
Internet Architecture Board (IAB) D. Thaler
Request for Comments: 6055 Microsoft
Updates: 2130 J. Klensin
Category: Informational
ISSN: 2070-1721 S. Cheshire
 Apple
 February 2011

 IAB Thoughts on Encodings for Internationalized Domain Names

Abstract

 This document explores issues with Internationalized Domain Names
 (IDNs) that result from the use of various encoding schemes such as
 UTF-8 and the ASCII-Compatible Encoding produced by the Punycode
 algorithm. It focuses on the importance of agreeing on a single
 encoding and how complicated the state of affairs ends up being as a
 result of using different encodings today.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Architecture Board (IAB)
 and represents information that the IAB has deemed valuable to
 provide for permanent record. Documents approved for publication by
 the IAB are not a candidate for any level of Internet Standard; see
 Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6055.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Thaler, et al. Informational [Page 1]

RFC 6055 IDN Encodings February 2011

Table of Contents

 1. Introduction . 2
 1.1. APIs . 8
 2. Use of Non-DNS Protocols 9
 3. Use of Non-ASCII in DNS 10
 3.1. Examples . 14
 4. Recommendations . 16
 5. Security Considerations 18
 6. Acknowledgements . 19
 7. IAB Members at the Time of Approval 19
 8. References . 20
 8.1. Normative References 20
 8.2. Informative References 20

1. Introduction

 The goal of this document is to explore what can be learned from some
 current difficulties in implementing Internationalized Domain Names
 (IDNs).

 A domain name consists of a sequence of labels, conventionally
 written separated by dots. An IDN is a domain name that contains one
 or more labels that, in turn, contain one or more non-ASCII
 characters. Just as with plain ASCII domain names, each IDN label
 must be encoded using some mechanism before it can be transmitted in
 network packets, stored in memory, stored on disk, etc. These
 encodings need to be reversible, but they need not store domain names
 the same way humans conventionally write them on paper. For example,
 when transmitted over the network in DNS packets, domain name labels
 are *not* separated with dots.

 Internationalized Domain Names for Applications (IDNA), discussed
 later in this document, is the standard that defines the use and
 coding of internationalized domain names for use on the public
 Internet [RFC5890]. An earlier version of IDNA [RFC3490] is now
 being phased out. Except where noted, the two versions are
 approximately the same with regard to the issues discussed in this
 document. However, some explanations appeared in the earlier
 documents that were no longer considered useful when the later
 revision was created; they are quoted here from the documents in
 which they appear. In addition, the terminology of the two versions
 differ somewhat; this document reflects the terminology of the
 current version.

 Unicode [Unicode] is a list of characters (including non-spacing
 marks that are used to form some other characters), where each
 character is assigned an integer value, called a code point. In

Thaler, et al. Informational [Page 2]

RFC 6055 IDN Encodings February 2011

 simple terms a Unicode string is a string of integer code point
 values in the range 0 to 1,114,111 (10FFFF in base 16). These
 integer code points must be encoded using some mechanism before they
 can be transmitted in network packets, stored in memory, stored on
 disk, etc. Some common ways of encoding these integer code point
 values in computer systems include UTF-8, UTF-16, and UTF-32. In
 addition to the material below, those forms and the tradeoffs among
 them are discussed in Chapter 2 of The Unicode Standard [Unicode].

 UTF-8 is a mechanism for encoding a Unicode code point in a variable
 number of 8-bit octets, where an ASCII code point is preserved as-is.
 Those octets encode a string of integer code point values, which
 represent a string of Unicode characters. The authoritative
 definition of UTF-8 is in Sections 3.9 and 3.10 of The Unicode
 Standard [Unicode], but a description of UTF-8 encoding can also be
 found in RFC 3629 [RFC3629]. Descriptions and formulae can also be
 found in Annex D of ISO/IEC 10646-1 [10646].

 UTF-16 is a mechanism for encoding a Unicode code point in one or two
 16-bit integers, described in detail in Sections 3.9 and 3.10 of The
 Unicode Standard [Unicode]. A UTF-16 string encodes a string of
 integer code point values that represent a string of Unicode
 characters.

 UTF-32 (formerly UCS-4), also described in Sections 3.9 and 3.10 of
 The Unicode Standard [Unicode], is a mechanism for encoding a Unicode
 code point in a single 32-bit integer. A UTF-32 string is thus a
 string of 32-bit integer code point values, which represent a string
 of Unicode characters.

 Note that UTF-16 results in some all-zero octets when code points
 occur early in the Unicode sequence, and UTF-32 always has all-zero
 octets.

 IDNA specifies validity of a label, such as what characters it can
 contain, relationships among them, and so on, in Unicode terms.
 Valid labels can be in either "U-label" or "A-label" form, with the
 appropriate one determined by particular protocols or by context.
 U-label form is a direct representation of the Unicode characters
 using one of the encoding forms discussed above. This document
 discusses UTF-8 strings in many places. While all U-labels can be
 represented by UTF-8 strings, not all UTF-8 strings are valid
 U-labels (see Section 2.3.2 of the IDNA Definitions document
 [RFC5890] for a discussion of these distinctions). A-label form uses
 a compressed, ASCII-compatible encoding (an "ACE" in IDNA and other
 terminology) produced by an algorithm called Punycode. U-labels and

Thaler, et al. Informational [Page 3]

RFC 6055 IDN Encodings February 2011

 A-labels are duals of each other: transformations from one to the
 other do not lose information. The transformation mechanisms are
 specified in the IDNA Protocol document [RFC5891].

