Net wor k Wor ki ng Group P. Saint-Andre, Ed.
Request for Comments: 3921 Jabber Sof tware Foundati on
Cat egory: Standards Track Cct ober 2004

Ext ensi bl e Messagi ng and Presence Protocol (XWPP):
I nst ant Messagi ng and Presence
Status of this Meno
Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for
i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nemo is unlimted.
Copyri ght Notice
Copyright (C) The Internet Society (2004).
Abst r act
This menpo descri bes extensions to and applications of the core
features of the Extensible Messaging and Presence Protocol (XWMPP)

that provide the basic instant nessaging (IM and presence
functionality defined in RFC 2779.

Sai nt - Andre St andards Track [ Page 1]



RFC 3921 XMPP | M Oct ober 2004
Tabl e of Contents
1. I ntroduction . . 2
2. Synt ax of XM Stanzas 4
3. Sessi on Est abl i shnent 10
4, Exchangi ng Messages . 13
5. Exchangi ng Presence Infornat|on 16
6. Managi ng Subscriptions . 26
7. Rost er Managenent C e e e 27
8. Integration of Roster Items and Presence Subscriptions . 32
9. Subscription States 56
10. Bl ocki ng Conmuni cation . . 62
11. Server Rules for Handling XNL Stanzas 85
12. 1M and Presence Conpliance Requirenents 88
13. Internationalization Considerations 89
14. Security Considerations 89
15. 1 ANA Consi derati ons 90
16. References . 91
A vCards . . 93
B. XM. Schemmas. C e e e e 93
C. Di fferences Betmeen Jabber | M Presence Protocols and XMPP. 105
Contributors . 106
Acknowl edgenents . 106
Aut hor’ s Address. 106
Ful | Copyri ght StatenEnt 107

1. Introduction

1.1. Overview

The Extensible Messagi ng and Presence Protocol (XMPP) is a protoco
for streaming XML [ XM.] elenents in order to exchange nessages and

presence information in close to real time. The core features of

XMPP are defined in Extensible Messagi ng and Presence Protoco

(XWMPP): Core [ XWMPP-CORE]. These features -- mainly XM strearns,

use

of TLS and SASL, and the <message/ >, <presence/>, and <iq/> children
of the streamroot -- provide the building bl ocks for nmany types of
near-real -time applications, which may be | ayered on top of the core

by sendi ng application-specific data qualified by particular XM
nanespaces [ XM_.- NAMES]. This nmenp descri bes extensions to and
applications of the core features of XMPP that provide the basic
functionality expected of an instant nessaging (IM and presence
application as defined in RFC 2779 [| MP- REQS] .

Sai nt - Andre St andards Track [ Page 2]



RFC 3921 XVPP | M Cct ober 2004

1.2. Requirenents

For the purposes of this meno, the requirenents of a basic instant
messagi ng and presence application are defined by [I MP-REQS], which
at a high level stipulates that a user nmust be able to complete the
foll owi ng use cases:

Exchange nessages with other users

Exchange presence information with other users

Manage subscriptions to and from ot her users

Manage itens in a contact list (in XMPP this is called a "roster")
Bl ock communi cations to or fromspecific other users

O O0Oo0OO0OOo

Detail ed definitions of these functionality areas are contained in
[IMP-REQS], and the interested reader is directed to that docunent
regardi ng the requirenents addressed herein.

[ MP-REQS] al so stipulates that presence services nust be separable
frominstant nessaging services; i.e., it nust be possible to use the
protocol to provide a presence service, an instant nessagi ng service,
or both. Although the text of this menp assunes that inplenentations
and deploynments will want to offer a unified instant nessagi ng and
presence service, there is no requirement that a service nust offer
both a presence service and an instant nessagi ng service, and the
protocol mekes it possible to offer separate and distinct services
for presence and for instant nessagi ng.

Not e: Wil e XMPP-based instant nessagi ng and presence neets the
requi rements of [IMP-REQS], it was not designed explicitly with that
specification in nmnd, since the base protocol evolved through an
open devel opnent process within the Jabber open-source conmunity
before RFC 2779 was witten. Note also that although protocols
addressing many other functionality areas have been defined in the
Jabber conmunity, such protocols are not included in this nenmo
because they are not required by [|MP-REQS].

1.3. Term nol ogy
This menmo inherits the term nol ogy defined in [ XMPP-CORE].
The capitalized key words "MJST", "MJST NOT", "REQUI RED', "SHALL",
"SHALL NOT", "SHOULD', "SHOULD NOT", "RECOMVENDED', "MAY", and

"OPTIONAL" in this docunent are to be interpreted as described in BCP
14, RFC 2119 [ TERVB].

Sai nt - Andre St andards Track [ Page 3]



RFC 3921 XVPP | M Cct ober 2004

2.

2.

2.

Syntax of XM. Stanzas

The basic semantics and common attributes of XML stanzas qualified by
the 'jabber:client’ and ’jabber:server’ nanespaces are defined in

[ XMPP- CORE] . However, these nanespaces al so define various child

el enents, as well as values for the commopn 'type’ attribute, that are
specific to instant nmessagi ng and presence applications. Thus,

bef ore addressing particular "use cases" for such applications, we
here further describe the syntax of XM. stanzas, thereby

suppl enenting the discussion in [ XMPP-CORE] .

1. Message Syntax

Message stanzas qualified by the 'jabber:client’ or 'jabber:server’
nanespace are used to "push" information to another entity. Conmon
uses in instant nmessagi ng applications include single nmessages,
nmessages sent in the context of a chat conversation, messages sent in
the context of a nulti-user chat room headlines and other alerts,
and errors.

1.1. Types of Message

The 'type’ attribute of a nmessage stanza is RECOVWENDED; if included,
it specifies the conversational context of the nessage, thus
providing a hint regarding presentation (e.g., ina GQJ). If
i ncluded, the "type' attribute MJUST have one of the follow ng val ues:

o chat -- The nessage is sent in the context of a one-to-one chat
conversation. A conpliant client SHOULD present the nessage in an
i nterface enabling one-to-one chat between the two parti es,
i ncludi ng an appropriate conversation history.

o error -- An error has occurred related to a previ ous nessage sent
by the sender (for details regarding stanza error syntax, refer to
[ XMPP-CORE]). A compliant client SHOULD present an appropriate
interface informng the sender of the nature of the error

0 groupchat -- The nessage is sent in the context of a nmulti-user
chat environment (similar to that of [IRC]). A conpliant client
SHOULD present the message in an interface enabling many-to-many
chat between the parties, including a roster of parties in the
chatroom and an appropriate conversation history. Full definition
of XMPP-based groupchat protocols is out of scope for this neno.

o headline -- The message is probably generated by an autonated
service that delivers or broadcasts content (news, sports, market
information, RSS feeds, etc.). No reply to the nessage is
expected, and a conpliant client SHOULD present the nessage in an

Sai nt - Andre St andards Track [ Page 4]



RFC 3921 XVPP | M Cct ober 2004

interface that appropriately differentiates the nessage from
st andal one nessages, chat sessions, or groupchat sessions (e.g.
by not providing the recipient with the ability to reply).

o normal -- The nessage is a single nessage that is sent outside the
context of a one-to-one conversation or groupchat, and to which it
is expected that the recipient will reply. A conpliant client

SHOULD present the nessage in an interface enabling the recipient
to reply, but wthout a conversation history.

An | M application SHOULD support all of the foregoing nessage types;
if an application receives a nmessage with no "type’ attribute or the
application does not understand the value of the 'type’ attribute
provided, it MJST consider the nessage to be of type "normal" (i.e.
"normal " is the default). The "error" type MJST be generated only in
response to an error related to a nessage recei ved from anot her
entity.

Al though the 'type’ attribute is OPTIONAL, it is considered polite to
mrror the type in any replies to a nessage; furthernore, sone
speci al i zed applications (e.g., a multi-user chat service) MAY at
their discretion enforce the use of a particul ar message type (e.g.
type=' groupchat’).

2.1.2. Child Elenents

As described under extended namespaces (Section 2.4), a nessage
stanza MAY contain any properly-namespaced child el ement.

In accordance with the default nanespace declaration, by default a
nessage stanza is qualified by the 'jabber:client’ or ’'jabber:server’
nanmespace, which defines certain allowable children of message
stanzas. |f the nessage stanza is of type "error", it MJST include
an <error/> child; for details, see [ XMPP-CORE]. Oherw se, the
nmessage stanza MAY contain any of the following child el enents

wi t hout an explicit namespace decl aration

1. <subject/>
2.  <body/>
3. <thread/>

2.1.2.1. Subject

The <subject/> el enent contai ns human-readabl e XML character data
that specifies the topic of the nessage. The <subject/> el enent MJST
NOT possess any attributes, with the exception of the 'xm:|ang
attribute. Miltiple instances of the <subject/> el ement MAY be

i ncluded for the purpose of providing alternate versions of the sane

Sai nt - Andre St andards Track [ Page 5]



RFC 3921 XVPP | M Cct ober 2004

subj ect, but only if each instance possesses an 'xm:lang attribute
with a distinct | anguage value. The <subject/> el ement MJST NOT
contain mxed content (as defined in Section 3.2.2 of [XM]).

