I nternet Engi neering Task Force (I ETF) T. Lodderstedt, Ed

Request for Comments: 6819 Deut sche Tel ekom AG
Cat egory: I nfornmational M Md oin
| SSN: 2070-1721 | BM

P. Hunt

Oracl e Corporation
January 2013

QAuth 2.0 Threat Mdel and Security Considerations
Abst r act

Thi s docunent gives additional security considerations for OAuth
beyond those in the QAuth 2.0 specification, based on a comprehensive
threat nodel for the QAuth 2.0 protocol

Status of This Menp

Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for informational purposes.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Group (IESG. Not all docunents
approved by the I ESG are a candidate for any |level of Internet

St andard; see Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,
and how to provide feedback on it may be obtained at
http://ww.rfc-editor.org/info/rfc6819

Copyri ght Notice

Copyright (c) 2013 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega

Provi sions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document rnust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Lodderstedt, et al. | nf or mati onal [Page 1]

RFC 6819

QAuth 2.0 Security January 2013

Tabl e of Contents

1
2.

Nt roduCti ON 6
OV Vi BW .ottt e e 7
2. . SCOPE .o 7
2.2, Attack AssUnMptioNnNst e 7
2.3. Architectural Assunptions, 8
2.3.1. Authorization Serversuiiiiiiininnnn.. 8
2.3.2. ReSOUICEe SerVer e e 9
2.3.3. Qient ... e 9
Security Features 9
3. L. TOKENS o 10
3. 0. . SCOPE ..t 11
3.1.2. Linmted Access Token Lifetime 11
3.2, Access TOKeN 11
3.3. Refresh Token e 11
3.4. Authorization "code" 12
3.5. Redirect URI 13
3.6. "state" Parameter 13
3.7. Aient ldentifier e 13
Threat Model e 15
4. L., Cient s ... 16
4.1.1. Threat: Oontaining Client Secrets 16
4.1.2. Threat: otaining Refresh Tokens 17
4.1.3. Threat: Qobtaining Access Tokens 19
4.1.4. Threat: End-User Credentials Phished Using
Conprom sed or Enmbedded Browser 19
4.1.5. Threat: Open Redirectors on Cient 20
4.2. Authorization Endpoint 21
4.2.1. Threat: Password Phishing by Counterfeit
Aut hori zation Server 21
4.2.2. Threat: User Unintentionally Grants Too
MICh ACCESS SCOPE . ..ttt e 21
4.2.3. Threat: Malicious Cient Obtains Existing
Aut hori zation by Fraud 22
4.2.4. Threat: Qpen Redirector 22
4.3. Token Endpoi Nt 23
4.3.1. Threat: Eavesdropping Access Tokens 23
4.3.2. Threat: ntaining Access Tokens from
Aut hori zation Server Database 23
4.3.3. Threat: Disclosure of dient Credentials
during Transm SSiON 23
4.3.4. Threat: otaining Cient Secret from
Aut hori zation Server Database 24

4.3.5. Threat: Obtaining Cient Secret by Online CGuessing .24

Lodderstedt, et al. I nf or mati onal [Page 2]

RFC 6819 QAuth 2.0 Security January 2013
4.4, Qbtaining Authorization i, 25
4.4.1. Authorization "code" 25
4.4.1.1. Threat: Eavesdropping or Leaking
Aut hori zation "codes" 25
4.4.1.2. Threat: Obtaining Authorization "codes"
from Aut hori zati on Server Database 26
4.4.1.3. Threat: Online Guessing of
Aut hori zation "codes" 27
4.4.1.4. Threat: Malicious Cient Cbtains
Authorization 27
4.4.1.5. Threat: Authorization "code" Phishing 29
4.4.1.6. Threat: User Session |Inpersonation 29
4.4.1.7. Threat: Authorization "code" Leakage
through Counterfeit Client 30
4.4.1.8. Threat: CSRF Attack against redirect-uri ..32
4.4.1.9. Threat: dickjacking Attack against
Authorization 33
4.4.1.10. Threat: Resource Omer |nmpersonation 33
4.4.1.11. Threat: DoS Attacks That Exhaust
Resources 34
4.4.1.12. Threat: DoS Usi ng Manufactured
Aut hori zation "codes" 35
4.4.1.13. Threat: Code Substitution (QAuth Login) ..36
4.4.2. Inplicit Gant e 37
4.4.2.1. Threat: Access Token Leak in
Transport/Endpoints 37
4.4.2.2. Threat: Access Token Leak in
Browser History 38
4.4.2.3. Threat: Mlicious Cient Cbtains
Authorization 38
4.4.2.4. Threat: Manipulation of Scripts 38
4.4.2.5. Threat: CSRF Attack against redirect-uri ..39
4.4.2.6. Threat: Token Substitution (QAuth Login) ..39
4.4.3. Resource Omer Password Credentials 40
4.4.3.1. Threat: Accidental Exposure of
Passwords at Client Site 41
4.4.3.2. Threat: Cient Cbtains Scopes
wi t hout End-User Authorization 42
4.4.3.3. Threat: Cient Obtains Refresh
Token through Automatic Authorization 42
4.4.3.4. Threat: Obtaining User Passwords
on Transport 43
4.4.3.5. Threat: Obtaining User Passwords
from Aut hori zati on Server Database 43
4.4.3.6. Threat: Online Guessing 43
4.4.4. Cient Credentials 44

Lodder st edt

et al.

I nf or mati onal [Page 3]

RFC 6819

QAuth 2.0 Security

4.5. Refreshing an Access Token
Threat: Eavesdroppi ng Refresh Tokens from

Aut hori zation Server
Threat: Cbtaining Refresh Token from

Aut hori zation Server Database
Threat: Obtaining Refresh Token by Online

GUESSI N . vt
Threat: Refresh Token Phi shing by

Counterfeit Authorization Server
ng Protected Resources

4.5 1.
4.
4,
4.
4.6. Access
4,
4,

4.
4.

4.

4.
4.

5.

5.

5.

6.

6.

6.
6.

6.

6.
6.

5. Security

5.1. CGenera
5.1.1.

Lodder st edt

o101 0

.1

e
Bown

2.

3.

4.

1

2.

3.
4.

5.

6.
7.

5.

Threat: Eavesdroppi ng Access Tokens on Transport

Threat: Replay of Authorized Resource

Server Request s
Threat: Guessing Access Tokens
Threat: Access Token Phi shing by

Counterfeit Resource Servercciiiiuien..
Threat: Abuse of Token by Legitimate

Resource Server or Cdient,

Threat: Leak of Confidential Data in HTTP Proxies .

Threat: Token Leakage via Log Files and
HTTP Ref errers e e
Considerati ONSt i e

Ensure Confidentiality of Requests
Utilize Server Authentication
Al ways Keep the Resource Owner Informed
Credential s
5.1.4.1. Enforce Credential Storage

Protection Best Practices

5.1.4.2. Online Attacks on Secrets
Tokens (Access, Refresh, Code)

aoooo
PRERERERE
aoooo
okwNE

o

Ac

et al.

oFRERERE
w oo ol

e

Limt Token Scope oo
Determine Expiration Tine
Use Short Expiration Tine
Limt Nunmber of Usages or One-Time Usage .
Bi nd Tokens to a Particul ar

Resource Server (Audience)
Use Endpoi nt Address as Token Audi ence
Use Explicitly Defined Scopes for

Audi ence and Tokens
.8. Bind Token to dient id
.9. Sign Self-Contained Tokens
.10. Encrypt Token Content
.11. Adopt a Standard Assertion Format
S Tokens

No

I nf or mati onal [Page

January 2013

47

48

.48

48
49
49
49
50
50
51

51
52
53

54

54
55

4]

RFC 6819 QAuth 2.0 Security January 2013

5.2. Authorizati on Server 57
5.2.1. Authorization "codes" 57
5.2.1.1. Autommtic Revocation of Derived
Tokens | f Abuse |Is Detected 57
5.2.2. Refresh Tokens @ . 57
5.2.2.1. Restricted |Issuance of Refresh Tokens 57
5.2.2.2. Binding of Refresh Token to "client _id" ...58
5.2.2.3. Refresh Token Rotation 58
5.2.2.4. Revocation of Refresh Tokens 58
5.2.2.5. Device ldentification 59
5.2.2.6. X-FRAME-OPTIONS Header 59
5.2.3. dient Authentication and Authorization 59
5.2.3.1. Don't |Issue Secrets to Clients with
| nappropriate Security Policy 60
5.2.3.2. Require User Consent for Public
Clients without Secret 60
5.2.3.3. Issue a "client_id" Only in
Conbination with "redirect _uri" 61
5.2.3.4. Issue Installation-Specific dient
SECr Bt S . 61
5.2.3.5. Validate Pre-Registered "redirect_uri"62
5.2.3.6. Revoke dient Secrets0.o... 63
5.2.3.7. Use Strong Cient Authentication
(e.g., client _assertion/client_token) 63
5.2.4. End-User Authorization, 63
5.2.4.1. Automatic Processing of Repeated

Aut hori zati ons Requires Client Validation .63

5.2.4.2. Informed Decisions Based on Transparency ..63
5.2.4.3. Validation of Client Properties by
End User 64
5.2.4.4. Binding of Authorization "code" to
"client _id" ... 64
5.2.4.5. Binding of Authorization "code" to
"redirect _uri™ 64
5.3. dient App SeCUrity ... 65
5.3.1. Don't Store Credentials in Code or
Resources Bundl ed with Software Packages 65
5.3.2. Use Standard Web Server Protection Measures
(for Config Files and Databases) 65
5.3.3. Store Secrets in Secure Storage 65
5.3.4. Uilize Device Lock to Prevent Unauthorized
DEVIi CB ACCESS .« ittt ettt e e e 66
5.3.5. Link the "state" Paraneter to User Agent Session ...66
B. 4. RESOUICE SBIVEI S ittt e e e e e 66
5.4.1. Authorization Headers 66
5.4.2. Authenticated Requests 67
5.4.3. Signed Request s 67
5.5. A Wrd on User Interaction and User-Installed Apps 68

Lodderstedt, et al. I nf or mati onal [Page 5]

RFC 6819 QAuth 2.0 Security January 2013

1

6. Acknow edgemEnt S 69
7. Ref ereNCeS . .. 69
7.1. Normative References i 69
7.2. Informative References i 69

| ntroducti on

Thi s docunment gives additional security considerations for OAuth,
beyond those in the QAuth specification, based on a conprehensive
threat nodel for the QAuth 2.0 protocol [RFC6749]. It contains the
foll owi ng content:

o Docunents any assunptions and scope consi dered when creating the
threat nodel .

o Describes the security features built into the QAuth protocol and
how they are intended to thwart attacks.

o Gves a conprehensive threat nodel for QAuth and describes the
respective counterneasures to thwart those threats.

Threats include any intentional attacks on QAuth tokens and resources
protected by QAuth tokens, as well as security risks introduced if
the proper security neasures are not put in place. Threats are
structured along the lines of the protocol structure to help

devel opnent teans inpl enent each part of the protocol securely, for
exanple, all threats for granting access, or all threats for a
particul ar grant type, or all threats for protecting the resource
server.

Not e: Thi s docunent cannot assess the probability or the risk
associated with a particular threat because those aspects strongly
depend on the particular application and depl oynment QAuth is used to
protect. Simlarly, inmpacts are given on a rather abstract |evel.
But the information given here may serve as a foundation for

depl oynment -specific threat nodels. |Inplenentors nay refine and
detail the abstract threat nodel in order to account for the specific
properties of their deploynent and to come up with a risk anal ysis.
As this docunment is based on the base QAuth 2.0 specification, it
does not consi der proposed extensions such as client registration or
di scovery, many of which are still under discussion

Lodderstedt, et al. I nf or mati onal [Page 6]

RFC 6819 QAuth 2.0 Security January 2013

2.

2.

2.

Overvi ew
1. Scope

This security considerations docunment only considers clients bound to

a particul ar deploynment as supported by [RFC6749]. Such depl oynents

have the follow ng characteristics:

0 Resource server URLs are static and well-known at devel opnment
time; authorization server URLsS can be static or discovered.

o Token scope values (e.g., applicable URLs and net hods) are well -
known at devel opnent tine.

o Cient registration is out of scope of the current core
specification. Therefore, this document assunes a broad variety
of options, fromstatic registration during devel opnent tinme to
dynam c registration at runtine.

The foll owing are considered out of scope:

o Commruni cati on between the authorization server and resource
server.

o Token formats.

o Except for the resource owner password credentials grant type (see
[RFC6749], Section 4.3), the mechani smused by authorization
servers to authenticate the user

o Mechani sm by which a user obtained an assertion and any resulting
attacks mounted as a result of the assertion being fal se.

o Cients not bound to a specific deploynent: An exanple could be a
mail client with support for contact |ist access via the portable
contacts APl (see [Portable-Contacts]). Such clients cannot be
regi stered upfront with a particular deploynment and shoul d
dynam cal |y di scover the URLs relevant for the QAuth protocol

2. Attack Assunptions

The foll owi ng assunptions relate to an attacker and resources
available to an attacker. It is assunmed that:

o the attacker has full access to the network between the client and
aut hori zation servers and the client and the resource server,
respectively. The attacker nmay eavesdrop on any comuni cati ons

Lodderstedt, et al. I nf or mati onal [Page 7]

RFC 6819 QAuth 2.0 Security January 2013

2.

2.

bet ween those parties. He is not assuned to have access to
communi cati on between the authorizati on server and resource
server.

0 an attacker has unlimted resources to nbunt an attack

o two of the three parties involved in the QAuth protocol nay
collude to mount an attack against the 3rd party. For exanple,
the client and authorization server may be under control of an
attacker and collude to trick a user to gain access to resources.

3. Architectural Assunptions

Thi s section docunents assunptions about the features, linitations,
and design options of the different entities of an QAuth depl oynent
along with the security-sensitive data el ements managed by those
entities. These assunptions are the foundation of the threat

anal ysi s.

The OQAuth protocol |eaves deploynents with a certain degree of
freedomregardi ng how to i nplement and apply the standard. The core
specification defines the core concepts of an authorization server
and a resource server. Both servers can be inplemented in the same
server entity, or they may also be different entities. The latter is
typically the case for multi-service providers with a single

aut hentication and authorization systemand is nore typical in

m ddl ewar e architectures.

3.1. Authorization Servers

The following data el enents are stored or accessible on the
aut hori zati on server:

0 usernanes and passwords
o client ids and secrets
o client-specific refresh tokens

o client-specific access tokens (in the case of handl e-based desi gn
see Section 3.1)

o HTTPS certificatel/key

o per-authorization process (in the case of handl e-based design
Section 3.1): "redirect_uri", "client_id", authorization "code"

Lodderstedt, et al. I nf or mati onal [Page 8]

RFC 6819 QAuth 2.0 Security January 2013

2.3.2. Resource Server

The foll owing data el enents are stored or accessible on the resource
server:

o user data (out of scope)

o HTTPS certificatel/key

o either authorization server credentials (handl e-based design; see
Section 3.1) or authorization server shared secret/public key
(assertion-based design; see Section 3.1)

o0 access tokens (per request)

It is assumed that a resource server has no know edge of refresh
tokens, user passwords, or client secrets.

