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1. Introduction

Schenes for authenticated encryption (AE) simultaneously provide for
confidentiality and authentication. Wile this goal would
traditionally be achieved by nelding separate encryption and

aut henti cati on nechani sns, each using its own key, integrated AE
schenmes intertwi ne what is needed for confidentiality and what is
needed for authenticity. By conceptualizing AE as a single
cryptographi c goal, AE schemes are less likely to be misused than
conventional encryption schenes. Also, integrated AE schenmes can be
significantly faster than what one sees from conposi ng separate
confidentiality and authenticity neans.

When an AE schene allows for the authentication of unencrypted data
at the sane time that a plaintext is being encrypted and

aut henticated, the schene is an authenticated encryption with

associ ated data (AEAD) schene. Associated data can be useful when,
for exanple, a network packet has unencrypted routing information and
an encrypted payl oad.

OCB i s an AEAD schene that depends on a bl ockci pher. This docunent
fully defines OCB encryption and decryption except for the choice of
the bl ockci pher and the | ength of authentication tag that is part of
the ciphertext. The bl ockci pher rmust have a 128-bit bl ocksize. Each
choi ce of bl ockcipher and tag | ength specifies a different variant of
OCB. Several AES-based variants are defined in Section 3.1.
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OCB encryption and decryption enploy a nonce N, which nust be

di stinct for each invocation of the OCB encryption operation. OCB
requires the associated data A to be specified when one encrypts or
decrypts, but it nmay be zero-length. The plaintext P and the

associ ated data A can have any bitlength. The ciphertext C one gets
by encrypting P in the presence of A consists of a ciphertext-core
havi ng the sane length as P, plus an authentication tag. One can
view the resulting ciphertext as either the pair (ciphertext-core,
tag) or their concatenation (ciphertext-core || tag), the difference
bei ng purely how one assenbl es and parses ciphertexts. This docunent
uses concatenation

OCB encryption protects the confidentiality of P and the authenticity
of A N and P. It does this using, on average, about a + m+ 1.02
bl ockci pher calls, where a is the blocklength of A, mis the

bl ockl ength of P, and the nonce N is inplenented as a counter (if N
is random then OCB uses a + m+ 2 bl ockcipher calls). If Ais fixed
during a session, then, after preprocessing, there is effectively no
cost to having A authenticated on subsequent encryptions, and the
node will average m+ 1.02 bl ockci pher calls. OCB requires a single
key K for the underlying bl ockci pher, and all bl ockcipher calls are
keyed by K. OCB is online. 1In particular, one need not know the
length of A or P to proceed with encryption, nor need one know the
length of A or Cto proceed with decryption. OCB is parallelizable:
the bul k of its bl ockcipher calls can be perforned sinultaneously.
Conput ati onal work beyond bl ockci pher calls consists of a snall and
fi xed nunber of |ogical operations per call. OCB enjoys provable
security: the node of operation is secure assuming that the
under | yi ng bl ockci pher is secure. As with nost nodes of operation
security degrades as the nunber of bl ocks processed gets |arge (see
Section 5 for details).

For reasons of generality, OCB is defined to operate on arbitrary
bitstrings. But for reasons of sinplicity and efficiency, nost

i mpl enentations will assume that strings operated on are bytestrings
(i.e., strings that are a multiple of 8 bits). To pronote
interoperability, inplenentations of OCB that communicate with

i mpl enent ati ons of unknown capabilities should restrict all provided
val ues (nonces, tags, plaintexts, ciphertexts, and associ ated data)
to bytestrings.

The version of OCB defined in this document is a refinement of two
prior schenes. The original OCB version was published in 2001 [ OCB1]
and was |listed as an optional conmponent in | EEE 802.11i. A second
version was published in 2004 [OCB2] and is specified in |1SO 19772.
The scherme described here is called OCB3 in the 2011 paper descri bing
the nmode [OCB3]; it shall be referred to sinmply as OCB t hroughout
this docunent. The only difference between the algorithmof this RFC
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and that of the [OCB3] paper is that the tag length i s now encoded
into the internally fornmatted nonce. See [OCB3] for conplete
references, tinming information, and a discussion of the differences
between the algorithnms. OCB was initially the acronymfor O fset
Codebook but is now the algorithms full namre.

