instance.
 When this grouping is used for MLD, this leaf indicates
 whether MLD is enabled (’true’) or disabled (’false’)
 in the routing instance.";
 }
 leaf max-entries {
 if-feature "global-max-entries";
 type uint32;
 description
 "When this grouping is used for IGMP, this leaf indicates
 the maximum number of entries in the IGMP instance.
 When this grouping is used for MLD, this leaf indicates
 the maximum number of entries in the MLD instance.
 If this leaf is not specified, the number of entries is not
 limited.";
 }
 leaf max-groups {

 if-feature "global-max-groups";
 type uint32;
 description
 "When this grouping is used for IGMP, this leaf indicates
 the maximum number of groups in the IGMP instance.
 When this grouping is used for MLD, this leaf indicates
 the maximum number of groups in the MLD instance.
 If this leaf is not specified, the number of groups is not
 limited.";
 }
 }
 // global-config-attributes

 grouping global-state-attributes {
 description
 "This grouping is used in either IGMP schema or MLD schema.
 When used in IGMP schema, this grouping contains the global
 IGMP state attributes;
 when used in MLD schema, this grouping contains the global
 MLD state attributes.";
 leaf entries-count {
 type uint32;
 config false;
 description
 "When this grouping is used for IGMP, this leaf indicates
 the number of entries in the IGMP instance.
 When this grouping is used for MLD, this leaf indicates
 the number of entries in the MLD instance.";
 }
 leaf groups-count {
 type uint32;
 config false;
 description
 "When this grouping is used for IGMP, this leaf indicates
 the number of existing groups in the IGMP instance.
 When this grouping is used for MLD, this leaf indicates
 the number of existing groups in the MLD instance.";
 }
 container statistics {
 config false;
 description
 "When this grouping is used for IGMP, this container contains
 the statistics for the IGMP instance.
 When this grouping is used for MLD, this leaf indicates
 the statistics for the MLD instance.";
 leaf discontinuity-time {
 type yang:date-and-time;
 description
 "The time on the most recent occasion at which any one
 or more of the statistic counters suffered a
 discontinuity. If no such discontinuities have occurred
 since the last re-initialization of the local
 management subsystem, then this node contains the time
 the local management subsystem re-initialized itself.";
 }
 container error {
 description
 "Statistics of errors.";
 uses global-statistics-error;
 }
 container received {
 description
 "Statistics of received messages.";
 uses global-statistics-sent-received;
 }
 container sent {
 description
 "Statistics of sent messages.";
 uses global-statistics-sent-received;
 }
 }

 // statistics
 }
 // global-state-attributes

 grouping global-statistics-error {
 description
 "A grouping defining statistics attributes for errors.";
 uses global-statistics-sent-received;
 leaf checksum {
 type yang:counter64;
 description
 "The number of checksum errors.";
 }
 leaf too-short {
 type yang:counter64;
 description
 "The number of messages that are too short.";
 }
 }
 // global-statistics-error

 grouping global-statistics-sent-received {
 description
 "A grouping defining statistics attributes.";
 leaf total {
 type yang:counter64;
 description
 "The number of total messages.";
 }
 leaf query {
 type yang:counter64;
 description
 "The number of query messages.";
 }
 leaf report {
 type yang:counter64;
 description
 "The number of report messages.";
 }
 leaf leave {
 type yang:counter64;
 description
 "The number of leave messages.";
 }
 }
 // global-statistics-sent-received

 grouping interface-global-config-attributes {
 description
 "Configuration attributes applied to the interface-global level
 whose per-interface attributes are not configured.";
 leaf max-groups-per-interface {
 if-feature "intf-max-groups";
 type uint32;
 description
 "The maximum number of groups associated with each interface.
 If this leaf is not specified, the number of groups is not
 limited.";
 }
 }
 // interface-global-config-attributes

 grouping interface-common-config-attributes {
 description
 "Configuration attributes applied to both the interface-global
 level and interface level.";
 leaf last-member-query-interval {
 type uint16 {
 range "1..1023";
 }
 units "seconds";

