I nt ernet Engi neering Task Force (1 ETF) P. Gut mann
Request for Comments: 7366 Uni versity of Auckl and
Cat egory: Standards Track Sept enber 2014
| SSN: 2070-1721

Encrypt -t hen- MAC for Transport Layer Security (TLS) and
Dat agram Transport Layer Security (DTLS)

Abst ract

Thi s docunent describes a nmeans of negotiating the use of the
encrypt-then- MAC security mechanismin place of the existing MAC
then-encrypt nechanismin Transport Layer Security (TLS) and Dat agram
Transport Layer Security (DTLS). The MAC-t hen-encrypt mechani sm has
been the subject of a nunber of security vulnerabilities over a
peri od of nmany years.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,
and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc7366

Copyri ght Notice

Copyright (c) 2014 |ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis document rnust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Gut mann St andards Track [Page 1]

RFC 7366 Encrypt -t hen- MAC for TLS and DTLS Sept enber 2014

Tabl e of Contents

1. | nt roducti on e e e
1.1. Conventions Used in This Docunent
2. Negotiating Encrypt-then-MAC
2.1. Rationale
3. Applying Encrypt-then-MAC .
3.1. Rehandshake |ssues
Security Considerations .
| ANA Consi derations .
Acknowl edgenent s
. References Coe
7.1. Normative References
7.2. Informative References

Noah
NNNNOOTWWNNN

1. | nt roducti on

TLS [2] and DTLS [4] use a MAC-then-encrypt construction that was
regarded as secure at the tine the original Secure Socket Layer (SSL)
protocol was specified in the md-1990s, but that is no | onger
regarded as secure [5] [6]. This construction, as used in TLS and

| ater DTLS, has been the subject of numerous security vulnerabilities
and attacks stretching over a period of many years. This docunent
specifies a means of switching to the nore secure encrypt-then- MAC
construction as part of the TLS/ DTLS handshake, replacing the current
MAC-t hen-encrypt construction. (In this docunent, "MAC' refers to
"Message Aut hentication Code".)

1.1. Conventions Used in This Docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMMENDED', "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [1].

2. Negotiating Encrypt-then-MAC

The use of encrypt-then-MAC is negotiated via TLS/ DILS extensions as
defined in TLS [2]. On connecting, the client includes the

encrypt _then_nmac extension in its client_hello if it w shes to use
encrypt-then- MAC rather than the default MAC-then-encrypt. |If the
server is capable of nmeeting this requirement, it responds with an
encrypt _then_mac in its server_hello. The "extension_type" value for
this extension SHALL be 22 (0x16), and the "extension_data" field of
this extension SHALL be enpty. The client and server MJST NOT use
encrypt-then- MAC unl ess both sides have successfully exchanged
encrypt _then_mac extensions.

Gut mann St andards Track [Page 2]

RFC 7366 Encrypt -t hen- MAC for TLS and DTLS Sept enber 2014

2.1. Rationale

The use of TLS/ DTLS extensions to negotiate an overall switch is
preferable to defining new ci phersuites because the latter would
result in a Cartesian explosion of suites, potentially requiring
duplicating every single existing suite with a new one that uses
encrypt-then-MAC. |In contrast, the approach presented here requires
just a single new extension type with a correspondi ng m ninmal -1ength
ext ension sent by client and server.

Anot her possibility for introducing encrypt-then-MAC woul d be to make
it part of TLS 1.3; however, this would require the inplenentation
and depl oynment of all of TLS 1.2 just to support a trivial code
change in the order of encryption and MAC ing. In contrast,

depl oyi ng encrypt-then-MAC via the TLS/ DTLS extensi on nechani sm

requi red changing | ess than a dozen |lines of code in one

i mpl enentati on (not including the handling for the new extension
type, which was a further 50 or so |ines of code).

The use of extensions precludes use with SSL 3.0, but then it’'s

i kely that anything still using that protocol, which is nearly two
decades old, will be vulnerable to any nunber of other attacks
anyway, so there seens little point in bending over backwards to
accomodate SSL 3.0.