 Punycode [RFC3492] is thus a mechanism for encoding a Unicode string
 in an ASCII-compatible encoding, i.e., using only letters, digits,
 and hyphens from the ASCII character set. When a Unicode label that
 is valid under the IDNA rules (a U-label) is encoded with Punycode
 for IDNA purposes, it is prefixed with "xn--"; the result is called
 an A-label. The prefix convention assumes that no other DNS labels
 (at least no other DNS labels in IDNA-aware applications) are allowed
 to start with these four characters. Consequently, when A-label
 encoding is assumed, any DNS labels beginning with "xn--" now have a
 different meaning (the Punycode encoding of a label containing one or
 more non-ASCII characters) or no defined meaning at all (in the case
 of labels that are not IDNA-compliant, i.e., are not well-formed
 A-labels).

 ISO-2022-JP [RFC1468] is a mechanism for encoding a string of ASCII
 and Japanese characters, where an ASCII character is preserved as-is.
 ISO-2022-JP is stateful: special sequences are used to switch between
 character coding tables. As a result, if there are lost or mangled
 characters in a character stream, it is extremely difficult to
 recover the original stream after such a lost character encoding
 shift.

 Comparison of Unicode strings is not as easy as comparing ASCII
 strings. First, there are a multitude of ways to represent a string
 of Unicode characters. Second, in many languages and scripts, the
 actual definition of "same" is very context-dependent. Because of
 this, comparison of two Unicode strings must take into account how
 the Unicode strings are encoded. Regardless of the encoding,
 however, comparison cannot simply be done by comparing the encoded
 Unicode strings byte by byte. The only time that is possible is when
 the strings are both mapped into some canonical form and encoded the
 same way.

 In 1996 the IAB sponsored a workshop on character sets and encodings
 [RFC2130]. This document adds to that discussion and focuses on the
 importance of agreeing on a single encoding and how complicated the
 state of affairs ends up being as a result of using different
 encodings today.

 Different applications, APIs, and protocols use different encoding
 schemes today. Many of them were originally defined to use only
 ASCII. Internationalizing Domain Names in Applications (IDNA)
 [RFC5890] defines a mechanism that requires changes to applications,
 but in an attempt not to change APIs or servers, specifies that the

Thaler, et al. Informational [Page 4]

RFC 6055 IDN Encodings February 2011

 A-label format is to be used in many contexts. In some ways this
 could be seen as not changing the existing APIs, in the sense that
 the strings being passed to and from the APIs are still apparently
 ASCII strings. In other ways it is a very profound change to the
 existing APIs, because while those strings are still syntactically
 valid ASCII strings, they no longer mean the same thing that they
 used to. What looks like a plain ASCII string to one piece of
 software or library could be seen by another piece of software or
 library (with the application of out-of-band information) to be in
 fact an encoding of a Unicode string.

 Section 1.3 of the original IDNA specification [RFC3490] states:

 The IDNA protocol is contained completely within applications. It
 is not a client-server or peer-to-peer protocol: everything is
 done inside the application itself. When used with a DNS resolver
 library, IDNA is inserted as a "shim" between the application and
 the resolver library. When used for writing names into a DNS
 zone, IDNA is used just before the name is committed to the zone.

 Figure 1 depicts a simplistic architecture that a naive reader might
 assume from the paragraph quoted above. (A variant of this same
 picture appears in Section 6 of the original IDNA specification
 [RFC3490], further strengthening this assumption.)

Thaler, et al. Informational [Page 5]

RFC 6055 IDN Encodings February 2011

 +---+
 |Host |
 | +-------------+ |
 | | Application | |
 | +------+------+ |
 | | |
 | +----+----+ |
 | | DNS | |
 | | Resolver| |
 | | Library | |
 | +----+----+ |
 | | |
 +---+
 |
 _________|_________
 / \
 / \
 / \
 | Internet |
 \ /
 \ /
 ___________________/

 Simplistic Architecture

 Figure 1

 There are, however, two problems with this simplistic architecture
 that cause it to differ from reality.

 First, resolver APIs on Operating Systems (OSs) today (Mac OS,
 Windows, Linux, etc.) are not DNS-specific. They typically provide a
 layer of indirection so that the application can work independent of
 the name resolution mechanism, which could be DNS, mDNS
 [DNS-MULTICAST], LLMNR [RFC4795], NetBIOS-over-TCP
 [RFC1001][RFC1002], hosts table [RFC0952], NIS [NIS], or anything
 else. For example, "Basic Socket Interface Extensions for IPv6"
 [RFC3493] specifies the getaddrinfo() API and contains many phrases
 like "For example, when using the DNS" and "any type of name
 resolution service (for example, the DNS)". Importantly, DNS is
 mentioned only as an example, and the application has no knowledge as
 to whether DNS or some other protocol will be used.

 Second, even with the DNS protocol, private namespaces (sometimes
 including private uses of the DNS) do not necessarily use the same
 character set encoding scheme as the public Internet namespace.

Thaler, et al. Informational [Page 6]

RFC 6055 IDN Encodings February 2011

 We will discuss each of the above issues in subsequent sections. For
 reference, Figure 2 depicts a more realistic architecture on typical
 hosts today (which don’t have IDNA inserted as a shim immediately
 above the DNS resolver library). More generally, the host may be
 attached to one or more local networks, each of which may or may not
 be connected to the public Internet and may or may not have a private
 namespace.
 +---+
 |Host |
 | +-------------+ |
 | | Application | |
 | +------+------+ |
 | | |
 | +------+------+ |
 | | Generic | |
 | | Name | |
 | | Resolution | |
 | | API | |
 | +------+------+ |
 | | |
 | +-----+------+---+--+-------+-----+ |
 | | | | | | | |
 | +-+-++--+--++--+-++---+---++--+--++-+-+ |
 | |DNS||LLMNR||mDNS||NetBIOS||hosts||...| |
 | +---++-----++----++-------++-----++---+ |
 | |
 +---+
 |
 ______|______
 / \
 / \
 / local \
 \ network /
 \ /
 _____________/
 |
 _________|_________
 / \
 / \
 / \
 | Internet |
 \ /
 \ /
 ___________________/