OCB has received years of in-depth analysis previous to its

submi ssion to the CFRG and has been under review by the nmenbers of
the CFRG for over a year. It is the consensus of the CFRG that the
security nechani sns provided by the OCB AEAD al gorithm described in
this document are suitable for use in providing confidentiality and
aut henti cati on.

2. Notation and Basic Operations

There are two types of variables used in this specification, strings
and integers. Although strings processed by nost inplenmentations of
OCB will be strings of bytes, bit-level operations are used

t hroughout this specification docunent for defining OCB. String
variabl es are always witten with an initial uppercase letter while

integer variables are witten in all |lowercase. Following Cs
convention, a single equals ("=") indicates variable assignnent and
doubl e equals ("==") is the equality relation. Wenever a variable

is followed by an underscore ("_"), the underscore is intended to
denote a subscript, with the subscripted expression requiring
evaluation to resol ve the neaning of the variable. For exanple, when
i == 2, then P_i refers to the variable P_2.

CNi The integer c raised to the i-th power.

bitlen(S) The length of string Sin bits (e.g., bitlen(101) ==
3).

zeros(n) The string made of n zero bits.

ntz(n) The nunber of trailing zero bits in the base-2

representation of the positive integer n. Mre
formally, ntz(n) is the largest integer x for which 2*x
di vi des n.

S xor T The string that is the bitw se exclusive-or of S and T.
Strings Sand T will always have the sanme |ength.

Sli] The i-th bit of the string S (indices begin at 1, so if
Sis 011, then S[1] == 0, 2] ==1, §[3] ==1).
Sli..j] The substring of S consisting of bits i through j,
i ncl usi ve.
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S|| T String S concatenated with string T (e.g., 000 || 111
== 000111).
str2nun( S) The base-2 interpretation of bitstring S (e.g.

str2nun(1110) == 14).

nunstr(i,n) The n-bit string whose base-2 interpretation is

(e.g., nun2str(14,4) == 1110 and nun®str(1,2) == 01).
doubl e( S) If S[1] == 0, then double(S) == (§2..128] || 0);
ot herwi se, double(S) == (S[2..128] || 0) xor

(zeros(120) || 10000111).
3. (OCB d obal Parameters

To be conmplete, the algorithms in this docunent require specification
of two gl obal parameters: a bl ockci pher operating on 128-bit bl ocks
and the length of authentication tags in use.

Speci fying a bl ockci pher inmplicitly defines the follow ng synbols.
KEYLEN The bl ockci pher’s key length in bits.

ENCI PHER(K, P)  The bl ockci pher function mapping 128-bit pl ai ntext
block P to its correspondi ng ci phertext block using
KEYLEN-bit key K

DECI PHER(K, C) The i nverse bl ockci pher function mapping 128-bit
ci phertext block Cto its correspondi ng plai ntext
bl ock using KEYLEN-bit key K.

The TAGLEN paraneter specifies the I ength of authentication tag used
by OCB and may be any value up to 128. Geater values for TAGLEN
provi de greater assurances of authenticity, but ciphertexts produced
by OCB are | onger than their corresponding plaintext by TAGEN bits.
See Section 5 for details about TAGLEN and security.

As an exanple, if 128-bit authentication tags and AES with 192-bit
keys are to be used, then KEYLEN is 192, ENCI PHER refers to the
AES-192 ci pher, DECIPHER refers to the AES-192 inverse cipher, and
TAGLEN i s 128 [ AES].
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3.1. Naned OCB Paraneter Sets and RFC 5116 Constants

The following table gives names to conmobn OCB gl obal paraneter sets.
Each of the AES variants is defined in [AES].