3. Applying Encrypt-then- MAC

Once the use of encrypt-then-MAC has been negoti ated, processing of
TLS/ DTLS packets switches fromthe standard:

encrypt(data || MAC || pad)
to the new
encrypt(data || pad) || MAC
with the MAC covering the entire packet up to the start of the MAC
value. In TLS [2] notation, the MAC cal culation for TLS 1.0 wi thout
the explicit Initialization Vector (I1V) is:
MAC(MAC write_key, seqg_num +
TLSCi pher Text . type +
TLSCi pher Text.version +

TLSC pher Text .l ength +
ENC(content + paddi ng + paddi ng_I ength));

Gut mann St andards Track [Page 3]

RFC 7366 Encrypt -t hen- MAC for TLS and DTLS Sept enber 2014

and for TLS 1.1 and greater with an explicit IV is:

MAC(MAC write_key, seq_nhum +
TLSGi pher Text.type +
TLSCi pher Text . versi on +
TLSCi pher Text.length +
IV +
ENC(content + paddi ng + paddi ng_I ength));

(For DTLS, the sequence number is replaced by the combined epoch and
sequence nunber as per DTLS [4].) The final MAC value is then
appended to the encrypted data and padding. This calculation is
identical to the existing one, with the exception that the MAC
calculation is run over the payl oad ci phertext (the TLSC pher Text
PDU) rather than the plaintext (the TLSConpressed PDU).

The overall TLS packet [2] is then:

struct {
Cont ent Type type;
Pr ot ocol Ver si on version;
uint 16 | engt h;
Generi cBl ockCi pher fragment;
opaque MNAGC;
} TLSCGi phertext;

The equi val ent DTLS packet [4] is then:

struct {
Cont ent Type type;
Pr ot ocol Ver si on version;
ui nt 16 epoch;
ui nt 48 sequence_nunber;
uint 16 | engt h;
Generi cBl ockCi pher fragment;
opaque MNAGC;
} TLSCGi phertext;

This is identical to the existing TLS/ DTLS layout, with the only
di fference being that the MAC value is nmoved outside the encrypted
dat a.

Note fromthe GenericBl ockC pher annotation that this only applies to
standard bl ock ci phers that have distinct encrypt and MAC operati ons.
It does not apply to GenericStreanC phers or to Generi cAEADC phers
that already include integrity protection with the cipher. If a
server receives an encrypt-then-MAC request extension froma client
and then selects a streamor Authenticated Encryption wi th Associ ated

Gut mann St andards Track [Page 4]

RFC 7366 Encrypt -t hen- MAC for TLS and DTLS Sept enber 2014

Data (AEAD) ciphersuite, it MJST NOT send an encrypt-then- MAC
response extension back to the client.

Decryption reverses this processing. The MAC SHALL be eval uated

bef ore any further processing such as decryption is performed, and if
the MAC verification fails, then processing SHALL term nate

i mediately. For TLS, a fatal bad _record _nmac MJST be generated [2].
For DTLS, the record MJST be discarded, and a fatal bad _record_nmac
MAY be generated [4]. This imedi ate response to a bad MAC
elimnates any timng channels that may be avail able through the use
of mani pul at ed packet dat a.

Sone inplenentations may prefer to use a truncated MAC rather than a
full-length one. In this case, they MAY negotiate the use of a
truncated MAC t hrough the TLS truncated_hmac extension as defined in
TLS-Ext [3].

3.1. Rehandshake | ssues

The status of encrypt-then-MAC vs. MAC-then-encrypt can potentially
change during one or nore rehandshakes. |nplenentations SHOULD
retain the current session state across all rehandshakes for that
session. (In other words, if the mechanismfor the current session
is X, then the renegotiated session should also use X.) Although

i mpl enent ati ons SHOULD NOT change the state during a rehandshake, if
they wish to be nore flexible, then the follow ng rules apply:

Fom e oo - o m e e e e aa o - o m e e e e e e aa o +
| Current Session | Renegoti at ed | Action to take |
| | Sessi on | |
R R LR O +
MAC- t hen- encr ypt MAC- t hen- encr ypt No change
MAC- t hen- encr ypt Encrypt -t hen- MAC Upgrade to

Encrypt -t hen- MAC

Error

|
|
|
I
Encrypt -t hen- MAC |
|

Encrypt -t hen- MAC | Encrypt -t hen- MAC No change

Table 1: Encrypt-then-MAC with Renegoti ation

As the above table points out, inplenmentations MJUST NOT renegotiate a
downgrade from encrypt-then-MAC to MAC-then-encrypt. Note that a
client or server that doesn’t wi sh to inplenent the mechani sm change-
duri ng-rehandshake ability can (as a client) not request a nechanism
change and (as a server) deny the nmechani sm change.