 Realistic Architecture

 Figure 2

Thaler, et al. Informational [Page 7]

RFC 6055 IDN Encodings February 2011

1.1. APIs

 Section 6.2 of the original IDNA specification [RFC3490] states
 (where ToASCII and ToUnicode below refer to conversions using the
 Punycode algorithm):

 It is expected that new versions of the resolver libraries in the
 future will be able to accept domain names in other charsets than
 ASCII, and application developers might one day pass not only
 domain names in Unicode, but also in local script to a new API for
 the resolver libraries in the operating system. Thus the ToASCII
 and ToUnicode operations might be performed inside these new
 versions of the resolver libraries.

 Resolver APIs such as getaddrinfo() and its predecessor
 gethostbyname() were defined to accept C-Language "char *" arguments,
 meaning they accept a string of bytes, terminated with a NULL (0)
 byte. Because of the use of a NULL octet as a string terminator,
 this is sufficient for ASCII strings (including A-labels) and even
 ISO-2022-JP [RFC1468] and UTF-8 strings (unless an implementation
 artificially precludes them), but not UTF-16 or UTF-32 strings
 because a NULL octet could appear in the middle of strings using
 these encodings. Several operating systems historically used in
 Japan will accept (and expect) ISO-2022-JP strings in such APIs.
 Some platforms used worldwide also have new versions of the APIs
 (e.g., GetAddrInfoW() on Windows) that accept other encoding schemes
 such as UTF-16.

 It is worth noting that an API using C-Language "char *" arguments
 can distinguish between conventional ASCII "hostname" labels,
 A-labels, ISO-2022-JP, and UTF-8 labels in names if the coding is
 known to be one of those four, and the label is intact (no lost or
 mangled characters). If a stateful encoding like ISO-2022-JP is
 used, applications extracting labels from text must take special
 precautions to be sure that the appropriate state-setting characters
 are included in the string passed to the API.

 An example method for distinguishing among such codings is as
 follows:

 o if the label contains an ESC (0x1B) byte, the label is
 ISO-2022-JP; otherwise,

 o if any byte in the label has the high bit set, the label is UTF-8;
 otherwise,

 o if the label starts with "xn--", then it is presumed to be an
 A-label; otherwise,

Thaler, et al. Informational [Page 8]

RFC 6055 IDN Encodings February 2011

 o the label is ASCII (and therefore, by definition, the label is
 also UTF-8, since ASCII is a subset of UTF-8).

 Again this assumes that ASCII labels never start with "xn--", and
 also that UTF-8 strings never contain an ESC character. Also the
 above is merely an illustration; UTF-8 can be detected and
 distinguished from other 8-bit encodings with good accuracy [MJD].

 It is more difficult or impossible to distinguish the ISO 8859
 character sets [ISO8859] from each other, because they differ in up
 to about 90 characters that have exactly the same encodings, and a
 short string is very unlikely to contain enough characters to allow a
 receiver to deduce the character set. Similarly, it is not possible
 in general to distinguish between ISO-2022-JP and any other encoding
 based on ISO 2022 code table switching.

 Although it is possible (as in the example above) to distinguish some
 encodings when not explicitly specified, it is cleaner to have the
 encodings specified explicitly, such as specifying UTF-16 for
 GetAddrInfoW(), or specifying explicitly which APIs expect UTF-8
 strings.

2. Use of Non-DNS Protocols

 As noted earlier, typical name resolution libraries are not
 DNS-specific. Furthermore, some protocols are defined to use
 encoding forms other than IDNA A-labels. For example, mDNS
 [DNS-MULTICAST] specifies that UTF-8 be used. Indeed, the IETF
 policy on character sets and languages [RFC2277] (which followed the
 1996 IAB-sponsored workshop [RFC2130]) states:

 Protocols MUST be able to use the UTF-8 charset, which consists of
 the ISO 10646 coded character set combined with the UTF-8
 character encoding scheme, as defined in [10646] Annex R
 (published in Amendment 2), for all text.

 Protocols MAY specify, in addition, how to use other charsets or
 other character encoding schemes for ISO 10646, such as UTF-16,
 but lack of an ability to use UTF-8 is a violation of this policy;
 such a violation would need a variance procedure ([BCP9] section
 9) with clear and solid justification in the protocol
 specification document before being entered into or advanced upon
 the standards track.

 For existing protocols or protocols that move data from existing
 datastores, support of other charsets, or even using a default
 other than UTF-8, may be a requirement. This is acceptable, but
 UTF-8 support MUST be possible.

Thaler, et al. Informational [Page 9]

RFC 6055 IDN Encodings February 2011

 Applications that convert an IDN to A-label form before calling
 getaddrinfo() will result in name resolution failures if the Punycode
 name is directly used in such protocols. Having libraries or
 protocols to convert from A-labels to the encoding scheme defined by
 the protocol (e.g., UTF-8) would require changes to APIs and/or
 servers, which IDNA was intended to avoid.

 As a result, applications that assume that non-ASCII names are
 resolved using the public DNS and blindly convert them to A-labels
 without knowledge of what protocol will be selected by the name
 resolution library, have problems. Furthermore, name resolution
 libraries often try multiple protocols until one succeeds, because
 they are defined to use a common namespace. For example, the hosts
 file [RFC0952], NetBIOS-over-TCP [RFC1001], and DNS [RFC1034], are
 all defined to be able to share a common syntax. This means that
 when an application passes a name to be resolved, resolution may in
 fact be attempted using multiple protocols, each with a potentially
 different encoding scheme. For this to work successfully, the name
 must be converted to the appropriate encoding scheme only after the
 choice is made to use that protocol. In general, this cannot be done
 by the application since the choice of protocol is not made by the
 application.