2.1.2.2. Body

The <body/> el enent contai ns human-readabl e XM. character data that
specifies the textual contents of the nmessage; this child elenent is
normal Iy included but is OPTIONAL. The <body/> el ement MJUST NOT
possess any attributes, with the exception of the 'xnl:Iang
attribute. Miltiple instances of the <body/> el enent MAY be incl uded
but only if each instance possesses an 'xm:lang attribute with a

di stinct |anguage value. The <body/> el enent MJUST NOT contain m xed
content (as defined in Section 3.2.2 of [XM]).

2.1.2.3. Thread

The <thread/ > el enent contai ns non-hunman-readabl e XM_ character data
specifying an identifier that is used for tracking a conversation
thread (sometimes referred to as an "instant nessagi ng session")
between two entities. The value of the <thread/> elenent is
generated by the sender and SHOULD be copied back in any replies. |If
used, it MJST be unique to that conversation thread within the stream
and MUST be consistent throughout that conversation (a client that
receives a nessage fromthe sanme full JID but with a different thread
| D MUST assune that the nessage in question exists outside the
context of the existing conversation thread). The use of the
<thread/> element is OPTIONAL and is not used to identify individua
messages, only conversations. A nessage stanza MJST NOT contain nore
than one <thread/> elenment. The <thread/> el ement MJST NOT possess
any attributes. The value of the <thread/> el enent MJST be treated
as opaque by entities; no senmantic nmeaning may be derived fromit,
and only exact conparisons may be nmade against it. The <thread/>

el ement MUST NOT contain m xed content (as defined in Section 3.2.2
of [XM]).

2.2. Presence Syntax

Presence stanzas are used qualified by the 'jabber:client’ or

'j abber:server’ nanespace to express an entity’s current network
availability (offline or online, along with various sub-states of the
latter and optional user-defined descriptive text), and to notify
other entities of that availability. Presence stanzas are al so used
to negotiate and nmanage subscriptions to the presence of other
entities.

Sai nt - Andre St andards Track [ Page 6]



RFC 3921 XVPP | M Cct ober 2004

2.2.1. Types of Presence

The "type’ attribute of a presence stanza is OPTIONAL. A presence
stanza that does not possess a 'type’ attribute is used to signal to
the server that the sender is online and available for comunication
If included, the "type' attribute specifies a lack of availability, a
request to nmanage a subscription to another entity's presence, a
request for another entity’'s current presence, or an error related to
a previously-sent presence stanza. |If included, the 'type attribute
MJUST have one of the follow ng val ues:

0 unavailable -- Signals that the entity is no |onger available for
comuni cati on.

0 subscribe -- The sender wishes to subscribe to the recipient’s
presence.

0 subscribed -- The sender has all owed the recipient to receive
their presence.

0 unsubscribe -- The sender is unsubscribing fromanother entity’s
presence.

0 unsubscribed -- The subscription request has been denied or a

previ ousl y-granted subscription has been cancel |l ed.

o probe -- A request for an entity’s current presence; SHOULD be
generated only by a server on behalf of a user

o error -- An error has occurred regardi ng processing or delivery of
a previously-sent presence stanza.

For detailed information regarding presence semantics and the
subscription nmodel used in the context of XMPP-based instant
nmessagi ng and presence applications, refer to Exchangi ng Presence
Information (Section 5) and Managi ng Subscriptions (Section 6).

2.2.2. Child El ements

As described under extended namespaces (Section 2.4), a presence
stanza MAY contain any properly-nanmespaced child el erent.

In accordance with the default nanespace declaration, by default a
presence stanza is qualified by the 'jabber:client’ or

'j abber: server’ nanespace, which defines certain allowable children
of presence stanzas. |If the presence stanza is of type "error", it
MUST include an <error/> child; for details, see [ XMPP-CORE]. If the
presence stanza possesses no 'type’ attribute, it MAY contain any of

Sai nt - Andre St andards Track [ Page 7]



RFC 3921 XVPP | M Cct ober 2004

the following child elenments (note that the <status/> child MAY be
sent in a presence stanza of type "unavailable" or, for historica
reasons, "subscribe"):

1. <show >
2. <status/>
3. <priority/>

2.2.2.1. Show
The OPTI ONAL <show/ > el enent contai ns non- human-readabl e XM
character data that specifies the particular availability status of
an entity or specific resource. A presence stanza MJUST NOT contain
nore than one <show > el ement. The <show > el enent MUST NOT possess
any attributes. |If provided, the XM. character data val ue MUST be
one of the followi ng (additional availability types could be defined
through a properly-nanespaced child el enent of the presence stanza):
0O away -- The entity or resource is tenporarily away.
o chat -- The entity or resource is actively interested in chatting.
o dnd -- The entity or resource is busy (dnd = "Do Not Disturb").

0O Xa -- The entity or resource is away for an extended period (xa =
"eXtended Away").

If no <show > element is provided, the entity is assuned to be online
and avail abl e.

2.2.2.2. Status

The OPTI ONAL <status/> el enent contains XM character data specifying

a natural -1 anguage description of availability status. It is
normal Iy used in conjunction with the show el enent to provide a
detail ed description of an availability state (e.g., "In a neeting").

The <status/> el enent MUST NOT possess any attributes, with the
exception of the 'xm:lang attribute. Miltiple instances of the
<status/> el ement MAY be included but only if each instance possesses
an 'xm:lang’ attribute with a distinct |anguage val ue.

2.2.2.3. Priority

The OPTIONAL <priority/> elenment contains non-human-readabl e XM
character data that specifies the priority level of the resource. The
val ue MUST be an integer between -128 and +127. A presence stanza
MUST NOT contain nore than one <priority/> elenent. The <priority/>
el ement MUST NOT possess any attributes. |If no priority is provided,

Sai nt - Andre St andards Track [ Page 8]



RFC 3921 XVPP | M Cct ober 2004

a server SHOULD consider the priority to be zero. For information

regardi ng the semantics of priority values in stanza routing within
i nstant nessagi ng and presence applications, refer to Server Rules

for Handling XM. Stanzas (Section 11).

2.3. 1Q Syntax

| Q stanzas provide a structured request-response nechanism The
basi ¢ semantics of that mechanism (e.g., that the 'id attribute is
REQUI RED) are defined in [ XMPP-CORE], whereas the specific semantics
required to conplete particular use cases are defined in all cases by
an extended nanespace (Section 2.4) (note that the 'jabber:client’
and 'jabber:server’ nanespaces do not define any children of 1Q
stanzas ot her than the comon <error/>). This nmeno defines two such
ext ended nanmespaces, one for Roster Managenment (Section 7) and the
ot her for Bl ocki ng Communication (Section 10); however, an |IQ stanza
MAY contain structured information qualified by any extended
namespace

2.4. Extended Nanespaces

VWile the three XM. stanza kinds defined in the "jabber:client" or

"j abber:server" namespace (along with their attributes and child

el enents) provide a basic |evel of functionality for nessaging and
presence, XMPP uses XM. nanespaces to extend the stanzas for the

pur pose of providing additional functionality. Thus a nessage or
presence stanza MAY contain one or nore optional child elenments
speci fying content that extends the meaning of the nmessage (e.g., an
XHTML-formatted version of the nmessage body), and an | Q stanza MAY
contain one such child elenment. This child elenment MAY have any nane
and MUST possess an 'xm ns’ nanespace declaration (other than
"jabber:client", "jabber:server", or
"http://etherx.jabber.org/streans") that defines all data contained
within the child el ement.

Support for any given extended nanespace is OPTIONAL on the part of
any inplenentation (aside fromthe extended nanespaces defined
herein). If an entity does not understand such a nanespace, the
entity’s expected behavior depends on whether the entity is (1) the
recipient or (2) an entity that is routing the stanza to the
recipient:

Recipient: If a recipient receives a stanza that contains a child
el enent it does not understand, it SHOULD ignore that specific XM
data, i.e., it SHOULD not process it or present it to a user or
associ ated application (if any). |In particular

Sai nt - Andre St andards Track [ Page 9]



RFC 3921 XVPP | M Cct ober 2004

* |f an entity receives a nessage or presence stanza that
contains XM. data qualified by a nanespace it does not
understand, the portion of the stanza that is in the unknown
nanespace SHOULD be i gnor ed.

* |f an entity receives a nessage stanza whose only child el ement
is qualified by a nanespace it does not understand, it MJST
ignore the entire stanza.

* |f an entity receives an |1 Q stanza of type "get" or "set"
containing a child elenment qualified by a nanespace it does not
understand, the entity SHOULD return an | Q stanza of type
"error" with an error condition of <service-unavail abl e/ >.

Router: If a routing entity (usually a server) handl es a stanza that
contains a child elenent it does not understand, it SHOULD i gnore
the associated XM. data by passing it on untouched to the
reci pi ent.

3. Session Establishment

Most instant nessagi ng and presence applications based on XMPP are

i mpl enented via a client-server architecture that requires a client
to establish a session on a server in order to engage in the expected
i nstant nessagi ng and presence activities. However, there are
several pre-conditions that MJST be net before a client can establish
an instant messagi ng and presence session. These are:

1. Stream Authentication -- a client MJST conpl ete stream
aut hentication as docunented in [ XMPP-CORE] before attenpting to
establish a session or send any XM. stanzas.

2. Resource Binding -- after conpleting stream authentication, a
client MJUST bind a resource to the streamso that the client’s
address is of the form <user @onni n/ resource>, after which the
entity is now said to be a "connected resource” in the
term nol ogy of [ XMPP- CORE].