T S Fomm oo +

| Nane | Bl ockci pher | TAGLEN

o m e e e e eee oo s Fom e Fomm e +
AEAD AES 128 OCB TAGLEN128 AES- 128 128
AEAD AES 128 OCB TAGLEN96 AES- 128 96
AEAD AES 128 OCB _TAGLEN64 AES- 128 64
AEAD_AES 192 OCB_TAGLEN128 AES- 192 128

| | |
| | |
s
AEAD_AES_192_CCB_TAGLEN96 | AES- 192 | 96
| | |
| | |
| | |
| | |

AEAD_AES_192_OCB_TAGLEN64 AES- 192 64
AEAD_AES 256_OCB_TAGLEN128 AES- 256 128
AEAD_AES_256_OCB_TAGLEN96 AES- 256 96
AEAD_AES_256_OCB_TAGLEN64 AES- 256 64
O o e e oo o me o +

RFC 5116 defines an interface for authenticated-encryption schenes

[ RFC5116]. RFC 5116 requires the specification of certain constants
for each naned AEAD schene. For each of the OCB paraneter sets
listed above: P_MAX, A MAX, and C MAX are all unbounded; NMNis 1
byte, and N.MAX is 15 bytes. The paraneter sets indicating the use
of AES-128, AES-192, and AES-256 have K LEN equal to 16, 24, and 32
bytes, respectively.

Each ciphertext is longer than its correspondi ng plaintext by exactly
TAGLEN bits, and TAGLEN is given at the end of each nane. For

i nstance, an AEAD AES 128 OCB TAGLEN64 ci phertext is exactly 64 bits
| onger than its correspondi ng pl ai ntext.

4. COCB Al gorithmns

OCB is described in this section using pseudocode. G ven any
collection of inputs of the required types, follow ng the pseudocode
description for a function will produce the correct output of the
prom sed type

4.1. Processing Associ ated Data: HASH

OCB has the ability to authenticate unencrypted associ ated data at
the sane tine that it provides for authentication and encrypts a

pl ai ntext. The follow ng hash function is central to providing this
functionality. |If an application has no associated data, then the
associ ated data shoul d be considered to exist and to be the enpty
string. HASH, conveniently, always returns zeros(128) when the
associated data is the enpty string.
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Functi on name:

HASH
I nput :

K, string of KEYLEN bits /1 Key

A, string of any length /1 Associ ated data
Qut put :

Sum string of 128 bits /1 Hash result

Sumis defined as foll ows.

/1

/'l Key-dependent vari abl es

/1

L * = ENCl PHER(K, zeros(128))

L_$ = doubl e(L_*)

L_O0 = double(L_$)

L i = double(L_{i-1}) for every integer i >0

/1

/1 Consider A as a sequence of 128-bit bl ocks

I

Let mbe the largest integer so that 128m <= bitlen(A)

Let A1, A2, ..., Amand A * be strings so that
A==A1]|] A2 ][] ... || Am]|]|] A*, and
bitlen(A i) == 128 for each 1 <= i <= m
Note: A * may possibly be the enpty string.

/1

/1 Process any whol e bl ocks

/1

Sum 0 = zeros(128)
O fset 0 = zeros(128)

for each 1 <= i <=m
Ofset i = Ofset_{i-1} xor L_{ntz(i)}
Sumi = Sum{i-1} xor ENCIPHER(K, A i xor Ofset_i)
end for
/1
/1 Process any final partial block; compute final hash val ue
/1

if bitlen(A *) > 0 then
Ofset * = Offset_mxor L_*
C pherlnput = (A* || 1 || zeros(127-bitlen(A *))) xor O fset *
Sum = Sum m xor ENCI PHER(K, C pher | nput)
el se
Sum = Sum.m
end if
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4.2. Encryption: OCB- ENCRYPT

This function conputes a ciphertext (which includes a bundl ed

aut hentication tag) when given a plaintext, associated data, nonce,
and key. For each invocation of OCB-ENCRYPT using the sane key K
the value of the nonce input N rmust be distinct.