3. Use of Non-ASCII in DNS

 A common misconception is that DNS only supports names that can be
 expressed using letters, digits, and hyphens.

 This misconception originally stems from the 1985 definition of an
 "Internet hostname" (and net, gateway, and domain name) for use in
 the "hosts" file [RFC0952]. An Internet hostname was defined therein
 as including only letters, digits, and hyphens, where uppercase and
 lowercase letters were to be treated as identical. The DNS
 specification [RFC1034], Section 3.5 entitled "Preferred name syntax"
 then repeated this definition in 1987, saying that this "syntax will
 result in fewer problems with many applications that use domain names
 (e.g., mail, TELNET)".

 The confusion was thus left as to whether the "preferred" name syntax
 was a mandatory restriction in DNS, or merely "preferred".

 The definition of an Internet hostname was updated in 1989
 ([RFC1123], Section 2.1) to allow names starting with a digit.
 However, it did not address the increasing confusion as to whether
 all names in DNS are "hostnames", or whether a "hostname" is merely a
 special case of a DNS name.

Thaler, et al. Informational [Page 10]

RFC 6055 IDN Encodings February 2011

 By 1997, things had progressed to a state where it was necessary to
 clarify these areas of confusion. "Clarifications to the DNS
 Specification" [RFC2181], Section 11 states:

 The DNS itself places only one restriction on the particular
 labels that can be used to identify resource records. That one
 restriction relates to the length of the label and the full name.
 The length of any one label is limited to between 1 and 63 octets.
 A full domain name is limited to 255 octets (including the
 separators). The zero length full name is defined as representing
 the root of the DNS tree, and is typically written and displayed
 as ".". Those restrictions aside, any binary string whatever can
 be used as the label of any resource record. Similarly, any
 binary string can serve as the value of any record that includes a
 domain name as some or all of its value (SOA, NS, MX, PTR, CNAME,
 and any others that may be added). Implementations of the DNS
 protocols must not place any restrictions on the labels that can
 be used.

 Hence, it clarified that the restriction to letters, digits, and
 hyphens does not apply to DNS names in general, nor to records that
 include "domain names". Hence, the "preferred" name syntax described
 in the original DNS specification [RFC1034] is indeed merely
 "preferred", not mandatory.

 Since there is no restriction even to ASCII, let alone letter-digit-
 hyphen use, DNS does not violate the subsequent IETF requirement to
 allow UTF-8 [RFC2277].

 Using UTF-16 or UTF-32 encoding, however, would not be ideal for use
 in DNS packets or C-Language "char *" APIs because existing software
 already uses ASCII, and UTF-16 and UTF-32 strings can contain
 all-zero octets that existing software will interpret as the end of
 the string. To use UTF-16 or UTF-32, one would need some way of
 knowing whether the string was encoded using ASCII, UTF-16, or
 UTF-32, and indeed for UTF-16 or UTF-32 whether it was big-endian or
 little-endian encoding. In contrast, UTF-8 works well because any
 7-bit ASCII string is also a UTF-8 string representing the same
 characters.

 If a private namespace is defined to use UTF-8 (and not other
 encodings such as UTF-16 or UTF-32), there’s no need for a mechanism
 to know whether a string was encoded using ASCII or UTF-8, because
 (for any string that can be represented using ASCII) the
 representations are exactly the same. In other words, for any string
 that can be represented using ASCII, it doesn’t matter whether it is
 interpreted as ASCII or UTF-8 because both encodings are the same,
 and for any string that can’t be represented using ASCII, it’s

Thaler, et al. Informational [Page 11]

RFC 6055 IDN Encodings February 2011

 obviously UTF-8. In addition, unlike UTF-16 and UTF-32, ASCII and
 UTF-8 are both byte-oriented encodings so the question of big-endian
 or little-endian encoding doesn’t apply.

 While implementations of the DNS protocol must not place any
 restrictions on the labels that can be used, applications that use
 the DNS are free to impose whatever restrictions they like, and many
 have. The above rules permit a domain name label that contains
 unusual characters, such as embedded spaces, which many applications
 consider a bad idea. For example, the original specification
 [RFC0821] of the SMTP protocol [RFC5321] constrains the character set
 usable in email addresses. There is now an effort underway to define
 an extension to SMTP to support internationalized email addresses and
 headers. See the EAI framework [RFC4952] for more discussion on this
 topic.

 Shortly after the DNS Clarifications [RFC2181] and IETF character
 sets and languages policy [RFC2277] were published, the need for
 internationalized names within private namespaces (i.e., within
 enterprises) arose. The current (and past, predating IDNA and the
 prefixed ACE conventions) practice within enterprises that support
 other languages is to put UTF-8 names in their internal DNS servers
 in a private namespace. For example, "Using the UTF-8 Character Set
 in the Domain Name System" [UTF8-DNS] was first written in 1997, and
 was then widely deployed in Windows. The use of UTF-8 names in DNS
 was similarly implemented and deployed in Mac OS, simply by virtue of
 the fact that applications blindly passed UTF-8 strings to the name
 resolution APIs, the name resolution APIs blindly passed those UTF-8
 strings to the DNS servers, and the DNS servers correctly answered
 those queries. From the user’s point of view, everything worked
 properly without any special new code being written, except that
 ASCII is matched case-insensitively whereas UTF-8 is not (although
 some enterprise DNS servers reportedly attempt to do case-insensitive
 matching on UTF-8 within private namespaces, an action that causes
 other problems and violates a subsequent prohibition [RFC4343]).
 Within a private namespace, and especially in light of the IETF UTF-8
 policy [RFC2277], it was reasonable to assume that binary strings
 were encoded in UTF-8.