If a server supports sessions, it MJIST include a <session/> el ement
qualified by the "urn:ietf:parans: xm : ns: xnpp-sessi on’ nanespace in
the streamfeatures it advertises to a client after the conpletion of
stream aut henti cati on as defined in [ XWMPP-CORE]:

Sai nt - Andre St andards Track [ Page 10]



RFC 3921 XVPP | M Cct ober 2004

Server advertises session establishnment feature to client:

<stream stream
xm ns="j abber:client’
xm ns: strean¥ http://etherx.jabber.org/streans’
i d=" c2s_345’
from=" exanpl e. con
version="1.0" >
<stream f eat ures>
<bi nd xm ns="urn:ietf:parans: xm : ns: xmpp-bi nd />
<session xm ns="urn:ietf:paramnms: xm : ns: xnmpp-session’ />
</stream f eat ures>

Upon being so inforned that session establishment is required (and
after conpleting resource binding), the client MJST establish a
session if it desires to engage in instant nessagi ng and presence
functionality; it conpletes this step by sending to the server an 1Q
stanza of type "set" containing an enpty <session/> child el enent
qualified by the "urn:ietf:parans: xm : ns: xnpp-sessi on’ nanespace:

Step 1: dient requests session with server:

<i g to=" exanpl e. con
type='set’
id="sess _1'>
<session xm ns="urn:ietf:paranms: xm :ns: xmpp-session’ />
</ig>

Step 2: Server inforns client that session has been created:

<iq from=" exanpl e. con
type='result’
id="sess_1'/>

Upon establishing a session, a connected resource (in the term nol ogy
of [XMPP-CORE]) is said to be an "active resource"

Several error conditions are possible. For exanple, the server nmay
encounter an internal condition that prevents it fromcreating the
session, the usernane or authorization identity may |ack perm ssions
to create a session, or there may already be an active resource
associated with a resource identifier of the sane nane.

If the server encounters an internal condition that prevents it from
creating the session, it MJST return an error

Sai nt - Andre St andards Track [ Page 11]



RFC 3921 XVPP | M Cct ober 2004

Step 2 (alt): Server responds with error (internal server error):

<iq from=’ exanpl e.com type="error’ id="sess_1'>
<session xm ns="urn:ietf:params: xm : ns: xmpp-session’ />
<error type="wait’>
<internal -server-error
xm ns="urn:ietf:parans: xm :ns: xnmpp-stanzas’ />
</error>
</ig>

If the usernane or resource is not allowed to create a session, the
server MJST return an error (e.g., forbidden).

Step 2 (alt): Server responds with error (username or resource not
allowed to create session):

<iq frone exanmpl e.com type="error’ id="sess_1' >
<session xm ns="urn:ietf:parans: xm : ns: xmpp-session’ />
<error type="auth’ >
<f or bi dden
xm ns="urn:ietf:parans: xm :ns: xnmpp- stanzas’ />
</error>
<lig>

If there is already an active resource of the same nanme, the server
MJST either (1) terminate the active resource and allow the

new y-requested session, or (2) disallowthe newy-requested session
and maintain the active resource. Wich of these the server does is
up to the inplenentation, although it is RECOMVENDED to i npl enent
case #1. In case #1, the server SHOULD send a <conflict/> stream
error to the active resource, term nate the XM. stream and underl ying
TCP connection for the active resource, and return a | Q stanza of
type "result" (indicating success) to the new y-requested session. In
case #2, the server SHOULD send a <conflict/> stanza error to the
new y-requested session but maintain the XM. stream for that
connection so that the new y-requested session has an opportunity to
negotiate a non-conflicting resource identifier before sending

anot her request for session establishment.

Step 2 (alt): Server informs existing active resource of resource
conflict (case #1):

<stream error>

<conflict xmns="urn:ietf:parans: xm : ns: xnpp-streans’ />
</ stream error>
</ stream streanp

Sai nt - Andre St andards Track [ Page 12]



RFC 3921 XVPP | M Cct ober 2004

Step 2 (alt): Server infornms new y-requested session of resource
conflict (case #2):

<iq from=’ exanmpl e.com type="error’ id="sess_1'>
<session xm ns="urn:ietf:paramnms: xm : ns: xnmpp-session’ />
<error type=' cancel’ >
<conflict xmns="urn:ietf:parans: xm : ns: xnpp-stanzas’'/ >
</error>
</ig>

After establishing a session, a client SHOULD send initial presence
and request its roster as described bel ow, although these actions are
OPTI ONAL.

Note: Before allowi ng the creation of instant nessagi ng and presence
sessions, a server MAY require prior account provisioning. Possible
met hods for account provisioning include account creation by a server
adm nistrator as well as in-band account registration using the
"jabber:iqg:register’ nanespace; the latter nmethod is out of scope for
this nmeno, but is docunmented in [JEP-0077], published by the Jabber
Sof t war e Foundati on [JSF].

4. Exchangi ng Messages

Exchangi ng nessages is a basic use of XMPP and is brought about when
a user generates a nessage stanza that is addressed to anot her
entity. As defined under Server Rules for Handling XM. Stanzas
(Section 11), the sender’s server is responsible for delivering the
nmessage to the intended recipient (if the recipient is on the sane
server) or for routing the nessage to the recipient’s server (if the
recipient is on a different server).

For information regarding the syntax of message stanzas as well as
their defined attributes and child elements, refer to Message Syntax
(Section 2.1).

4.1. Specifying an Intended Recipient

An instant nessaging client SHOULD specify an intended recipient for
a nmessage by providing the JID of an entity other than the sender in
the "to’ attribute of the <message/> stanza. |If the message is being
sent inreply to a nessage previously received froman address of the
form <user @onai n/resource> (e.g., within the context of a chat
session), the value of the 'to’ address SHOULD be of the form

<user @omai n/ resource> rather than of the form <user @onai n> unl ess
the sender has know edge (via presence) that the intended recipient’s
resource is no |longer available. If the message is being sent

Sai nt - Andre St andards Track [ Page 13]



RFC 3921 XVPP | M Cct ober 2004

out side the context of any existing chat session or received nessage,
the value of the '"to’ address SHOULD be of the form <user @onai n>
rather than of the form <user @omai n/resource>

4.2. Specifying a Message Type

As noted, it is RECOWENDED for a nessage stanza to possess a 'type
attribute whose val ue captures the conversational context (if any) of
the nmessage (see Type (Section 2.1.1)).

The foll owi ng exanpl e shows a valid value of the "type attribute:
Exampl e: A nmessage of a defined type:

<message
to="ronmeo@xanpl e. net’
from= juliet @xanpl e. com bal cony’
type=' chat’
xm :lang="en’ >
<body>Wherefore art thou, Roneo?</body>
</ nessage>

4.3. Specifying a Message Body

A nmessage stanza MAY (and often will) contain a child <body/> el enent
whose XML character data specifies the prinmary neani ng of the nessage
(see Body (Section 2.1.2.2)).

Exanmpl e: A message with a body:

<message
to="romeo@xanpl e. net’
frome' juli et @xanpl e. com bal cony’
type=' chat’
xm : [ ang="en’ >
<body>Wherefore art thou, Roneo?</body>
<body xm :lang='cz’ >Pr 0&#x010D; e&#x017D; jsi ty, Roneo?</body>

</ message>

4.4. Specifying a Message Subject

A message stanza MAY contain one or nore child <subject/> el enents
specifying the topic of the nmessage (see Subject (Section 2.1.2.1)).

Sai nt - Andre St andards Track [ Page 14]



RFC 3921 XVPP | M Cct ober 2004

Exanmpl e: A nessage with a subject:

<message
to="ronmeo@xanpl e. net’
frome juliet @xanpl e. com bal cony’
type=' chat’
xm :lang="en’ >
<subj ect >l inplore you! </subject>
<subj ect
xm : 1 ang="cz’ >&#x00DA; p&#x011B; nl i v&#x011B; prosi m </ subj ect >
<body>Wherefore art thou, Roneo?</body>
<body xm :lang='cz’ >Pr 0&#x010D; e&#x017D; jsi ty, Roneo?</body>
</ message>

4.5. Specifying a Conversation Thread

A message stanza MAY contain a child <thread/> el enent specifying the
conversation thread in which the nessage is situated, for the purpose
of tracking the conversation (see Thread (Section 2.1.2.3)).

Exanmpl e: A threaded conversati on:

<nmessage
to=" romeo@xanpl e. net/ orchard
from="juliet@xanpl e.com bal cony’
type=' chat’
xm :lang="en’ >
<body>Art thou not Romeo, and a Mont ague?</body>
<t hr ead>e0f f e42b28561960c6b12b944a092794b9683a38</ t hr ead>
</ message>

<message
to="juliet@xanpl e.coni bal cony’
from=’ roneo@xanpl e. net/ orchard
type=' chat’
xm :lang="en’ >
<body>Nei ther, fair saint, if either thee dislike.</body>
<t hr ead>e0f f e42b28561960c6b12b944a092794b9683a38</t hr ead>
</ nessage>

<nmessage
to=" romeo@xanpl e. net/ orchard
from="juliet@xanpl e.com bal cony’
type=' chat’
xm :lang="en’ >
<body>How cani st thou hither, tell me, and wherefore?</body>
<t hr ead>e0f f e42b28561960c6b12b944a092794b9683a38</ t hr ead>
</ message>

Sai nt - Andre St andards Track [ Page 15]



RFC 3921 XVPP | M Cct ober 2004

5.

5.

5.