Functi on name:

OCB- ENCRYPT
I nput :
K, string of KEYLEN bits /'l Key
N, string of no nore than 120 bhits /1 Nonce
A, string of any length /'l Associated data
P, string of any length /1 Pl aintext
CQut put :

C, string of length bitlen(P) + TAGEN bits /1 Ci phertext

Cis defined as foll ows.

11

/'l Key-dependent vari abl es

/1

L_* = ENCl PHER(K, zeros(128))

L_$ = doubl e(L_*)

L 0 = double(L_%)

L i = double(L_{i-1}) for every integer i >0

/1

/1 Consider P as a sequence of 128-bit bl ocks

/1

Let mbe the largest integer so that 128m <= bitlen(P)

Let P_1, P 2, ..., P_.mand P_* be strings so that
P=P21]|] P2]|] ... ||] P_m]|| P_*, and
bitlen(P_i) == 128 for each 1 <= i <=m
Note: P_* may possibly be the enpty string.

/1

/1 Nonce-dependent and per-encryption variabl es

/1

Nonce = nun®str( TAGEN nod 128,7) || zeros(120-bitlen(N)) || 1 || N

bottom = str2nun{Nonce[ 123..128])

Kt op = ENCI PHER(K, Nonce[l..122] || zeros(6))

Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
Ofset 0 = Stretch[1+bottom . 128+bot t on]
Checksum 0 = zeros(128)
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4.

3.

/1

/1 Process any whol e bl ocks

I

for each 1 <= i <=m
Ofset i = Ofset_{i-1} xor L_{ntz(i)}
Ci = Ofset_i xor ENCIPHER(K, P_i xor Ofset i)
Checksum.i = Checksum{i-1} xor P_i

end for

/1

/1 Process any final partial block and conmpute raw tag
/1
if bitlen(P_*) > 0 then
Ofset * = Offset_mxor L_*
Pad = ENClI PHER(K, O fset_*)
C* = P_* xor Pad[1l..bitlen(P_*)]
Checksum * = Checksum m xor (P_* || 1 || zeros(127-bitlen(P_*)))
Tag = ENCI PHER(K, Checksum * xor O fset * xor L_$) xor HASH(K, A)
el se

C* = <enpty string>
Tag = ENCI PHER(K, Checksum m xor O fset_m xor L_$) xor HASH(K, A)
end if
/1
/1 Assenbl e ciphertext
/1
C=C1l1]] C2]] ... 1] €m]|] C* || Tag[l..TAGEN

Decryption: OCB- DECRYPT

This function conputes a plaintext when given a ciphertext,

associ ated data, nonce, and key. An authentication tag is enbedded
in the ciphertext. |If the tag is not correct for the ciphertext,
associ ated data, nonce, and key, then an INVALID signal is produced.

Functi on name:

OCB- DECRYPT
I nput :
K, string of KEYLEN bits /1 Key
N, string of no nore than 120 bits /1 Nonce
A, string of any length /1 Associ ated data
C, string of at |least TAGLEN bhits /1 Ciphertext
Qut put :

P, string of length bitlen(C) - TAGEN bits, // Plaintext
or I NVALID indicating authentication failure
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P is defined as foll ows.

/1

/'l Key-dependent vari abl es

/1

L_* = ENClI PHER(K, zeros(128))

L_$ = doubl e(L_*)

L 0 = doubl e(L_%$)

L i = double(L_{i-1}) for every integer i >0

/1

/1 Consider C as a sequence of 128-bit bl ocks

/1

Let mbe the |largest integer so that 128m <= bitlen(C) - TAGLEN

Let C1 C2, ..., Cm C* and T be strings so that

==C1l|| C2]|| ...l Cm|| C* || T,

b|tlen(C i) == 128 for each 1 <= i <= m and

bitlen(T) == TAGLEN.
Note: C * nmay possibly be the enpty string.