 As implied earlier, there are also issues with mapping strings to
 some canonical form, independent of the encoding. Such issues are
 not discussed in detail in this document. They are discussed to some
 extent in, for example, Section 3 of "Unicode Format for Network
 Interchange" [RFC5198], and are left as opportunities for elaboration
 in other documents.

 A few years after UTF-8 was already in use in private namespaces in
 DNS, the strategy of using a reserved prefix and an ASCII-compatible

Thaler, et al. Informational [Page 12]

RFC 6055 IDN Encodings February 2011

 encoding (ACE) was developed for IDNA. That strategy included the
 Punycode algorithm, which began to be developed (during the period
 from 2002 [IDN-PUNYCODE] to 2003 [RFC3492]) for use in the public DNS
 namespace. There were a number of reasons for this. One such reason
 the prefixed ACE strategy was selected for the public DNS namespace
 had to do with the fact that other encodings such as ISO 8859-1 were
 also in use in DNS and the various encodings were not necessarily
 distinguishable from each other. Another reason had to do with
 concerns about whether the details of IDNA, including the use of the
 Punycode algorithm, were an adequate solution to the problems that
 were posed. If either the Punycode algorithm or fundamental aspects
 of character handling were wrong, and had to be changed to something
 incompatible, it would be possible to switch to a new prefix or adopt
 another model entirely. Only the part of the public DNS namespace
 that starts a label with "xn--" would be polluted.

 Today the algorithm is seen as being about as good as it can
 realistically be, so moving to a different encoding (UTF-8 as
 suggested in this document) that can be viewed as "native" would not
 be as risky as it would have been in 2002.

 In any case, the publication of Punycode [RFC3492] and the
 dependencies on it in the IDNA Protocol document [RFC5891] and the
 earlier IDNA specification [RFC3490] thus resulted in having to use
 different encodings for different namespaces (where UTF-8 for private
 namespaces was already deployed). Hence, referring back to Figure 2,
 a different encoding scheme may be in use on the Internet vs. a local
 network.

 In general, a host may be connected to zero or more networks using
 private namespaces, plus potentially the public namespace.
 Applications that convert a U-label form IDN to an A-label before
 calling getaddrinfo() will incur name resolution failures if the name
 is actually registered in a private namespace in some other encoding
 (e.g., UTF-8). Having libraries or protocols convert from A-labels
 to the encoding used by a private namespace (e.g., UTF-8) would
 require changes to APIs and/or servers, which IDNA was intended to
 avoid.

 Also, a fully-qualified domain name (FQDN) to be resolved may be
 obtained directly from an application, or it may be composed by the
 DNS resolver itself from a single label obtained from an application
 by using a configured suffix search list, and the resulting FQDN may
 use multiple encodings in different labels. For more information on
 the suffix search list, see Section 6 of "Common DNS Implementation
 Errors and Suggested Fixes" [RFC1536], the DHCP Domain Search Option
 [RFC3397], and Section 4 of "DNS Configuration options for DHCPv6"
 [RFC3646].

Thaler, et al. Informational [Page 13]

RFC 6055 IDN Encodings February 2011

 As noted in Section 6 of "Common DNS Implementation Errors and
 Suggested Fixes" [RFC1536], the community has had bad experiences
 (e.g., security problems [RFC1535]) with "searching" for domain names
 by trying multiple variations or appending different suffixes. Such
 searching can yield inconsistent results depending on the order in
 which alternatives are tried. Nonetheless, the practice is
 widespread and must be considered.

 The practice of searching for names, whether by the use of a suffix
 search list or by searching in different namespaces, can yield
 inconsistent results. For example, even when a suffix search list is
 only used when an application provides a name containing no dots, two
 clients with different configured suffix search lists can get
 different answers, and the same client could get different answers at
 different times if it changes its configuration (e.g., when moving to
 another network). A deeper discussion of this topic is outside the
 scope of this document.

3.1. Examples

 Some examples of cases that can happen in existing implementations
 today (where {non-ASCII} below represents some user-entered non-ASCII
 string) are:

 o User types in {non-ASCII}.{non-ASCII}.com, and the application
 passes it, in the form of a UTF-8 string, to getaddrinfo() or
 gethostbyname() or equivalent.

 1. The DNS resolver passes the (UTF-8) string unmodified to a DNS
 server.

 o User types in {non-ASCII}.{non-ASCII}.com, and the application
 passes it to a name resolution API that accepts strings in some
 other encoding such as UTF-16, e.g., GetAddrInfoW() on Windows.

 1. The name resolution API decides to pass the string to DNS (and
 possibly other protocols).

 2. The DNS resolver converts the name from UTF-16 to UTF-8 and
 passes the query to a DNS server.

 o User types in {non-ASCII}.{non-ASCII}.com, but the application
 first converts it to A-label form such that the name that is
 passed to name resolution APIs is (say)
 xn--e1afmkfd.xn--80akhbyknj4f.com.

 1. The name resolution API decides to pass the string to DNS (and
 possibly other protocols).

Thaler, et al. Informational [Page 14]

RFC 6055 IDN Encodings February 2011

 2. The DNS resolver passes the string unmodified to a DNS server.

 3. If the name is not found in DNS, the name resolution API
 decides to try another protocol, say mDNS.

 4. The query goes out in mDNS, but since mDNS specified that
 names are to be registered in UTF-8, the name isn’t found
 since it was encoded as an A-label in the query.

 o User types in {non-ASCII}, and the application passes it, in the
 form of a UTF-8 string, to getaddrinfo() or equivalent.