 description
 "When used in IGMP schema, this leaf indicates the Last
 Member Query Interval, which may be tuned to modify the
 leave latency of the network;
 when used in MLD schema, this leaf indicates the Last
 Listener Query Interval, which may be tuned to modify the
 leave latency of the network.
 This leaf is not applicable for version 1 of the IGMP. For
 version 2 and version 3 of the IGMP, and for all versions of
 the MLD, the default value of this leaf is 1.
 This leaf may be configured at the interface level or the
 interface-global level, with precedence given to the value
 at the interface level. If the leaf is not configured at
 either level, the default value is used.";
 reference
 "Section 8.8 of RFC 2236: Internet Group Management Protocol,
 Version 2.
 Section 8.8 of RFC 3376: Internet Group Management Protocol,
 Version 3.
 Section 7.8 of RFC 2710: Multicast Listener Discovery (MLD)
 for IPv6.
 Section 9.8 of RFC 3810: Multicast Listener Discovery
 Version 2 (MLDv2) for IPv6.";
 }
 leaf query-interval {
 type uint16 {
 range "1..31744";
 }
 units "seconds";
 description
 "The Query Interval is the interval between General Queries
 sent by the Querier. In RFC 3376, the Querier’s Query
 Interval (QQI) is represented from the Querier’s Query
 Interval Code (QQIC) in query message as follows:
 If QQIC < 128, QQI = QQIC.
 If QQIC >= 128, QQIC represents a floating-point value as
 follows:
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |1| exp | mant |
 +-+-+-+-+-+-+-+-+
 QQI = (mant | 0x10) << (exp + 3).
 The maximum value of QQI is 31744.
 The default value is 125.
 This leaf may be configured at the interface level or the
 interface-global level, with precedence given to the value
 at the interface level. If the leaf is not configured at
 either level, the default value is used.";
 reference
 "Sections 4.1.7, 8.2, and 8.14.2 of RFC 3376: Internet Group
 Management Protocol, Version 3";
 }
 leaf query-max-response-time {
 type uint16 {
 range "1..1023";
 }
 units "seconds";
 description
 "Query maximum response time specifies the maximum time
 allowed before sending a responding report.
 The default value is 10.
 This leaf may be configured at the interface level or the
 interface-global level, with precedence given to the value
 at the interface level. If the leaf is not configured at
 either level, the default value is used.";
 reference
 "Sections 4.1.1, 8.3, and 8.14.3 of RFC 3376: Internet Group
 Management Protocol, Version 3";
 }
 leaf require-router-alert {
 if-feature "intf-require-router-alert";

 type boolean;
 description
 "Protocol packets should contain the router alert IP option.
 When this leaf is not configured, the server uses the
 following rules to determine the operational value of this
 leaf:
 if this grouping is used in IGMP schema and the value of the
 leaf ’version’ is 1, the value ’false’ is operationally used
 by the server;
 if this grouping is used in IGMP schema and the value of the
 leaf ’version’ is 2 or 3, the value ’true’ is operationally
 used by the server;
 if this grouping is used in MLD schema, the value ’true’ is
 operationally used by the server.
 This leaf may be configured at the interface level or the
 interface-global level, with precedence given to the value
 at the interface level. If the leaf is not configured at
 either level, the default value is used.";
 }
 leaf robustness-variable {
 type uint8 {
 range "1..7";
 }
 description
 "The Querier’s Robustness Variable allows tuning for the
 expected packet loss on a network.
 The default value is 2.
 This leaf may be configured at the interface level or the
 interface-global level, with precedence given to the value
 at the interface level. If the leaf is not configured at
 either level, the default value is used.";
 reference
 "Sections 4.1.6, 8.1, and 8.14.1 of RFC 3376: Internet Group
 Management Protocol, Version 3";
 }
 }
 // interface-common-config-attributes

 grouping interface-common-config-attributes-igmp {
 description
 "Configuration attributes applied to both the interface-global
 level and interface level for IGMP.";
 uses interface-common-config-attributes;
 leaf version {
 type uint8 {
 range "1..3";
 }
 description
 "IGMP version.
 The default value is 2.
 This leaf may be configured at the interface level or the
 interface-global level, with precedence given to the value
 at the interface level. If the leaf is not configured at
 either level, the default value is used.";
 reference
 "RFC 1112: Host Extensions for IP Multicasting,
 RFC 2236: Internet Group Management Protocol, Version 2,
 RFC 3376: Internet Group Management Protocol, Version 3.";
 }
 }

 grouping interface-common-config-attributes-mld {
 description
 "Configuration attributes applied to both the interface-global
 level and interface level for MLD.";
 uses interface-common-config-attributes;
 leaf version {
 type uint8 {
 range "1..2";
 }
 description

 "MLD version.
 The default value is 2.
 This leaf may be configured at the interface level or the
 interface-global level, with precedence given to the value
 at the interface level. If the leaf is not configured at
 either level, the default value is used.";
 reference
 "RFC 2710: Multicast Listener Discovery (MLD) for IPv6,
 RFC 3810: Multicast Listener Discovery Version 2 (MLDv2)
 for IPv6.";
 }
 }

 grouping interfaces-config-attributes-igmp {
 description
 "Configuration attributes applied to the interface-global
 level for IGMP.";
 uses interface-common-config-attributes-igmp;
 uses interface-global-config-attributes;
 }

 grouping interfaces-config-attributes-mld {
 description
 "Configuration attributes applied to the interface-global
 level for MLD.";
 uses interface-common-config-attributes-mld;
 uses interface-global-config-attributes;
 }