/1

/1 Nonce-dependent and per-decryption variabl es

/1

Nonce = nun2str( TAGLEN nod 128,7) || zeros(120-bitlen(N)) || 1 |] N
bottom = str2nun{Nonce[ 123..128])

Kt op = ENCI PHER(K, Nonce[l..122] || zeros(6))

Stretch = Ktop || (Ktop[1l..64] xor Ktop[9..72])
Ofset_0 = Stretch[1+bottom . 128+bott on]
Checksum 0 = zeros(128)

/1
/1 Process any whol e bl ocks
I
for each 1 <= i <=m
Ofset i = Ofset_{i-1} xor L_{ntz(i)}
Pi = Ofset i xor DECIPHER(K, C.i xor Ofset i)
Checksum.i = Checksum{i-1} xor P_i
end for
/1
/1 Process any final partial block and conmpute raw tag
/1

if bitlen(C*) > 0 then
Ofset * = Offset_mxor L_*
Pad = ENCI PHER(K, O fset_*)
P * = C* xor Pad[1l..bitlen(C *)]
Checksum* = Checksummxor (P_* || 1 || zeros(127-bitlen(P_*)))
Tag = ENCI PHER(K Checksum * xor OFfset_* xor L_$) xor HASH(K, A)
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5.

el se
P * = <enmpty string>
Tag = ENCI PHER(K, Checksum m xor O fset_m xor L_$) xor HASH(K, A)
end if
/1
/1 Check for validity and assenbl e pl ai nt ext
/1
if (Tag[l.. TAGLEN] == T) then
P=P1 || P2]|] ... || Pm]| P_*
el se
P = INVALID
end if

Security Consi derations

OCB achieves two security properties, confidentiality and
authenticity. Confidentiality is defined via "indistinguishability
fromrandom bits", neaning that an adversary is unable to distinguish
OCB out puts from an equal nunber of randombits. Authenticity is
defined via "authenticity of ciphertexts", neaning that an adversary
is unable to produce any valid nonce-ciphertext pair that it has not
al ready acquired. The security guarantees depend on the underlying
bl ockci pher being secure in the sense of a strong pseudorandom
permutation. Thus, if OCBis used with a bl ockcipher that is not
secure as a strong pseudorandom pernutation, the security guarantees
vani sh. The need for the strong pseudorandom permrutation property
nmeans that OCB shoul d be used with a conservatively designed, well -
trusted bl ockci pher, such as AES.

Both the confidentiality and the authenticity properties of OCB
degrade as per s™2 / 272128, where s is the total nunber of bl ocks
that the adversary acquires. The consequence of this fornmula is that
the proven security di sappears when s becones as |arge as 2"64.

Thus, the user should never use a key to generate an amount of

ci phertext that is near to, or exceeds, 2764 blocks. In order to
ensure that s*2 / 272128 remmins snall, a given key should be used to
encrypt at nost 2748 bl ocks (2755 bits or 4 petabytes), including the
associ ated data. To ensure these limts are not crossed, autonated
key managenent is recommended in systems exchangi ng | arge amounts of
data [ RFC4107].

When a ci phertext decrypts as INVALID, it is the inplenmentor’s
responsibility to nake sure that no information beyond this fact is
made adversarially avail abl e.

OCB encryption and decryption produce an internal 128-bit
aut hentication tag. The paraneter TAGLEN determnm nes how many bits of
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this internal tag are included in ciphertexts and used for

aut hentication. The value of TAGLEN has two inpacts: an adversary
can trivially forge with probability 2*{-TAGEN}, and ci phertexts are
TAGLEN bits | onger than their corresponding plaintexts. It is up to
the application designer to choose an appropriate value for TAGLEN
Long tags cost no nore conputationally than short ones.

Normal Iy, a given key should be used to create ciphertexts with a
single tag |l ength, TAGLEN, and an application should reject any

ci phertext that clains authenticity under the same key but a
different tag length. Wile the ciphertext core and all of the bits
of the tag do depend on the tag length, this is done for added
robust ness to misuse and shoul d not suggest that receivers accept

ci phertexts enploying variable tag | engths under a single key.

