Net wor k Wor ki ng Group P. Sarol ahti

Request for Comments: 5682 Noki a Research Center
Updates: 4138 M Koj o
Cat egory: Standards Track Uni versity of Hel sinki
K. Yamanot o

M Hat a

NTT Docono

Sept ember 2009

Forward RTO Recovery (F-RTO): An Algorithmfor Detecting
Spurious Retransm ssion Tinmeouts with TCP

Abstract

The purpose of this docunent is to nove the F-RTO (Forward

RTO Recovery) functionality for TCP in RFC 4138 from

Experimental to Standards Track status. The F-RTO support for Stream
Control Transm ssion Protocol (SCTP) in RFC 4138 renains with
Experimental status. See Appendix B for the differences between this
docunent and RFC 4138.

Spurious retransm ssion tinmeouts cause suboptinmal TCP perfornmance
because they often result in unnecessary retransmi ssion of the |ast
wi ndow of data. This document describes the F-RTO detection

al gorithm for detecting spurious TCP retransm ssion tineouts. F-RTO
is a TCP sender-only algorithmthat does not require any TCP options
to operate. After retransmtting the first unacknow edged segnent
triggered by a tinmeout, the F-RTO al gorithm of the TCP sender

noni tors the incom ng acknow edgnents to determ ne whether the

ti meout was spurious. It then decides whether to send new segments
or retransmt unacknow edged segnments. The algorithmeffectively
hel ps to avoid additional unnecessary retransm ssions and thereby

i mproves TCP performance in the case of a spurious tineout.

Status of This Menp

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nemo is unlimted.

Sarol ahti, et al. St andards Track [Page 1]

RFC 5682 F- RTO Sept enber 2009

Copyri ght and License Notice

Copyright (c) 2009 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the BSD License.

Tabl e of Contents

Lo IntroduCti On ... 3
1.1. Conventions and Termnologyuiiiinnennnnnn. 5
2. Basic F-RTO Algorithm e 5
2.1. The Algorithm 5
2.2, DI SCUSSI ON .o e 7
3. SACK- Enhanced Version of the F-RTO Algorithm.................... 9
3.1. The Algorithm e 9
3. 2. DI SCUSSI ON ottt 11
4. Taking Actions after Detecting Spurious RTO 11
5. Bvaluation of RFC 4138 12
6. Security Considerati ONS 13
7. Acknow edgment S 14
Appendi x A. Discussion of WndowLimted Cases 15
Appendi x B. Changes since RFC 4138 16
Ref Br BNCES . . o 16
Normative References e 16
Informati ve References 17

Sarol ahti, et al. St andards Track [Page 2]

RFC 5682 F- RTO Sept enber 2009

1. Introduction

The Transni ssion Control Protocol (TCP) [Pos81] has two nethods for
triggering retransm ssions. First, the TCP sender relies on incom ng
dupli cate acknow edgnents (ACKs), which indicate that the receiver is
m ssing sone of the data. After a required nunber of successive
duplicate ACKs have arrived at the sender, it retransmits the first
unacknow edged segnent [APB09] and continues with a | oss recovery

al gorithm such as NewReno [FH&4] or SACK-based (Sel ective

Acknowl edgrent) | oss recovery [BAFW3]. Second, the TCP sender

mai ntains a retransm ssion tinmer that triggers retransm ssion of
segnents, if they have not been acknow edged before the

retransm ssion tinmeout (RTO occurs. Wen the retransm ssion tinmeout
occurs, the TCP sender enters the RTO recovery where the congestion
windowis initialized to one segnent and unacknow edged segnments are
retransmtted using the slowstart algorithm The retransm ssion
timer is adjusted dynam cally, based on the neasured round-trip tines
[PAOO] .

It has been pointed out that the retransm ssion tiner can expire
spuriously and cause unnecessary retransm ssi ons when no segments
have been | ost [LKOO, GL02, LMD3]. After a spurious retransni ssion
timeout, the | ate acknow edgrments of the original segments arrive at
the sender, usually triggering unnecessary retransm ssions of a whole
wi ndow of segnents during the RTO recovery. Furthernore, after a
spurious retransm ssion timeout, a conventional TCP sender increases
the congesti on wi ndow on each | ate acknow edgnent in slow start.

This injects a |large nunber of data segments into the network wthin
one round-trip tine, thus violating the packet conservation principle
[Jac88].

There are a nunber of potential reasons for spurious retransm ssion
ti meouts. First, some nobile networking technol ogi es involve sudden
del ay spi kes on transm ssion because of actions taken during a hand-
off. Second, a hand-off nmay take place froma |low |atency path to a
hi gh | atency path, suddenly increasing the round-trip tinme beyond the
current RTO value. Third, on a | owbandwidth |ink the arrival of
conpeting traffic (possibly with higher priority), or sone other
change in avail abl e bandwi dth, can cause a sudden increase of the
round-trip tine. This nmay trigger a spurious retransm ssion tineout.
A persistently reliable Iink |ayer can al so cause a sudden del ay when
a data frane and several retransm ssions of it are lost for sone
reason. This docunent does not distinguish between the different
causes of such a delay spike. Rather, it discusses the spurious
retransm ssion timeouts caused by a delay spike in general

Sarol ahti, et al. St andards Track [Page 3]