 grouping interface-level-config-attributes {
 description
 "This grouping is used in either IGMP schema or MLD schema.
 When used in IGMP schema, this grouping contains the IGMP
 configuration attributes that are defined at the interface
 level but are not defined at the interface-global level;
 when used in MLD schema, this grouping contains the MLD
 configuration attributes that are defined at the interface
 level but are not defined at the interface-global level.";
 leaf enabled {
 if-feature "intf-admin-enable";
 type boolean;
 default "true";
 description
 "When this grouping is used for IGMP, this leaf indicates
 whether IGMP is enabled (’true’) or disabled (’false’)
 on the interface.
 When this grouping is used for MLD, this leaf indicates
 whether MLD is enabled (’true’) or disabled (’false’)
 on the interface.";
 }
 leaf group-policy {
 type leafref {
 path "/acl:acls/acl:acl/acl:name";
 }
 description
 "When this grouping is used for IGMP, this leaf specifies
 the name of the access policy used to filter the
 IGMP membership.
 When this grouping is used for MLD, this leaf specifies
 the name of the access policy used to filter the
 MLD membership.
 The value space of this leaf is restricted to the existing
 policy instances defined by the referenced schema in
 RFC 8519.
 As specified by RFC 8519, the length of the name is between
 1 and 64; a device MAY further restrict the length of this
 name; space and special characters are not allowed.
 If this leaf is not specified, no policy is applied, and
 all packets received from this interface are accepted.";
 reference
 "RFC 8519: YANG Data Model for Network Access Control Lists

 (ACLs)";
 }
 leaf immediate-leave {
 if-feature "intf-immediate-leave";
 type empty;
 description
 "When this grouping is used for IGMP, the presence of this
 leaf requests IGMP to perform an immediate leave upon
 receiving an IGMPv2 leave message.
 If the router is IGMP-enabled, it sends an IGMP last member
 query with a last member query response time. However, the
 router does not wait for the response time before it prunes
 the group.
 When this grouping is used for MLD, the presence of this
 leaf requests MLD to perform an immediate leave upon
 receiving an MLDv1 leave message.
 If the router is MLD-enabled, it sends an MLD last member
 query with a last member query response time. However, the
 router does not wait for the response time before it prunes
 the group.";
 }
 leaf max-groups {
 if-feature "intf-max-groups";
 type uint32;
 description
 "When this grouping is used for IGMP, this leaf indicates
 the maximum number of groups associated with the IGMP
 interface.
 When this grouping is used for MLD, this leaf indicates
 the maximum number of groups associated with the MLD
 interface.
 If this leaf is not specified, the number of groups is not
 limited.";
 }
 leaf max-group-sources {
 if-feature "intf-max-group-sources";
 type uint32;
 description
 "The maximum number of group sources.
 If this leaf is not specified, the number of group sources
 is not limited.";
 }
 leaf source-policy {
 if-feature "intf-source-policy";
 type leafref {
 path "/acl:acls/acl:acl/acl:name";
 }
 description
 "Name of the access policy used to filter sources.
 The value space of this leaf is restricted to the existing
 policy instances defined by the referenced schema in
 RFC 8519.
 As specified by RFC 8519, the length of the name is between
 1 and 64; a device MAY further restrict the length of this
 name; space and special characters are not allowed.
 If this leaf is not specified, no policy is applied, and
 all packets received from this interface are accepted.";
 }
 leaf verify-source-subnet {
 if-feature "intf-verify-source-subnet";
 type empty;
 description
 "If present, the interface accepts packets with matching
 source IP subnet only.";
 }
 leaf explicit-tracking {
 if-feature "intf-explicit-tracking";
 type empty;
 description
 "When this grouping is used for IGMP, the presence of this
 leaf enables an IGMP-based explicit membership tracking

 function for multicast routers and IGMP proxy devices
 supporting IGMPv3.
 When this grouping is used for MLD, the presence of this
 leaf enables an MLD-based explicit membership tracking
 function for multicast routers and MLD proxy devices
 supporting MLDv2.
 The explicit membership tracking function contributes to
 saving network resources and shortening leave latency.";
 reference
 "Section 3 of RFC 6636: Tuning the Behavior of the Internet
 Group Management Protocol (IGMP) and Multicast Listener
 Discovery (MLD) for Routers in Mobile and Wireless
 Networks";
 }
 leaf lite-exclude-filter {
 if-feature "intf-lite-exclude-filter";
 type empty;
 description
 "When this grouping is used for IGMP, the presence of this
 leaf enables the support of the simplified EXCLUDE filter
 in the Lightweight IGMPv3 protocol, which simplifies the
 standard versions of IGMPv3.
 When this grouping is used for MLD, the presence of this
 leaf enables the support of the simplified EXCLUDE filter
 in the Lightweight MLDv2 protocol, which simplifies the
 standard versions of MLDv2.";
 reference
 "RFC 5790: Lightweight Internet Group Management Protocol
 Version 3 (IGMPv3) and Multicast Listener Discovery
 Version 2 (MLDv2) Protocols";
 }
 }
 // interface-level-config-attributes