Tim ng attacks are not a part of the formal security nodel and an

i mpl enentati on should take care to mitigate themin contexts where
this is a concern. To render tinmng attacks inpotent, the anmount of
time to encrypt or decrypt a string should be i ndependent of the key
and the contents of the string. The only explicitly conditional OCB
operation that depends on private data is double(), which nmeans that
usi ng constant-time bl ockci pher and doubl e() i npl enentations
elimnates nost (if not all) sources of timng attacks on OCB
Power - usage attacks are |ikewi se out of the scope of the formal nodel
and shoul d be considered for environnents where they are threatening.

The OCB encryption schenme reveals in the ciphertext the I ength of the
pl ai ntext. Sometines the length of the plaintext is a valuable piece
of information that should be hidden. For environments where
"traffic analysis" is a concern, techni ques beyond OCB encryption
(typically involving padding) woul d be necessary.

Defining the ciphertext that results from OCB- ENCRYPT to be the pair
(C1 ]| c2|] --- || €m]| C*, Tag[l..TAGEN ) instead of the
concatenation C1 || C2 || ... || Cm]|| C* || Tag[l..TAGEN

i ntroduces no security concerns. Because TAGLEN is fixed, both
versions allow ciphertexts to be parsed unanbi guously.

5.1. Nonce Requirenents

It is crucial that, as one encrypts, one does not repeat a nonce.

The inadvertent reuse of the same nonce by two invocations of the OCB
encryption operation, with the sane key, but with distinct plaintext
val ues, underm nes the confidentiality of the plaintexts protected in
those two invocations and undernines all of the authenticity and
integrity protection provided by that key. For this reason, OCB
shoul d only be used whenever nonce uni queness can be provided with
certainty. Note that it is acceptable to input the sane nonce val ue
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nmultiple times to the decryption operation. W enphasize that the
security consequences are quite serious if an attacker observes two
ci phertexts that were created using the same nonce and key val ues,

unl ess the plaintext and associ ated data values in both invocations

of the encrypt operation were identical. First, a loss of
confidentiality ensues because the attacker will be able to infer
rel ati onshi ps between the two plai ntext values. Second, a |oss of
authenticity ensues because the attacker will be able to recover
secret information used to provide authenticity, making subsequent
forgeries trivial. Note that there are AEAD schenes, particularly

the Synthetic Initialization Vector (SIV) [ RFC5297], appropriate for
envi ronnents where nonces are unavail able or unreliable. OCB is not
such a schene.

Nonces need not be secret, and a counter may be used for them |If
two parties send OCB-encrypted plaintexts to one another using the
same key, then the space of nonces used by the two parties nust be
partitioned so that no nonce that could be used by one party to
encrypt could be used by the other to encrypt (e.g., odd and even
counters).

6. | ANA Consi der ati ons

The Internet Assigned Nunbers Authority (1 ANA) has defined a registry
for Authenticated Encryption with Associ ated Data paraneters. The

| ANA has added the following entries to the AEAD Regi stry. Each nane
refers to a set of paraneters defined in Section 3.1.

o e e e e e e e e e e e am o S S +
| Nane | Reference | Numeric ID
o m e e e e e e ee oo U Fom ek +
| AEAD AES 128 OCB TAGLEN128 | Section 3.1 | 20 |
| AEAD AES 128 OCB TAGLEN96 | Section 3.1 | 21 |
| AEAD _AES 128 OCB TAGLEN64 | Section 3.1 | 22 |
| AEAD_AES 192 OCB TAGLEN128 | Section 3.1 | 23 |
| AEAD_AES 192 _OCB_TAGLEN96 | Section 3.1 | 24 |
| AEAD_AES 192 _OCB_TAGLEN64 | Section 3.1 | 25

| AEAD AES 256_OCB_TAGLEN128 | Section 3.1 | 26

| AEAD AES 256_OCB TAGLEN96 | Section 3.1 | 27 |
| AEAD _AES 256_OCB TAGLEN64 | Section 3.1 | 28 |
o e e e e e e e e e e e am o S S +
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Appendi x A.  Sanple Results

Thi s section gives sanple output values for various inputs when using
OCB with AES as per the paraneters defined in Section 3.1. Al
strings are represented in hexadecimal (e.g., OF represents the
bitstring 00001111).