RFC 5682 F- RTO Sept enber 2009

Thi s docunent describes the F-RTO detection algorithmfor TCP. It is
based on the detection mechani smof the "Forward RTO Recovery"
(F-RTO algorithm|[SKRO3] that is used for detecting spurious
retransm ssion timeouts and thus avoi ds unnecessary retransm ssions
following the retransm ssion tineout. Wen the tineout is not
spurious, the F-RTO algorithmreverts back to the conventional RTO
recovery algorithm and therefore has simlar behavior and
performance. |In contrast to alternative algorithms proposed for

det ecti ng unnecessary retransm ssions (E fel [LKOO, LM)3] and DSACK-
based (Duplicate SACK) al gorithns [BAO4]), F-RTO does not require any
TCP options for its operation, and it can be inplenented by nodifying
only the TCP sender. The Eifel algorithmuses TCP tinmestanps [BBJ92]
for detecting a spurious tinmeout upon arrival of the first

acknow edgnment after the retransm ssion. The DSACK-based al gorithms
require that the TCP Sel ecti ve Acknow edgment Option [MWRI6], with
the DSACK extension [FMWO0O0], is in use. Wth DSACK, the TCP
receiver can report if it has received a duplicate segnent, enabling
the sender to detect afterwards whether it has retransmtted segnents
unnecessarily. The F-RTO algorithmonly attenpts to detect and avoid
unnecessary retransmi ssions after an RTO Eifel and DSACK can al so
be used for detecting unnecessary retransm ssions caused by other
events, such as packet reordering.

When the retransnmission tiner expires, the F-RTO sender retransnits
the first unacknow edged segnment as usual [APB09]. Deviating from
the normal operation after a timeout, it then tries to transmt new,
previously unsent data for the first acknow edgnent that arrives
after the tineout, given that the acknow edgnent advances the w ndow.
If the second acknow edgnent that arrives after the timeout advances
the wi ndow (i.e., acknow edges data that was not retransmtted), the
F- RTO sender declares the tineout spurious and exits the RTO
recovery. However, if either of these two acknow edgnents is a
duplicate ACK, there will not be sufficient evidence of a spurious
timeout. Therefore, the F-RTO sender retransmts the unacknow edged
segnents in slow start simlar to the traditional algorithm Wth a
SACK- enhanced version of the F-RTO al gorithm spurious tinmeouts nmay
be detected even if duplicate ACKs arrive after an RTO

retransm ssion.

Thi s docunent specifies the F-RTO algorithmfor TCP only, replacing
the F-RTO functionality with TCP in RFC 4138 [SKO5] and moving it
fromExperinental to Standards Track status. The al gorithmcan al so
be applied to the Stream Control Transm ssion Protocol (SCTP) [Ste07]
that has acknow edgnent and packet retransm ssion concepts sinilar to
TCP. The considerations on applying F-RTO to SCTP are discussed in
RFC 4138, but the F-RTO support for SCTP remai ns with Experinent al

st at us.

Sarol ahti, et al. St andards Track [Page 4]

RFC 5682 F- RTO Sept enber 2009

Thi s docunent is organized as follows. Section 2 describes the basic
F- RTO al gorithm and the SACK-enhanced F-RTO algorithmis given in
Section 3. Section 4 discusses the possible actions to be taken
after detecting a spurious RTO Section 5 summari zes the experience
with F-RTO i npl enentati ons and the experinmental results, and Section
6 di scusses the security considerations.

1.1. Conventions and Term nol ogy

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in BCP 14, RFC 2119

[RFC2119] and indicate requirenment |levels for protocols.

2. Basic F-RTO Al gorithm

A timeout is considered spurious if it would have been avoi ded had
the sender waited | onger for an acknow edgnent to arrive [LM3].

F- RTO af fects the TCP sender behavior only after a retransmni ssion
timeout. O herw se, the TCP behavior renains the sane. Wen the
retransm ssion timer expires, the F-RTO al gorithm nonitors incom ng
acknow edgnents, and if the TCP sender gets an acknow edgnent for a
segnent that was not retransmitted due to the tineout, the F-RTO

al gorithm decl ares a timeout spurious. The actions taken in response
to a spurious tineout are not specified in this docunent, but we

di scuss sone alternatives in Section 4. This section introduces the
al gorithm and then di scusses the different steps of the algorithmin
nore detail.

Fol l owi ng the practice used with the Eifel Detection algorithm
[LMD3], we use the "SpuriousRecovery" variable to indicate whether
the retransnission is declared spurious by the sender. This variable
can be used as an input for a corresponding response algorithm Wth
F- RTO, the value of SpuriousRecovery can be either SPUR TO
(indicating a spurious retransm ssion timeout) or FALSE (i ndicating
that the tineout is not declared spurious and the TCP sender should
foll ow the conventional RTO recovery algorithn). In addition, we use
the "recover" variable specified in the NewReno al gorithm [FHG04].

2.1. The Algorithm

A TCP sender inplenenting the basic F-RTO al gorithm MJST take the
followi ng steps after the retransmission timer expires. |f the
retransm ssion timer expires again during the execution of the F-RTO
algorithm the TCP sender MJUST re-start the algorithm processing from
step 1. If the sender inplements some |oss recovery al gorithm other
than Reno or NewReno [FHG04], the F-RTO al gorithm SHOULD NOT be
entered when earlier fast recovery is underway.