Gut mann St andards Track [Page 5]

RFC 7366 Encrypt -t hen- MAC for TLS and DTLS Sept enber 2014

Note that these rules apply across potentially nmany rehandshakes.
For exanple, if a session were in the encrypt-then-MAC state and a
rehandshake sel ected a Generi cAEADC phers ciphersuite and a
subsequent rehandshake then selected a MAC-t hen-encrypt ciphersuite,
this would be an error since the renegotiation process has resulted
in a downgrade fromencrypt-then-MAC to MAC-then-encrypt (via the
AEAD ci phersuite).

(As the text above has already pointed out, inplenentations SHOULD
avoid having to deal with these ciphersuite calisthenics by retaining
the initially negotiated mechani smacross all rehandshakes.)

I f an upgrade from MAC-t hen-encrypt to encrypt-then-MAC i s negoti ated
as per the second line in the table above, then the change will take
place in the first nmessage that follows the Change C pher Spec (CCS)
nmessage. In other words, all messages up to and including the CCS
will use MAC-then-encrypt, and then the nessage that follows wll
continue with encrypt-then- VAC.

4. Security Considerations

Thi s docunent defines encrypt-then-MAC, an inproved security

mechani smto replace the current MAC-t hen-encrypt one. Encrypt-then-
MAC is regarded as nore secure than the current nechanism[5] [6] and
should mtigate or elinmnate a nunber of attacks on the current
mechani sm provided that the instructions on MAC processing given in
Section 3 are applied.

An active attacker who can enulate a client or server with extension
i ntol erance may cause sone i nplenmentations to fall back to ol der
protocol versions that don't support extensions, which will in turn
force a fallback to non-encrypt-then- MAC behaviour. A
straightforward solution to this problemis to avoid fallback to

ol der, less secure protocol versions. |If fallback behaviour is
unavoi dabl e, then nechani sns to address this issue, which affects al
capabilities that are negotiated via TLS extensions, are being

devel oped by the TLS working group [7]. Anyone concerned about this
type of attack should consult the TLS working group docunents for

gui dance on appropriate defence mechani sms.

5. | ANA Consi derations
| ANA has added the extension code point 22 (0x16) for the

encrypt _then_mac extension to the TLS "ExtensionType Val ues" registry
as specified in TLS [2].

Gut mann St andards Track [Page 6]

RFC 7366 Encrypt -t hen- MAC for TLS and DTLS Sept enber 2014

6. Acknow edgenents

The author would like to thank Martin Rex, Dan Shunow, and the
menbers of the TLS mailing list for their feedback on this docunent.

7. References
7.1. Nornmtive References

[1] Bradner, S., "Key words for use in RFCs to | ndicate Requirenent
Level s", BCP 14, RFC 2119, March 1997.

[2] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
Protocol Version 1.2", RFC 5246, August 2008.

[3] Eastlake, D., "Transport Layer Security (TLS) Extensions:
Extensi on Definitions", RFC 6066, January 2011.

[4] Rescorla, E. and N. Mddadugu, "Datagram Transport Layer Security
Version 1.2", RFC 6347, January 2012.

7. 2. I nformati ve References

[5] Bellare, M and C. Nanprenpre, "Authenticated Encryption:
Rel ati ons anpong noti ons and anal ysis of the generic conposition
par adi gn', Proceedi ngs of AsiaCrypt '00, Springer-Verlag LNCS
No. 1976, p. 531, Decemnber 2000.

[6] Krawczyk, H., "The O der of Encryption and Authentication for
Prot ecti ng Conmuni cations (or: How Secure |Is SSL?)", Proceedings
of Crypto '01, Springer-Verlag LNCS No. 2139, p. 310, August
2001.

[7] Meller, B. and A Langley, "TLS Fall back Signaling C pher Suite
Val ue (SCSV) for Preventing Protocol Downgrade Attacks", Wrk in
Progress, July 2014.

Aut hor’ s Addr ess

Pet er Gut mann

Uni versity of Auckl and

Depart nent of Conputer Science

New Zeal and

EMai | : pgut 001@s. auckl and. ac. nz

Gut mann St andards Track [Page 7]