Exchangi ng Presence |Information

Exchangi ng presence information is nade relatively straightforward

wi thin XMPP by using presence stanzas. However, we see here a
contrast to the handling of nessages: although a client MAY send
directed presence information to another entity by including a "to’
address, nornally presence notifications (i.e., presence stanzas wth
no 'type’ or of type "unavailable" and with no 'to’ address) are sent
froma client to its server and then broadcasted by the server to any
entities that are subscribed to the presence of the sending entity
(in the termnol ogy of RFC 2778 [I MP-MODEL], these entities are
subscribers). This broadcast nbdel does not apply to
subscription-rel ated presence stanzas or presence stanzas of type
"error", but to presence notifications only as defined above. (Note:
Wil e presence information MAY be provi ded on a user’s behalf by an
automated service, normally it is provided by the user’s client.)

For information regarding the syntax of presence stanzas as well as
their defined attributes and child elenents, refer to [ XMPP- CORE].

1. dient and Server Presence Responsibilities
1.1. Initial Presence

After establishing a session, a client SHOULD send initial presence
to the server in order to signal its availability for comunications.
As defined herein, the initial presence stanza (1) MJST possess nho
"to’ address (signalling that it is neant to be broadcasted by the
server on behalf of the client) and (2) MJST possess no 'type
attribute (signalling the user’s availability). After sending
initial presence, an active resource is said to be an "avail able
resource".

Upon receiving initial presence froma client, the user’s server MJST
do the following if there is not already one or nore avail able
resources for the user (if there is already one or nore avail abl e
resources for the user, the server obviously does not need to send
the presence probes, since it already possesses the requisite

i nformation):

1. Send presence probes (i.e., presence stanzas whose ’'type
attribute is set to a value of "probe") fromthe full JID (e.g.
<user @xanpl e. conmresource>) of the user to all contacts to which
the user is subscribed in order to deternine if they are
avail abl e; such contacts are those for which a JIDis present in
the user’s roster with the 'subscription attribute set to a
val ue of "to" or "both". (Note: The user’s server MJST NOT send
presence probes to contacts fromwhich the user is blocking

Sai nt - Andre St andards Track [ Page 16]



RFC 3921 XVPP | M Cct ober 2004

i nbound presence notifications, as described under Bl ocking
| nbound Presence Notifications (Section 10.10).)

2. Broadcast initial presence fromthe full JID (e.qg.
<user @xanpl e. com resource>) of the user to all contacts that are
subscribed to the user’s presence information; such contacts are
those for which a JIDis present in the user’s roster with the
"subscription' attribute set to a value of "from' or "both".
(Note: The user’s server MJST NOT broadcast initial presence to
contacts to which the user is bl ocking outbound presence
notifications, as described under Bl ocki ng Qutbound Presence
Notifications (Section 10.11).)

In addition, the user’s server MJST broadcast initial presence from
the user’s new avail abl e resource to any of the user’s existing
avai |l abl e resources (if any).

Upon receiving initial presence fromthe user, the contact’s server
MUST deliver the user’'s presence stanza to the full JIDs

(<cont act @xanpl e. org/ resource>) associated with all of the contact’s
avai |l abl e resources, but only if the user is in the contact’s roster
with a subscription state of "to" or "both" and the contact has not

bl ocked i nbound presence notifications fromthe user’'s bare or ful
JID (as defined under Bl ocking | nbound Presence Notifications
(Section 10.10)).

If the user’s server receives a presence stanza of type "error" in
response to the initial presence that it sent to a contact on behalf
of the user, it SHOULD NOT send further presence updates to that
contact (until and unless it receives a presence stanza fromthe
contact).

5.1.2. Presence Broadcast

After sending initial presence, the user MAY update its presence

i nformati on for broadcasting at any time during its session by
sendi ng a presence stanza with no 'to’ address and either no 'type
attribute or a "type’ attribute with a value of "unavail able". (Note:
A user’s client SHOULD NOT send a presence update to broadcast

i nformati on that changes independently of the user’s presence and
avail ability.)

If the presence stanza lacks a 'type’ attribute (i.e., expresses
availability), the user’s server MJST broadcast the full XM of that
presence stanza to all contacts (1) that are in the user’s roster
with a subscription type of "from or "both", (2) to whomthe user

Sai nt - Andre St andards Track [ Page 17]



RFC 3921 XVPP | M Cct ober 2004

has not bl ocked out bound presence notifications, and (3) from whom
the server has not received a presence error during the user’s
session (as well as to any of the user’s other avail able resources).

If the presence stanza has a 'type’ attribute set to a val ue of
"unavail abl e", the user’s server MJST broadcast the full XM of that
presence stanza to all entities that fit the above description, as
well as to any entities to which the user has sent directed avail able
presence during the user’'s session (if the user has not yet sent
directed unavail abl e presence to that entity).

5.1.3. Presence Probes

Upon receiving a presence probe fromthe user, the contact’'s server
SHOULD reply as foll ows:

1. If the user is not in the contact’s roster with a subscription
state of "Fronm, "From + Pending Qut", or "Both" (as defined
under Subscription States (Section 9)), the contact’s server MJST
return a presence stanza of type "error" in response to the
presence probe (however, if a server receives a presence probe
froma subdomain of the server’s hostnane or another such trusted
service, it MAY provide presence information about the user to
that entity). Specifically:

* if the user is in the contact’s roster with a subscription
state of "None", "None + Pending Qut", or "To" (or is not in
the contact’s roster at all), the contact’s server MJST return
a <forbidden/> stanza error in response to the presence probe.

* if the user is in the contact’s roster with a subscription
state of "None + Pending In", "None + Pending Qut/In", or "To
+ Pending In", the contact’s server MJST return a
<not - aut hori zed/ > stanza error in response to the presence
pr obe.

2. Else, if the contact is bl ocking presence notifications to the
user’'s bare JID or full JID (using either a default list or
active |list as defined under Bl ocki ng Qutbound Presence
Notifications (Section 10.11)), the server MJST NOT reply to the
presence probe.

3. Else, if the contact has no avail abl e resources, the server MJST
either (1) reply to the presence probe by sending to the user the
full XM. of the |ast presence stanza of type "unavail abl e"
recei ved by the server fromthe contact, or (2) not reply at all

Sai nt - Andre St andards Track [ Page 18]



RFC 3921 XVPP | M Cct ober 2004

5.

1

4.

El se, if the contact has at |east one avail abl e resource, the
server MJST reply to the presence probe by sending to the user
the full XML of the last presence stanza with no "to’ attribute
recei ved by the server fromeach of the contact’s avail abl e
resources (again, subject to privacy lists in force for each
session).

Directed Presence

A user MAY send directed presence to another entity (i.e., a presence
stanza with a "to’ attribute whose value is the JID of the other
entity and with either no "type’ attribute or a 'type attribute
whose value is "unavail able"). There are three possible cases:

1

If the user sends directed presence to a contact that is in the
user’s roster with a subscription type of "from' or "both" after
havi ng sent initial presence and before sending unavail abl e
presence broadcast, the user’s server MJST route or deliver the
full XM. of that presence stanza (subject to privacy lists) but
SHOULD NOT ot herwi se nodify the contact’s status regarding
presence broadcast (i.e., it SHOULD include the contact’s JID in
any subsequent presence broadcasts initiated by the user).

If the user sends directed presence to an entity that is not in
the user’s roster with a subscription type of "fronf or "both"
after having sent initial presence and before sendi ng unavail abl e
presence broadcast, the user’s server MJST route or deliver the
full XM. of that presence stanza to the entity but MJST NOT

nodi fy the contact’s status regarding avail abl e presence
broadcast (i.e., it MJST NOT include the entity's JID in any
subsequent broadcasts of available presence initiated by the
user); however, if the available resource from which the user
sent the directed presence beconme unavail abl e, the user’s server
MUST br oadcast that unavail abl e presence to the entity (if the
user has not yet sent directed unavail able presence to that
entity).

If the user sends directed presence without first sending initia
presence or after having sent unavail abl e presence broadcast
(i.e., the resource is active but not available), the user’s
server MJST treat the entities to which the user sends directed
presence in the sane way that it treats the entities listed in
case #2 above.

Sai nt - Andre St andards Track [ Page 19]



RFC 3921 XVPP | M Cct ober 2004

5.1.5. Unavail abl e Presence

Before ending its session with a server, a client SHOULD gracefully
become unavail abl e by sending a final presence stanza that possesses
no 'to’ attribute and that possesses a 'type’ attribute whose val ue
is "unavail abl e" (optionally, the final presence stanza MAY contain
one or nore <status/> el enents specifying the reason why the user is
no | onger available). However, the user’s server MJST NOT depend on
receiving final presence froman avail abl e resource, since the
resource may become unavail abl e unexpectedly or may be tined out by
the server. |If one of the user’s resources becomes unavail able for
any reason (either gracefully or ungracefully), the user’s server
MUST br oadcast unavail abl e presence to all contacts (1) that are in
the user’s roster with a subscription type of "froni or "both", (2)
to whom t he user has not bl ocked outbound presence, and (3) from whom
the server has not received a presence error during the user’s
session; the user’s server MJST al so send that unavail abl e presence
stanza to any of the user’s other available resources, as well as to
any entities to which the user has sent directed presence during the
user’s session for that resource (if the user has not yet sent
directed unavail abl e presence to that entity). Any presence stanza
with no "type’ attribute and no 'to’ attribute that is sent after
sendi ng directed unavail abl e presence or broadcasted unavail abl e
presence MJUST be broadcasted by the server to all subscribers.