 grouping interface-config-attributes-igmp {
 description
 "Per-interface configuration attributes for IGMP.";
 uses interface-common-config-attributes-igmp;
 uses interface-level-config-attributes;
 leaf-list join-group {
 if-feature "intf-join-group";
 type rt-types:ipv4-multicast-group-address;
 description
 "The router joins this multicast group on the interface.";
 }
 list ssm-map {
 if-feature "intf-ssm-map";
 key "ssm-map-source-addr ssm-map-group-policy";
 description
 "The policy for (*,G) mapping to (S,G).";
 leaf ssm-map-source-addr {
 type ssm-map-ipv4-addr-type;
 description
 "Multicast source IPv4 address.";
 }
 leaf ssm-map-group-policy {
 type string;
 description
 "Name of the policy used to define ssm-map rules.
 A device can restrict the length
 and value of this name, possibly space and special
 characters are not allowed.";
 }
 }
 list static-group {
 if-feature "intf-static-group";
 key "group-addr source-addr";
 description
 "A static multicast route, (*,G) or (S,G).
 The version of IGMP must be 3 to support (S,G).";
 leaf group-addr {

 type rt-types:ipv4-multicast-group-address;
 description
 "Multicast group IPv4 address.";
 }
 leaf source-addr {
 type rt-types:ipv4-multicast-source-address;
 description
 "Multicast source IPv4 address.";
 }
 }
 }
 // interface-config-attributes-igmp

 grouping interface-config-attributes-mld {
 description
 "Per-interface configuration attributes for MLD.";
 uses interface-common-config-attributes-mld;
 uses interface-level-config-attributes;
 leaf-list join-group {
 if-feature "intf-join-group";
 type rt-types:ipv6-multicast-group-address;
 description
 "The router joins this multicast group on the interface.";
 }
 list ssm-map {
 if-feature "intf-ssm-map";
 key "ssm-map-source-addr ssm-map-group-policy";
 description
 "The policy for (*,G) mapping to (S,G).";
 leaf ssm-map-source-addr {
 type ssm-map-ipv6-addr-type;
 description
 "Multicast source IPv6 address.";
 }
 leaf ssm-map-group-policy {
 type string;
 description
 "Name of the policy used to define ssm-map rules.
 A device can restrict the length
 and value of this name, possibly space and special
 characters are not allowed.";
 }
 }
 list static-group {
 if-feature "intf-static-group";
 key "group-addr source-addr";
 description
 "A static multicast route, (*,G) or (S,G).
 The version of MLD must be 2 to support (S,G).";
 leaf group-addr {
 type rt-types:ipv6-multicast-group-address;
 description
 "Multicast group IPv6 address.";
 }
 leaf source-addr {
 type rt-types:ipv6-multicast-source-address;
 description
 "Multicast source IPv6 address.";
 }
 }
 }
 // interface-config-attributes-mld

 grouping interface-state-attributes {
 description
 "Per-interface state attributes for both IGMP and MLD.";
 leaf oper-status {
 type enumeration {
 enum up {
 description
 "Ready to pass packets.";

 }
 enum down {
 description
 "The interface does not pass any packets.";
 }
 }
 config false;
 mandatory true;
 description
 "Indicates whether the operational state of the interface
 is up or down.";
 }
 }
 // interface-state-attributes

 grouping interface-state-attributes-igmp {
 description
 "Per-interface state attributes for IGMP.";
 uses interface-state-attributes;
 leaf querier {
 type inet:ipv4-address;
 config false;
 mandatory true;
 description
 "The querier address in the subnet.";
 }
 leaf-list joined-group {
 if-feature "intf-join-group";
 type rt-types:ipv4-multicast-group-address;
 config false;
 description
 "The routers that joined this multicast group.";
 }
 list group {
 key "group-address";
 config false;
 description
 "Multicast group membership information
 that joined on the interface.";
 leaf group-address {
 type rt-types:ipv4-multicast-group-address;
 description
 "Multicast group address.";
 }
 uses interface-state-group-attributes;
 leaf last-reporter {
 type inet:ipv4-address;
 description
 "The IPv4 address of the last host that has sent the
 report to join the multicast group.";
 }
 list source {
 key "source-address";
 description
 "List of multicast source information
 of the multicast group.";
 leaf source-address {
 type inet:ipv4-address;
 description
 "Multicast source address in group record.";
 }
 uses interface-state-source-attributes;
 leaf last-reporter {
 type inet:ipv4-address;
 description
 "The IPv4 address of the last host that has sent the
 report to join the multicast source and group.";
 }
 list host {
 if-feature "intf-explicit-tracking";
 key "host-address";

 description
 "List of hosts with the membership for the specific
 multicast source-group.";
 leaf host-address {
 type inet:ipv4-address;
 description
 "The IPv4 address of the host.";
 }
 uses interface-state-host-attributes;
 }
 // list host
 }
 // list source
 }
 // list group
 }
 // interface-state-attributes-igmp