Sarol ahti, et al. St andards Track [Page 5]

RFC 5682 F- RTO Sept enber 2009

The F-RTO al gorithmtakes different actions based on whet her an

i ncom ng acknow edgnment advances the cumul ative acknow edgnment poi nt
for a received in-order segnent, or whether it is a duplicate

acknow edgnent to indicate an out-of-order segnent. Duplicate

acknow edgnment is defined in [APB09]. The F-RTO al gorithm does not
specify actions for receiving a segnent that neither acknow edges new
data nor is a duplicate acknow edgnent. The TCP sender SHOULD i gnore
such segnments and wait for a segnent that either acknow edges new
data or is a duplicate acknow edgment.

1) When the retransmission tinmer expires, retransmt the first
unacknowl edged segnent and set SpuriousRecovery to FALSE. |f the
TCP sender is already in RTO recovery AND "recover" is larger than
or equal to SND. UNA (the ol dest unacknow edged sequence numnber
[Pos81]), do not enter step 2 of this algorithm Instead, store
the hi ghest sequence nunmber transmitted so far in variable
"recover"” and continue with slowstart retransm ssions foll ow ng
the conventional RTO recovery al gorithm

2) Wen the first acknow edgment after the RTO retransnission arrives
at the TCP sender, store the highest sequence nunber transmitted
so far in variable "recover". The TCP sender chooses one of the
foll owi ng actions, dependi ng on whether the ACK advances the
wi ndow or whether it is a duplicate ACK.

a) If the acknow edgment is a duplicate ACK, OR the Acknow edgnent
field covers "recover" but not nore than "recover", OR the
acknow edgnent does not acknow edge all of the data that was
retransmtted in step 1, revert to the conventional RTO
recovery and continue by retransmtting unacknow edged data in
slow start. Do not enter step 3 of this algorithm The
SpuriousRecovery variabl e remains as FALSE

b) Else, if the acknow edgnent advances the w ndow AND t he

Acknowl edgrent field does not cover "recover", transmt up to
two new (previously unsent) segnents and enter step 3 of this
algorithm |If the TCP sender does not have enough unsent data,
it can send only one segnent. In addition, the TCP sender MNAY
override the Nagle algorithm[Nag84] and i medi ately send a
segnent if needed. Note that sending two segnents in this step
is allowed by TCP congestion control requirenents [APB09]: an
F- RTO TCP sender sinply chooses different segnments to transmt.

If the TCP sender does not have any new data to send, or the
adverti sed wi ndow prohi bits new transni ssions, the reconmended
action is to skip step 3 of this algorithmand continue with
slowstart retransm ssions, follow ng the conventional RTO

Sarol ahti, et al. St andards Track [Page 6]

RFC 5682 F- RTO Sept enber 2009

recovery algorithm However, alternative ways of handling the
wi ndowlimted cases that could result in better perfornmance
are di scussed in Appendix A

3) Wien the second acknow edgnment after the RTO retransm ssion
arrives at the TCP sender, the TCP sender either declares the
ti meout spurious, or starts retransmtting the unacknow edged
segnent s.

a) If the acknow edgnent is a duplicate ACK, set the congestion
wi ndow to no nore than 3 * MSS (where MSS indicates Maxi mum
Segnent Size), and continue with the slowstart algorithm
retransmtting unacknow edged segnents. The congestion w ndow
can be set to 3 * MSS, because two round-trip tinmes have
el apsed since the RTO and a conventional TCP sender woul d have
increased cwnd to 3 during the sane tinme. Leave
Spuri ousRecovery set to FALSE

b) If the acknow edgnent advances the window (i.e., if it
acknow edges data that was not retransnmitted after the
timeout), declare the tineout spurious, set SpuriousRecovery to
SPUR TO, and set the value of the "recover” variable to SND. UNA
(the ol dest unacknow edged sequence nunber [Pos81]).

2.2. Discussion

The F-RTO sender takes cautious actions when it receives duplicate
acknow edgnents after a retransm ssion tineout. Because duplicate
ACKs may indicate that segnents have been lost, reliably detecting a
spurious tineout is difficult due to the | ack of additiona
information. Therefore, it is prudent to follow the conventional TCP
recovery in those cases.

The condition in step 1 prevents the execution of the F-RTO al gorithm
in case a previous RTO recovery i s underway when the retransni ssion
timer expires, except in case the retransm ssion tinmer expires
multiple tines for the same segnent. |f the retransnission timer
expires during an earlier RTO based |oss recovery, acknow edgments
for retransnmitted segnents may falsely lead the TCP sender to declare
the timeout spurious.

If the first acknow edgrment after the RTO retransm ssion covers the
"recover" point at algorithmstep (2a), there is not enough evidence
that a non-retransmtted segnment has arrived at the receiver after
the tineout. This is a commobn case when a fast retransmission is

| ost and has been retransmitted again after an RTO, while the rest of

Sarol ahti, et al. St andards Track [Page 7]

RFC 5682 F- RTO Sept enber 2009

t he unacknow edged segnments were successfully delivered to the TCP
recei ver before the retransmission timeout. Therefore, the tineout
cannot be declared spurious in this case.