2.3.3. dient

In QAuth, a client is an application naking protected resource

requests on behalf of the resource owner and with its authorization

There are different types of clients with different inplenmentation

and security characteristics, such as web, user-agent-based, and

native applications. A full definition of the different client types

and profiles is given in [RFC6749], Section 2.1.

The followi ng data el enents are stored or accessible on the client:

o client id (and client secret or corresponding client credential)

o one or nore refresh tokens (persistent) and access tokens
(transient) per end user or other security-context or del egation
cont ext

o trusted certification authority (CA) certificates (HITPS)

o per-authorization process: "redirect _uri", authorization "code"

3. Security Features

These are some of the security features that have been built into the
QAuth 2.0 protocol to mitigate attacks and security issues.

Lodderstedt, et al. I nf or mati onal [Page 9]

RFC 6819 QAuth 2.0 Security January 2013

3.1. Tokens

QAut h makes extensive use of many kinds of tokens (access tokens,
refresh tokens, authorization "codes"). The information content of a
token can be represented in two ways, as follows:

Handl e (or artifact) A 'handle’ is a reference to sone internal data
structure within the authorization server; the internal data
structure contains the attributes of the token, such as user id
(U D), scope, etc. Handles enable sinple revocation and do not
requi re cryptographi c mechani snms to protect token content from
being nodified. On the other hand, handles require comruni cation
bet ween the issuing and consum ng entity (e.g., the authorization
server and resource server) in order to validate the token and
obt ai n token-bound data. This conmunication night have a negative
i mpact on performance and scalability if both entities reside on
different systens. Handles are therefore typically used if the
i ssuing and consuming entity are the sane. A 'handle’ token is
often referred to as an 'opaque’ token because the resource server
does not need to be able to interpret the token directly; it
sinmply uses the token

Assertion (aka self-contained token) An assertion is a parseable
token. An assertion typically has a duration, has an audi ence,
and is digitally signed in order to ensure data integrity and
origin authentication. It contains information about the user and
the client. Exanples of assertion formats are Security Assertion
Mar kup Language (SAM.) assertions [QASIS. sanl -core-2.0-0s] and
Kerberos tickets [RFC4120]. Assertions can typically be directly
val i dated and used by a resource server without interactions wth
the authorization server. This results in better performance and
scalability in deployments where the issuing and consum ng
entities reside on different systens. |Inplenmenting token
revocation is nmore difficult with assertions than w th handl es.

Tokens can be used in two ways to invoke requests on resource
servers, as follows:

bearer token A 'bearer token' is a token that can be used by any
client who has received the token (e.g., [RFC6750]). Because nere
possession i s enough to use the token, it is inportant that
conmuni cati on between endpoints be secured to ensure that only
aut hori zed endpoints may capture the token. The bearer token is
convenient for client applications, as it does not require themto
do anything to use them (such as a proof of identity). Bearer
tokens have simlar characteristics to web single-sign-on (SSO
cooki es used in browsers.

Lodderstedt, et al. I nf or mati onal [Page 10]

RFC 6819 QAuth 2.0 Security January 2013

proof token A 'proof token' is a token that can only be used by a
specific client. Each use of the token requires the client to
perform sone action that proves that it is the authorized user of
the token. Exanples of this are MAC-type access tokens, which
require the client to digitally sign the resource request with a
secret corresponding to the particular token sent with the request
(e.g., [QAuth-HTTP-NAC]).

3.1.1. Scope

A scope represents the access authorization associated with a
particular token with respect to resource servers, resources, and
net hods on those resources. Scopes are the QAuth way to explicitly
nmanage the power associated with an access token. A scope can be
control l ed by the authorization server and/or the end user in order
tolimt access to resources for QAuth clients that these parties
deem | ess secure or trustworthy. Optionally, the client can request
the scope to apply to the token but only for a | esser scope than
woul d otherwi se be granted, e.g., to reduce the potential inpact if
this token is sent over non-secure channels. A scope is typically
conpl emrented by a restriction on a token's lifetine.

3.1.2. Limted Access Token Lifetine

The protocol paraneter "expires_in" allows an authorization server
(based on its policies or on behalf of the end user) to linmt the
lifetime of an access token and to pass this information to the
client. This nmechanismcan be used to issue short-lived tokens to
QAuth clients that the authorization server deems |ess secure, or
wher e sendi ng tokens over non-secure channels.

3.2. Access Token

An access token is used by a client to access a resource. Access
tokens typically have short life spans (m nutes or hours) that cover
typical session lifetimes. An access token may be refreshed through
the use of a refresh token. The short |ifespan of an access token
in conbination with the usage of refresh tokens, enables the
possibility of passive revocation of access authorization on the
expiry of the current access token.

3.3. Refresh Token

A refresh token represents a long-lasting authorization of a certain
client to access resources on behalf of a resource owner. Such
tokens are exchanged between the client and authorization server
only. dCients use this kind of token to obtain ("refresh"”) new
access tokens used for resource server invocations.

Lodderstedt, et al. I nf or mati onal [Page 11]

RFC 6819 QAuth 2.0 Security January 2013

A refresh token, coupled with a short access token lifetinme, can be
used to grant |onger access to resources w thout involving end-user
aut horization. This offers an advantage where resource servers and
aut hori zation servers are not the sane entity, e.g., in a distributed
environnent, as the refresh token is al ways exchanged at the

aut hori zation server. The authorization server can revoke the
refresh token at any tine, causing the granted access to be revoked
once the current access token expires. Because of this, a short
access token lifetine is inportant if timely revocation is a high
priority.

The refresh token is also a secret bound to the client identifier and
client instance that originally requested the authorization; the
refresh token al so represents the original resource owner grant.

This is ensured by the authorization process as foll ows:

1. The resource owner and user agent safely deliver the
aut horization "code" to the client instance in the first place.

2. The client uses it imediately in secure transport-|eve
comuni cations to the authorization server and then securely
stores the long-lived refresh token.

3. The client always uses the refresh token in secure transport-
| evel conmmunications to the authorization server to get an access
token (and optionally roll over the refresh token).

So, as long as the confidentiality of the particular token can be
ensured by the client, a refresh token can al so be used as an
alternative means to authenticate the client instance itself.

3.4. Authorization "code"

An aut horization "code" represents the intermediate result of a
successful end-user authorization process and is used by the client
to obtain access and refresh tokens. Authorization "codes" are sent
tothe client’s redirect URl instead of tokens for two purposes:

1. Browser-based fl ows expose protocol paraneters to potentia
attackers via URI query paraneters (HTTP referrer), the browser
cache, or log file entries, and could be replayed. 1In order to
reduce this threat, short-lived authorization "codes" are passed
i nstead of tokens and exchanged for tokens over a nore secure
di rect connection between the client and the authorization
server.

Lodderstedt, et al. I nf or mati onal [Page 12]

RFC 6819 QAuth 2.0 Security January 2013

2. It is much sinpler to authenticate clients during the direct
request between the client and the authorization server than in
the context of the indirect authorization request. The latter
woul d require digital signatures.

3.5. Redirect UR

A redirect URI helps to detect nmalicious clients and prevents

phi shing attacks fromclients attenpting to trick the user into

beli eving the phisher is the client. The value of the actua

redirect URI used in the authorization request has to be presented
and is verified when an authorization "code" is exchanged for tokens.
This hel ps to prevent attacks where the authorization "code" is
reveal ed through redirectors and counterfeit web application clients.
The aut hori zation server should require public clients and
confidential clients using the inplicit grant type to pre-register
their redirect URIs and validate against the registered redirect UR
in the authorization request.

3.6. "state" Parameter

The "state" paraneter is used to link requests and cal |l backs to
prevent cross-site request forgery attacks (see Section 4.4.1.8)
where an attacker authorizes access to his own resources and then
tricks a user into following a redirect with the attacker’s token
This paraneter should bind to the authenticated state in a user agent
and, as per the core QAuth spec, the user agent must be capable of
keeping it in a location accessible only by the client and user
agent, i.e., protected by sane-origin policy.

3.7. dient ldentifier

Aut henti cation protocols have typically not taken into account the
identity of the software conponent acting on behalf of the end user
QAuth does this in order to increase the security level in del egated
aut hori zation scenari os and because the client will be able to act

wi t hout the user being present.

QAuth uses the client identifier to collate associated requests to
the sanme originator, such as

0o a particular end-user authorization process and the correspondi ng

request on the token’s endpoint to exchange the authorization
"code" for tokens, or

Lodderstedt, et al. I nf or mati onal [Page 13]

RFC 6819 QAuth 2.0 Security January 2013

o the initial authorization and issuance of a token by an end user
to a particular client, and subsequent requests by this client to
obt ai n tokens without user consent (automatic processing of
repeat ed authori zations)

This identifier my al so be used by the authorization server to

di splay relevant registration information to a user when requesting
consent for a scope requested by a particular client. The client
identifier may be used to limt the nunber of requests for a

particular client or to charge the client per request. It may
furthernmore be useful to differentiate access by different clients,
e.g., in server log files.

QAuth defines two client types, confidential and public, based on
their ability to authenticate with the authorization server (i.e.
ability to maintain the confidentiality of their client credentials).
Confidential clients are capable of maintaining the confidentiality
of client credentials (i.e., a client secret associated with the
client identifier) or capable of secure client authentication using
ot her means, such as a client assertion (e.g., SAM) or key
cryptography. The latter is considered nore secure.

The aut horization server should determ ne whether the client is
capabl e of keeping its secret confidential or using secure

aut hentication. Alternatively, the end user can verify the identity
of the client, e.g., by only installing trusted applications. The
redirect URI can be used to prevent the delivery of credentials to a
counterfeit client after obtaining end-user authorization in some
cases but can't be used to verify the client identifier

Clients can be categorized as foll ows based on the client type,
profile (e.g., native vs. web application; see [RFC6749], Section 9),
and depl oynment nodel :

Depl oyment -i ndependent "client_id" with pre-registered "redirect_uri"
and without "client_secret" Such an identifier is used by
nmultiple installations of the same software package. The
identifier of such a client can only be validated with the help of
the end-user. This is a viable option for native applications in
order to identify the client for the purpose of displaying neta
i nformati on about the client to the user and to differentiate
clients inlog files. Revocation of the rights associated with
such a client identifier will affect ALL depl oyments of the
respective software.

Lodderstedt, et al. I nf or mati onal [Page 14]

RFC 6819 QAuth 2.0 Security January 2013

4.

Depl oynent -i ndependent "client _id" with pre-registered "redirect _uri"
and with "client_secret"” This is an option for native
applications only, since web applications would require different
redirect URIs. This category is not advisable because the client
secret cannot be protected appropriately (see Section 4.1.1). Due
to its security weaknesses, such client identities have the sane
trust | evel as depl oynent-independent clients w thout secrets.
Revocation will affect ALL depl oynents.

Depl oyment -specific "client _id" with pre-registered "redirect_uri"
and with "client_secret™ The client registration process ensures
the validation of the client’s properties, such as redirect URI
web site URL, web site nane, and contacts. Such a client
identifier can be utilized for all relevant use cases cited above.
This |l evel can be achieved for web applications in conbination
with a manual or user-bound registration process. Achieving this
| evel for native applications is much nore difficult. Either the
installation of the application is conducted by an adm ni strator,
who validates the client’s authenticity, or the process from
validating the application to the installation of the application
on the device and the creation of the client credentials is
controll ed end-to-end by a single entity (e.qg., application market
provider). Revocation will affect a single deployment only.

Depl oynent -specific "client _id" with "client_secret" w thout
val i dated properties Such a client can be recognized by the
aut hori zation server in transactions with subsequent requests
(e.g., authorization and token issuance, refresh token issuance,
and access token refreshnment). The authorization server cannot
assure any property of the client to end users. Automatic
processi ng of re-authorizations could be allowed as well. Such
client credentials can be generated automatically w thout any
validation of client properties, which nakes it another option
especially for native applications. Revocation will affect a
singl e depl oynent only.

Threat Mode

This section gives a conprehensive threat nodel of OAuth 2.0.
Threats are grouped first by attacks directed agai nst an QAuth
conponent, which are the client, authorization server, and resource
server. Subsequently, they are grouped by flow, e.g., obtain token
or access protected resources. Every counterneasure description
refers to a detailed description in Section 5.

Lodderstedt, et al. I nf or mati onal [Page 15]

RFC 6819 QAuth 2.0 Security January 2013

4.1. dients
This section describes possible threats directed to QAuth clients.
4.1.1. Threat: Obtaining Cient Secrets

The attacker could try to get access to the secret of a particular
client in order to:

o replay its refresh tokens and authorization "codes", or

o obtain tokens on behalf of the attacked client with the privil eges
of that "client _id" acting as an instance of the client.

The resulting inmpact would be the follow ng:

o Cient authentication of access to the authorization server can be
bypassed.

0o Stolen refresh tokens or authorization "codes" can be repl ayed.

Dependi ng on the client category, the follow ng attacks could be
utilized to obtain the client secret.

Attack: Obtain Secret From Source Code or Binary:

This applies for all client types. For open source projects, secrets
can be extracted directly fromsource code in their public
repositories. Secrets can be extracted from application binaries
just as easily when the published source is not available to the
attacker. Even if an application takes significant nmeasures to
obfuscate secrets in their application distribution, one should

consi der that the secret can still be reverse-engi neered by anyone
with access to a conplete functioning application bundle or binary.
Count er measur es:

o Don't issue secrets to public clients or clients with
i nappropriate security policy (Section 5.2.3.1).

0 Require user consent for public clients (Section 5.2.3.2).
o Use deploynent-specific client secrets (Section 5.2.3.4).

0 Revoke client secrets (Section 5.2.3.6).

Lodderstedt, et al. I nf or mati onal [Page 16]

RFC 6819 QAuth 2.0 Security January 2013

4.

1

Attack: Obtain a Depl oynent-Specific Secret:

An attacker may try to obtain the secret froma client installation
either froma web site (web server) or a particul ar device (native
application).

Count er measur es:

o Wb server: Apply standard web server protection neasures (for
config files and databases) (see Section 5.3.2).

o Native applications: Store secrets in secure |ocal storage
(Section 5.3.3).

0 Revoke client secrets (Section 5.2.3.6).
2. Threat: Obtaining Refresh Tokens

Depending on the client type, there are different ways that refresh
tokens may be revealed to an attacker. The follow ng sub-sections
give a nore detailed description of the different attacks with
respect to different client types and further specialized
counterneasures. Before detailing those threats, here are sone
general | y applicabl e counterneasures:

0 The authorization server should validate the client id associated
with the particular refresh token with every refresh request
(Section 5.2.2.2).

o Limt token scope (Section 5.1.5.1).

0 Revoke refresh tokens (Section 5.2.2.4).

0 Revoke client secrets (Section 5.2.3.6).

o Refresh tokens can automatically be replaced in order to detect
unaut hori zed t oken usage by another party (see "Refresh Token
Rot ati on", Section 5.2.2.3).

Attack: Obtain Refresh Token from Wb Application

An attacker nmay obtain the refresh tokens issued to a web application
by way of overcomi ng the web server’s security controls.