 1. The name resolution API decides to pass the string to DNS (and
 possibly other protocols).

 2. The DNS resolver will append suffixes in the suffix search
 list, which may contain UTF-8 characters if the local network
 uses a private namespace.

 3. Each FQDN in turn will then be sent in a query to a DNS
 server, until one succeeds.

 o User types in {non-ASCII}, but the application first converts it
 to an A-label, such that the name that is passed to getaddrinfo()
 or equivalent is (say) xn--e1afmkfd.

 1. The name resolution API decides to pass the string to DNS (and
 possibly other protocols).

 2. The DNS stub resolver will append suffixes in the suffix
 search list, which may contain UTF-8 characters if the local
 network uses a private namespace, resulting in (say)
 xn--e1afmkfd.{non-ASCII}.com

 3. Each FQDN in turn will then be sent in a query to a DNS
 server, until one succeeds.

 4. Since the private namespace in this case uses UTF-8, the above
 queries fail, since the A-label version of the name was not
 registered in that namespace.

 o User types in {non-ASCII1}.{non-ASCII2}.{non-ASCII3}.com, where
 {non-ASCII3}.com is a public namespace using IDNA and A-labels,
 but {non-ASCII2}.{non-ASCII3}.com is a private namespace using
 UTF-8, which is accessible to the user. The application passes
 the name, in the form of a UTF-8 string, to getaddrinfo() or
 equivalent.

Thaler, et al. Informational [Page 15]

RFC 6055 IDN Encodings February 2011

 1. The name resolution API decides to pass the string to DNS (and
 possibly other protocols).

 2. The DNS resolver tries to locate the authoritative server, but
 fails the lookup because it cannot find a server for the UTF-8
 encoding of {non-ASCII3}.com, even though it would have access
 to the private namespace. (To make this work, the private
 namespace would need to include the UTF-8 encoding of
 {non-ASCII3}.com.)

 When users use multiple applications, some of which do A-label
 conversion prior to passing a name to name resolution APIs, and some
 of which do not, odd behavior can result which at best violates the
 Principle of Least Surprise, and at worst can result in security
 vulnerabilities.

 First consider two competing applications, such as web browsers, that
 are designed to achieve the same task. If the user types the same
 name into each browser, one may successfully resolve the name (and
 hence access the desired content) because the encoding scheme is
 correct, while the other may fail name resolution because the
 encoding scheme is incorrect. Hence the issue can incent users to
 switch to another application (which in some cases means switching to
 an IDNA application, and in other cases means switching away from an
 IDNA application).

 Next consider two separate applications where one is designed to be
 launched from the other, for example a web browser launching a media
 player application when the link to a media file is clicked. If both
 types of content (web pages and media files in this example) are
 hosted at the same IDN in a private namespace, but one application
 converts to A-labels before calling name resolution APIs and the
 other does not, the user may be able to access a web page, click on
 the media file causing the media player to launch and attempt to
 retrieve the media file, which will then fail because the IDN
 encoding scheme was incorrect. Or even worse, if an attacker is able
 to register the same name in the other encoding scheme, the user may
 get the content from the attacker’s machine. This is similar to a
 normal phishing attack, except that the two names represent exactly
 the same Unicode characters.

4. Recommendations

 On many platforms, the name resolution library will automatically use
 a variety of protocols to search a variety of namespaces, which might
 be using UTF-8 or other encodings. In addition, even when only the
 DNS protocol is used, in many operational environments, a private DNS

Thaler, et al. Informational [Page 16]

RFC 6055 IDN Encodings February 2011

 namespace using UTF-8 is also deployed and is automatically searched
 by the name resolution library.

 As explained earlier, using multiple canonical formats, and multiple
 encodings in different protocols or even in different places in the
 same namespace creates problems. Because of this, and the fact that
 both IDNA A-labels and UTF-8 are in use as encoding mechanisms for
 domain names today, we make the recommendations described below.

 It is inappropriate for an application that calls a general-purpose
 name resolution library to convert a name to an A-label unless the
 application is absolutely certain that, in all environments where the
 application might be used, only the global DNS that uses IDNA
 A-labels actually will be used to resolve the name.

 Instead, conversion to A-label form, or any other special encoding
 required by a particular name-lookup protocol, should be done only by
 an entity that knows which protocol will be used (e.g., the DNS
 resolver, or getaddrinfo() upon deciding to pass the name to DNS),
 rather than by general applications that call protocol-independent
 name resolution APIs. (Of course, applications that store strings
 internally in a different format than that required by those APIs,
 need to convert strings from their own internal format to the format
 required by the API.) Similarly, even if an application can know
 that DNS is to be used, the conversion to A-labels should be done
 only by an entity that knows which part of the DNS namespace will be
 used.

 That is, a more intelligent DNS resolver would be more liberal in
 what it would accept from an application and be able to query for
 both a name in A-label form (e.g., over the Internet) and a UTF-8
 name (e.g., over a corporate network with a private namespace) in
 case the server only recognizes one. However, we might also take
 into account that the various resolution behaviors discussed earlier
 could also occur with record updates (e.g., with Dynamic Update
 [RFC2136]), resulting in some names being registered in a local
 network’s private namespace by applications doing conversion to
 A-labels, and other names being registered using UTF-8. Hence, a
 name might have to be queried with both encodings to be sure to
 succeed without changes to DNS servers.

 Similarly, a more intelligent stub resolver would also be more
 liberal in what it would accept from a response as the value of a
 record (e.g., PTR) in that it would accept either UTF-8 (U-labels in
 the case of IDNA) or A-labels and convert them to whatever encoding
 is used by the application APIs to return strings to applications.