If the first acknow edgrment after the RTO retransm ssion does not
acknow edge all of the data that was retransmtted in step 1, the TCP
sender reverts to the conventional RTO recovery. Qherw se, a
mal i ci ous recei ver acknow edgi ng partial segnents coul d cause the
sender to declare the tineout spurious in a case where data was | ost.

The TCP sender is allowed to send two new segnents in algorithm
branch (2b) because the conventional TCP sender would transmt two
segnents when the first new ACK arrives after the RTO retransni ssion
I f sending new data is not possible in algorithmbranch (2b), or if
the receiver window linmts the transm ssion, the TCP sender has to
send something in order to prevent the TCP transfer from stalling.

If no segments were sent, the pipe between sender and receiver m ght
run out of segnents, and no further acknow edgrments would arrive.
Therefore, in the windowlimted case, the recomrendation is to
revert to the conventional RTO recovery with slowstart

retransm ssions. Appendi x A discusses sone alternative solutions for
wi ndow- | imted situations.

If the retransm ssion tineout is declared spurious, the TCP sender
sets the value of the "recover" variable to SND.UNA in order to all ow
fast retransnmit [FHE04]. The "recover" variable was proposed for
avoi di ng unnecessary, nmultiple fast retransmts when the

retransm ssion timer expires during fast recovery with NewReno TCP
Because the F-RTO sender retransmits only the segnent that triggered
the timeout, the problem of unnecessary nultiple fast retransmts

[FHG04] cannot occur. Therefore, if three duplicate ACKs arrive at
the sender after the timeout, they probably indicate a packet |oss,
and thus fast retransnit should be used to allow efficient recovery.
If there are not enough duplicate ACKs arriving at the sender after a
packet |oss, the retransm ssion tiner expires again and the sender
enters step 1 of this algorithm

When the tineout is declared spurious, the TCP sender cannot detect
whet her the unnecessary RTO retransmi ssion was lost. |n principle,
the 1 oss of the RTO retransmi ssion should be taken as a congestion
signal. Thus, there is a small possibility that the F-RTO sender

will violate the congestion control rules, if it chooses to fully
revert congestion control paraneters after detecting a spurious
timeout. The Eifel Detection algorithmhas a sinilar property, while
the DSACK option can be used to detect whether the retransnitted
segnment was successfully delivered to the receiver.

Sarol ahti, et al. St andards Track [Page 8]

RFC 5682 F- RTO Sept enber 2009

The F-RTO al gorithmhas a side effect on the TCP round-trip tine
measurenment. Because the TCP sender can avoid nost of the
unnecessary retransmi ssions after detecting a spurious tineout, the
sender is able to take round-trip time sanples on the del ayed
segnents. If the regular RTO recovery was used w thout TCP

ti mestanps, this would not be possible due to the retransm ssion
ambiguity. As aresult, the RTOis likely to have nore accurate and
| arger values with F-RTO than with the regular TCP after a spurious
timeout that was triggered due to del ayed segnents. W believe this
is an advantage in networks that are prone to del ay spikes.

There are sonme situations where the F-RTO al gorithm may not avoid
unnecessary retransmni ssions after a spurious tinmeout. |f packet
reordering or packet duplication occurs on the segnent that triggered
the spurious timeout, the F-RTO al gorithm nay not detect the spurious
timeout due to incoming duplicate ACKs. Additionally, if a spurious
ti meout occurs during fast recovery, the F-RTO al gorithm often cannot
detect the spurious tineout because the segnents that were
transmtted before the fast recovery trigger duplicate ACKs.

However, we consider these cases rare, and note that in cases where
F-RTO fails to detect the spurious timeout, it retransmts the
unacknow edged segnents in slow start, and thus performs the sane as
the regul ar RTO recovery.

3. SACK- Enhanced Version of the F-RTO Al gorithm

This section describes an alternative version of the F-RTO al gorithm
that uses the TCP Sel ective Acknow edgment Option [MVFRO6]. By using
the SACK option, the TCP sender detects spurious timeouts in nost of
the cases when packet reordering or packet duplication is present.

If the SACK i nformati on acknowl edges new data that was not
transmtted after the RTO retransmi ssion, the sender nay declare the
ti meout spurious, even when duplicate ACKs foll ow the RTO

3.1. The Algorithm

G ven that the TCP Sel ective Acknow edgnment Option [MWFRO6] is
enabl ed for a TCP connection, a TCP sender MAY apply the SACK-
enhanced F-RTO algorithm [|If the sender applies the SACK-enhanced
F-RTO algorithm it MJIST follow the steps below. This algorithm
SHOULD NOT be applied if the TCP sender is already in | oss recovery
when a retransm ssion tinmeout occurs.

The steps of the SACK-enhanced version of the F-RTO al gorithm are as
follows. If the retransmission tiner expires again during the
execution of the SACK-enhanced F-RTO al gorithm the TCP sender MJST
re-start the algorithmprocessing fromstep 1

Sarol ahti, et al. St andards Track [Page 9]

RFC 5682 F- RTO Sept enber 2009

1)

2)

3)

When the retransm ssion tiner expires, retransmt the first
unacknow edged segnent and set SpuriousRecovery to FALSE.