I mpact: Since a web application manages the user accounts of a
certain site, such an attack would result in an exposure of al
refresh tokens on that site to the attacker

Lodderstedt, et al. I nf or mati onal [Page 17]

RFC 6819 QAuth 2.0 Security January 2013

Count er neasur es:

o Standard web server protection nmeasures (Section 5.3.2).

o Use strong client authentication (e.g., client_assertion/
client_token) so the attacker cannot obtain the client secret
required to exchange the tokens (Section 5.2.3.7).

Attack: Obtain Refresh Token from Native Cients:

On native clients, |eakage of a refresh token typically affects a
singl e user only.

Read fromlocal file system The attacker could try to get file

system access on the device and read the refresh tokens. The

attacker could utilize a malicious application for that purpose.

Count er neasur es:

0 Store secrets in secure storage (Section 5.3.3).

o Uilize device lock to prevent unauthorized device access
(Section 5.3.4).

Attack: Steal Device:

The host device (e.g., nmobile phone) may be stolen. |In that case,

the attacker gets access to all applications under the identity of

the legitimte user.

Count er measur es:

o Uilize device lock to prevent unauthorized device access
(Section 5.3.4).

o Wiere a user knows the device has been stolen, they can revoke the
affected tokens (Section 5.2.2.4).

Attack: Cl one Device:

Al'l device data and applications are copied to another device.
Applications are used as-is on the target device.

Lodderstedt, et al. I nf or mati onal [Page 18]

RFC 6819 QAuth 2.0 Security January 2013

4.

4.

1

1

Count er measur es:

o UWilize device lock to prevent unauthorized device access
(Section 5.3.4).

o Conbine refresh token request with device identification
(Section 5.2.2.5).

0 Refresh token rotation (Section 5.2.2.3).

o Wiere a user knows the device has been cloned, they can use
refresh token revocation (Section 5.2.2.4).

.3. Threat: Obtaining Access Tokens

Depending on the client type, there are different ways that access
tokens may be revealed to an attacker. Access tokens could be stolen
fromthe device if the application stores themin a storage device
that is accessible to other applications.

| rpact: Where the token is a bearer token and no additional mechani sm
is used to identify the client, the attacker can access all resources
associated with the token and its scope.

Count er measur es:

0 Keep access tokens in transient nenory and limt grants
(Section 5.1.6).

o Limt token scope (Section 5.1.5.1).

0 Keep access tokens in private nenory or apply sane protection
nmeans as for refresh tokens (Section 5.2.2).

0 Keep access token lifetinme short (Section 5.1.5.3).

4. Threat: End-User Credentials Phished Using Conprom sed or
Enbedded Browser

A malicious application could attenpt to phish end-user passwords by
m susi ng an enbedded browser in the end-user authorization process,
or by presenting its own user interface instead of allowing a trusted
system browser to render the authorization user interface. By doing
so, the usual visual trust mechani sms nay be bypassed (e.g.

Transport Layer Security (TLS) confirmation, web site nmechani sns).

By using an enbedded or internal client application user interface,
the client application has access to additional information to which
it should not have access (e.g., U D password).

Lodderstedt, et al. I nf or mati onal [Page 19]

RFC 6819 QAuth 2.0 Security January 2013

4.

1

Impact: If the client application or the communication is

conprom sed, the user would not be aware of this, and all information
in the authorization exchange, such as username and password, could
be capt ured.

Count er measur es:

o The QAuth flow is designed so that client applications never need
to know user passwords. Cdient applications should avoid directly
asking users for their credentials. |In addition, end users could
be educat ed about phishing attacks and best practices, such as
only accessing trusted clients, as QAuth does not provide any
protection agai nst malicious applications and the end user is
solely responsible for the trustworthiness of any native
application install ed.

o Cient applications could be validated prior to publication in an
application market for users to access. That validation is out of
scope for QAuth but could include validating that the client
application handl es user authentication in an appropriate way.

o Cient devel opers should not wite client applications that
coll ect authentication information directly fromusers and shoul d
i nstead delegate this task to a trusted system conponent, e.g.
the system browser.

5. Threat: Open Redirectors on dient

An open redirector is an endpoint using a parameter to automatically

redirect a user agent to the |l ocation specified by the paraneter

val ue without any validation. |[|f the authorization server allows the
client to register only part of the redirect URI, an attacker can use
an open redirector operated by the client to construct a redirect UR

that will pass the authorization server validation but will send the

aut horization "code" or access token to an endpoi nt under the contro

of the attacker.

| npact: An attacker could gain access to authorization "codes" or
access tokens.

Count er measur es:

0o Require clients to register full redirect URI (Section 5.2.3.5).

Lodderstedt, et al. I nf or mati onal [Page 20]

RFC 6819 QAuth 2.0 Security January 2013

4.

4.

4.

2.

2.

2.

Aut hori zati on Endpoi nt
1. Threat: Password Phishing by Counterfeit Authorization Server

QAut h makes no attenpt to verify the authenticity of the

aut horization server. A hostile party could take advantage of this
by intercepting the client’s requests and returni ng m sl eadi ng or

ot herwi se incorrect responses. This could be achieved using DNS or
Addr ess Resol ution Protocol (ARP) spoofing. Wde depl oynment of QAuth
and simlar protocols may cause users to beconme inured to the
practice of being redirected to web sites where they are asked to
enter their passwords. |f users are not careful to verify the
authenticity of these web sites before entering their credentials, it
will be possible for attackers to exploit this practice to stea
users’ passwords.

Count er measur es:

o Authorization servers should consider such attacks when devel opi ng
servi ces based on QAuth and should require the use of transport-
| ayer security for any requests where the authenticity of the
aut horization server or of request responses is an issue (see
Section 5.1.2).

o Authorization servers should attenpt to educate users about the
ri sks posed by phishing attacks and shoul d provi de nechani sns t hat
make it easy for users to confirmthe authenticity of their sites.

2. Threat: User Unintentionally Grants Too Miuch Access Scope

When obtai ni ng end-user authorization, the end user may not
understand the scope of the access being granted and to whom or they
may end up providing a client with access to resources that should
not be permtted.

Count er measur es:

o Explain the scope (resources and the perm ssions) the user is
about to grant in an understandable way (Section 5.2.4.2).

o Narrow the scope, based on the client. When obtaining end-user
aut hori zation and where the client requests scope, the
aut hori zation server may want to consi der whether to honor that
scope based on the client identifier. That decision is between
the client and authorization server and is outside the scope of
this spec. The authorization server nay al so want to consider
what scope to grant based on the client type, e.g., providing
| ower scope to public clients (Section 5.1.5.1).

Lodderstedt, et al. I nf or mati onal [Page 21]

RFC 6819 QAuth 2.0 Security January 2013

4.2.3. Threat: Mlicious Cient Obtains Existing Authorization by Fraud

Aut hori zation servers may wi sh to automatically process authorization
requests fromclients that have been previously authorized by the
user. \When the user is redirected to the authorization server’s end-
user authorization endpoint to grant access, the authorization server
detects that the user has already granted access to that particul ar

client. Instead of pronpting the user for approval, the
aut hori zation server automatically redirects the user back to the
client.

A malicious client may exploit that feature and try to obtain such an
aut hori zation "code" instead of the legitimate client.

Count er measur es:

0o Authorization servers should not automatically process repeat
aut horizations to public clients unless the client is validated
using a pre-registered redirect URI (Section 5.2.3.5).

o Authorization servers can mitigate the risks associated with
automatic processing by limting the scope of access tokens
obt ai ned t hrough automated approvals (Section 5.1.5.1).

4.2.4. Threat: Open Redirector
An attacker could use the end-user authorization endpoint and the
redirect URI paranmeter to abuse the authorization server as an open
redirector. An open redirector is an endpoint using a paraneter to
automatically redirect a user agent to the |ocation specified by the
par armet er val ue wit hout any validation

| mpact: An attacker could utilize a user’s trust in an authorization
server to launch a phishing attack

Count er measur es:

o0 Require clients to register any full redirect URI's
(Section 5.2.3.5).

o Don't redirect to aredirect URI if the client identifier or
redirect URI can't be verified (Section 5.2.3.5).

Lodderstedt, et al. I nf or mati onal [Page 22]

RFC 6819 QAuth 2.0 Security January 2013

4.3. Token Endpoi nt

4.3.1. Threat: Eavesdroppi ng Access Tokens

Attackers may attenpt to eavesdrop access tokens in transit fromthe
authorization server to the client.

| mpact: The attacker is able to access all resources with the
perm ssions covered by the scope of the particul ar access token

Count er measur es:

0 As per the core QAuth spec, the authorization servers must ensure
that these transmi ssions are protected using transport-|ayer
mechani sns such as TLS (see Section 5.1.1).

o If end-to-end confidentiality cannot be guaranteed, reducing scope
(see Section 5.1.5.1) and expiry tinme (Section 5.1.5.3) for access
tokens can be used to reduce the danmage in case of |eaks.

4.3.2. Threat: Obtaining Access Tokens from Aut hori zati on Server

4.

3.

Dat abase
This threat is applicable if the authorization server stores access
tokens as handles in a database. An attacker nmmy obtain access
tokens fromthe authorization server’s database by gaining access to
t he database or |aunching a SQ injection attack
I mpact: Disclosure of all access tokens.
Count er neasur es:
o Enforce systemsecurity measures (Section 5.1.4.1.1).

0o Store access token hashes only (Section 5.1.4.1.3).

o Enforce standard SQ. injection counterneasures
(Section 5.1.4.1.2).

3. Threat: Disclosure of Client Credentials during Transni ssion
An attacker could attenpt to eavesdrop the transm ssion of client
credentials between the client and server during the client

aut hentication process or during QAuth token requests.

I mpact: Revel ation of a client credential enabling phishing or
i mpersonation of a client service.

Lodderstedt, et al. I nf or mati onal [Page 23]

RFC 6819 QAuth 2.0 Security January 2013

4.

4.

3.

3.

Count er measur es:

0o The transmission of client credentials nust be protected using
transport-1layer nechani sns such as TLS (see Section 5.1.1).

o Use alternative authentication neans that do not require the
sendi ng of plaintext credentials over the wire (e.g., Hash-based
Message Aut hentication Code).

4. Threat: Obtaining Cient Secret from Authorization Server
Dat abase

An attacker nmay obtain valid "client_id"/secret conbinations fromthe
aut hori zati on server’s database by gaining access to the database or
l aunching a SQ injection attack

I mpact: Disclosure of all "client_id"/secret conbinations. This
allows the attacker to act on behalf of legitimate clients.

Count er neasur es:
o Enforce systemsecurity measures (Section 5.1.4.1.1).

o Enforce standard SQ. injection counterneasures
(Section 5.1.4.1.2).

o Ensure proper handling of credentials as per "Enforce Credentia
Storage Protection Best Practices" (Section 5.1.4.1).

5. Threat: Obtaining Cient Secret by Online Guessing

An attacker may try to guess valid "client_id"/secret pairs.
I mpact: Disclosure of a single "client_id"/secret pair
Count er neasur es:

o Use high entropy for secrets (Section 5.1.4.2.2).

o Lock accounts (Section 5.1.4.2.3).

o Use strong client authentication (Section 5.2.3.7).

Lodderstedt, et al. I nf or mati onal [Page 24]

RFC 6819 QAuth 2.0 Security January 2013

4.4. Obtaining Authorization

This section covers threats that are specific to certain flows
utilized to obtain access tokens. Each flow is characterized by
response types and/or grant types on the end-user authorization and
t oken endpoi nt, respectively.

4.4.1. Authorization "code"
4.4.1.1. Threat: Eavesdroppi ng or Leaking Authorization "codes"

An attacker could try to eavesdrop transnission of the authorization
"code" between the authorization server and client. Furthernore,

aut hori zation "codes" are passed via the browser, which may
unintentionally [eak those codes to untrusted web sites and attackers
in different ways:

o Referrer headers: Browsers frequently pass a "referer” header when
a web page enbeds content, or when a user travels fromone web
page to another web page. These referrer headers may be sent even
when the origin site does not trust the destination site. The
referrer header is conmonly |ogged for traffic anal ysis purposes.

o Request |ogs: Wb server request |ogs comonly include query
paranmeters on requests.

0 Open redirectors: Wb sites sonetinmes need to send users to
anot her destination via a redirector. Open redirectors pose a
particular risk to web-based del egati on protocol s because the
redirector can |leak verification codes to untrusted destination
sites.

0 Browser history: Wb browsers commonly record visited URLsS in the
browser history. Another user of the same web browser may be able
to view URLs that were visited by previous users.

Note: A description of simlar attacks on the SAM. protocol can be

found at [QASIS. sstc-sam -bi ndi ngs-1.1], Section 4.1.1.9.1;
[Sec- Anal ysi s]; and [OASI S. sst c-sec-anal ysi s-response-01].

Lodderstedt, et al. I nf or mati onal [Page 25]

RFC 6819 QAuth 2.0 Security January 2013

Count er measur es:

o0 As per the core QAuth spec, the authorization server as well as
the client nust ensure that these transm ssions are protected
using transport-Ilayer mechani sms such as TLS (see Section 5.1.1).

o The authorization server will require the client to authenticate
wher ever possible, so the binding of the authorization "code" to a
certain client can be validated in a reliable way (see
Section 5.2.4.4).

o Use short expiry tinme for authorization "codes" (Section 5.1.5.3).

o The authorization server should enforce a one-tine usage
restriction (see Section 5.1.5.4).

o |If an authorization server observes multiple attenpts to redeem an
aut hori zation "code", the authorization server may want to revoke
all tokens granted based on the authorization "code" (see
Section 5.2.1.1).

o In the absence of these countermeasures, reducing scope
(Section 5.1.5.1) and expiry time (Section 5.1.5.3) for access
tokens can be used to reduce the danmmge in case of |eaks.

o The client server may reload the target page of the redirect UR
in order to automatically clean up the browser cache.

4.4.1.2. Threat: Obtaining Authorization "codes" from Authorization
Server Dat abase

This threat is applicable if the authorization server stores

aut hori zation "codes" as handles in a database. An attacker my
obtai n authorization "codes" fromthe authorization server’s database
by gai ni ng access to the database or |aunching a SQ injection
attack.

| npact: Disclosure of all authorization "codes", nost |ikely along
with the respective "redirect _uri" and "client_id" val ues.

Count er measur es:

0 Best practices for credential storage protection should be
enpl oyed (Section 5.1.4.1).

o Enforce systemsecurity measures (Section 5.1.4.1.1).

Lodderstedt, et al. I nf or mati onal [Page 26]

RFC 6819 QAuth 2.0 Security January 2013

0 Store access token hashes only (Section 5.1.4.1.3).

o Enforce standard SQ injection counterneasures
(Section 5.1.4.1.2).

4.4.1.3. Threat: Online Guessing of Authorization "codes"

An attacker may try to guess valid authorization "code" val ues and
send the guessed code val ue using the grant type "code" in order to
obtain a valid access token.

| mpact: Disclosure of a single access token and probably also an
associ ated refresh token.

Count er neasures:
o Handl e-based tokens nust use high entropy (Section 5.1.4.2.2).
0 Assertion-based tokens should be signed (Section 5.1.5.9).

o Authenticate the client; this adds another value that the attacker
has to guess (Section 5.2.3.4).

o Bind the authorization "code" to the redirect URI; this adds
anot her value that the attacker has to guess (Section 5.2.4.5).