5.1.6. Presence Subscriptions

A subscription request is a presence stanza whose 'type’ attribute
has a val ue of "subscribe". |If the subscription request is being
sent to an instant nessaging contact, the JID supplied in the 'to’
attribute SHOULD be of the form <contact @xanpl e. org> rather than
<cont act @xanpl e. org/ resource>, since the desired result is normally
for the user to receive presence fromall of the contact’s resources,
not merely the particular resource specified in the "to’ attribute.

A user’s server MJUST NOT autonatically approve subscription requests
on the user’s behalf. Al subscription requests MJST be directed to
the user’s client, specifically to one or nore avail abl e resources
associated with the user. |If there is no available resource

associ ated with the user when the subscription request is received by
the user’s server, the user’s server MJST keep a record of the
subscription request and deliver the request when the user next
creates an avail able resource, until the user either approves or
denies the request. |If there is nore than one avail able resource
associ ated with the user when the subscription request is received by
the user’s server, the user’s server MJST broadcast that subscription
request to all avail able resources in accordance with Server Rul es
for Handling XML Stanzas (Section 11). (Note: If an active resource

Sai nt - Andre St andards Track [ Page 20]



RFC 3921 XVPP | M Cct ober 2004

has not provided initial presence, the server MJST NOT consider it to
be avail abl e and therefore MJST NOT send subscription requests to
it.) However, if the user receives a presence stanza of type
"subscribe" froma contact to whomthe user has al ready granted

perm ssion to see the user’s presence information (e.g., in cases
when the contact is seeking to resynchronize subscription states),
the user’s server SHOULD auto-reply on behalf of the user. In
addition, the user’s server MAY choose to re-send an unapproved
pendi ng subscription request to the contact based on an

i mpl enent ati on-specific algorithm (e.g., whenever a new resource
beconmes available for the user, or after a certain anmount of time has
el apsed); this helps to recover fromtransient, silent errors that
may have occurred in relation to the original subscription request.

5.2. Specifying Availability Status

A client MAY provide further information about its availability
status by using the <show > el enent (see Show (Section 2.2.2.1)).

Exanpl e: Availability status:

<presence>
<show>dnd</ show>
</ presence>

5.3. Specifying Detailed Status Infornation

In conjunction with the <show > el enent, a client MAY provide
detailed status information by using the <status/> el enent (see
Status (Section 2.2.2.2)).

Exanpl e: Detailed status information

<presence xm :|ang="en’ >

<show>dnd</ show>

<st at us>Wboi ng Jul i et </ st at us>

<status xm:lang='cz’' >Ja dvo&#x0159; &#x00ED; m Jul i et </ st at us>
</ presence>

Sai nt - Andre St andards Track [ Page 21]



RFC 3921 XVPP | M Cct ober 2004

5.4. Specifying Presence Priority

A client MAY provide a priority for its resource by using the
<priority/> el enent (see Priority (Section 2.2.2.3)).

Exanpl e: Presence priority:

<presence xm:|ang="en’ >
<show>dnd</ show>
<st at us>Wboi ng Jul i et </ st at us>
<status xm :|lang="cz’' >Ja dvo&#x0159; &#x00ED; m Jul i et </ st at us>
<priority>l</priority>
</ presence>

5.5. Presence Exanpl es

The examples in this section illustrate the presence-rel ated
protocol s descri bed above. The user is roneo@xanple.net, he has an
avail abl e resource whose resource identifier is "orchard", and he has
the followi ng individuals in his roster:

o juliet@xanmple.com (subscription="both" and she has two avail abl e
resources, one whose resource is "chanber” and anot her whose
resource is "bal cony")

o benvolio@xanpl e.org (subscription="to")
o nmercutio@xanple.org (subscription="front)
Exanmpl e 1: User sends initial presence:
<presence/ >
Exampl e 2: User’s server sends presence probes to contacts with
subscription="to" and subscription="both" on behalf of the user’s
avail abl e resource
<presence
type=' probe’
from=’ roneo@xanpl e. net/orchard
to="juliet@xanmple.com/>
<presence
type=' probe’

from=’ roneo@xanpl e. net/ orchard
to=" benvol i o@xanpl e.org’ />

Sai nt - Andre St andards Track [ Page 22]



RFC 3921 XVPP | M Cct ober 2004

Exampl e 3: User’'s server sends initial presence to contacts with
subscription="fron' and subscripti on="both" on behalf of the user’s
avai |l abl e resource

<presence
from=’ roneo@xanpl e. net/orchard
to="juliet@xanple.con/>

<presence
from=’ roneo@xanpl e. net/orchard
to="mercuti o@xanple.org’ />

Exampl e 4: Contacts’ servers reply to presence probe on behal f of al
avai | abl e resources:

<presence
from= juliet @xanpl e. com bal cony’
to=" romeo@xanpl e. net/ orchard
xm :lang="en’ >
<show>away</ show>
<status>be right back</status>
<priority>0</priority>
</ presence>

<presence
from= juliet@xanpl e. conf chanber
to="roneo@xanpl e. net/orchard’ >
<priority>1l</priority>
</ presence>

<presence
from=’ benvol i o@xanpl e. or g/ pda
to="ronmeo@xanpl e. net/ orchard
xm : [ ang="en’ >
<show>dnd</ show>
<status>gal |l i vanti ng</ st at us>
</ presence>

Exanpl e 5: Contacts’ servers deliver user’'s initial presence to al
avai |l abl e resources or return error to user

<presence

from=’ roneo@xanpl e. net/orchard’
to="juliet@xanple.conlchanber’/>

Sai nt - Andre St andards Track [ Page 23]



RFC 3921 XVPP | M Cct ober 2004

<presence
from=’ roneo@xanpl e. net/orchard
to="juliet@xanpl e.conibal cony' />

<presence
type="error’
from=" nercuti o@xanpl e.org’
to="roneo@xanpl e. net/orchard’ >
<error type='cancel’ >
<gone xm ns="urn:ietf:paramnms: xm :ns: xmpp-stanzas’ />
</error>
</ presence>

Exanmpl e 6: User sends directed presence to another user not in his
roster:

<presence
from=’ roneo@xanpl e. net/orchard
t o=" nur se@xanpl e. com
xm :lang="en’ >
<show>dnd</ show>
<status>courting Juliet</status>
<priority>0</priority>
</ presence>

Exanmpl e 7: User sends updated avail abl e presence information for
br oadcast i ng:

<presence xm :|ang="en’ >
<show>raway</ show>
<status>l shall return!</status>
<priority>l</priority>

</ presence>

Exampl e 8: User’s server broadcasts updated presence information only
to one contact (not those fromwhoman error was received or to whom
the user sent directed presence):

<presence
from=’ roneo@xanpl e. net/orchard
to="juliet@xanpl e. com
xm :lang="en’ >
<show>away</ show>
<status>l shall return!</status>
<priority>l</priority>
</ presence>

Sai nt - Andre St andards Track [ Page 24]



RFC 3921 XVPP | M Cct ober 2004

Exampl e 9: Contact’'s server delivers updated presence information to
all of the contact’s avail abl e resources:

[to "bal cony" resource...]
<presence
from=’ roneo@xanpl e. net/orchard
to="juliet@xanple.con
xm :lang="en’ >
<show>away</ show>
<status>l shall return!</status>
<priority>1</priority>
</ presence>

[to "chanber" resource...]
<presence
from=’ roneo@xanpl e. net/orchard
to="juliet@xanpl e.com
xm : I ang="en’ >
<show>away</ show>
<status>| shall return!</status>
<priority>l</priority>
</ presence>

Exanpl e 10: One of the contact’s resources broadcasts final presence:
<presence from='juliet@xanpl e.conibal cony’ type='unavail able’/>

Exanmpl e 11: Contact’s server sends unavail abl e presence information
to user:

<presence
t ype=' unavai |l abl e’
frome' juli et @xanpl e. com bal cony’
to="ronmeo@xanpl e. net/orchard’ />

Exampl e 12: User sends final presence:

<presence from=' romeo@xanpl e. net/ orchard
type=' unavai l abl e’
xm : [ ang="en’ >
<st at us>gone hone</ st at us>
</ presence>

Sai nt - Andre St andards Track [ Page 25]



RFC 3921 XVPP | M Cct ober 2004

Exampl e 13: User’s server broadcasts unavail able presence infornmation
to contact as well as to the person to whomthe user sent directed
presence:

<presence
type=' unavai l abl e’
from=’ roneo@xanpl e. net/orchard
to="juliet@xanple.con
xm :lang="en’ >
<st at us>gone hone</ st at us>
</ presence>

<presence
from=’ roneo@xanpl e. net/orchard
t o=" nur se@xanpl e. com
xm : [ ang="en’ >
<st at us>gone hone</ st at us>
</ presence>

6. Managi ng Subscriptions

In order to protect the privacy of instant messagi ng users and any
other entities, presence and availability information is disclosed
only to other entities that the user has approved. Wen a user has
agreed that another entity may view its presence, the entity is said
to have a subscription to the user’'s presence information. A
subscription |l asts across sessions; indeed, it lasts until the
subscri ber unsubscribes or the subscribee cancels the

previousl y-granted subscription. Subscriptions are nanaged within
XMPP by sendi ng presence stanzas containing specially-defined
attributes.