Fol | owi ng the reconmendation in the SACK specification [MFFRO6],
reset the SACK scoreboard. |If "RecoveryPoint" is larger than or
equal to SND. UNA, do not enter step 2 of this algorithm |nstead,
set variable "RecoveryPoint" to indicate the highest sequence
nunber transmtted so far and continue with slowstart

retransm ssions foll owi ng the conventi onal RTO recovery al gorithm

Wait until the acknow edgment of the data retransmitted due to the
timeout arrives at the sender. |If duplicate ACKs arrive before
the cunul ative acknow edgnent for retransmitted data, adjust the
scoreboard according to the incom ng SACK information. Stay in
step 2 and wait for the next new acknow edgnent. If the

retransm ssion timeout expires again, go to step 1 of the
algorithm Wen a new acknow edgnent arrives, set variable
"RecoveryPoint"” to indicate the highest sequence nunber
transmtted so far.

a) If the Cunul ative Acknow edgnment field covers "RecoveryPoint"
but not nore than "RecoveryPoint", revert to the conventi onal
RTO recovery and set the congestion wi ndowto no nore than 2 *
MBS, like a regular TCP would do. Do not enter step 3 of this
al gorithm

b) Else, if the Cunul ative Acknow edgnment field does not cover
"RecoveryPoint" but is larger than SND. UNA, transnmit up to two
new (previously unsent) segments and proceed to step 3. |If the
TCP sender is not able to transmt any previously unsent data
-- either due to receiver window |linitation or because it does
not have any new data to send -- the recomended action is to
refrain fromentering step 3 of this algorithm Rather,
continue with slowstart retransmi ssions follow ng the
conventional RTO recovery al gorithm

It is also possible to apply sonme of the alternatives for
handl i ng wi ndow|imted cases discussed in Appendix A

The next acknowl edgment arrives at the sender. Either a duplicate
ACK or a new cumul ative ACK (advanci ng the wi ndow) applies in this
step. Oher types of ACKs are ignored w thout any action.

a) If the Cunul ative Acknow edgnent field or the SACK i nformation
covers nore than "RecoveryPoint", set the congestion w ndow to
no nmore than 3 * MSS and proceed with the conventional RTO
recovery, retransmtting unacknow edged segnents. Take this
branch al so when the acknow edgnent is a duplicate ACK and it
does not acknow edge any new, previously unacknow edged data

Sarol ahti, et al. St andards Track [Page 10]

RFC 5682 F- RTO Sept enber 2009

bel ow "RecoveryPoint" in the SACK i nformati on. Leave
SpuriousRecovery set to FALSE

b) If the Curmul ati ve Acknow edgnent field or a SACK i nformation in
the ACK does not cover nmore than "RecoveryPoint” AND it
acknow edges data that was not acknow edged earlier (either
wi th cumul ative acknow edgnent or using SACK infornation),
declare the tinmeout spurious and set SpuriousRecovery to
SPUR_TO. The retransmi ssion timeout can be decl ared spuri ous,
because the segnent acknow edged with this ACK was transmitted
before the tineout.

If there are unacknow edged hol es between the received SACK

i nformation, those segnents are retransnitted sinmilarly to the
conventional SACK recovery algorithm[BAFW3]. |If the algorithm
exits with SpuriousRecovery set to SPUR TO "RecoveryPoint" is set to
SND. UNA, thus allow ng fast recovery on incom ng duplicate

acknow edgnent s.

3.2. Discussion

The SACK- enhanced al gorithm works on the sane principle as the basic
algorithm but by utilizing the additional information fromthe SACK
option. When a genuine retransm ssion tineout occurs during a steady
state of a connection, it can be assuned that there are no segnents
left in the pipe. Qherw se, the acknow edgnents triggered by these
segnents woul d have triggered the SACK | oss recovery or transni ssion
of new segnents. Therefore, if the F-RTO sender receives

acknow edgnments for segnments transmitted before the retransm ssion
timeout in response to the two new segnents sent at the algorithm
step 2, the normal operation of TCP has been just delayed, and the
retransm ssion timeout is considered spurious. Note that this
reasoni ng works only when the TCP sender is not in |oss recovery at
the tinme the retransm ssion timeout occurs. The condition in step 1
checki ng that "RecoveryPoint" is larger than or equal to SND. UNA
prevents the execution of the F-RTO al gorithmin case a previous |oss
recovery, either RTO recovery or SACK | oss recovery, is underway when
the retransnmission tiner expires. 1It, however, allows the execution
of the F-RTO algorithm if the retransmission timer expires nmultiple
times for the sane segment.

4. Taking Actions after Detecting Spurious RTO

Upon a retransmi ssion tinmeout, a conventional TCP sender assunes that
out standi ng segnents are lost and starts retransmitting the

unacknow edged segnents. \Wen the retransnission tineout is detected
to be spurious, the TCP sender should not continue retransmtting
based on the tineout. For exanple, if the sender was in congestion

Sarol ahti, et al. St andards Track [Page 11]

RFC 5682 F- RTO Sept enber 2009

avoi dance phase transmitting new, previously unsent segnents, it
shoul d continue transmitting previously unsent segnents in congestion
avoi dance.