0 Use short expiry time for tokens (Section 5.1.5.3).
4.4.1.4. Threat: Mlicious Cient Obtains Authorization

A malicious client could pretend to be a valid client and obtain an
access authorization in this way. The malicious client could even
utilize screen-scraping techniques in order to sinulate a user’s
consent in the authorization flow

Assunption: It is not the task of the authorization server to protect
the end-user’s device frommalicious software. This is the
responsibility of the platformrunning on the particul ar device,
probably in cooperation with other conmponents of the respective
ecosystem (e.g., an application managenent infrastructure). The sole
responsi bility of the authorization server is to control access to
the end-user’s resources naintained in resource servers and to
prevent unauthorized access to themvia the QAuth protocol. Based on
this assunption, the followi ng counterneasures are avail able to cope
with the threat.

Lodderstedt, et al. I nf or mati onal [Page 27]

RFC 6819 QAuth 2.0 Security January 2013

Count er measur es:

o

The aut hori zation server should authenticate the client, if
possi bl e (see Section 5.2.3.4). Note: The authentication takes
pl ace after the end user has authorized the access.

The aut hori zation server should validate the client’s redirect UR
agai nst the pre-registered redirect URI, if one exists (see
Section 5.2.3.5). Note: An invalid redirect URH indicates an
invalid client, whereas a valid redirect URI does not necessarily
indicate a valid client. The |level of confidence depends on the
client type. For web applications, the level of confidence is

hi gh, since the redirect URI refers to the globally unique network
endpoi nt of this application, whose fully qualified donain nane
(FQDN) is also validated using HTTPS server authentication by the
user agent. In contrast, for native clients, the redirect UR
typically refers to device | ocal resources, e.g., a custom schene.
So, a malicious client on a particular device can use the valid
redirect URI the legitimate client uses on all other devices.

After authenticating the end user, the authorization server should
ask himher for consent. |In this context, the authorization
server should explain to the end user the purpose, scope, and
duration of the authorization the client asked for. Moreover, the
aut hori zati on server should show the user any identity information
it has for that client. It is up to the user to validate the

bi nding of this data to the particular application (e.g., Nane)
and to approve the authorization request (see Section 5.2.4.3).

The aut horization server should not perform autonmatic
re-aut horizations for clients it is unable to reliably
aut henticate or validate (see Section 5.2.4.1).

If the authorization server automatically authenticates the end
user, it may neverthel ess require sone user input in order to
prevent screen scraping. Exanples are CAPTCHAs (Conpletely

Aut omat ed Public Turing tests to tell Conputers and Humans Apart)
or other nmulti-factor authentication techniques such as random
guestions, token code generators, etc.

The aut horization server may also limt the scope of tokens it
issues to clients it cannot reliably authenticate (see
Section 5.1.5.1).

Lodderstedt, et al. I nf or mati onal [Page 28]

RFC 6819 QAuth 2.0 Security January 2013

4.4.1.5. Threat: Authorization "code" Phishing

A hostile party could inpersonate the client site and get access to
the aut horization "code". This could be achieved using DNS or ARP
spoofing. This applies to clients, which are web applications; thus,
the redirect URl is not local to the host where the user’s browser is
runni ng.

I mpact: This affects web applications and may | ead to a di scl osure of
aut horization "codes" and, potentially, the corresponding access and
refresh tokens.

Count er measur es:

It is strongly recommended that one of the foll owi ng counterneasures
be utilized in order to prevent this attack

o The redirect URI of the client should point to an HTTPS- protected
endpoi nt, and the browser should be utilized to authenticate this
redirect URI using server authentication (see Section 5.1.2).

o The authorization server should require that the client be
authenticated, i.e., confidential client, so the binding of the
authorization "code" to a certain client can be validated in a
reliable way (see Section 5.2.4.4).

4.4.1.6. Threat: User Session |npersonation

A hostile party could inpersonate the client site and i npersonate the
user’s session on this client. This could be achieved using DNS or
ARP spoofing. This applies to clients, which are web applications;
thus, the redirect URI is not |local to the host where the user’s
browser is running.

I mpact: An attacker who intercepts the authorization "code" as it is
sent by the browser to the call back endpoint can gain access to
protected resources by submitting the authorization "code" to the
client. The client will exchange the authorization "code" for an
access token and use the access token to access protected resources
for the benefit of the attacker, delivering protected resources to
the attacker, or nodifying protected resources as directed by the
attacker. If QAuth is used by the client to del egate authentication
to a social site (e.g., as in the inplenentation of a "Login" button
on a third-party social network site), the attacker can use the
intercepted authorization "code" to log into the client as the user

Lodderstedt, et al. I nf or mati onal [Page 29]

RFC 6819 QAuth 2.0 Security January 2013

Note: Authenticating the client during authorization "code" exchange
will not help to detect such an attack, as it is the legitimte
client that obtains the tokens.

Count er measur es:

o In order to prevent an attacker frominpersonating the end-user’s
session, the redirect URI of the client should point to an HTTPS
protected endpoint, and the browser should be utilized to
authenticate this redirect URl using server authentication (see
Section 5.1.2).

4.4.1.7. Threat: Authorization "code" Leakage through Counterfeit
dient

The attacker |everages the authorization "code" grant type in an
attenpt to get another user (victim to log in, authorize access to
hi s/ her resources, and subsequently obtain the authorization "code"
and inject it into a client application using the attacker’s account.
The goal is to associate an access authorization for resources of the
victimw th the user account of the attacker on a client site.

The attacker abuses an existing client application and comnbines it
with his own counterfeit client web site. The attacker depends on
the victimexpecting the client application to request access to a
certain resource server. The victim seeing only a nornal request
froman expected application, approves the request. The attacker
then uses the victins authorization to gain access to the

i nformati on unknowi ngly authorized by the victim

The attacker conducts the follow ng flow

1. The attacker accesses the client web site (or application) and
initiates data access to a particular resource server. The
client web site in turn initiates an authorization request to the
resource server’'s authorization server. |Instead of proceeding
with the authorization process, the attacker nodifies the
aut hori zation server end-user authorization URL as constructed by
the client to include a redirect URI paraneter referring to a web
site under his control (attacker’s web site).

2. The attacker tricks another user (the victim into opening that
nodi fi ed end-user authorization URI and authorizing access (e.g.
via an email link or blog Iink). The way the attacker achieves
this goal is out of scope.

3. Having clicked the Iink, the victimis requested to authenticate
and authorize the client site to have access.

Lodderstedt, et al. I nf or mati onal [Page 30]

RFC 6819 QAuth 2.0 Security January 2013

After conpletion of the authorization process, the authorization
server redirects the user agent to the attacker’s web site
instead of the original client web site.

The attacker obtains the authorization "code" fromhis web site
by means that are out of scope of this docunent.

He then constructs a redirect URI to the target web site (or
application) based on the original authorization request’s
redirect URI and the newl y obtained authorization "code", and
directs his user agent to this URL. The authorization "code" is
injected into the original client site (or application).

The client site uses the authorization "code" to fetch a token
fromthe authorization server and associates this token with the
attacker’s user account on this site.

The attacker may now access the victims resources using the
client site.

| npact: The attacker gains access to the victims resources as
associated with his account on the client site.

Count er measur es:

o

The attacker will need to use another redirect URI for its

aut hori zation process rather than the target web site because it
needs to intercept the flow So, if the authorization server
associ ates the authorization "code” with the redirect URI of a
particul ar end-user authorization and validates this redirect UR
with the redirect URI passed to the token's endpoint, such an
attack is detected (see Section 5.2.4.5).

The aut horization server may al so enforce the usage and validation
of pre-registered redirect URIs (see Section 5.2.3.5). This wll
allow for early recognition of authorization "code" disclosure to
counterfeit clients.

For native applications, one could al so consider using depl oynment -
specific client ids and secrets (see Section 5.2.3.4), along with
the binding of authorization "codes"” to "client_ids" (see

Section 5.2.4.4) to detect such an attack because the attacker
does not have access to the depl oynent-specific secret. Thus, he
will not be able to exchange the authorization "code".

Lodderstedt, et al. I nf or mati onal [Page 31]

RFC 6819 QAuth 2.0 Security January 2013

o The client may consider using other flows that are not vul nerable
to this kind of attack, such as the inplicit grant type (see
Section 4.4.2) or resource owner password credentials (see
Section 4.4.3).

4.4.1.8. Threat: CSRF Attack agai nst redirect-ur

Cross-site request forgery (CSRF) is a web-based attack whereby HTTP
requests are transmtted froma user that the web site trusts or has
authenticated (e.g., via HITP redirects or HTM. forns). CSRF attacks
on QAuth approvals can allow an attacker to obtain authorization to
QAuth protected resources w thout the consent of the user.

This attack works against the redirect URI used in the authorization
"code" flow. An attacker could authorize an authorization "code" to
their own protected resources on an authorization server. He then
aborts the redirect flow back to the client on his device and tricks
the victiminto executing the redirect back to the client. The
client receives the redirect, fetches the token(s) fromthe

aut hori zation server, and associates the victinis client session with
the resources accessible using the token

I mpact: The user accesses resources on behalf of the attacker. The
ef fective inmpact depends on the type of resource accessed. For
exanpl e, the user may upload private itenms to an attacker’s
resources. O, when using QAuth in 3rd-party login scenarios, the
user nmay associate his client account with the attacker’s identity at
the external Identity Provider. |In this way, the attacker could
easily access the victinis data at the client by logging in from
another device with his credentials at the external ldentity

Pr ovi der .

Count er neasures:

o The "state" paraneter should be used to link the authorization
request with the redirect URI used to deliver the access token
(Section 5.3.5).

o Cient devel opers and end users can be educated to not foll ow
untrusted URLs.

Lodderstedt, et al. I nf or mati onal [Page 32]

RFC 6819 QAuth 2.0 Security January 2013

4.4.1.9. Threat: dickjacking Attack agai nst Authorization

Wth clickjacking, a nalicious site |loads the target site in a
transparent i Frane (see [iFrane]) overlaid on top of a set of dummy
buttons that are carefully constructed to be placed directly under

i mportant buttons on the target site. Wen a user clicks a visible
button, they are actually clicking a button (such as an "Authorize"
button) on the hidden page.

I mpact: An attacker can steal a user’s authentication credentials and
access their resources.

Count er measur es:

o For newer browsers, avoi dance of iFrames during authorization can
be enforced on the server side by using the X-FRAME- OPTI ONS header
(Section 5.2.2.6).

o For older browsers, JavaScript frame-busting (see [Franmebusting])
techni ques can be used but may not be effective in all browsers.

4.4.1.10. Threat: Resource Oaner | npersonation

When a client requests access to protected resources, the

aut hori zation flow normally involves the resource owner’s explicit
response to the access request, either granting or denying access to
the protected resources. A nmalicious client can exploit know edge of
the structure of this flowin order to gain authorization w thout the
resource owner’s consent, by transmitting the necessary requests
programmatically and sinulating the fl ow agai nst the authorization
server. That way, the client nay gain access to the victinis
resources without her approval. An authorization server will be

vul nerable to this threat if it uses non-interactive authentication
mechani sns or splits the authorization flow across multiple pages.

The malicious client mght enbed a hidden HTML user agent, interpret
the HTML forns sent by the authorization server, and automatically
send the corresponding form HTTP POST requests. As a prerequisite,
the attacker nust be able to execute the authorization process in the
context of an al ready-authenticated session of the resource owner
with the authorization server. There are different ways to achieve
this:

o The nalicious client could abuse an existing session in an

external browser or cross-browser cookies on the particul ar
devi ce.

Lodderstedt, et al. I nf or mati onal [Page 33]

RFC 6819 QAuth 2.0 Security January 2013

o The nalicious client could also request authorization for an
initial scope acceptable to the user and then silently abuse the
resulting session in his browser instance to "silently" request
anot her scope.

o Alternatively, the attacker m ght exploit an authorization
server’'s ability to authenticate the resource owner autonatically
and wi thout user interactions, e.g., based on certificates.

In all cases, such an attack is Iimted to clients running on the
victims device, either within the user agent or as a native app

Pl ease note: Such attacks cannot be prevented usi ng CSRF
count erneasures, since the attacker just "executes" the URLs as
prepared by the authorization server including any nonce, etc.

Count er measur es:

Aut hori zation servers shoul d deci de, based on an analysis of the risk
associated with this threat, whether to detect and prevent this
t hreat.

In order to prevent such an attack, the authorization server may
force a user interaction based on non-predictable input val ues as
part of the user consent approval. The authorization server could

o conbine password authentication and user consent in a single form
o nmake use of CAPTCHAs, or

0 use one-tinme secrets sent out of band to the resource owner (e.g.
via text or instant nessage).

Alternatively, in order to allow the resource owner to detect abuse,
the aut horization server could notify the resource owner of any
approval by appropriate neans, e.g., text or instant nmessage, or
email .

4.4.1.11. Threat: DoS Attacks That Exhaust Resources

If an authorization server includes a nontrivial anmpbunt of entropy in
aut horization "codes" or access tokens (limting the nunber of
possi bl e codes/tokens) and autonatically grants either wthout user
intervention and has no lint on codes or access tokens per user, an
attacker coul d exhaust the pool of authorization "codes" by
repeatedly directing the user’s browser to request authorization
"codes" or access tokens.

Lodderstedt, et al. I nf or mati onal [Page 34]

RFC 6819 QAuth 2.0 Security January 2013

Count er measur es:

0o The authorization server should consider limting the nunber of
access tokens granted per user

o The authorization server should include a nontrivial anmpunt of
entropy in authorization "codes".

4.4.1.12. Threat: DoS Using Manufactured Authorization "codes"

An attacker who owns a botnet can |ocate the redirect URIs of clients
that listen on HITP, access themw th random aut hori zati on "codes",
and cause a | arge nunber of HTTPS connections to be concentrated onto
the authorization server. This can result in a denial-of-service
(DoS) attack on the authorization server.

This attack can still be effective even when CSRF defense/the "state"
paranmeter (see Section 4.4.1.8) is deployed on the client side. Wth
such a defense, the attacker mght need to incur an additional HTTP
request to obtain a valid CSRF code/"state" paraneter. This
apparently cuts down the effectiveness of the attack by a factor of

2. However, if the HITPS/ HTTP cost ratio is higher than 2 (the cost
factor is estimated to be around 3.5x at [SSL-Latency]), the attacker
still achieves a magnification of resource utilization at the expense
of the authorization server.

I npact: There are a few effects that the attacker can acconmplish with
this QAuth flow that they cannot easily achi eve ot herw se.

1. Connection laundering: Wth the clients as the relay between the
attacker and the authorization server, the authorization server
learns little or no informati on about the identity of the
attacker. Defenses such as rate-limting on the offending
attacker nmachines are | ess effective because it is difficult to
identify the attacki ng machi nes. Although an attacker could al so
| aunder its connections through an anonym zi ng system such as
Tor, the effectiveness of that approach depends on the capacity
of the anonym zing system On the other hand, a potentially
| arge nunber of OQAuth clients could be utilized for this attack.