 grouping interface-state-attributes-mld {
 description
 "Per-interface state attributes for MLD.";
 uses interface-state-attributes;
 leaf querier {
 type inet:ipv6-address;
 config false;
 mandatory true;
 description
 "The querier address in the subnet.";
 }
 leaf-list joined-group {
 if-feature "intf-join-group";
 type rt-types:ipv6-multicast-group-address;
 config false;
 description
 "The routers that joined this multicast group.";
 }
 list group {
 key "group-address";
 config false;
 description
 "Multicast group membership information
 that joined on the interface.";
 leaf group-address {
 type rt-types:ipv6-multicast-group-address;
 description
 "Multicast group address.";
 }
 uses interface-state-group-attributes;
 leaf last-reporter {
 type inet:ipv6-address;
 description
 "The IPv6 address of the last host that has sent the
 report to join the multicast group.";
 }
 list source {
 key "source-address";
 description
 "List of multicast sources of the multicast group.";
 leaf source-address {
 type inet:ipv6-address;
 description
 "Multicast source address in group record.";
 }
 uses interface-state-source-attributes;
 leaf last-reporter {
 type inet:ipv6-address;
 description
 "The IPv6 address of the last host that has sent the
 report to join the multicast source and group.";
 }
 list host {

 if-feature "intf-explicit-tracking";
 key "host-address";
 description
 "List of hosts with the membership for the specific
 multicast source-group.";
 leaf host-address {
 type inet:ipv6-address;
 description
 "The IPv6 address of the host.";
 }
 uses interface-state-host-attributes;
 }
 // list host
 }
 // list source
 }
 // list group
 }
 // interface-state-attributes-mld

 grouping interface-state-group-attributes {
 description
 "Per-interface state attributes for both IGMP and MLD
 groups.";
 leaf expire {
 type uint32;
 units "seconds";
 mandatory true;
 description
 "The time left before the multicast group state expires.";
 }
 leaf filter-mode {
 type enumeration {
 enum include {
 description
 "In include mode, reception of packets sent
 to the specified multicast address is requested
 only from those IP source addresses listed in the
 source-list parameter";
 }
 enum exclude {
 description
 "In exclude mode, reception of packets sent
 to the given multicast address is requested
 from all IP source addresses except those
 listed in the source-list parameter.";
 }
 }
 mandatory true;
 description
 "Filter mode for a multicast group,
 may be either include or exclude.";
 }
 leaf up-time {
 type uint32;
 units "seconds";
 mandatory true;
 description
 "The elapsed time since the device created multicast group
 record.";
 }
 }
 // interface-state-group-attributes

 grouping interface-state-source-attributes {
 description
 "Per-interface state attributes for both IGMP and MLD
 source-group records.";
 leaf expire {
 type uint32;
 units "seconds";

 mandatory true;
 description
 "The time left before multicast source-group state expires.";
 }
 leaf up-time {
 type uint32;
 units "seconds";
 mandatory true;
 description
 "The elapsed time since the device created multicast
 source-group record.";
 }
 leaf host-count {
 if-feature "intf-explicit-tracking";
 type uint32;
 description
 "The number of host addresses.";
 }
 }
 // interface-state-source-attributes

 grouping interface-state-host-attributes {
 description
 "Per-interface state attributes for both IGMP and MLD
 hosts of source-group records.";
 leaf host-filter-mode {
 type enumeration {
 enum include {
 description
 "In include mode.";
 }
 enum exclude {
 description
 "In exclude mode.";
 }
 }
 mandatory true;
 description
 "Filter mode for a multicast membership
 host may be either include or exclude.";
 }
 }
 // interface-state-host-attributes

 /*
 * Configuration and Operational state data nodes (NMDA version)
 */

 augment "/rt:routing/rt:control-plane-protocols/"
 + "rt:control-plane-protocol" {
 when "derived-from-or-self(rt:type, ’igmp-mld:igmp’)" {
 description
 "This augmentation is only valid for a control-plane
 protocol instance of IGMP (type ’igmp’).";
 }
 description
 "IGMP augmentation to routing control-plane protocol
 configuration and state.";
 container igmp {
 if-feature "feature-igmp";
 description
 "IGMP configuration and operational state data.";
 container global {
 description
 "Global attributes.";
 uses global-config-attributes;
 uses global-state-attributes;
 }
 container interfaces {
 description
 "Containing a list of interfaces.";