There are currently two alternatives specified for a spurious tineout
response algorithm the Eifel Response Al gorithm[L&5], and an
algorithm for adapting the retransmi ssion tinmeout after a spurious
RTO [BBAO6]. If no specific response algorithmis inplenented, the
TCP SHOULD respond to spurious tineout conservatively, applying the
TCP congestion control specification [APB09]. Different response
algorithms for spurious retransm ssion tineouts have been anal yzed in
sone research papers [G.03, Sar03] and | ETF docunents [SLO3].

5. Evaluation of RFC 4138

F-RTO was first specified in an Experinmental RFC (RFC 4138) that has
been i mpl enented in a nunber of operating systens since it was
publ i shed. Gai ned experience has been docunented in a separate
docunent [KYHSO7], and can be sumari zed as foll ows.

If the TCP sender enploys F-RTO it is able to detect spurious RTGs
and avoi d the unnecessary retransm ssion of the whole w ndow of data.
Because F-RTO avoi ds the unnecessary retransm ssions after a spurious
RTO, it is able to adhere to the packet conservation principle,
unlike a regular TCP that enters the slowstart recovery
unnecessarily and inappropriately restarts the ACK clock while there
are segnents outstanding in the network. Wen a spurious RTO has
been detected, a sender can sel ect an appropri ate congestion contro
response instead of setting the congestion wi ndow to one segnent.
Because F-RTO avoi ds unnecessary retransmissions, it is able to take
the round-trip tinme of the del ayed segnents into account when

cal culating the RTO estimate, which may help in avoiding further
spurious retransm ssion timeouts.

Experimental results with the basic F-RTO have been reported in an
emul ated network using a Linux inmplementation [SKR0O3]. Al so,

di fferent congestion control responses along with the SACK-enhanced
version of F-RTO were tested in a simlar environment [Sar03]. There
are publications anal yzi ng F- RTO performance over comrercial W deband
Code Division Miultiple Access (WCDVMA) networks, and in an emul at ed
Hi gh- Speed Downl i nk Packet Access (HSDPA) network [YanmD5, Hok05].

Al so, Mcrosoft reported positive experiences with their

i mpl enentation of F-RTO at the | ETF-68 neeting.

It is known that sone spurious RTGs may renmain undetected by F-RTO if
dupl i cate acknow edgnents arrive at the sender imedi ately after the
spurious RTO, for exanple due to packet reordering or packet | oss.
There are rare corner cases where F-RTO could "hide" a packet |oss

Sarol ahti, et al. St andards Track [Page 12]

RFC 5682 F- RTO Sept enber 2009

and therefore lead to i nappropriate behavior w th non-conservative
congestion control response: first, if a massive packet reordering
occurred so that the acknow edgnent of RTO retransmi ssion arrived at
the sender before the acknow edgnents of original transm ssions, the
sender mght not detect the | oss of the segnent that triggered the
RTO. Second, a malicious receiver could |l ead F-RTO to nake a w ong
concl usion after an RTO by acknow edgi ng segnments it has not

received. Such a receiver would, however, risk breaking the

consi stency of the TCP state between the sender and receiver, causing
the connection to become unusabl e, which cannot be of any benefit to
the receiver. Therefore, we believe it is not likely that receivers
woul d start enploying such tricks on a significant scale. Finally,

| oss of the unnecessary RTO retransmni ssion cannot be detected without
usi ng sone explicit acknow edgrment schene such as DSACK. This is
conmon to the other nechanisns for detecting spurious RTO, as well as
to regular TCP that does not use DSACK. W note that if the
congestion control response to spurious RTO is conservative enough
the above corner cases do not cause problens due to increased
congesti on.

6. Security Considerations

The main security threat regarding F-RTO is the possibility that a
receiver could mslead the sender into setting too |large a congestion
wi ndow after an RTO. There are two possible ways a nalicious
receiver could trigger a wong output fromthe F-RTO al gorithm

First, the receiver can acknow edge data that it has not received.
Second, it can delay acknow edgnent of a segnent it has received
earlier, and acknow edge the segnment after the TCP sender has been
del uded to enter algorithmstep 3.

If the receiver acknow edges a segnent it has not really received,
the sender can be led to declare spurious timeout in the F-RTO
algorithm step 3. However, because the sender will have an
incorrect state, it cannot retransmt the segment that has never
reached the receiver. Therefore, this attack is unlikely to be
useful for the receiver to nmaliciously gain a | arger congestion

wi ndow.

A common case for a retransmission tineout is that a fast

retransm ssion of a segnent is lost. |If all other segments have been
received, the RTO retransm ssion causes the whole w ndow to be
acknow edged at once. This case is recognized in F-RTO al gorithm
branch (2a). However, if the receiver only acknow edges one segnent
after receiving the RTO retransmi ssion, and then the rest of the
segnents, it could cause the timeout to be decl ared spurious when it
is not. Therefore, it is suggested that, when an RTO occurs during

Sarol ahti, et al. St andards Track [Page 13]

RFC 5682 F- RTO Sept enber 2009

the fast recovery phase, the sender would not fully revert the
congestion wi ndow even if the timeout was decl ared spurious.
I nstead, the sender would reduce the congestion windowto 1

If there is nore than one segnent missing at the time of a

retransm ssion timeout, the receiver does not benefit from m sl eading
the sender to declare a spurious tinmeout because the sender woul d
have to go through another recovery period to retransnit the nissing
segnents, usually after an RTO has el apsed

7. Acknow edgnents

The authors would like to thank Al fred Hoenes, || po Jarvinen, and
Murari Sridharan for the comments on this docunent.