2. Asynmetric resource utilization: The attacker incurs the cost of
an HTTP connection and causes an HTTPS connection to be made on
the aut horization server; the attacker can coordinate the timng
of such HTTPS connections across nultiple clients relatively
easily. Al though the attacker could achi eve something simlar
say, by including an i Frane pointing to the HTTPS URL of the
aut horization server in an HTTP web page and luring web users to
visit that page, timng attacks using such a schene may be nore

Lodderstedt, et al. I nf or mati onal [Page 35]

RFC 6819 QAuth 2.0 Security January 2013

difficult, as it seens nontrivial to synchronize a | arge nunber
of users to simultaneously visit a particular site under the
attacker’s control

Count er measur es:

o Though not a conplete counterneasure by thensel ves, CSRF defense
and the "state" paraneter created with secure random codes shoul d
be depl oyed on the client side. The client should forward the
aut horization "code" to the authorization server only after both
the CSRF token and the "state" paranmeter are vali dated.

o If the client authenticates the user, either through a single-
sign-on protocol or through | ocal authentication, the client
shoul d suspend the access by a user account if the nunber of
i nvalid authorization "codes" submtted by this user exceeds a
certain threshold

o The authorization server should send an error response to the
client reporting an invalid authorization "code" and rate-limt or
di sal | ow connections fromclients whose nunber of invalid requests
exceeds a threshol d.

4.4.1.13. Threat: Code Substitution (QAuth Login)

An attacker could attenpt to log into an application or web site
using a victims identity. Applications relying on identity data
provi ded by an QAuth protected service APl to |login users are

vul nerable to this threat. This pattern can be found in so-called
"social |ogin" scenarios.

As a prerequisite, a resource server offers an APl to obtain persona
i nformati on about a user that could be interpreted as havi ng obt ai ned

a user identity. 1In this sense, the client is treating the resource
server APl as an "identity" API. A client utilizes QAuth to obtain
an access token for the identity API. It then queries the identity

APl for an identifier and uses it to look up its internal user
account data (login). The client assunes that, because it was able
to obtain information about the user, the user has been

aut henti cat ed.

If the client uses the grant type "code", the attacker needs to

gat her a valid authorization "code" of the respective victimfromthe
sanme ldentity Provider used by the target client application. The
attacker tricks the victiminto logging into a nalicious app (which
may appear to be legitinmate to the lIdentity Provider) using the same
Identity Provider as the target application. This results in the
Identity Provider’s authorization server issuing an authorization

Lodderstedt, et al. I nf or mati onal [Page 36]

RFC 6819 QAuth 2.0 Security January 2013

4.4.

4.4

Lod

"code" for the respective identity API. The nalicious app then sends
this code to the attacker, which in turn triggers a |login process
within the target application. The attacker now nani pul ates the

aut hori zati on response and substitutes their code (bound to their
identity) for the victinis code. This code is then exchanged by the
client for an access token, which in turn is accepted by the identity
APl , since the audience, with respect to the resource server, is
correct. But since the identifier returned by the identity APl is
determ ned by the identity in the access token (issued based on the
victims code), the attacker is logged into the target application
under the victinmis identity.

| npact: The attacker gains access to an application and user-specific
data within the application

Count er neasur es:

o Al clients nust indicate their client ids with every request to
exchange an aut hori zation "code" for an access token. The
aut hori zation server nust validate whether the particular
aut hori zation "code" has been issued to the particular client. |If
possi bl e, the client shall be authenticated beforehand.

o Cients should use an appropriate protocol, such as Qpenl D (cf.
[OPENID]) or SAML (cf. [OASIS. sstc-sam -bindings-1.1]) to
i mpl ement user login. Both support audience restrictions on
clients.

2. Implicit Gant

In the inplicit grant type flow, the access token is directly
returned to the client as a fragnment part of the redirect URI. It is
assuned that the token is not sent to the redirect URI target, as
HTTP user agents do not send the fragment part of URIs to HITP
servers. Thus, an attacker cannot eavesdrop the access token on this
conmuni cati on path, and the token cannot |eak through HTTP referrer
headers.

.2.1. Threat: Access Token Leak in Transport/Endpoints

Thi s token m ght be eavesdropped by an attacker. The token is sent
fromthe server to the client via a URI fragment of the redirect URI
If the communication is not secured or the endpoint is not secured,
the token could be | eaked by parsing the returned URI

| mpact: The attacker would be able to assune the same rights granted
by the token.

derstedt, et al. I nf or mati onal [Page 37]

RFC 6819 QAuth 2.0 Security January 2013

Count er neasur es:

o The authorization server should ensure confidentiality (e.g.
using TLS) of the response fromthe authorization server to the
client (see Section 5.1.1).

4.4.2.2. Threat: Access Token Leak in Browser History

An attacker could obtain the token fromthe browser’s history. Note
that this means the attacker needs access to the particul ar device.

Count er measur es:

o Use short expiry tine for tokens (see Section 5.1.5.3). Reduced
scope of the token may reduce the inpact of that attack (see
Section 5.1.5.1).

o Make responses non-cacheabl e.

4.4.2.3. Threat: Mlicious Cient Obtains Authorization

A malicious client could attenpt to obtain a token by fraud.

The sane counterneasures as for Section 4.4.1.4 are applicable,
except client authentication

4.4.2. 4. Threat: Manipulation of Scripts
A hostile party could act as the client web server and repl ace or
nodi fy the actual inplenentation of the client (script). This could
be achi eved using DNS or ARP spoofing. This applies to clients
i mpl enented within the web browser in a scripting | anguage.

| mpact: The attacker could obtain user credential information and
assune the full identity of the user.

Count er measur es:

o The authorization server should authenticate the server from which
scripts are obtained (see Section 5.1.2).

o The client should ensure that scripts obtained have not been
altered in transport (see Section 5.1.1).

Lodderstedt, et al. I nf or mati onal [Page 38]

RFC 6819 QAuth 2.0 Security January 2013

o Introduce one-tinme, per-use secrets (e.g., "client_secret") val ues
that can only be used by scripts in a snall tinme w ndow once
| oaded froma server. The intention would be to reduce the
ef fecti veness of copying client-side scripts for re-use in an
attacker’s nodified code.

4.4.2.5. Threat: CSRF Attack agai nst redirect-ur

CSRF attacks (see Section 4.4.1.8) also work against the redirect UR
used in the inplicit grant flow An attacker could acquire an access
token to their own protected resources. He could then construct a
redirect URI and enbed their access token in that URI. If he can
trick the user into following the redirect URI and the client does
not have protection against this attack, the user may have the
attacker’'s access token authorized within their client.

I mpact: The user accesses resources on behalf of the attacker. The
ef fective inmpact depends on the type of resource accessed. For
exanpl e, the user may upload private itenms to an attacker’s
resources. O, when using QAuth in 3rd-party login scenarios, the
user nmay associate his client account with the attacker’s identity at
the external Identity Provider. |In this way, the attacker could
easily access the victinis data at the client by logging in from
another device with his credentials at the external ldentity

Pr ovi der .

Count er measur es:

o The "state" paraneter should be used to link the authorization
request with the redirect URI used to deliver the access token
This will ensure that the client is not tricked into conpleting
any redirect callback unless it is linked to an authorization
request initiated by the client. The "state" parameter should not
be guessable, and the client should be capabl e of keeping the
"state" paraneter secret.

o Cient devel opers and end users can be educated to not follow
untrusted URLs.

4.4.2.6. Threat: Token Substitution (QAuth Login)

An attacker could attenpt to log into an application or web site
using a victinis identity. Applications relying on identity data
provi ded by an QAuth protected service APl to login users are

vul nerable to this threat. This pattern can be found in so-called
"social |ogin" scenarios.

Lodderstedt, et al. I nf or mati onal [Page 39]

RFC 6819 QAuth 2.0 Security January 2013

As a prerequisite, a resource server offers an APl to obtain persona
i nformati on about a user that could be interpreted as having obtai ned

a user identity. In this sense, the client is treating the resource
server APl as an "identity" API. A client utilizes QAuth to obtain
an access token for the identity API. It then queries the identity

APl for an identifier and uses it to look up its internal user
account data (login). The client assunes that, because it was able
to obtain information about the user, the user has been

aut henti cat ed.

To succeed, the attacker needs to gather a valid access token of the
respective victimfromthe sanme ldentity Provider used by the target
client application. The attacker tricks the victiminto |logging into
a nmalicious app (which nmay appear to be legitinate to the Identity
Provider) using the sane ldentity Provider as the target application.
This results in the ldentity Provider’s authorization server issuing
an access token for the respective identity API. The malicious app
then sends this access token to the attacker, which in turn triggers
a login process within the target application. The attacker now
mani pul ates the authorization response and substitutes their access
token (bound to their identity) for the victin s access token. This
token is accepted by the identity API, since the audience, with
respect to the resource server, is correct. But since the identifier
returned by the identity APl is determned by the identity in the
access token, the attacker is logged into the target application
under the victims identity.

| mpact: The attacker gains access to an application and user-specific
data within the application

Count er measur es:

o Cients should use an appropriate protocol, such as Qpenl D (cf.
[OPENID]) or SAML (cf. [OASIS.sstc-sam -bindings-1.1]) to
i mpl enent user login. Both support audience restrictions on
clients.

4.4.3. Resource Owmer Password Credentials

The resource owner password credentials grant type (see [RFC6749],
Section 4.3), often used for |egacy/mgration reasons, allows a
client to request an access token using an end-user’s user id and
password along with its own credential. This grant type has higher
ri sk because it maintains the U D/ password anti-pattern

Addi tionally, because the user does not have control over the

aut hori zation process, clients using this grant type are not limted

Lodderstedt, et al. I nf or mati onal [Page 40]

RFC 6819 QAuth 2.0 Security January 2013

by scope but instead have potentially the sane capabilities as the
user thenselves. As there is no authorization step, the ability to
of fer token revocation is bypassed.

Because passwords are often used for nore than 1 service, this
anti-pattern may also put at risk whatever else is accessible with
the supplied credential. Additionally, any easily derived equival ent
(e.g., joe@xanple.comand joe@xanple.net) night easily allow
someone to guess that the same password can be used el sewhere.

I mpact: The resource server can only differentiate scope based on the
access token being associated with a particular client. The client
could also acquire long-lived tokens and pass themup to an
attacker’s web service for further abuse. The client, eavesdroppers,
or endpoints could eavesdrop the user id and password.

Count er measur es:

o Except for migration reasons, mninmze use of this grant type.

0o The authorization server should validate the client id associated
with the particular refresh token with every refresh request
(Section 5.2.2.2).

o0 As per the core QAuth specification, the authorization server nust
ensure that these transm ssions are protected using transport-
| ayer mechani sms such as TLS (see Section 5.1.1).

o Rather than encouraging users to use a U D and password, service
provi ders should instead encourage users not to use the sane
password for nultiple services.

o Limt use of resource owner password credential grants to
scenarios where the client application and the authorizing service
are fromthe sane organization.

4.4.3.1. Threat: Accidental Exposure of Passwords at Client Site

If the client does not provide enough protection, an attacker or
di sgruntl ed enmpl oyee could retrieve the passwords for a user

Count er measur es:

0 Use other flows that do not rely on the client’s cooperation for
secure resource owner credential handling.

o Use digest authentication instead of plaintext credenti al
processi ng.

Lodderstedt, et al. I nf or mati onal [Page 41]

RFC 6819 QAuth 2.0 Security January 2013

0 bfuscate passwords in |ogs.
4.4.3.2. Threat: Cient Obtains Scopes w thout End-User Authorization

Al interaction with the resource owner is performed by the client.
Thus it might, intentionally or unintentionally, happen that the
client obtains a token with scope unknown for, or unintended by, the
resource owner. For exanple, the resource owner might think the
client needs and acquires read-only access to its nmedia storage only
but the client tries to acquire an access token with full access

per m ssi ons.

Count er measur es:

0 Use other flows that do not rely on the client’s cooperation for
resource owner interaction

o The authorization server nay generally restrict the scope of
access tokens (Section 5.1.5.1) issued by this flow. If the
particular client is trustworthy and can be authenticated in a
reliable way, the authorization server could relax that

restriction. Resource owners may prescribe (e.g., in their
preferences) what the maxi num scope is for clients using this
flow.

0 The authorization server could notify the resource owner by an
appropriate nedium e.g., emil, of the grant issued (see
Section 5.1.3).

4.4.3.3. Threat: Cient Obtains Refresh Token through Autonmatic
Aut hori zati on

Al interaction with the resource owner is performed by the client.
Thus it might, intentionally or unintentionally, happen that the
client obtains a |long-term authorization represented by a refresh
token even if the resource owner did not intend so.

Count er measur es:

o Use other flows that do not rely on the client’s cooperation for
resource owner interaction

o The authorization server nay generally refuse to issue refresh
tokens in this flow (see Section 5.2.2.1). |If the particular
client is trustworthy and can be authenticated in a reliable way
(see client authentication), the authorization server could rel ax

Lodderstedt, et al. I nf or mati onal [Page 42]

RFC 6819 QAuth 2.0 Security January 2013

that restriction. Resource owners may allow or deny (e.g.,
their preferences) the issuing of refresh tokens using this f
as wel | .

n
| ow
o The authorization server could notify the resource owner by an
appropriate nedium e.g., emil, of the refresh token issued (see
Section 5.1.3).
4.4.3.4. Threat: Obtaining User Passwords on Transport

An attacker could attenpt to eavesdrop the transm ssion of end-user

credentials with the grant type "password" between the client and

server.

I mpact: Disclosure of a single end-user’s password.

Count er measur es:

o Ensure confidentiality of requests (Section 5.1.1).

0 Use alternative authentication neans that do not require the
sendi ng of plaintext credentials over the wire (e.g., Hash-based

Message Aut henticati on Code).

4.4.3.5. Threat: btaining User Passwords from Aut hori zation Server
Dat abase

An attacker may obtain valid username/password conbi nations fromthe
aut hori zati on server’s database by gaining access to the database or
l aunching a SQ. injection attack

| rpact: Disclosure of all usernane/password conbi nations. The inpact
may exceed the domain of the authorization server, since nany users
tend to use the sanme credentials on different services.
Count er measur es:

o Enforce credential storage protection best practices
(Section 5.1.4.1).

4.4.3.6. Threat: Online Guessing

An attacker may try to guess valid usernane/ password conbi nations
using the grant type "password".

| mpact: Revel ation of a single usernane/password comnbi nation

Lodderstedt, et al. I nf or mati onal [Page 43]

RFC 6819 QAuth 2.0 Security January 2013

Count er neasur es:

o UWilize secure password policy (Section 5.1.4.2.1).
o Lock accounts (Section 5.1.4.2.3).

o Use tar pit (Section 5.1.4.2.4).

0 Use CAPTCHAs (Section 5.1.4.2.5).

o Consider not using the grant type "password".

o Cient authentication (see Section 5.2.3) will provide anot her
aut hentication factor and thus hinder the attack

4.4.4. dient Credentials

4.

4.

4.

5.

5.

5.

Client credentials (see [RFC6749], Section 3) consist of an
identifier (not secret) conbined with an additional neans (such as a
mat ching client secret) of authenticating a client. The threats to
this grant type are simlar to those described in Section 4.4.3.

Ref reshi ng an Access Token
1. Threat: Eavesdroppi ng Refresh Tokens from Authorization Server

An attacker may eavesdrop refresh tokens when they are transmtted
fromthe authorization server to the client.