 uses interfaces-config-attributes-igmp {
 if-feature "interface-global-config";
 refine "query-interval" {
 default "125";
 }
 refine "query-max-response-time" {
 default "10";
 }
 refine "robustness-variable" {
 default "2";
 }
 refine "version" {
 default "2";
 }
 }
 list interface {
 key "interface-name";
 description
 "List of IGMP interfaces.";
 leaf interface-name {
 type if:interface-ref;
 must
 ’/if:interfaces/if:interface[if:name = current()]/’
 + ’ip:ipv4’ {
 error-message
 "The interface must have IPv4 configured, either "
 + "enabled or disabled.";
 }
 description
 "Reference to an entry in the global interface list.";
 }
 uses interface-config-attributes-igmp {
 if-feature "per-interface-config";
 refine "last-member-query-interval" {
 must ’../version != 1 or ’
 + ’(not(../version) and ’
 + ’(../../version != 1 or not(../../version)))’ {
 error-message "IGMPv1 does not support "
 + "last-member-query-interval.";
 }
 }
 refine "max-group-sources" {
 must ’../version = 3 or ’
 + ’(not(../version) and (../../version = 3))’ {
 error-message
 "The version of IGMP must be 3 to support the "
 + "source-specific parameters.";
 }
 }
 refine "source-policy" {
 must ’../version = 3 or ’
 + ’(not(../version) and (../../version = 3))’ {
 error-message
 "The version of IGMP must be 3 to support the "
 + "source-specific parameters.";
 }
 }
 refine "explicit-tracking" {
 must ’../version = 3 or ’
 + ’(not(../version) and (../../version = 3))’ {
 error-message
 "The version of IGMP must be 3 to support the "
 + "explicit tracking function.";
 }
 }
 refine "lite-exclude-filter" {
 must ’../version = 3 or ’
 + ’(not(../version) and (../../version = 3))’ {
 error-message
 "The version of IGMP must be 3 to support the "
 + "simplified EXCLUDE filter in the Lightweight "

 + "IGMPv3 protocol.";
 }
 }
 }
 uses interface-state-attributes-igmp;
 }
 // interface
 }
 // interfaces

 /*
 * Actions
 */
 action clear-groups {
 if-feature "action-clear-groups";
 description
 "Clears the specified IGMP cache entries.";
 input {
 choice interface {
 mandatory true;
 description
 "Indicates the interface(s) from which the cache
 entries are cleared.";
 case name {
 leaf interface-name {
 type leafref {
 path "/rt:routing/rt:control-plane-protocols/"
 + "rt:control-plane-protocol/"
 + "igmp-mld:igmp/igmp-mld:interfaces/"
 + "igmp-mld:interface/igmp-mld:interface-name";
 }
 description
 "Name of the IGMP interface.";
 }
 }
 case all {
 leaf all-interfaces {
 type empty;
 description
 "IGMP groups from all interfaces are cleared.";
 }
 }
 }
 leaf group-address {
 type union {
 type enumeration {
 enum * {
 description
 "Any group address.";
 }
 }
 type rt-types:ipv4-multicast-group-address;
 }
 mandatory true;
 description
 "Multicast group IPv4 address.
 If the value ’*’ is specified, all IGMP group entries
 are cleared.";
 }
 leaf source-address {
 type rt-types:ipv4-multicast-source-address;
 mandatory true;
 description
 "Multicast source IPv4 address.
 If the value ’*’ is specified, all IGMP source-group
 entries are cleared.";
 }
 }
 }
 // action clear-groups
 }

 // igmp
 }
 // augment

 augment "/rt:routing/rt:control-plane-protocols/"
 + "rt:control-plane-protocol" {
 when "derived-from-or-self(rt:type, ’igmp-mld:mld’)" {
 description
 "This augmentation is only valid for a control-plane
 protocol instance of IGMP (type ’mld’).";
 }
 description
 "MLD augmentation to routing control-plane protocol
 configuration and state.";
 container mld {
 if-feature "feature-mld";
 description
 "MLD configuration and operational state data.";
 container global {
 description
 "Global attributes.";
 uses global-config-attributes;
 uses global-state-attributes;
 }
 container interfaces {
 description
 "Containing a list of interfaces.";
 uses interfaces-config-attributes-mld {
 if-feature "interface-global-config";
 refine "last-member-query-interval" {
 default "1";
 }
 refine "query-interval" {
 default "125";
 }
 refine "query-max-response-time" {
 default "10";
 }
 refine "require-router-alert" {
 default "true";
 }
 refine "robustness-variable" {
 default "2";
 }
 refine "version" {
 default "2";
 }
 }
 list interface {
 key "interface-name";
 description
 "List of MLD interfaces.";
 leaf interface-name {
 type if:interface-ref;
 must
 ’/if:interfaces/if:interface[if:name = current()]/’
 + ’ip:ipv6’ {
 error-message
 "The interface must have IPv6 configured, either "
 + "enabled or disabled.";
 }
 description
 "Reference to an entry in the global interface list.";
 }
 uses interface-config-attributes-mld {
 if-feature "per-interface-config";
 refine "max-group-sources" {
 must ’../version = 2 or ’
 + ’(not(../version) and ’
 + ’(../../version = 2 or not(../../version)))’ {
 error-message