We are al so thankful to Reiner Ludwi g, Andrei Gurtov, Josh Bl anton,
Mark All man, Sally Floyd, Yogesh Swam , Mka Liljeberg, lIvan Arias
Rodri guez, Sourabh Ladha, Martin Duke, Mdtoharu Myake, Ted Faber
Sanu Konti nen, and Kostas Penti kousis who gave val uabl e feedback
during the preparation of RFC 4138, the precursor of this docunent.

Sarol ahti, et al. St andards Track [Page 14]

RFC 5682 F- RTO Sept enber 2009

Appendi x A. Discussion of WndowLimted Cases

When the advertised window limts the transnission of two new
previously unsent segnents, or there are no new data to send, it is
recommended in F-RTO algorithmstep (2b) that the TCP sender continue
with the conventional RTO recovery algorithm The di sadvantage is
that the sender nmay continue unnecessary retransni ssions due to
possi bl e spurious tinmeout. This section briefly discusses the
options that can potentially inprove perfornmance when transnitting
previously unsent data is not possible.

- The TCP sender coul d reserve an unused space of a size of one or
two segnments in the advertised wi ndow to ensure the use of
algorithnms such as F-RTO or Limted Transnit [ABFO1] in receiver
wi ndowlimted situations. On the other hand, while doing this,
the TCP sender should ensure that the w ndow of outstanding
segnents is |arge enough for proper utilization of the avail able

pi pe.

- Use additional information if available, e.g., TCP tinestanps with
the Eifel Detection algorithm for detecting a spurious tineout.
However, Eifel detection may yield different results from F-RTO
when ACK | osses and an RTO occur within the sanme round-trip tine
[SKRO3] .

- Retransmit data fromthe tail of the retransm ssion queue and
continue with step 3 of the F-RTO algorithm It is possible that
the retransmission will be made unnecessarily. Furthernore, the
operation of the SACK-based F-RTO al gorithm woul d need to consi der
this case separately, to not use the retransmtted segnent to
i ndicate spurious tineout. G ven these considerations, this option
is not recomended.

- Send a zero-sized segnent bel ow SND. UNA, similar to a TCP Keep-
Alive probe, and continue with step 3 of the F-RTO al gorithm
Because the receiver replies with a duplicate ACK, the sender is
able to detect whether the tinmeout was spurious fromthe incom ng
acknow edgnent. This nethod does not send data unnecessarily, but
it delays the recovery by one round-trip time in cases where the
ti meout was not spurious. Therefore, this method is not
encour aged.

- In receiver-limted cases, send one octet of new data, regardless
of the advertised window limt, and continue with step 3 of the
F-RTO algorithm It is possible that the receiver will have free
buf fer space to receive the data by the tine the segnent has

Sarol ahti, et al. St andards Track [Page 15]

RFC 5682 F- RTO Sept enber 2009

propagat ed through the network, in which case no harmis done.

the receiver is not capable of receiving the segnment, it rejects

the segment and sends a duplicate ACK
Appendi x B. Changes since RFC 4138

Changes from RFC 4138 are sunmarized bel ow, apart from m nor
editing and | anguage i nprovenents.

* Modified the basic F-RTO al gorithm and the SACK-enhanced F-RTO
algorithmto prevent the TCP sender from applying the F-RTO

I f

algorithmif the retransm ssion tinmer expires when an earlier RTO
recovery i s underway, except when the retransm ssion tiner expires

multiple times for the same segnent.

* Clarified behavior on nultiple tineouts.

* Added a paragraph on acknow edgnents that do not acknow edge new

data but are not duplicate acknow edgnents.

* Clarified the SACK-algorithma bit, and added one paragraph of
description of the basic idea of the algorithm

* Renmpoved SCTP consi derati ons.

* Renoved earlier Appendi x sections, except Appendix C from RFC 4138,

whi ch is now Appendi x A
* Clarified text about the possible response al gorithns.
* Added section that summarizes the eval uati on of RFC 4138.
Ref er ences
Normat i ve References

[APB09] Al man, M, Paxson, V., and E. Blanton, "TCP Congestion
Control", RFC 5681, Septenber 2009.

[BAFW3] Blanton, E., Allman, M, Fall, K, and L. Wang, "A
Conservative Sel ective Acknow edgnent (SACK)-based Loss
Recovery Algorithmfor TCP', RFC 3517, April 2003.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

Sarol ahti, et al. St andards Track [Page 16]

RFC 5682 F- RTO Sept enber 2009

[FHG04] Fl oyd, S., Henderson, T., and A. Qurtov, "The NewReno
Modi fication to TCP s Fast Recovery Al gorithni, RFC 3782,
April 2004.

[MVFRO6] WMathis, M, Mhdavi, J., Floyd, S., and A. Romanow, "TCP
Sel ective Acknow edgnent Options", RFC 2018, October 1996.

[PAOO] Paxson, V. and M Allnan, "Conputing TCP's Retransni ssion
Timer", RFC 2988, Novenber 2000.

[Pos81] Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981

I nformati ve References

[ABFO1] Al man, M, Bal akrishnan, H., and S. Fl oyd, "Enhancing
TCP' s Loss Recovery Using Limted Transmt", RFC 3042,
January 2001.