Count er measur es:

0 As per the core QAuth spec, the authorization servers must ensure
that these transm ssions are protected using transport-|ayer
mechani sns such as TLS (see Section 5.1.1).

o If end-to-end confidentiality cannot be guaranteed, reducing scope
(see Section 5.1.5.1) and expiry tine (see Section 5.1.5.3) for
i ssued access tokens can be used to reduce the damage in case of
| eaks.

2. Threat: Obtaining Refresh Token from Aut horization Server
Dat abase

This threat is applicable if the authorization server stores refresh
tokens as handles in a database. An attacker may obtain refresh
tokens fromthe authorization server’s database by gai ning access to
the dat abase or | aunching a SQ. injection attack

Lodderstedt, et al. I nf or mati onal [Page 44]

RFC 6819 QAuth 2.0 Security January 2013

| mpact: Disclosure of all refresh tokens.
Count er neasur es:

o Enforce credential storage protection best practices
(Section 5.1.4.1).

o Bind token to client id, if the attacker cannot obtain the
required id and secret (Section 5.1.5.8).

4.5.3. Threat: Cbtaining Refresh Token by Online Cuessing
An attacker may try to guess valid refresh token values and send it
using the grant type "refresh_token" in order to obtain a valid
access token.

| mpact: Exposure of a single refresh token and derivabl e access
t okens.

Count er neasures:
o For handl e-based designs (Section 5.1.4.2.2).
o For assertion-based designs (Section 5.1.5.9).

o Bind token to client id, because the attacker woul d guess the
matching client id, too (see Section 5.1.5.8).

o Authenticate the client; this adds another el enent that the
attacker has to guess (see Section 5.2.3.4).

4.5.4. Threat: Refresh Token Phishing by Counterfeit Authorization
Server

An attacker could try to obtain valid refresh tokens by proxying
requests to the authorization server. Gven the assunption that the
aut hori zation server URL is well-known at devel opnent tine or can at
| east be obtained froma well-known resource server, the attacker
nmust utilize sone kind of spoofing in order to succeed.
Count er measur es:

o UWilize server authentication (as described in Section 5.1.2).

Lodderstedt, et al. I nf or mati onal [Page 45]

RFC 6819 QAuth 2.0 Security January 2013

4.6. Accessing Protected Resources

4.6.1. Threat: Eavesdroppi ng Access Tokens on Transport

An attacker could try to obtain a valid access token on transport
between the client and resource server. As access tokens are shared
secrets between the authorization server and resource server, they
shoul d be treated with the same care as other credentials (e.g., end-
user passwords).

Count er measur es:

0 Access tokens sent as bearer tokens should not be sent in the
cl ear over an insecure channel. As per the core QAuth spec,
transm ssi on of access tokens must be protected using transport-
| ayer mechani sms such as TLS (see Section 5.1.1).

o A short lifetine reduces inpact in case tokens are conprom sed
(see Section 5.1.5.3).

o The access token can be bound to a client’s identifier and require
the client to prove legitimte ownership of the token to the
resource server (see Section 5.4.2).

4.6.2. Threat: Replay of Authorized Resource Server Requests

4.

6.

An attacker could attenpt to replay valid requests in order to obtain
or to nodi fy/destroy user data.

Count er measur es:

o The resource server should utilize transport security mneasures
(e.g., TLS) in order to prevent such attacks (see Section 5.1.1).
This woul d prevent the attacker from capturing valid requests.

o Alternatively, the resource server could enploy signed requests
(see Section 5.4.3) along with nonces and tinmestanps in order to
uni quely identify requests. The resource server should detect and
refuse every replayed request.

3. Threat: Guessing Access Tokens

Where the token is a handle, the attacker nay attenpt to guess the
access token val ues based on know edge they have from other access
t okens.

I mpact: Access to a single user’s data.

Lodderstedt, et al. I nf or mati onal [Page 46]

RFC 6819 QAuth 2.0 Security January 2013

Count er measur es:

o Handl e tokens shoul d have a reasonabl e | evel of entropy (see
Section 5.1.4.2.2) in order to make guessing a valid token val ue
i nf easi bl e.

o Assertion (or self-contained token) token contents should be
protected by a digital signature (see Section 5.1.5.9).

0 Security can be further strengthened by using a short access token
duration (see Sections 5.1.5.2 and 5.1.5.3).

4.6.4. Threat: Access Token Phishing by Counterfeit Resource Server

An attacker may pretend to be a particular resource server and to
accept tokens froma particular authorization server. |f the client
sends a valid access token to this counterfeit resource server, the
server in turn may use that token to access other services on behalf
of the resource owner.

Count er measur es:

o Cients should not nake authenticated requests with an access
token to unfam liar resource servers, regardl ess of the presence
of a secure channel. |[If the resource server URL is well-known to
the client, it may authenticate the resource servers (see
Section 5.1.2).

0 Associate the endpoint URL of the resource server the client
talked to with the access token (e.g., in an audience field) and
validate the association at a legitimte resource server. The
endpoint URL validation policy may be strict (exact match) or nore
rel axed (e.g., same host). This would require telling the
aut horization server about the resource server endpoint URL in the
aut hori zati on process.

0 Associate an access token with a client and authenticate the
client with resource server requests (typically via a signature,
in order to not disclose a secret to a potential attacker). This
prevents the attack because the counterfeit server is assuned to
| ack the capability to correctly authenticate on behalf of the
legitimate client to the resource server (Section 5.4.2).

0 Restrict the token scope (see Section 5.1.5.1) and/or limt the
token to a certain resource server (Section 5.1.5.5).

Lodderstedt, et al. I nf or mati onal [Page 47]

RFC 6819 QAuth 2.0 Security January 2013

4.6.5. Threat: Abuse of Token by Legitinate Resource Server or Cient

A legitinmate resource server could attenpt to use an access token to
access another resource server. Simlarly, a client could try to use
a token obtained for one server on another resource server.

Count er measur es:

o Tokens should be restricted to particular resource servers (see
Section 5.1.5.5).

4.6.6. Threat: Leak of Confidential Data in HITP Proxies

4. 6.

Lod

An QAut h HTTP aut henticati on schene as discussed in [RFC6749] is
optional. However, [RFC2616] relies on the Authorization and

WAV Aut hent i cat e headers to distinguish authenticated content so that
it can be protected. Proxies and caches, in particular, my fail to
adequately protect requests not using these headers. For exanple,
private authenticated content may be stored in (and thus be
retrievable fron) publicly accessible caches.

Count er neasur es:

o Cients and resource servers not using an QAuth HTTP
aut hentication schenme (see Section 5.4.1) should take care to use
Cache-Control headers to minimize the risk that authenticated
content is not protected. Such clients should send a
Cache- Control header containing the "no-store" option [RFC2616].
Resour ce server success (2XX status) responses to these requests
shoul d contain a Cache-Control header with the "private" option
[RFC2616] .

0 Reducing scope (see Section 5.1.5.1) and expiry tine
(Section 5.1.5.3) for access tokens can be used to reduce the
damage in case of | eaks.

7. Threat: Token Leakage via Log Files and HTTP Referrers

I f access tokens are sent via URI query paraneters, such tokens may
leak to log files and the HITP "referer".

Count er measur es:

o Use Authorization headers or POST paraneters instead of UR
request paraneters (see Section 5.4.1).

o Set logging configuration appropriately.

derstedt, et al. I nf or mati onal [Page 48]

RFC 6819 QAuth 2.0 Security January 2013

o Prevent unauthorized persons fromaccess to systemlog files (see
Section 5.1.4.1.1).

0 Abuse of | eaked access tokens can be prevented by enforcing
aut henti cated requests (see Section 5.4.2).

o The inpact of token | eakage may be reduced by Iimting scope (see
Section 5.1.5.1) and duration (see Section 5.1.5.3) and by
enforcing one-time token usage (see Section 5.1.5.4).

5. Security Considerations

Thi s section describes the counterneasures as recomended to nitigate
the threats described in Section 4.

5.1. Ceneral

Thi s section covers considerations that apply generally across al
QAut h conponents (client, resource server, token server, and user
agents).

5.1.1. Ensure Confidentiality of Requests

This is applicable to all requests sent fromthe client to the

aut hori zati on server or resource server. Wile QAuth provides a
mechani smfor verifying the integrity of requests, it provides no
guarantee of request confidentiality. Unless further precautions are
taken, eavesdroppers will have full access to request content and may
be able to mount interception or replay attacks by using the contents
of requests, e.g., secrets or tokens.

Attacks can be mitigated by using transport-|layer nechani sns such as
TLS [RFC5246]. A virtual private network (VPN), e.g., based on |Psec
VPNs [RFC4301], nmy be considered as well.

Not e: This docunent assunmes end-to-end TLS protected connections

bet ween the respective protocol entities. Deploynents deviating from
this assunption by offloading TLS in between (e.g., on the data
center edge) must refine this threat nodel in order to account for
the additional (mainly insider) threat this may cause.

This is a counterneasure agai nst the followi ng threats:

0 Replay of access tokens obtained on the token's endpoint or the
resource server’'s endpoint

o Replay of refresh tokens obtained on the token’s endpoint

Lodderstedt, et al. I nf or mati onal [Page 49]

RFC 6819 QAuth 2.0 Security January 2013

5.

5.

1

1

o Replay of authorization "codes" obtained on the token’s endpoint
(redirect?)

0 Replay of user passwords and client secrets
2. Uilize Server Authentication

HTTPS server authentication or simlar means can be used to
authenticate the identity of a server. The goal is to reliably bind
the fully qualified domain nane of the server to the public key
presented by the server during connection establishnment (see

[RFC2818]) .

The client should validate the binding of the server to its domain
nane. |If the server fails to prove that binding, the comunication
is considered a man-in-the-mddle attack. This security neasure
depends on the certification authorities the client trusts for that
purpose. Cients should carefully select those trusted CAs and
protect the storage for trusted CA certificates fromnodifications.

This is a counterneasure against the followi ng threats:
o Spoofing

o Proxying

o Phishing by counterfeit servers

3. Always Keep the Resource Owner Infornmed

Transparency to the resource owner is a key element of the OQAuth
protocol. The user should always be in control of the authorization
processes and get the necessary information to nake inforned

deci sions. Mreover, user involvement is a further security

count erneasure. The user can probably recognize certain kinds of
attacks better than the authorization server. Information can be
present ed/ exchanged during the authorization process, after the

aut hori zation process, and every tinme the user wi shes to get inforned
by using techni ques such as:

o User consent fornms.
o Notification nessages (e.g., enmail, SM5, ...). Note that

notifications can be a phishing vector. Messages should be such
that | ook-alike phishing nmessages cannot be derived fromthem

Lodderstedt, et al. I nf or mati onal [Page 50]

RFC 6819 QAuth 2.0 Security January 2013

o Activity/event |ogs.
o User self-care applications or portals.
5.1.4. Credentials

Thi s section describes counterneasures used to protect all kinds of
credentials fromunauthorized access and abuse. Credentials are

| ong-term secrets, such as client secrets and user passwords as well
as all kinds of tokens (refresh and access tokens) or authorization
"codes".

5.1.4.1. Enforce Credential Storage Protection Best Practices

Admi ni strators shoul d undertake industry best practices to protect
the storage of credentials (for exanple, see [OMSP]). Such
practices may include but are not limted to the follow ng
sub-secti ons.

5.1.4.1.1. Enforce Standard System Security Means

A server system nmay be | ocked down so that no attacker nay get access
to sensitive configuration files and databases.

5.1.4.1.2. Enforce Standard SQ. I njection Counternmeasures

If aclient identifier or other authentication conmponent is queried
or compared agai nst a SQ. database, it may become possible for an
injection attack to occur if paraneters received are not validated
before submi ssion to the database

o Ensure that server code is using the mni mum database privil eges
possi ble to reduce the "surface" of possible attacks.

o Avoid dynam c SQ using concatenated input. |If possible, use
static SQL.

o Wen using dynam c SQ., paraneterize queries using bind argunents.
Bi nd argurments elinmnate the possibility of SQ injections.

o Filter and sanitize the input. For exanmple, if an identifier has

a known format, ensure that the supplied val ue matches the
identifier syntax rules.

Lodderstedt, et al. I nf or mati onal [Page 51]

RFC 6819 QAuth 2.0 Security January 2013

5.1.4.1.3. No Ceartext Storage of Credentials

The aut hori zation server should not store credentials in clear text.
Typi cal approaches are to store hashes instead or to encrypt
credentials. |If the credential |acks a reasonable entropy |eve
(because it is a user password), an additional salt will harden the
storage to nmake offline dictionary attacks nore difficult.

Not e: Sonme aut hentication protocols require the authorization server
to have access to the secret in the clear. Those protocols cannot be
i mpl enented if the server only has access to hashes. Credentials
shoul d be strongly encrypted in those cases.

5.1.4.1.4. Encryption of Credentials

For client applications, insecurely persisted client credentials are
easy targets for attackers to obtain. Store client credentials using
an encrypted persistence nechani smsuch as a keystore or database.
Note that compiling client credentials directly into client code
nmakes client applications vulnerable to scanning as well as difficult
to adm nister should client credentials change over tinme.

5.1.4.1.5. Use of Asymmetric Cryptography

Usage of asymmetric cryptography will free the authorization server
of the obligation to nmanage credenti al s.

5.1.4.2. Online Attacks on Secrets
5.1.4.2.1. Utilize Secure Password Policy

The aut horization server nmay decide to enforce a conpl ex user
password policy in order to increase the user passwords’ entropy to
hi nder online password attacks. Note that too much conplexity can
i ncrease the |ikelihood that users re-use passwords or wite them
down, or otherw se store theminsecurely.

5.1.4.2.2. Use High Entropy for Secrets

VWhen creating secrets not intended for usage by human users (e.qg.
client secrets or token handl es), the authorization server should

i nclude a reasonable level of entropy in order to mtigate the risk
of guessing attacks. The token value should be >=128 bits | ong and
constructed froma cryptographically strong random or pseudo-random
nunber sequence (see [RFC4086] for best current practice) generated
by the authorization server.

Lodderstedt, et al. I nf or mati onal [Page 52]

RFC 6819 QAuth 2.0 Security January 2013

5.1.4.2.3. Lock Accounts

Online attacks on passwords can be nitigated by |ocking the
respective accounts after a certain nunmber of failed attenpts.

Not e: This measure can be abused to | ock down legitinmate service
users.

5.1.4.2.4. Use Tar Pit
The aut horization server may react on failed attenpts to authenticate
by usernane/ password by tenporarily |ocking the respective account
and del aying the response for a certain duration. This duration may
increase with the nunber of failed attenpts. The objective is to
slow the attacker’s attenpts on a certain usernane down.

Note: This may require a nore conplex and stateful design of the
aut hori zation server.

5.1.4.2.5. Use CAPTCHAs

The idea is to prevent programs from automatically checking a huge
nunber of passwords, by requiring human interaction

Note: This has a negative inpact on user experience.

5.1.5. Tokens (Access, Refresh, Code)

5.1.5.1. Limt Token Scope
The aut horization server may decide to reduce or limt the scope
associated with a token. The basis of this decision is out of scope;

exanpl es are:

o aclient-specific policy, e.g., issue only |ess powerful tokens to
public clients,

0o a service-specific policy, e.g., it is a very sensitive service,
0 a resource-owner-specific setting, or

o conbinations of such policies and preferences.