The following 16 (N, A P,C tuples show the ciphertext C that results
from OCB- ENCRYPT(K, N, A, P) for various |lengths of associated data (A)
and plaintext (P). The key (K) has a fixed value, the tag length is
128 bits, and the nonce (N) increnents.

K : 000102030405060708090A0BOCODOEOF
An enpty entry indicates the enpty string.

BBAA99887766554433221100

785407BFFFC8ADOEDCCS5520AC9111EE6

BBAA99887766554433221101

0001020304050607

0001020304050607
6820B3657B6F615A5725BDA0D3B4EB3A257COAF1F8F03009

BBAA99887766554433221102
0001020304050607

81017F8203F081277152FADE694A0A00
BBAA99887766554433221103

0001020304050607
45DD69F8F5AAE72414054CD1F35D82760B2CDO0D2F99BFA9

BBAA99887766554433221104
000102030405060708090A0BOCODOEQOF
000102030405060708090A0BOCODOEQOF
571D535B60B277188BE5147170A9A22 C3AD7 AAFF3835B8C5
701C1CCEC8FC3358

NIZZ 0IT2XPZ OQOITPZ OQOITPZ OITEZ

BBAA99887766554433221105
000102030405060708090A0BOCODOEQOF

NIE=Z

8CF761B6902EF764462AD86498CA6B97

Krovet z & Rogaway I nf or mati onal [ Page 15]
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NIE=Z

NIE=Z

NvZZ 0IVEZ

0 3 =z

0 Iz 0T =Z

Krovet z
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BBAA99887766554433221106

000102030405060708090A0BOCODOEQOF
SCE8S8EC2E0692706A915C00AEB8B2396F40E1C743F52436B
DFO6DBFALECA343D

BBAA99887766554433221107
000102030405060708090A0BOCODOEOF1011121314151617
000102030405060708090A0BOCODOEOF1011121314151617
1CA2207308C87C010756104D8840CE1952F09673A448A122
C92C62241051F57356D7F3C90BBOEO7F

BBAA99887766554433221108
000102030405060708090A0BOCODOEOF1011121314151617

6DC225A071FC1BO9F7C69F93BOF1E10DE
BBAA99887766554433221109

000102030405060708090A0BOCODOEOF1011121314151617
221BDODE7FAG6FE993ECCD769460A0AF2D6 CDEDOC395B1C3C
E725F32494B9F914D85C0B1EB38357FF

BBAA9988776655443322110A
000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1E1F
000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1ELF
BD6F6C496201C69296C11EFD138A467ABD3C707924B964DE
AFFC40319AF5A48540FBBA186C5553C68ADIF592A79A4240

BBAA9988776655443322110B
000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1ELF
FESO0690BEESA485D11F32965BCOD2A32
BBAA9988776655443322110C
000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1ELF

2942BFC773BDA23CABC6 ACFDIBFD5835BD300F0973792EF4
6040C53F1432BCDFB5E1DDE3BC18A5F840B52E653444D5DF

& Rogaway I nf or mati ona
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0 IxZ2 0T »Z

Next
conpu

L *
L$
LO
L1
bot
Kt o
Str
O f
O f
O f
O f
Che
Che
Che
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BBAA9988776655443322110D
000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1E1F2021222324252627
000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1E1F2021222324252627
D5CA91748410C1751FF8A2F618255B68A0A12E093FF45460
6E59F9C1DODDC54B65E8628E568BAD7 AEDO7BA06A4A69483
A7035490C5769E60

BBAA9988776655443322110E
000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1E1F2021222324252627

C5CD9D1850C141E358649994EE701B68
BBAA9988776655443322110F

000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1E1F2021222324252627
4412923493C57D5DEOD700F753CCEOD1D2D95060122E9F15
ASDDBFC5787E50B5CC55EES07BCB084EA79AD363AC366B95
A98CA5F3000B1479

May 2014

are several internal val ues generated during the OCB- ENCRYPT

tation for the |ast test vector |isted above.