[BAO4] Bl anton, E. and M Allman, "Using TCP Duplicate Sel ective
Acknowl edgenent (DSACKs) and Stream Control Transm ssion
Prot ocol (SCTP) Duplicate Transm ssi on Sequence Nunbers
(TSNs) to Detect Spurious Retransm ssions”, RFC 3708,
February 2004.

[BBAO6] Bl anton, J., Blanton, E., and M All man, "Using Spurious
Retransm ssions to Adapt the Retransm ssion Tineout", Wrk
in Progress, Decenmber 2006.

[BBJ92] Jacobson, V., Braden, R, and D. Bornman, "TCP Extensions
for H gh Performance", RFC 1323, May 1992.

[FMMPOO] Floyd, S., Mahdavi, J., Mathis, M, and M Podol sky, "An
Extension to the Sel ective Acknow edgenment (SACK) Option
for TCP', RFC 2883, July 2000.

[GLO2] GQurtov A. and R Ludwi g, "Evaluating the Eifel Al gorithm
for TCP in a GPRS Network", In Proc. European Wrel ess,
Fl orence, Italy, February 2002.

[GLO3] GQurtov A. and R Ludwi g, "Responding to Spurious Tinmeouts
in TCP', In Proc. |EEE I NFOCOM 03, San Francisco, CA, USA
Mar ch 2003.

[Jac88] Jacobson, V., "Congestion Avoi dance and Control", In Proc.

ACM SI GCOW 88.

Sarol ahti, et al. St andards Track [Page 17]

RFC 5682

[Hok05]

[KYHS07]

[L&OS5]

[LKOO]

[LMD3]

[Nag84]

[SKO5]

[SKRO3]

[Sar 03]

[SLO3]

[St e07]

[YanD5]

Sar ol ahti,

F- RTO Sept ember 2009

Hokamura, A., et al., "Performance Eval uation of F-RTO and
Ei fel Response Al gorithns over WCDMA packet network", In
Proc. Wrel ess Personal Miltinmedia Comruni cations

(WPMC' 05), Sept. 2005.

Kojo, M, Yamanoto, K, Hata, M, and P. Sarol ahti,
"Eval uati on of RFC 4138", Work in Progress, Novenber 2007.

Ludwig, R and A. CGurtov, "The Eifel Response Al gorithmfor
TCP", RFC 4015, February 2005.

Ludwig R and R H Katz, "The Eifel Al gorithm Mking TCP
Robust Agai nst Spurious Retransm ssions", ACM SI GCOW
Conmput er Conmuni cation Review, 30(1), January 2000.

Ludwig, R and M Meyer, "The Eifel Detection Al gorithmfor
TCP", RFC 3522, April 2003.

Nagl e, J., "Congestion control in IP/TCP internetworks",
RFC 896, January 1984.

Sarol ahti, P. and M Kojo, "Forward RTO Recovery (F-RTO:
An Al gorithm for Detecting Spurious Retransm ssion Tineouts
with TCP and the Stream Control Transm ssion Protocol
(SCTP)", RFC 4138, August 2005.

Sarol ahti, P., Kojo, M, and K Raatikainen, "F-RTO An
Enhanced Recovery Al gorithmfor TCP Retransm ssion

Ti meout s", ACM SI GCOMM Conput er Communi cati on Revi ew,
33(2), April 2003.

Sarol ahti, P., "Congestion Control on Spurious TCP
Retransm ssion Timeouts", In Proc. of | EEE @ obecom 2003,
San Franci sco, CA, USA. Decenber 2003.

Swam Y. and K. Le, "DCLOR De-correlated Loss Recovery
using SACK Option for spurious tineouts", Wrk in Progress,
Sept enber 2003.

Stewart, R, Ed., "Stream Control Transm ssion Protocol",
RFC 4960, Septenber 2007.

Yamanoto, K., et al., "Effects of F-RTO and Ei fel Response
Al gorithns for WCDMA and HSDPA networks", |In Proc.

Wrel ess Personal Miltimedi a Communi cations (WPMC 05),

Sept ember 2005.

et al. St andards Track [Page 18]

RFC 5682 F- RTO Sept enber 2009

Aut hors’ Addr esses

Pasi Sarol ahti

Noki a Research Center

P. 0. Box 407

FI - 00045 NOKI A GROUP

Fi nl and

Phone: +358 50 4876607
EMai | : pasi.sarolahti @Kki.fi

Mar kku Koj o

Uni versity of Hel sink

P.O. Box 68

FI - 00014 UNI VERSI TY OF HELSI NK
Fi nl and

Phone: +358 9 19151305
EMai | : koj o@s. hel sinki.fi

Kazunori Yamanoto

NTT Docono, Inc.

3-5 Hi karinooka, Yokosuka, Kanagawa, 239-8536, Japan
Phone: +81-46-840-3812

EMai | : yamanot okaz@tt docono. co.jp

Max Hat a

NTT Docono, Inc.

3-5 Hi karinooka, Yokosuka, Kanagawa, 239-8536, Japan
Phone: +81-46-840-3812

EMai | : hatama@1l. nttdocono. co.jp

Sarol ahti, et al. St andards Track [Page 19]