Lodderstedt, et al. I nf or mati onal [Page 53]

RFC 6819 QAuth 2.0 Security January 2013

The aut horization server nmay all ow different scopes dependent on the
grant type. For exanple, end-user authorization via direct
interaction with the end user (authorization "code") might be

consi dered nore reliable than direct authorization via grant type
"usernane"/"password”. This means will reduce the inpact of the
following threats

o token | eakage
o token issuance to malicious software

0 unintended issuance of powerful tokens with resource owner
credentials flow

5.1.5.2. Deternine Expiration Tine
Tokens shoul d generally expire after a reasonable duration. This
conpl ements and strengthens other security neasures (such as
signatures) and reduces the inpact of all kinds of token |eaks.
Dependi ng on the risk associated with token | eakage, tokens nay
expire after a few mnutes (e.g., for paynent transactions) or stay
valid for hours (e.g., read access to contacts).
The expiration tinme is determ ned by several factors, including:
o risk associated with token | eakage,

o duration of the underlying access grant,

o duration until the nodification of an access grant should take
effect, and

o time required for an attacker to guess or produce a valid token
5.1.5.3. Use Short Expiration Tine

A short expiration tine for tokens is a neans of protection against
the followi ng threats

o replay
o token leak (a short expiration time will reduce inpact)
o online guessing (a short expiration time will reduce the

i keli hood of success)

Lodderstedt, et al. I nf or mati onal [Page 54]

RFC 6819 QAuth 2.0 Security January 2013

Not e: Short token duration requires nore precise clock
synchroni zati on between the authorization server and resource server.
Furthernore, shorter duration may require nore token refreshes
(access token) or repeated end-user authorization processes

(aut horization "code" and refresh token).

5.1.5.4. Limt Nunmber of Usages or One-Tine Usage

The aut horization server may restrict the nunber of requests or
operations that can be performed with a certain token. This
mechani sm can be used to mitigate the follow ng threats:

o replay of tokens
0 guessing

For exanple, if an authorization server observes nore than one
attenpt to redeem an authorization "code", the authorization server
may want to revoke all access tokens granted based on the

aut horization "code" as well as reject the current request.

As with the authorization "code", access tokens may al so have a
[imted nunber of operations. This either forces client applications
to re-authenticate and use a refresh token to obtain a fresh access
token, or forces the client to re-authorize the access token by

i nvol ving the user.

5.1.5.5. Bind Tokens to a Particul ar Resource Server (Audience)

Aut hori zation servers in nulti-service environnments may consi der

i ssuing tokens with different content to different resource servers

and to explicitly indicate in the token the target server to which a
token is intended to be sent. SAM. assertions (see

[QASI S. sam -core-2.0-0s]) use the Audi ence el ement for this purpose.
Thi s counterneasure can be used in the follow ng situations:

o It reduces the inmpact of a successful replay attenpt, since the
token is applicable to a single resource server only.

o It prevents abuse of a token by a rogue resource server or client,
since the token can only be used on that server. It is rejected
by ot her servers.

o It reduces the inmpact of |eakage of a valid token to a counterfeit
resource server.

Lodderstedt, et al. I nf or mati onal [Page 55]

RFC 6819 QAuth 2.0 Security January 2013

5.1.5.6. Use Endpoi nt Address as Token Audi ence

This may be used to indicate to a resource server which endpoint URL
has been used to obtain the token. This nmeasure will allowthe
detection of requests froma counterfeit resource server, since such
a token will contain the endpoint URL of that server.

5.1.5.7. Use Explicitly Defined Scopes for Audience and Tokens

Depl oyments may consider only using tokens with explicitly defined
scopes, where every scope is associated with a particul ar resource
server. This approach can be used to nmitigate attacks where a
resource server or client uses a token for a different purpose than
the one intended.

5.1.5.8. Bind Token to Client id

An aut hori zation server nay bind a token to a certain client
identifier. This identifier should be validated for every request
with that token. This technique can be used to

o detect token | eakage and
o prevent token abuse.

Note: Validating the client identifier may require the target server
to authenticate the client’s identifier. This authentication can be
based on secrets managed i ndependently of the token (e.qg.
pre-registered client id/secret on authorization server) or sent with
the token itself (e.g., as part of the encrypted token content).

5.1.5.9. Sign Self-Contained Tokens

Sel f - cont ai ned tokens shoul d be signed in order to detect any attenpt
to nodify or produce faked tokens (e.g., Hash-based Message
Aut hentication Code or digital signatures).

5.1.5.10. Encrypt Token Content

Sel f-cont ai ned tokens may be encrypted for confidentiality reasons or
to protect systeminternal data. Depending on token format, keys
(e.g., symetric keys) may have to be distributed between server
nodes. The nmethod of distribution should be defined by the token and
the encryption used.

Lodderstedt, et al. I nf or mati onal [Page 56]

RFC 6819 QAuth 2.0 Security January 2013

5.1.5.11. Adopt a Standard Assertion Fornat
For service providers intending to i nplement an assertion-based token
design, it is highly recomended to adopt a standard assertion format
(such as SAML [OASI S.sanl -core-2.0-0s] or the JavaScript Object
Not ati on Web Token (JWI) [QAut h-JWI]).

5.1.6. Access Tokens

The foll owi ng neasures should be used to protect access tokens:

o Keep themin transient nenory (accessible by the client
application only).

o Pass tokens securely using secure transport (TLS)

o Ensure that client applications do not share tokens with 3rd
parties.

5.2. Authorization Server

This section describes considerations related to the QAuth
aut hori zati on server endpoint.

5.2.1. Authorization "codes"

5.2.1.1. Automatic Revocation of Derived Tokens If Abuse Is Detected
If an authorization server observes multiple attenpts to redeem an
aut horization grant (e.g., such as an authorization "code"), the
aut horization server may want to revoke all tokens granted based on
the authori zation grant.

5.2.2. Refresh Tokens

5.2.2.1. Restricted |Issuance of Refresh Tokens
The aut horization server nay deci de, based on an appropriate policy,
not to issue refresh tokens. Since refresh tokens are |long-term
credentials, they may be subject to theft. For exanple, if the

aut horization server does not trust a client to securely store such
tokens, it nay refuse to issue such a client a refresh token

Lodderstedt, et al. I nf or mati onal [Page 57]

RFC 6819 QAuth 2.0 Security January 2013

5.2.2.2. Binding of Refresh Token to "client _id"

The aut horization server should match every refresh token to the
identifier of the client to whomit was issued. The authorization
server should check that the same "client_id" is present for every

request to refresh the access token. |If possible (e.g., confidentia
clients), the authorization server should authenticate the respective
client.

This is a counterneasure agai nst refresh token theft or | eakage.

Not e: This binding should be protected from unauthorized
nmodi fi cati ons.

5.2.2.3. Refresh Token Rotation

Refresh token rotation is intended to automatically detect and
prevent attenpts to use the sane refresh token in parallel from
di fferent apps/devices. This happens if a token gets stolen fromthe
client and is subsequently used by both the attacker and the
legitimate client. The basic idea is to change the refresh token
value with every refresh request in order to detect attenpts to
obt ai n access tokens using old refresh tokens. Since the

aut hori zation server cannot determ ne whether the attacker or the
legitimate client is trying to access, in case of such an access
attenpt the valid refresh token and the access authorization
associated with it are both revoked.

The QAut h specification supports this neasure in that the token's
response allows the authorization server to return a new refresh
token even for requests with grant type "refresh_token".

Note: This measure may cause problens in clustered environnents,

since usage of the currently valid refresh token nmust be ensured. In

such an environment, other neasures m ght be nore appropriate.
5.2.2.4. Revocation of Refresh Tokens

The aut horization server may allow clients or end users to explicitly

request the invalidation of refresh tokens. A nechanismto revoke
tokens is specified in [QAut h- REVOCATI ON] .

Lodderstedt, et al. I nf or mati onal [Page 58]

RFC 6819 QAuth 2.0 Security January 2013

This is a counterneasure against:
0o device theft,
o inpersonation of a resource owner, or
o suspected conprom sed client applications.

5.2.2.5. Device lIdentification
The aut horization server may require the binding of authentication
credentials to a device identifier. The International Mbile Station
Equi prent Identity [IMEI] is one exanple of such an identifier; there
are al so operating systemspecific identifiers. The authorization
server could include such an identifier when authenticating user

credentials in order to detect token theft froma particul ar device.

Not e: Any i nplenentation shoul d consider potential privacy
i mplications of using device identifiers.

5.2.2.6. X- FRAVE- OPTI ONS Header
For newer browsers, avoidance of iFrames can be enforced on the
server side by using the X- FRAVE- OPTI ONS header (see
[X- Frame- Options]). This header can have two val ues, "DENY" and
"SAMEORI G N', which will block any fram ng or any fram ng by sites
with a different origin, respectively. The value "ALLOVN FROM
specifies a list of trusted origins that iFranes may originate from
This is a counterneasure against the follow ng threat:
o dickjacking attacks

5.2.3. dient Authentication and Authorization
As described in Section 3 (Security Features), clients are
identified, authenticated, and authorized for several purposes, such
as to:

o Collate requests to the same client,

o Indicate to the user that the client is recognized by the
aut hori zati on server,

0 Authorize access of clients to certain features on the
aut hori zati on server or resource server, and

o Log aclient identifier to log files for analysis or statistics.

Lodderstedt, et al. I nf or mati onal [Page 59]

RFC 6819 QAuth 2.0 Security January 2013

Due to the different capabilities and characteristics of the
different client types, there are different ways to support these
obj ectives, which will be described in this section. Authorization
server providers should be aware of the security policy and

depl oyment of a particular client and adapt its treatnent
accordingly. For exanple, one approach could be to treat all clients
as less trustworthy and unsecure. On the other extrenme, a service
provi der could activate every client installation individually by an
adm nistrator and in that way gain confidence in the identity of the
sof tware package and the security of the environnent in which the
client is installed. There are several approaches in between.

5.2.3.1. Don't Issue Secrets to Clients with Inappropriate Security
Pol i cy

Aut hori zation servers should not issue secrets to clients that cannot
protect secrets ("public" clients). This reduces the probability of
the server treating the client as strongly authenticat ed.

For exanple, it is of linmted benefit to create a single client id
and secret that are shared by all installations of a native
application. Such a scenario requires that this secret nust be
transmtted fromthe devel oper via the respective distribution
channel, e.g., an application market, to all installations of the
application on end-user devices. A secret, burned into the source
code of the application or an associ ated resource bundle, is not
protected fromreverse engineering. Secondly, such secrets cannot be
revoked, since this would i mediately put all installations out of
wor k. Mboreover, since the authorization server cannot really trust
the client’s identifier, it would be dangerous to indicate to end
users the trustworthiness of the client.

There are other ways to achieve a reasonable security |level, as
described in the foll owi ng sections.

5.2.3.2. Require User Consent for Public Clients wthout Secret
Aut hori zation servers should not all ow automatic authorization for
public clients. The authorization server may issue an individua
client id but should require that all authorizations are approved by
the end user. For clients without secrets, this is a counterneasure
agai nst the followi ng threat:

o Inmpersonation of public client applications.

Lodderstedt, et al. I nf or mati onal [Page 60]

RFC 6819 QAuth 2.0 Security January 2013

5.2.3.3. Issue a "client_id" Only in Conbination with "redirect _uri"

The aut horization server may issue a "client_id" and bind the
"client_id" to a certain pre-configured "redirect_uri". Any

aut horization request with another redirect URI is refused
automatically. Alternatively, the authorization server should not
accept any dynanmic redirect URI for such a "client_id" and instead
shoul d al ways redirect to the well-known pre-configured redirect URI
This is a counterneasure for clients without secrets against the
followi ng threats

o Cross-site scripting attacks
o |Inpersonation of public client applications
5.2.3.4. Issue Installation-Specific Cient Secrets

An aut hori zation server nay issue separate client identifiers and
correspondi ng secrets to the different installations of a particular
client (i.e., software package). The effect of such an approach
woul d be to turn otherwi se "public" clients back into "confidential"
clients.

For web applications, this could nean creating one "client _id" and
"client_secret"” for each web site on which a software package is
installed. So, the provider of that particular site could request a
client id and secret fromthe authorization server during the setup
of the web site. This would also allow the validation of sone of the
properties of that web site, such as redirect URI, web site URL, and
what ever el se proves useful. The web site provider has to ensure the
security of the client secret on the site.

For native applications, things are nore conplicated because every
copy of a particular application on any device is a different
installation. |Installation-specific secrets in this scenario wll
require obtaining a "client _id" and "client_secret" either

1. during the downl oad process fromthe application market, or
2. during installation on the device.

Ei t her approach will require an automated nechani smfor issuing
client ids and secrets, which is currently not defined by QAuth.

The first approach would all ow the achi evenent of a certain |level of
trust in the authenticity of the application, whereas the second
option only allows the authentication of the installation but not the
val idation of properties of the client. But this would at |east help

Lodderstedt, et al. I nf or mati onal [Page 61]

RFC 6819 QAuth 2.0 Security January 2013

to prevent several replay attacks. Mreover, installation-specific
“client _ids" and secrets allow the selective revocation of al
refresh tokens of a specific installation at once.

5.2.3.5. Validate Pre-Registered "redirect_uri"

An aut hori zation server should require all clients to register their
"redirect _uri", and the "redirect _uri" should be the full UR as
defined in [RFC6749]. The way that this registration is performed is
out of scope of this docunent. As per the core spec, every actua
redirect URI sent with the respective "client_id" to the end-user

aut hori zati on endpoi nt nust nmatch the registered redirect URI. \Were
it does not match, the authorization server should assume that the

i nbound GET request has been sent by an attacker and refuse it.

Not e: The authorization server should not redirect the user agent
back to the redirect URI of such an authorization request.

Validating the pre-registered "redirect_uri" is a counterneasure

agai nst the follow ng threats:

o Authorization "code" |eakage through counterfeit web site: allows
aut horization servers to detect attack attenpts after the first
redirect to an end-user authorization endpoint (Section 4.4.1.7).

o Open redirector attack via a client redirection endpoint
(Section 4.1.5).

0 Open redirector phishing attack via an authorization server
redi rection endpoint (Section 4.2.4).

The underlying assunption of this nmeasure is that an attacker wll
need to use another redirect URI in order to get access to the

aut hori zation "code". Deploynents m ght consider the possibility of
an attacker using spoofing attacks to a victims device to circunvent
this security neasure.

Note: Pre-registering clients mght not scale in sonme depl oynents
(manual process) or require dynamc client registration (not
specified yet). Wth the lack of dynanmic client registration, a
pre-registered "redirect _uri" only works for clients bound to certain
depl oyment s at devel opnent/configuration tine. As soon as dynamc
resource server discovery is required, the pre-registered

"redirect _uri" may no |onger be feasible.

Lodderstedt, et al. I nf or mati onal [Page 62]

RFC 6819 QAuth 2.0 Security January 2013

5.2.3.6. Revoke Cient Secrets

An aut hori zation server may revoke a client’s secret in order to
prevent abuse of a reveal ed secret.