 "The version of MLD must be 2 to support the "
 + "source-specific parameters.";
 }
 }
 refine "source-policy" {
 must ’../version = 2 or ’
 + ’(not(../version) and ’
 + ’(../../version = 2 or not(../../version)))’ {
 error-message
 "The version of MLD must be 2 to support the "
 + "source-specific parameters.";
 }
 }
 refine "explicit-tracking" {
 must ’../version = 2 or ’
 + ’(not(../version) and ’
 + ’(../../version = 2 or not(../../version)))’ {
 error-message
 "The version of MLD must be 2 to support the "
 + "explicit tracking function.";
 }
 }
 refine "lite-exclude-filter" {
 must ’../version = 2 or ’
 + ’(not(../version) and ’
 + ’(../../version = 2 or not(../../version)))’ {
 error-message
 "The version of MLD must be 2 to support the "
 + "simplified EXCLUDE filter in the Lightweight "
 + "MLDv2 protocol.";
 }
 }
 }
 uses interface-state-attributes-mld;
 }
 // interface
 }
 // interfaces

 /*
 * Actions
 */
 action clear-groups {
 if-feature "action-clear-groups";
 description
 "Clears the specified MLD cache entries.";
 input {
 choice interface {
 mandatory true;
 description
 "Indicates the interface(s) from which the cache
 entries are cleared.";
 case name {
 leaf interface-name {
 type leafref {
 path "/rt:routing/rt:control-plane-protocols/"
 + "rt:control-plane-protocol/"
 + "igmp-mld:mld/igmp-mld:interfaces/"
 + "igmp-mld:interface/igmp-mld:interface-name";
 }
 description
 "Name of the MLD interface.";
 }
 }
 case all {
 leaf all-interfaces {
 type empty;
 description
 "MLD groups from all interfaces are cleared.";
 }
 }

 }
 leaf group-address {
 type union {
 type enumeration {
 enum * {
 description
 "Any group address.";
 }
 }
 type rt-types:ipv6-multicast-group-address;
 }
 description
 "Multicast group IPv6 address.
 If the value ’*’ is specified, all MLD group entries
 are cleared.";
 }
 leaf source-address {
 type rt-types:ipv6-multicast-source-address;
 description
 "Multicast source IPv6 address.
 If the value ’*’ is specified, all MLD source-group
 entries are cleared.";
 }
 }
 }
 // action clear-mld-groups
 }
 // mld
 }
 // augment
 }
 <CODE ENDS>

5. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 Under /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol/igmp-mld:igmp,

 igmp-mld:global
 This subtree specifies the configuration for the IGMP attributes
 at the global level on an IGMP instance. Modifying the
 configuration can cause IGMP membership to be deleted or
 reconstructed on all the interfaces of an IGMP instance.

 igmp-mld:interfaces
 This subtree specifies the configuration for the IGMP attributes
 at the interface-global level on an IGMP instance. Modifying the
 configuration can cause IGMP membership to be deleted or
 reconstructed on all the interfaces of an IGMP instance.

 igmp-mld:interfaces/interface
 This subtree specifies the configuration for the IGMP attributes
 at the interface level on an IGMP instance. Modifying the
 configuration can cause IGMP membership to be deleted or
 reconstructed on a specific interface of an IGMP instance.

 Under /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol/igmp-mld:mld,

 igmp-mld:global
 This subtree specifies the configuration for the MLD attributes at
 the global level on an MLD instance. Modifying the configuration
 can cause MLD membership to be deleted or reconstructed on all the
 interfaces of an MLD instance.

 igmp-mld:interfaces
 This subtree specifies the configuration for the MLD attributes at
 the interface-global level on an MLD instance. Modifying the
 configuration can cause MLD membership to be deleted or
 reconstructed on all the interfaces of an MLD instance.

 igmp-mld:interfaces/interface
 This subtree specifies the configuration for the MLD attributes at
 the interface level on a device. Modifying the configuration can
 cause MLD membership to be deleted or reconstructed on a specific
 interface of an MLD instance.

 Unauthorized access to any data node of these subtrees can adversely
 affect the membership records of multicast routing subsystem on the
 local device. This may lead to network malfunctions, delivery of
 packets to inappropriate destinations, and other problems.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol/igmmp-mld:igmp

 /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol/igmp-mld:mld

 Unauthorized access to any data node of the above subtree can
 disclose the operational state information of IGMP or MLD on this
 device.

 Some of the action operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol/igmmp-mld:igmp/igmmp-mld:clear-groups

 /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol/igmp-mld:mld/igmp-mld:clear-groups

 Unauthorized access to any of the above action operations can delete
 the IGMP or MLD membership records on this device.