Note: There are inportant interactions between subscriptions and
rosters; these are defined under Integration of Roster Itens and
Presence Subscriptions (Section 8), and the reader nust refer to that
section for a conplete understandi ng of presence subscriptions.

6.1. Requesting a Subscription

A request to subscribe to another entity's presence is nade by
sendi ng a presence stanza of type "subscribe".

Exanmpl e: Sendi ng a subscription request:

<presence to="juliet@xanpl e.com type="subscribe'/>

Sai nt - Andre St andards Track [ Page 26]



RFC 3921 XVPP | M Cct ober 2004

For client and server responsibilities regarding presence
subscription requests, refer to Presence Subscriptions (Section
5.1.6).

6.2. Handling a Subscription Request
When a client receives a subscription request fromanother entity, it
MUST ei ther approve the request by sending a presence stanza of type
"subscri bed" or refuse the request by sending a presence stanza of
type "unsubscri bed".
Exanpl e: Approving a subscription request:
<presence to="ronmeo@xanpl e. net’ type='subscribed' />
Exanmpl e: Refusing a presence subscription request:
<presence to="roneo@xanpl e. net’ type='unsubscribed’ />

6.3. Cancelling a Subscription from Another Entity

If a user would like to cancel a previously-granted subscription
request, it sends a presence stanza of type "unsubscri bed".

Exanmpl e: Cancelling a previously granted subscription request:
<presence to='romeo@xanpl e. net’ type='unsubscribed’ />
6.4. Unsubscribing from Another Entity’'s Presence

If a user would |ike to unsubscribe fromthe presence of another
entity, it sends a presence stanza of type "unsubscribe".

Exanpl e: Unsubscribing froman entity’s presence:
<presence to="juliet@xanple.con type= unsubscribe’/>

7. Roster Mnagenent
In XMPP, one’s contact list is called a roster, which consists of any
nunber of specific roster itens, each roster itembeing identified by
a unique JID (usually of the form <contact @omain>). A user’s roster

is stored by the user’s server on the user’s behalf so that the user
may access roster information from any resource.

Sai nt - Andre St andards Track [ Page 27]



RFC 3921 XVPP | M Cct ober 2004

Note: There are inmportant interactions between rosters and
subscriptions; these are defined under Integration of Roster Itens
and Presence Subscriptions (Section 8), and the reader nust refer to
that section for a conplete understandi ng of roster managenent.

7.1. Syntax and Semantics

Rosters are managed using |1 Q stanzas, specifically by neans of a
<query/> child element qualified by the 'jabber:iqg:roster’ nanespace.
The <query/> el enment MAY contain one or nore <item > children, each
descri bing a unique roster itemor "contact”.

The "key" or unique identifier for each roster itemis a JID
encapsulated in the "jid attribute of the <itemi> elenent (which is
REQUI RED). The value of the 'jid attribute SHOULD be of the form
<user @omain> if the itemis associated with another (human) instant
nmessagi ng user.

The state of the presence subscription in relation to a roster item
is captured in the 'subscription' attribute of the <item > el enent.
Al l owabl e values for this attribute are:

0 "none" -- the user does not have a subscription to the contact’s
presence information, and the contact does not have a subscription
to the user’s presence infornmation

o "to" -- the user has a subscription to the contact’s presence
i nformation, but the contact does not have a subscription to the
user’s presence information

o "fronl -- the contact has a subscription to the user’s presence
i nformation, but the user does not have a subscription to the
contact’s presence information

o "both" -- both the user and the contact have subscriptions to each
other’s presence information

Each <item > el enent MAY contain a 'nane’ attribute, which sets the
“ni cknane" to be associated with the JID, as determi ned by the user
(not the contact). The value of the "name’ attribute is opaque.

Each <item > el ement MAY contain one or nore <group/> child el enents,

for use in collecting roster itens into various categories. The XM
character data of the <group/> elenent is opaque.

Sai nt - Andre St andards Track [ Page 28]



RFC 3921 XVPP | M Cct ober 2004

7.2. Business Rul es

A server MJST ignore any 'to’ address on a roster "set", and MJST
treat any roster "set" as applying to the sender. For added safety,
a client SHOULD check the "front address of a "roster push" (incom ng
| Q of type "set" containing a roster iten) to ensure that it is from
a trusted source; specifically, the stanza MJST either have no ’'fron
attribute (i.e., inplicitly fromthe server) or have a ’'fron

attri bute whose val ue matches the user’s bare JID (of the form

<user @omai n>) or full JID (of the form <user @omai n/ resource>);

ot herwi se, the client SHOULD ignore the "roster push".

7.3. Retrieving One’s Roster on Login

Upon connecting to the server and becomi ng an active resource, a
client SHOULD request the roster before sending initial presence
(however, because receiving the roster may not be desirable for al
resources, e.g., a connection with limted bandwidth, the client’s
request for the roster is OPTIONAL). |If an avail able resource does
not request the roster during a session, the server MJUST NOT send it
presence subscriptions and associ ated roster updates.

Exampl e: Cient requests current roster from server:

<iq from= juliet@xanple.combal cony’ type="get’ id="roster_1'>
<query xm ns='jabber:iq:roster’/>
</ig>

Exampl e: Cient receives roster from server:

<iqg to="juliet@xanple.conlbal cony’ type="result’ id="roster 1'>
<query xm ns='jabber:iq:roster’>
<itemjid="ronmeo@xanpl e. net’
name=" Ronmeo’
subscri ption="both’ >
<gr oup>Fri ends</ gr oup>
</itenp
<itemjid=" nmercuti o@xanple.org
name=" Mercuti o’
subscription="froni >
<group>Fri ends</ group>
</itenp
<itemjid= benvolio@xanple.org
nanme=' Benvolio
subscri ption="both’ >
<gr oup>Fri ends</ gr oup>
<litenp
</ query>

Sai nt - Andre St andards Track [ Page 29]



RFC 3921 XVPP | M Cct ober 2004

</ig>

7.4. Adding a Roster Item
At any time, a user MAY add an itemto his or her roster.
Example: Cdient adds a new item

<iqg from=' juliet@xanpl e.com bal cony’ type='set’ id="roster_2'>
<query xm ns='jabber:iq:roster’>
<itemjid=" nurse@xanpl e. com
name=" Nur se’ >
<gr oup>Ser vant s</ gr oup>
<litenp
</ query>
</ig>

The server MJUST update the roster information in persistent storage,
and al so push the change out to all of the user’'s avail abl e resources
that have requested the roster. This "roster push" consists of an I Q
stanza of type "set" fromthe server to the client and enabl es al
avai |l abl e resources to remain in sync with the server-based roster

i nf or mati on.

Exanmpl e: Server (1) pushes the updated roster information to al
avai | abl e resources that have requested the roster and (2) replies
with an IQresult to the sending resource:

<iqg to="juliet@xanpl e.coni bal cony’
type='set’
i d=" a78b4g6ha463’ >
<query xm ns='jabber:iq:roster’>
<itemjid=" nurse@xanpl e. com
name=" Nur se
subscri pti on=" none’ >
<gr oup>Ser vant s</ gr oup>
</itenp
</ query>
</ig>

<iqg to="juliet@xanpl e.conl chanber’
type='set’
i d=" a78b4g6ha464’ >
<query xm ns='jabber:iq:roster’>
<itemjid=" nurse@xanpl e. com
name=" Nur se
subscri pti on=" none’ >
<gr oup>Ser vant s</ gr oup>

Sai nt - Andre St andards Track [ Page 30]



RFC 3921 XVPP | M Cct ober 2004

</itenp
</ query>
</ig>

<iqg to="juliet@xanple.conlbal cony’ type="result’ id="roster_2'/>

As required by the semantics of the | Q stanza kind as defined in
[ XMPP- CORE], each resource that received the roster push MUST reply
with an I Q stanza of type "result" (or "error").

Exampl e: Resources reply with an IQresult to the server:

<iq from="juliet@xanpl e. com bal cony’
t o=" exanpl e. con
type='result’
i d=" a78b4g6ha463’ / >

<iqg fronm= juliet@xanpl e. com chanber’
t o=" exanpl e. con
type='result’
i d=" a78b4g6had464’ / >

7.5. Updating a Roster Item

Updating an existing roster item(e.g., changing the group) is done
in the same way as adding a new roster item i.e., by sending the
roster itemin an | Q set to the server.

Exampl e: User updates roster item (added group):

<iqg from=" juliet@xanpl e.com chanber’ type='set’ id="roster_ 3 >
<query xml ns='jabber:iq:roster’>
<itemjid="ronmeo@xanpl e. net’
name=' Roneo’
subscri ption="both’ >
<group>Fri ends</ group>
<gr oup>Lover s</ gr oup>
</itenp
</ query>
</ig>

As with adding a roster item when updating a roster itemthe server
MUST update the roster information in persistent storage, and al so
initiate a roster push to all of the user’s avail able resources that
have requested the roster.

Sai nt - Andre St andards Track [ Page 31]



RFC 3921 XVPP | M Cct ober 2004

7.6. Deleting a Roster Item

At any tine, a user MAY delete an itemfromhis or her roster by
sending an 1 Q set to the server and meking sure that the value of the
"subscription’ attribute is "renove" (a conpliant server MJST ignore
any other values of the 'subscription attribute when received froma
client).