C6A13B37878F5B826F4F8162A1C8D879

8D42766F0F1EB704DE9F02C54391B075
1A84ECDE1E3D6EO9BD3E058A8723606D
. 3509D9BC3C7ADC137A7C0OB150E46CODA
tom . 15 (decimal)
p . 9862BOFDEE4E2DD56DBA6433F0125AA2
etch . 9862BOFDEE4E2DD56DBA6433F0125AA2FAD24D13A063F8B8

set_0 : 587EF72716EAB6DD3219F8092D517D69
set_1 : 42FA1BF908D7D8D48F27FD83AA721D04
set_2 : 77F3C24534AD04C7F55BF696A434DDDE
set _* . Bl52F972B3225F459A1477F405FCO5A7
cksum 1: 000102030405060708090A0BOCODOEOF
cksum 2: 10101010101010101010101010101010
cksum *: 30313233343536379010101010101010

& Rogaway I nf or mati ona
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The next tuple shows a result with a tag Iength of 96 bits and a
different key.

K: OFOEODOCOBOA09080706050403020100

BBAA9988776655443322110D
000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1E1F2021222324252627
000102030405060708090A0BOCODOEOF1011121314151617
18191A1B1C1D1E1F2021222324252627
1792A4E31EO0755FBO3E31B22116E6C2DDFOEFDGE33D536F1
A0124BOA55BAESB4EDO3481529C76B6ADOC515F4D1CDDAFD
ACAFO02AA

0 3 =z

The following algorithmtests a wider variety of inputs. Results are
gi ven for each paraneter set defined in Section 3.1.

K = zeros(KEYLEN-8) || nun2str ( TAGLEN, 8)
C = <enpty string>
for i =0 to 127 do
S = zeros(8i)
N = nun@str (3i +1, 96)
C = C || OCB-ENCRYPT(K,N, S, S)
N = nunBstr (3i +2, 96)
C = C || OCB-ENCRYPT(K,N, <enmpty string>,S)
N = nunRstr (3i +3, 96)
C = C || OCB-ENCRYPT(K, N, S, <enpty string>)
end for

N = nun®str (385, 96)
Qut put : OCB- ENCRYPT(K, N, C, <enpty string>)

Iteration i of the loop adds 2i + (3 * TAGLEN / 8) bytes to C
resulting in an ultimte length for C of 22,400 bytes when TAGLEN ==
128, 20,864 bytes when TAGLEN == 192, and 19, 328 bytes when TAGEN ==
64. The final OCB-ENCRYPT has an enpty pl aintext component, so
serves only to authenticate C. The output should be:

AEAD AES 128 OCB TAGLEN128 Cutput: 67E944D23256C5E0B6C61FA22FDF1EA2
AEAD AES_192_OCB_TAGLEN128 Out put: F673F2C3E7174AAE7BAE986CAIF29EL7
AEAD_AES_256_OCB_TAGLEN128 Out put: DOOEBSE9C977C88B79DD793D7FFAL61C
AEAD AES_128_OCB_TAGLEN96 Output : 77A3DBE73589158D25D01209
AEAD_AES_192_OCB_TAGLEN96 Qutput : 05D56EAD2752C86BE6932C5E
AEAD_AES_256_OCB_TAGLEN96 Out put : 5458359AC23BOCBA9E6330DD
AEAD_AES_128_OCB_TAGLEN64 Cutput : 192C9B7BDIOBAOGA

AEAD AES_192_OCB_TAGLEN64 Cutput : 0066BCSEOEF34E24
AEAD_AES_256_OCB_TAGLEN64 CQutput : 7D4EA5D445501CBE
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