6. IANA Considerations

 This document registers the following namespace URIs in the IETF XML
 registry [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-igmp-mld

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG modules in the YANG Module
 Names registry [RFC6020]:

 Name: ietf-igmp-mld

 Namespace: urn:ietf:params:xml:ns:yang:ietf-igmp-mld

 Prefix: igmp-mld

 Reference: RFC 8652

7. References

7.1. Normative References

 [RFC1112] Deering, S., "Host extensions for IP multicasting", STD 5,
 RFC 1112, DOI 10.17487/RFC1112, August 1989,
 <https://www.rfc-editor.org/info/rfc1112>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2236] Fenner, W., "Internet Group Management Protocol, Version
 2", RFC 2236, DOI 10.17487/RFC2236, November 1997,
 <https://www.rfc-editor.org/info/rfc2236>.

 [RFC2710] Deering, S., Fenner, W., and B. Haberman, "Multicast
 Listener Discovery (MLD) for IPv6", RFC 2710,
 DOI 10.17487/RFC2710, October 1999,
 <https://www.rfc-editor.org/info/rfc2710>.

 [RFC3376] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
 Thyagarajan, "Internet Group Management Protocol, Version
 3", RFC 3376, DOI 10.17487/RFC3376, October 2002,
 <https://www.rfc-editor.org/info/rfc3376>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC3810] Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
 Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
 DOI 10.17487/RFC3810, June 2004,
 <https://www.rfc-editor.org/info/rfc3810>.

 [RFC4607] Holbrook, H. and B. Cain, "Source-Specific Multicast for
 IP", RFC 4607, DOI 10.17487/RFC4607, August 2006,
 <https://www.rfc-editor.org/info/rfc4607>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
 "Common YANG Data Types for the Routing Area", RFC 8294,
 DOI 10.17487/RFC8294, December 2017,
 <https://www.rfc-editor.org/info/rfc8294>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8344] Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 8344, DOI 10.17487/RFC8344, March 2018,
 <https://www.rfc-editor.org/info/rfc8344>.

 [RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
 Routing Management (NMDA Version)", RFC 8349,
 DOI 10.17487/RFC8349, March 2018,
 <https://www.rfc-editor.org/info/rfc8349>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8519] Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
 "YANG Data Model for Network Access Control Lists (ACLs)",
 RFC 8519, DOI 10.17487/RFC8519, March 2019,
 <https://www.rfc-editor.org/info/rfc8519>.

7.2. Informative References

 [RFC3569] Bhattacharyya, S., Ed., "An Overview of Source-Specific
 Multicast (SSM)", RFC 3569, DOI 10.17487/RFC3569, July
 2003, <https://www.rfc-editor.org/info/rfc3569>.

 [RFC4541] Christensen, M., Kimball, K., and F. Solensky,
 "Considerations for Internet Group Management Protocol
 (IGMP) and Multicast Listener Discovery (MLD) Snooping
 Switches", RFC 4541, DOI 10.17487/RFC4541, May 2006,
 <https://www.rfc-editor.org/info/rfc4541>.

 [RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick,
 "Internet Group Management Protocol (IGMP) / Multicast
 Listener Discovery (MLD)-Based Multicast Forwarding
 ("IGMP/MLD Proxying")", RFC 4605, DOI 10.17487/RFC4605,
 August 2006, <https://www.rfc-editor.org/info/rfc4605>.

 [RFC5790] Liu, H., Cao, W., and H. Asaeda, "Lightweight Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Version 2 (MLDv2) Protocols", RFC 5790,
 DOI 10.17487/RFC5790, February 2010,

 <https://www.rfc-editor.org/info/rfc5790>.

 [RFC6636] Asaeda, H., Liu, H., and Q. Wu, "Tuning the Behavior of
 the Internet Group Management Protocol (IGMP) and
 Multicast Listener Discovery (MLD) for Routers in Mobile
 and Wireless Networks", RFC 6636, DOI 10.17487/RFC6636,
 May 2012, <https://www.rfc-editor.org/info/rfc6636>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/info/rfc8639>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

Acknowledgments

 The authors would like to thank Steve Baillargeon, Hu Fangwei, Robert
 Kebler, Tanmoy Kundu, and Stig Venaas for their valuable
 contributions.

Contributors

 Yisong Liu
 Huawei Technologies
 China

 Email: liuyisong@huawei.com

Authors’ Addresses

 Xufeng Liu
 Volta Networks

 Email: xufeng.liu.ietf@gmail.com

 Feng Guo
 China
 100095
 Beijing
 Huawei Bldg., No. 156 Beiqing Rd., Haidian District
 Huawei Technologies

 Email: guofeng@huawei.com

 Mahesh Sivakumar
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, California
 United States of America

 Email: sivakumar.mahesh@gmail.com

 Pete McAllister
 Metaswitch Networks
 100 Church Street
 Enfield

 EN2 6BQ
 United Kingdom

 Email: pete.mcallister@metaswitch.com

 Anish Peter
 IP Infusion India
 RMZ Centennial, Block D 401
 Kundanahalli Main Road, Mahadevapura Post
 Bangalore
 India

 Email: anish.ietf@gmail.com