Exanmple: Cient renoves an item

<iqg fronm= juliet@xanpl e.com bal cony’ type="set’ id="roster_4'>
<query xml ns='jabber:iq:roster’ >
<itemjid=" nurse@xanpl e.com subscription='renove' />
</ query>
</ig>

As with adding a roster item when deleting a roster itemthe server
MUST update the roster information in persistent storage, initiate a
roster push to all of the user’s avail abl e resources that have
requested the roster (with the 'subscription’ attribute set to a

val ue of "renove"), and send an IQresult to the initiating resource.

For further information about the inplications of this conmand, see
Renoving a Roster Item and Cancelling Al Subscriptions (Section
8.6).

8. Integration of Roster Itens and Presence Subscriptions

8.1. Overview
Sone | evel of integration between roster itens and presence
subscriptions is normally expected by an instant nessagi ng user
regardi ng the user’s subscriptions to and from other contacts. This
section describes the level of integration that MJUST be supported
wi thin XMPP instant messagi ng applications.
There are four primary subscription states:
o None -- the user does not have a subscription to the contact’s

presence information, and the contact does not have a subscription
to the user’s presence information

Sai nt - Andre St andards Track [ Page 32]



RFC 3921 XVPP | M Cct ober 2004

0o To -- the user has a subscription to the contact’s presence
i nformation, but the contact does not have a subscription to the
user’s presence information

o From-- the contact has a subscription to the user’s presence
i nformati on, but the user does not have a subscription to the
contact’s presence information

0 Both -- both the user and the contact have subscriptions to each
other’s presence information (i.e., the union of 'from and 'to’)

Each of these states is reflected in the roster of both the user and
the contact, thus resulting in durable subscription states.

Narrative explanations of how these subscription states interact with
roster itens in order to conplete certain defined use cases are
provided in the foll owi ng sub-sections. Full details regarding
server and client handling of all subscription states (including
pendi ng states between the primary states |isted above) is provided
in Subscription States (Section 9).

The server MUST NOT send presence subscription requests or roster
pushes to unavail abl e resources, nor to avail abl e resources that have
not requested the roster.

The 'fromi and 'to’ addresses are OPTIONAL in roster pushes; if

i ncl uded, their values SHOULD be the full JID of the resource for
that session. A client MJST acknow edge each roster push with an |Q
stanza of type "result"” (for the sake of brevity, these stanzas are
not shown in the follow ng exanples but are required by the 1Q
semantics defined in [ XMPP- CORE]) .

8.2. User Subscribes to Contact

The process by which a user subscribes to a contact, including the
i nteraction between roster itenms and subscription states, is
descri bed bel ow.

1. In preparation for being able to render the contact in the user’s
client interface and for the server to keep track of the
subscription, the user’s client SHOULD performa "roster set" for
the newroster item This request consists of sending an 1Q
stanza of type='set’ containing a <query/> elenment qualified by
the 'jabber:iq:roster’ namespace, which in turn contains an
<iteml > el enent that defines the new roster item the <item >
el ement MJST possess a 'jid attribute, MAY possess a 'nane’
attribute, MJUST NOT possess a 'subscription’ attribute, and MAY
contain one or nore <group/> child el enents:

Sai nt - Andre St andards Track [ Page 33]



RFC 3921 XVPP | M Cct ober 2004

<iqg type='set’ id="setl >

<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
name=" MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
</itenp
</ query>

</ig>

2.

As a result, the user’s server (1) MIST initiate a roster push
for the newroster itemto all avail able resources associ ated
with this user that have requested the roster, setting the
"subscription’ attribute to a value of "none"; and (2) MJST reply
to the sending resource with an 1Qresult indicating the success
of the roster set:

<ig type='set’>

<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
subscri pti on=" none’
name=" MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
</itenp
</ query>

</ig>

<ig type="result’ id="setl />

3.

If the user wants to request a subscription to the contact’s
presence information, the user’s client MJUST send a presence
stanza of type='subscribe’ to the contact:

<presence to='contact @xanpl e.org’ type= subscribe />

4.

As a result, the user’'s server MIST initiate a second roster push
to all of the user’s available resources that have requested the
roster, setting the contact to the pending sub-state of the
'none’ subscription state; this pending sub-state is denoted by
the inclusion of the ask="subscribe’ attribute in the roster

item

Sai nt - Andre St andards Track [ Page 34]



RFC 3921 XVPP | M Cct ober 2004

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
subscri pti on=" none’
ask='subscri be’
name=" MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
<litenp
</ query>
<lig>

Note: If the user did not create a roster item before sending the
subscription request, the server MJST now create one on behal f of the
user, then send a roster push to all of the user’s avail able
resources that have requested the roster, absent the 'nanme’ attribute
and the <group/> child shown above.

5. The user’s server MJST al so stanp the presence stanza of type
"subscribe" with the user’s bare JID (i.e., <user@xanple.conp)
as the 'from address (if the user provided a 'from address set
to the user’s full JID, the server SHOULD renove the resource
identifier). |If the contact is served by a different host than
the user, the user’s server MJST route the presence stanza to the
contact’s server for delivery to the contact (this case is
assuned t hroughout; however, if the contact is served by the sane
host, then the server can sinply deliver the presence stanza
directly):

<presence
from=" user @xanpl e. coni
to=" cont act @xanpl e. org
type=' subscri be’ />

Note: If the user’s server receives a presence stanza of type "error"
fromthe contact’s server, it MJST deliver the error stanza to the
user, whose client MAY determne that the error is in response to the
out goi ng presence stanza of type "subscribe" it sent previously
(e.g., by tracking an 'id attribute) and then choose to resend the
"subscribe" request or revert the roster to its previous state by
sendi ng a presence stanza of type "unsubscribe"” to the contact.

6. Upon receiving the presence stanza of type "subscribe" addressed
to the contact, the contact’s server MJST deternmine if there is
at |l east one avail able resource fromwhich the contact has
requested the roster. |If so, it MJST deliver the subscription
request to the contact (if not, the contact’s server MJST store
the subscription request offline for delivery when this condition

Sai nt - Andre St andards Track [ Page 35]



RFC 3921 XVPP | M Cct ober 2004

is next nmet; normally this is done by adding a roster itemfor
the contact to the user’s roster, with a state of "None + Pendi ng
In" as defined under Subscription States (Section 9), however a
server SHOULD NOT push or deliver roster items in that state to
the contact). No matter when the subscription request is
delivered, the contact nust decide whether or not to approve it
(subject to the contact’'s configured preferences, the contact’s
client MAY approve or refuse the subscription request without
presenting it to the contact). Here we assune the "happy path"
that the contact approves the subscription request (the alternate
fl ow of declining the subscription request is defined in Section
8.2.1). In this case, the contact’s client (1) SHOULD performa
roster set specifying the desired nickname and group for the user
(if any); and (2) MJST send a presence stanza of type
"subscribed" to the user in order to approve the subscription
request.

<iqg type='set’ id="set2' >
<query xm ns='jabber:iq:roster’>
<item
jid="user @xanpl e. con
name=" SomeUser’ >
<gr oup>SoneG oup</ gr oup>
</itenp
</ query>
</ig>

<presence to="user @xanpl e. com type=" subscribed’ />

7. As aresult, the contact’s server (1) MJST initiate a roster push
to all available resources associated with the contact that have
requested the roster, containing a roster itemfor the user with
the subscription state set to "fromi (the server MJST send this
even if the contact did not performa roster set); (2) MJST
return an IQresult to the sending resource indicating the
success of the roster set; (3) MJST route the presence stanza of
type "subscribed" to the user, first stanping the 'from address
as the bare JID (<contact @xanple.org>) of the contact; and (4)
MUST send avail able presence fromall of the contact’s avail able
resources to the user

Sai nt - Andre St andards Track [ Page 36]



RFC 3921 XVPP | M Cct ober 2004

<iq type='set’ to='contact @xanple.org/resource’ >
<query xm ns='jabber:iq:roster’>
<item
j 1 d="user @xanpl e. com
subscri ption="fron
name=" SomeUser’ >
<gr oup>SonmeG oup</ gr oup>
<litenp
</ query>
</ig>

<ig type='result’ to=' contact @xanple.org/resource’ id="set2' />

<presence
from=’ cont act @xanpl e. org
to=" user @xanpl e. con
type=' subscri bed’ />

<presence
from=’ cont act @xanpl e. org/ resource
t o=" user @xanpl e. coni / >

Note: If the contact’s server receives a presence stanza of type
"error" fromthe user’s server, it MJST deliver the error stanza to
the contact, whose client MAY determ ne that the error is in response
to the outgoi ng presence stanza of type "subscribed" it sent
previously (e.g., by tracking an 'id attribute) and then choose to
resend the "subscribed" notification or revert the roster to its
previous state by sending a presence stanza of type "unsubscribed" to
t he user.