Thaler, et al. Informational [Page 17]

RFC 6055 IDN Encodings February 2011

 Indeed the choice of conversion within the resolver libraries is
 consistent with the quote from Section 6.2 of the original IDNA
 specification [RFC3490] stating that conversion using the Punycode
 algorithm (i.e., to A-labels) "might be performed inside these new
 versions of the resolver libraries".

 That said, some application-layer protocols (e.g., EPP Domain Name
 Mapping [RFC5731]) are defined to use A-labels rather than simply
 using UTF-8 as recommended by the IETF character sets and languages
 policy [RFC2277]. In this case, an application may receive a string
 containing A-labels and want to pass it to name resolution APIs.
 Again the recommendation that a resolver library be more liberal in
 what it would accept from an application would mean that such a name
 would be accepted and re-encoded as needed, rather than requiring the
 application to do so.

 It is important that any APIs used by applications to pass names
 specify what encoding(s) the API uses. For example, GetAddrInfoW()
 on Windows specifies that it accepts UTF-16 and only UTF-16. In
 contrast, the original specification of getaddrinfo() [RFC3493] does
 not, and hence platforms vary in what they use (e.g., Mac OS uses
 UTF-8 whereas Windows uses Windows code pages).

 Finally, the question remains about what, if anything, a DNS server
 should do to handle cases where some existing applications or hosts
 do IDNA queries using A-labels within the local network using a
 private namespace, and other existing applications or hosts send
 UTF-8 queries. It is undesirable to store different records for
 different encodings of the same name, since this introduces the
 possibility for inconsistency between them. Instead, a new DNS
 server serving a private namespace using UTF-8 could potentially
 treat encoding-conversion in the same way as case-insensitive
 comparison which a DNS server is already required to do, as long the
 DNS server has some way to know what the encoding is. Two encodings
 are, in this sense, two representations of the same name, just as two
 case-different strings are. However, whereas case comparison of
 non-ASCII characters is complicated by ambiguities (as explained in
 the IAB’s Review and Recommendations for Internationalized Domain
 Names [RFC4690]), encoding conversion between A-labels and U-labels
 is unambiguous.

5. Security Considerations

 Having applications convert names to prefixed ACE format (A-labels)
 before calling name resolution can result in security
 vulnerabilities. If the name is resolved by protocols or in zones
 for which records are registered using other encoding schemes, an
 attacker can claim the A-label version of the same name and hence

Thaler, et al. Informational [Page 18]

RFC 6055 IDN Encodings February 2011

 trick the victim into accessing a different destination. This can be
 done for any non-ASCII name, even when there is no possible confusion
 due to case, language, or other issues. Other types of confusion
 beyond those resulting simply from the choice of encoding scheme are
 discussed in "Review and Recommendations for IDNs" [RFC4690].

 Designers and users of encodings that represent Unicode strings in
 terms of ASCII should also consider whether trademark protection or
 phishing are issues, e.g., if one name would be encoded in a way that
 would be naturally associated with another organization or product.

6. Acknowledgements

 The authors wish to thank Patrik Faltstrom, Martin Duerst, JFC
 Morfin, Ran Atkinson, S. Moonesamy, Paul Hoffman, and Stephane
 Bortzmeyer for their careful review and helpful suggestions. It is
 also interesting to note that none of the first three individuals’
 names above can be spelled out and written correctly in ASCII text.
 Furthermore, one of the IAB member’s names below (Andrei Robachevsky)
 cannot be written in the script as it appears on his birth
 certificate.

7. IAB Members at the Time of Approval

 Bernard Aboba
 Marcelo Bagnulo
 Ross Callon
 Spencer Dawkins
 Vijay Gill
 Russ Housley
 John Klensin
 Olaf Kolkman
 Danny McPherson
 Jon Peterson
 Andrei Robachevsky
 Dave Thaler
 Hannes Tschofenig

Thaler, et al. Informational [Page 19]

RFC 6055 IDN Encodings February 2011

8. References

8.1. Normative References

 [10646] International Organization for Standardization,
 "Information Technology - Universal Multiple-octet
 coded Character Set (UCS)".

 ISO/IEC Standard 10646, comprised of ISO/IEC 10646-
 1:2000, "Information technology -- Universal
 Multiple-Octet Coded Character Set (UCS) -- Part 1:
 Architecture and Basic Multilingual Plane", ISO/IEC
 10646-2:2001, "Information technology -- Universal
 Multiple-Octet Coded Character Set (UCS) -- Part 2:
 Supplementary Planes" and ISO/IEC 10646- 1:2000/Amd
 1:2002, "Mathematical symbols and other characters".

 [Unicode] The Unicode Consortium. The Unicode Standard,
 Version 5.1.0, defined by: "The Unicode Standard,
 Version 5.0", Boston, MA, Addison-Wesley, 2007, ISBN
 0-321-48091-0, as amended by Unicode 5.1.0
 (http://www.unicode.org/versions/Unicode5.1.0/).

8.2. Informative References

 [DNS-MULTICAST] Cheshire, S. and M. Krochmal, "Multicast DNS", Work
 in Progress, February 2011.

 [IDN-PUNYCODE] Costello, A., "Punycode version 0.3.3", Work
 in Progress, January 2002.

 [ISO8859] International Organization for Standardization,
 "Information technology -- 8-bit single-byte coded
 graphic character sets".