Note: This measure will immediately invalidate any authorization
"code" or refresh token issued to the respective client. This mght
unintentionally inmpact client identifiers and secrets used across
mul tipl e depl oynents of a particular native or web application

Thi s a counterneasure agai nst:
0 Abuse of revealed client secrets for private clients

5.2.3.7. Use Strong Cient Authentication (e.g., client_assertion/
cl i ent _t oken)

By using an alternative formof authentication such as client
assertion [QAut h- ASSERTI ONS], the need to distribute a

"client _secret" is elimnated. This may require the use of a secure
private key store or other supplenental authentication system as
specified by the client assertion issuer in its authentication
process.

5.2.4. End-User Authorization

This section includes considerations for authorization flows
i nvol ving the end user.

5.2.4.1. Automatic Processing of Repeated Authorizations Requires
Client Validation

Aut hori zation servers should NOT autonatically process repeat

aut hori zations where the client is not authenticated through a client
secret or some ot her authentication mechani smsuch as a signed

aut hentication assertion certificate (Section 5.2.3.7) or validation
of a pre-registered redirect URI (Section 5.2.3.5).

5.2.4.2. Inforned Decisions Based on Transparency

The aut horization server should clearly explain to the end user what
happens in the authorization process and what the consequences are.
For exanple, the user shoul d understand what access he is about to
grant to which client for what duration. It should also be obvious
to the user whether the server is able to reliably certify certain
client properties (web site URL, security policy).

Lodderstedt, et al. I nf or mati onal [Page 63]

RFC 6819 QAuth 2.0 Security January 2013

5.2.4.3. Validation of dient Properties by End User

In the authorization process, the user is typically asked to approve
a client’s request for authorization. This is an inportant security
mechani sm by itself because the end user can be involved in the
validation of client properties, such as whether the client nane
known to the authorization server fits the name of the web site or
the application the end user is using. This neasure is especially
hel pful in situations where the authorization server is unable to
authenticate the client. It is a counterneasure against:

o A malicious application
o Aclient application masqueradi ng as another client
5.2.4.4. Binding of Authorization "code" to "client_id"

The aut horization server should bind every authorization "code" to
the id of the respective client that initiated the end-user
aut hori zation process. This measure is a countermeasure against:

o Replay of authorization "codes" with different client credentials,
since an attacker cannot use another "client_id" to exchange an
authorization "code" into a token

o Online guessing of authorization "codes"

Not e: Thi s binding should be protected from unauthorized
nodi fications (e.g., using protected menory and/or a secure
dat abase) .

5.2.4.5. Binding of Authorization "code" to "redirect _uri"

The aut horization server should be able to bind every authorization
"code" to the actual redirect URI used as the redirect target of the
client in the end-user authorization process. This binding should be
val i dated when the client attenpts to exchange the respective

aut hori zation "code" for an access token. This measure is a
count er neasur e agai nst authorization "code" |eakage through
counterfeit web sites, since an attacker cannot use another redirect
URI to exchange an authorization "code" into a token

Lodderstedt, et al. I nf or mati onal [Page 64]

RFC 6819 QAuth 2.0 Security January 2013

5.3. Cdient App Security
This section deals with considerations for client applications.

5.3.1. Don't Store Credentials in Code or Resources Bundled with
Sof t war e Packages

Because of the nunmber of copies of client software, there is limted
benefit in creating a single client id and secret that is shared by
all installations of an application. Such an application by itself
woul d be considered a "public" client, as it cannot be presunmed to be
able to keep client secrets. A secret, burned into the source code
of the application or an associ ated resource bundl e, cannot be
protected fromreverse engineering. Secondly, such secrets cannot be
revoked, since this would i mediately put all installations out of
wor k. Mboreover, since the authorization server cannot really trust
the client’s identifier, it would be dangerous to indicate to end
users the trustworthiness of the client.

5.3.2. Use Standard Web Server Protection Measures (for Config Files
and Dat abases)

Use standard web server protection and configuration measures to
protect the integrity of the server, databases, configuration files,
and ot her operational components of the server.

5.3.3. Store Secrets in Secure Storage

There are different ways to store secrets of all kinds (tokens,
client secrets) securely on a device or server.

Most nulti-user operating systens segregate the personal storage of
different systemusers. Moreover, nost nodern smartphone operating
systens even support the storage of application-specific data in
separate areas of file systems and protect the data from access by
ot her applications. Additionally, applications can inplenent
confidential data by using a user-supplied secret, such as a PIN or
passwor d.

Anot her option is to swap refresh token storage to a trusted backend
server. This option in turn requires a resilient authentication
nmechani sm bet ween the client and backend server. Note: Applications
shoul d ensure that confidential data is kept confidential even after
readi ng from secure storage, which typically nmeans keeping this data
in the local nenory of the application

Lodderstedt, et al. I nf or mati onal [Page 65]

RFC 6819 QAuth 2.0 Security January 2013

5.3.4. Uilize Device Lock to Prevent Unauthorized Device Access

On a typical nmodern phone, there are many "device | ock" options that
can be utilized to provide additional protection when a device is
stolen or msplaced. These include PINs, passwords, and ot her

bi ometric features such as "face recognition". These are not equa
in the level of security they provide.

5.3.5. Link the "state" Paranmeter to User Agent Session

The "state" paranmeter is used to link client requests and prevent
CSRF attacks, for exanple, attacks against the redirect URI. An
attacker could inject their own authorization "code" or access token
which can result in the client using an access token associated with
the attacker’s protected resources rather than the victims (e.g.
save the victinis bank account information to a protected resource
controlled by the attacker).

The client should utilize the "state" request paraneter to send the
aut hori zation server a value that binds the request to the user
agent’s authenticated state (e.g., a hash of the session cookie used
to authenticate the user agent) when naking an authorization request.
Once aut horization has been obtained fromthe end user, the

aut horization server redirects the end-user’s user agent back to the
client with the required binding value contained in the "state"

par aneter.

The bi ndi ng val ue enables the client to verify the validity of the
request by matching the binding value to the user agent’s
authenticated state.

5.4. Resource Servers

The followi ng section details security considerations for resource
servers.

5.4.1. Authorization Headers

Aut hori zati on headers are recogni zed and specially treated by HITP
proxi es and servers. Thus, the usage of such headers for sending
access tokens to resource servers reduces the |ikelihood of |eakage
or uni ntended storage of authenticated requests in general, and
especi al Iy Authorizati on headers.

Lodderstedt, et al. I nf or mati onal [Page 66]

RFC 6819 QAuth 2.0 Security January 2013

5.4.2. Authenticated Requests

An aut hori zation server nmay bind tokens to a certain client
identifier and enable resource servers to validate that association
on resource access. This will require the resource server to
authenticate the originator of a request as the legitinmate owner of a
particul ar token. There are several options to inplement this
count er neasur e:

o The authorization server may associate the client identifier with
the token (either internally or in the payload of a self-contained
token). The client then uses client certificate-based HITP
aut hentication on the resource server’s endpoint to authenticate
its identity, and the resource server validates the name with the
nane referenced by the token

o Same as the option above, but the client uses his private key to
sign the request to the resource server (the public key is either
contained in the token or sent along with the request).

o Alternatively, the authorization server nmay issue a token-bound
key, which the client uses in a Hol der-of-Key proof to
authenticate the client’s use of the token. The resource server
obtains the secret directly fromthe authorization server, or the
secret is contained in an encrypted section of the token. 1In that
way, the resource server does not "know' the client but is able to
val i dat e whether the authorization server issued the token to that
client.

Aut henticated requests are a counterneasure agai nst abuse of tokens
by counterfeit resource servers.

5.4.3. Signed Requests
A resource server may decide to accept signed requests only, either
to replace transport-|level security measures or to conpl ement such
neasures. Every signed request should be uniquely identifiable and
shoul d not be processed twice by the resource server. This
count erneasure helps to mitigate:
o nodifications of the nessage and

o replay attenpts

Lodderstedt, et al. I nf or mati onal [Page 67]

RFC 6819 QAuth 2.0 Security January 2013

5.5. A Word on User Interaction and User-Installed Apps

QAuth, as a security protocol, is distinctive in that its flow
usual 'y invol ves significant user interaction, naking the end user a
part of the security nodel. This creates sone inportant difficulties

i n def endi ng agai nst sone of the threats discussed above. Sone of
these points have al ready been made, but it's worth repeating and
hi ghli ghti ng them here.

o End users must understand what they are being asked to approve
(see Section 5.2.4.2). Users often do not have the expertise to
understand the ram fications of saying "yes" to an authorization
request and are likely not to be able to see subtle differences in
the wordi ng of requests. Malicious software can confuse the user
tricking the user into approving al nost anything.

0 End-user devices are prone to software conprom se. This has been
a long-standing problem with frequent attacks on web browsers and
other parts of the user’'s system But with the increasing
popul arity of user-installed "apps", the threat posed by
conprom sed or malicious end-user software is very strong and is
one that is very difficult to mtigate.

0 Be aware that users will demand to install and run such apps, and
that conpronised or malicious ones can steal credentials at nany
points in the data flow. They can intercept the very user |ogin
credentials that QAuth is designed to protect. They can request
aut hori zation far beyond what they have |l ed the user to understand
and approve. They can automate a response on behalf of the user
hi di ng the whol e process. No solution is offered here, because
none is known; this remains in the space between better security
and better usability.

0 Addressing these issues by restricting the use of user-installed
software may be practical in sonme limted environments and can be
used as a countermeasure in those cases. Such restrictions are
not practical in the general case, and nechanisns for after-the-
fact recovery should be in place.

o Wile end users are nostly incapable of properly vetting
applications they | oad onto their devices, those who depl oy
aut horization servers mght have tools at their disposal to
mtigate malicious clients. For exanple, a well-run authorization
server must only assert client properties to the end user it is
effectively capable of validating, explicitly point out which
properties it cannot validate, and indicate to the end user the
ri sk associated with granting access to the particular client.

Lodderstedt, et al. I nf or mati onal [Page 68]

RFC 6819 QAuth 2.0 Security January 2013

6. Acknow edgenents

We woul d like to thank Stephen Farrell, Barry Leiba, Hui-Lan Lu
Franci sco Corella, Peifung E. Lam Shane B. Weden, Skylar Wodward,
Niv Steingarten, TimBray, and James H Manger for their coments and
contri butions.

7. References
7.1. Nornmtive References

[RFC6749] Hardt, D., "The QAuth 2.0 Authorization Franmework",
RFC 6749, Cctober 2012.

[RFC6750] Jones, M and D. Hardt, "The QAuth 2.0 Authorization
Framewor k: Bearer Token Usage", RFC 6750, October 2012.

7.2. Informative References

[Framebusti ng]
Rydstedt, G, Bursztein, Boneh, D., and C. Jackson
"Busting Frane Busting: a Study of dickjacking
Vul nerabilities on Popular Sites", IEEE 3rd Wb 2.0
Security and Privacy Workshop, May 2010, <http://elie.in
publ i cati on/ busti ng-frane-busting-a-study-of -
clickjacking-vul nerabilities-on-popul ar-sites>.

[1MVEl] 3GPP, "International Mobile station Equi pnent Identities
(I'MEI)", 3GPP TS 22.016 11.0.0, Septenber 2012,
<http://ww. 3gpp. org/ ftp/ Specs/ htm -info/22016. ht np.

[OASI S. sami - cor e- 2. 0- 0s]
Cantor, S., Ed., Kenp, J., Ed., Philpott, R, Ed., and E
Mal er, Ed., "Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAM.) V2.0", QASIS
Standard sam -core-2.0-0s, March 2005
<http://docs. oasi s-open. org/ security/sam/
v2. 0/ sam - cor e- 2. 0- 0s. pdf >

[QASI S. sst c- sam - bi ndi ngs- 1. 1]
Maler, E., Ed., Mshra, P., Ed., and R Philpott, Ed.
"Bi ndings and Profiles for the OASIS Security Assertion
Mar kup Language (SAM.) V1.1", Septenber 2003,
<http://ww. oasi s- open. or g/ conmi tt ees/ downl oad. php/ 3405/
oasi s-sst c-sanl - bi ndi ngs-1. 1. pdf >.

Lodderstedt, et al. I nf or mati onal [Page 69]

RFC 6819 QAuth 2.0 Security January 2013

[QASI S. sstc-sec-anal ysi s-response- 01]
Linn, J., Ed., and P. Mshra, Ed., "SSTC Response to
"Security Analysis of the SAML Single Sign-on Browser/
Artifact Profile"", January 2005,
<http://ww. oasi s- open. or g/ commi tt ees/ downl oad. php/
11191/ sst c-gross-sec-anal ysi s-response- 01. pdf >.

[QAut h- ASSERTI ONS]
Canpbel |, B., Mrtinmore, C, Jones, M, and Y. ol and,
"Assertion Framework for QAuth 2.0", Work in Progress,
Decenber 2012.

[QAut h- HTTP- MAC]
Richer, J., Ed., MIls, W, Ed., and H Tschofenig, Ed.,
"QAuth 2.0 Message Authentication Code (MAC) Tokens", Wbrk
in Progress, November 2012.

[QAut h- JWI]
Jones, M, Bradley, J., and N. Sakinura, "JSON Wb Token
(JWN) ", Wrk in Progress, Decenber 2012.

[QAut h- REVOCATI ON|
Lodderstedt, T., Ed., Dronia, S., and M Scurtescu, "Token
Revocation", Work in Progress, Novernber 2012.

[OPENI DJ "Openl D Foundati on Honme Page", <http://openid.net/>.

[ONASP] "Open Wb Application Security Project Hone Page",
<htt ps://ww. owasp. or g/ >.

[Port abl e- Cont act s]
Smarr, J., "Portable Contacts 1.0 Draft C', August 2008,
<http://portabl econtacts. net/>.

[RFC2616] Fielding, R, Cettys, J., Mgul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HITP/1.1", RFC 2616, June 1999.

[RFC2818] Rescorla, E., "HTTP Over TLS', RFC 2818, May 2000.

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomess
Requirenents for Security", BCP 106, RFC 4086, June 2005.

[RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The

Ker beros Network Authentication Service (V5)", RFC 4120,
July 2005.

Lodderstedt, et al. I nf or mati onal [Page 70]

RFC 6819 QAuth 2.0 Security January 2013

[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, Decenber 2005.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[SSL- Lat ency]
Sissel, J., Ed., "SSL handshake | atency and HTTPS
optim zations", June 2010.

[Sec- Anal ysi s]
Gross, T., "Security Analysis of the SAML Single Sign-on
Browser/Artifact Profile", 19th Annual Conputer Security
Applications Conference, Las Vegas, Decenber 2003.

[X- Frame- Opti ons]
Ross, D. and T. Gondrom "HITP Header X-Frame-Qptions",
Work in Progress, Cctober 2012.

[i Frane] Wrld Wde Wb Consortium "Frames in HTM. docunents"”,
WBC HTML 4.01, Decenber 1999,
<http://ww. w3. org/ TR ht m 4/ present/frames. ht m #h-16. 5>.

Aut hors’ Addresses

Torsten Lodderstedt (editor)
Deut sche Tel ekom AG

EMai | : torsten@ odder st edt. net
Mark Mcd oin

| BM

EMai | : mark. ncgl oi n@e. i bm com
Phi | Hunt

Oracl e Corporation

EMai | : phil. hunt @ahoo. com

Lodderstedt, et al. I nf or mati onal [Page 71]