 ISO/IEC Standard 8859, comprised of ISO/IEC 8859-
 1:1998, Part 1: Latin alphabet No. 1 - ISO/IEC 8859-
 2:1999, Part 2: Latin alphabet No. 2 - ISO/IEC 8859-
 3:1999, Part 3: Latin alphabet No. 3 - ISO/IEC 8859-
 4:1998, Part 4: Latin alphabet No. 4 - ISO/IEC 8859-
 5:1999, Part 5: Latin/Cyrillic alphabet - ISO/IEC
 8859-6:1999, Part 6: Latin/Arabic alphabet - ISO/IEC
 8859-7:2003, Part 7: Latin/Greek alphabet - ISO/IEC
 8859-8:1999, Part 8: Latin/Hebrew alphabet - ISO/IEC
 8859-9:1999, Part 9: Latin alphabet No. 5 - ISO/IEC
 8859-10:1998, Part 10: Latin alphabet No. 6 - ISO/
 IEC 8859-11:2001, Part 11: Latin/Thai alphabet -
 ISO/IEC 8859-13:1998, Part 13: Latin alphabet No. 7

Thaler, et al. Informational [Page 20]

RFC 6055 IDN Encodings February 2011

 - ISO/IEC 8859-14:1998, Part 14: Latin alphabet No.
 8 (Celtic) - ISO/IEC 8859-15:1999, Part 15: Latin
 alphabet No. 9 - ISO/IEC 8859-16:2001, Part 16:
 Latin alphabet No. 10.

 [MJD] Duerst, M., "The Properties and Promizes of UTF-8",
 11th International Unicode Conference, San Jose ,
 September 1997, <http://www.ifi.unizh.ch/mml/
 mduerst/papers/PDF/IUC11-UTF-8.pdf>.

 [NIS] Sun Microsystems, "System and Network
 Administration", March 1990.

 [RFC0821] Postel, J., "Simple Mail Transfer Protocol", STD 10,
 RFC 821, August 1982.

 [RFC0952] Harrenstien, K., Stahl, M., and E. Feinler, "DoD
 Internet host table specification", RFC 952,
 October 1985.

 [RFC1001] NetBIOS Working Group, "Protocol standard for a
 NetBIOS service on a TCP/UDP transport: Concepts and
 methods", STD 19, RFC 1001, March 1987.

 [RFC1002] NetBIOS Working Group, "Protocol standard for a
 NetBIOS service on a TCP/UDP transport: Detailed
 specifications", STD 19, RFC 1002, March 1987.

 [RFC1034] Mockapetris, P., "Domain names - concepts and
 facilities", STD 13, RFC 1034, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 October 1989.

 [RFC1468] Murai, J., Crispin, M., and E. van der Poel,
 "Japanese Character Encoding for Internet Messages",
 RFC 1468, June 1993.

 [RFC1535] Gavron, E., "A Security Problem and Proposed
 Correction With Widely Deployed DNS Software",
 RFC 1535, October 1993.

 [RFC1536] Kumar, A., Postel, J., Neuman, C., Danzig, P., and
 S. Miller, "Common DNS Implementation Errors and
 Suggested Fixes", RFC 1536, October 1993.

Thaler, et al. Informational [Page 21]

RFC 6055 IDN Encodings February 2011

 [RFC2130] Weider, C., Preston, C., Simonsen, K., Alvestrand,
 H., Atkinson, R., Crispin, M., and P. Svanberg, "The
 Report of the IAB Character Set Workshop held 29
 February - 1 March, 1996", RFC 2130, April 1997.

 [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS
 UPDATE)", RFC 2136, April 1997.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, July 1997.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC3397] Aboba, B. and S. Cheshire, "Dynamic Host
 Configuration Protocol (DHCP) Domain Search Option",
 RFC 3397, November 2002.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications
 (IDNA)", RFC 3490, March 2003.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of
 Unicode for Internationalized Domain Names in
 Applications (IDNA)", RFC 3492, March 2003.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J.,
 and W. Stevens, "Basic Socket Interface Extensions
 for IPv6", RFC 3493, February 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3646] Droms, R., "DNS Configuration options for Dynamic
 Host Configuration Protocol for IPv6 (DHCPv6)",
 RFC 3646, December 2003.

 [RFC4343] Eastlake, D., "Domain Name System (DNS) Case
 Insensitivity Clarification", RFC 4343,
 January 2006.

 [RFC4690] Klensin, J., Faltstrom, P., Karp, C., and IAB,
 "Review and Recommendations for Internationalized
 Domain Names (IDNs)", RFC 4690, September 2006.

Thaler, et al. Informational [Page 22]

RFC 6055 IDN Encodings February 2011

 [RFC4795] Aboba, B., Thaler, D., and L. Esibov, "Link-local
 Multicast Name Resolution (LLMNR)", RFC 4795,
 January 2007.

 [RFC4952] Klensin, J. and Y. Ko, "Overview and Framework for
 Internationalized Email", RFC 4952, July 2007.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for
 Network Interchange", RFC 5198, March 2008.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol",
 RFC 5321, October 2008.

 [RFC5731] Hollenbeck, S., "Extensible Provisioning Protocol
 (EPP) Domain Name Mapping", STD 69, RFC 5731,
 August 2009.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document
 Framework", RFC 5890, August 2010.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 August 2010.

 [UTF8-DNS] Kwan, S. and J. Gilroy, "Using the UTF-8 Character
 Set in the Domain Name System", Work in Progress,
 November 1997.

Thaler, et al. Informational [Page 23]

RFC 6055 IDN Encodings February 2011

Authors’ Addresses

 Dave Thaler
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 703 8835
 EMail: dthaler@microsoft.com

 John C Klensin
 1770 Massachusetts Ave, Ste 322
 Cambridge, MA 02140

 Phone: +1 617 245 1457
 EMail: john+ietf@jck.com

 Stuart Cheshire
 Apple Inc.
 1 Infinite Loop
 Cupertino, CA 95014

 Phone: +1 408 974 3207
 EMail: cheshire@apple.com

Thaler, et al. Informational [Page 24]