8. Upon receiving the presence stanza of type "subscribed" addressed
to the user, the user’s server MJST first verify that the contact
isinthe user’s roster with either of the follow ng states: (a)
subscri ption="none’ and ask='subscribe’ or (b)
subscription="fronm and ask=subscribe’. |[If the contact is not
in the user’s roster with either of those states, the user’s
server MJST silently ignore the presence stanza of type
"subscribed" (i.e., it MJST NOT route it to the user, nodify the
user’s roster, or generate a roster push to the user’s avail able
resources). |If the contact is in the user’s roster with either
of those states, the user’s server (1) MJST deliver the presence
stanza of type "subscribed" fromthe contact to the user; (2)
MJUST initiate a roster push to all of the user’s avail able
resources that have requested the roster, containing an updated
roster itemfor the contact with the 'subscription attribute set

Sai nt - Andre St andards Track [ Page 37]



RFC 3921 XVPP | M Cct ober 2004

to a value of "to"; and (3) MJST deliver the avail able presence
stanza received fromeach of the contact’s avail able resources to
each of the user’s avail abl e resources:

<presence
t o=" user @xanpl e. con
from=’ cont act @xanpl e. org’
type=' subscri bed’ />

<iqg type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanple.org’
subscription="to’
name=" MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
<litenp
</ query>
</ig>

<presence
from=’ cont act @xanpl e. or g/ resour ce’
to=" user @xanpl e. conif resource’ />

9. Upon receiving the presence stanza of type "subscribed", the user
SHOULD acknowl edge recei pt of that subscription state
notification through either "affirnming" it by sending a presence
stanza of type "subscribe" to the contact or "denying" it by
sendi ng a presence stanza of type "unsubscribe"” to the contact;
this step does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the user’s server know that it MJST no | onger send notification
of the subscription state change to the user (see Section 9.4).

Fromthe perspective of the user, there now exists a subscription to
the contact’s presence information; fromthe perspective of the
contact, there now exists a subscription fromthe user

8.2.1. Alternate Flow Contact Declines Subscription Request
The above activity flow represents the "happy path" regarding the
user’s subscription request to the contact. The main alternate fl ow

occurs if the contact refuses the user’s subscription request, as
descri bed bel ow.

Sai nt - Andre St andards Track [ Page 38]



RFC 3921 XVPP | M Cct ober 2004

1. If the contact wants to refuse the request, the contact’s client
MJUST send a presence stanza of type "unsubscribed" to the user
(instead of the presence stanza of type "subscribed" sent in Step
6 of Section 8.2):

<presence to="user @xanpl e.con type="unsubscribed />

2. As aresult, the contact’s server MJST route the presence stanza
of type "unsubscribed" to the user, first stanmping the ’fron
address as the bare JI D (<contact @xanpl e.org>) of the contact:

<presence
from=’ cont act @xanpl e. org’
t o=" user @xanpl e. con
type=' unsubscri bed’ / >

Note: If the contact’s server previously added the user to the
contact’s roster for tracking purposes, it MJST renove the rel evant
itemat this tine.

3. Upon receiving the presence stanza of type "unsubscri bed"
addressed to the user, the user’s server (1) MJST deliver that
presence stanza to the user and (2) MJST initiate a roster push
to all of the user’s available resources that have requested the
roster, containing an updated roster itemfor the contact with
the "subscription’ attribute set to a value of "none" and with no
"ask’ attribute:

<presence
from=’ cont act @xanpl e. org
t o=" user @xanpl e. con
type=' unsubscri bed’ / >

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org’
subscri pti on=" none’
name=" MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
<litenp
</ query>
</ig>

4. Upon receiving the presence stanza of type "unsubscribed", the
user SHOULD acknow edge recei pt of that subscription state
notification through either "affirmng" it by sending a presence
stanza of type "unsubscribe" to the contact or "denying" it by

Sai nt - Andre St andards Track [ Page 39]



RFC 3921 XVPP | M Cct ober 2004

sendi ng a presence stanza of type "subscribe" to the contact;
this step does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the user’s server know that it MJST no | onger send notification
of the subscription state change to the user (see Section 9.4).

As a result of this activity, the contact is nowin the user’s roster
with a subscription state of "none", whereas the user is not in the
contact’s roster at all

8.3. Creating a Miutual Subscription

The user and contact can build on the "happy path" described above to
create a nutual subscription (i.e., a subscription of type "both").
The process is described bel ow

1. If the contact wants to create a mutual subscription, the contact
MUST send a subscription request to the user (subject to the
contact’s configured preferences, the contact’s client MAY send
this automatically):

<presence to="user @xanpl e. com type= subscribe' />

2. As aresult, the contact’s server (1) MJST initiate a roster push
to all available resources associated with the contact that have
requested the roster, with the user still in the 'from
subscription state but with a pending 'to’ subscription denoted
by the inclusion of the ask="subscribe’ attribute in the roster
item and (2) MJST route the presence stanza of type "subscribe"
to the user, first stanping the 'from address as the bare JID
(<cont act @xanpl e. org>) of the contact:

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="user @xanpl e. com
subscription="fron
ask='subscri be’
name=' SomeUser’ >
<gr oup>SonmeG oup</ gr oup>
<litenp
</ query>
</ig>

Sai nt - Andre St andards Track [ Page 40]



RFC 3921 XVPP | M Cct ober 2004

<presence
from=’ cont act @xanpl e. org
t o=" user @xanpl e. con
type=' subscri be’ />

Note: If the contact’s server receives a presence stanza of type
"error" fromthe user’s server, it MJST deliver the error stanza to
the contact, whose client MAY determine that the error is in response
to the outgoi ng presence stanza of type "subscribe" it sent
previously (e.g., by tracking an 'id attribute) and then choose to
resend the "subscribe" request or revert the roster to its previous
state by sending a presence stanza of type "unsubscribe" to the user

3. Upon receiving the presence stanza of type "subscribe" addressed
to the user, the user’s server nust deternmine if there is at
| east one avail able resource for which the user has requested the
roster. |If so, the user’s server MJST deliver the subscription
request to the user (if not, it MJST store the subscription
request offline for delivery when this condition is next net). No
matter when the subscription request is delivered, the user nust
then deci de whether or not to approve it (subject to the user’s
configured preferences, the user’s client MAY approve or refuse
the subscription request without presenting it to the user).
Here we assunme the "happy path" that the user approves the
subscription request (the alternate flow of declining the
subscription request is defined in Section 8.3.1). |In this case,
the user’s client MIJST send a presence stanza of type
"subscribed" to the contact in order to approve the subscription
request.

<presence to='contact @xanple.org’ type= subscribed />

4. As aresult, the user’s server (1) MIST initiate a roster push to
all of the user’s avail able resources that have requested the
roster, containing a roster itemfor the contact with the
"subscription’ attribute set to a value of "both"; (2) MJST route
the presence stanza of type "subscribed" to the contact, first
stanping the "froni address as the bare JI D (<user @xanpl e. con®p)
of the user; and (3) MJST send to the contact the full XM of the
| ast presence stanza with no 'to’ attribute received by the
server fromeach of the user’s available resources (subject to
privacy lists in force for each session):

Sai nt - Andre St andards Track [ Page 41]



RFC 3921 XVPP | M Cct ober 2004

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
subscri pti on="bot h’
name="MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
<litenp
</ query>
</ig>

<presence
from=" user @xanpl e. coni
to=" cont act @xanpl e. org
type=' subscri bed’ />

<presence
from=’ user @xanpl e. coni resource
to=" cont act @xanple.org’ />

Note: If the user’s server receives a presence stanza of type "error"
fromthe contact’s server, it MJST deliver the error stanza to the
user, whose client MAY determine that the error is in response to the
out goi ng presence stanza of type "subscribed" it sent previously
(e.g., by tracking an 'id attribute) and then choose to resend the
subscription request or revert the roster to its previous state by
sendi ng a presence stanza of type "unsubscribed" to the contact.

5. Upon receiving the presence stanza of type "subscribed" addressed
to the contact, the contact’s server MJUST first verify that the
user is in the contact’s roster with either of the follow ng
states: (a) subscription="none’ and ask='subscribe’ or (b)
subscription="from and ask="subscribe’. |If the user is not in
the contact’s roster with either of those states, the contact’s
server MJST silently ignore the presence stanza of type
"subscribed" (i.e., it MJST NOT route it to the contact, nodify
the contact’s roster, or generate a roster push to the contact’s
avail able resources). |If the user is in the contact’s roster
with either of those states, the contact’s server (1) MJST
deliver the presence stanza of type "subscribed" fromthe user to
the contact; (2) MIST initiate a roster push to all avail able
resources associated with the contact that have requested the
roster, containing an updated roster itemfor the user with the
"subscription’ attribute set to a value of "both"; and (3) MJST
deliver the avail able presence stanza received fromeach of the
user’s avail able resources to each of the contact’s avail able
resour ces:

Sai nt - Andre St andards Track [ Page 42]



RFC 3921 XVPP | M Cct ober 2004

<presence
frome’ user @xanpl e. con
to=" cont act @xanpl e. org
type=' subscri bed’ />

<ig type='set’>
<query xm ns='jabber:iq:roster’>
<item
jid="user @xanpl e. con
subscri pti on="bot h’
name=" SomeUser’ >
<gr oup>SoneG& oup</ gr oup>
</itenp
</ query>
</ig>

<presence
from=’ user @xanpl e. coni resource
to=" cont act @xanpl e. org/ resource’ />

6. Upon receiving the presence stanza of type "subscribed", the
contact SHOULD acknow edge recei pt of that subscription state
notification through either "affirmng" it by sending a presence
stanza of type "subscribe" to the user or "denying" it by sending
a presence stanza of type "unsubscribe" to the user; this step
does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the contact’s server know that it MJST no | onger send
notification of the subscription state change to the contact (see
Section 9.4).

The user and the contact now have a nutual subscription to each
other’s presence -- i.e., the subscription is of type "both".

8.3.1. Alternate Flow User Declines Subscription Request

The above activity flow represents the "happy path" regarding the
contact’s subscription request to the user. The nain alternate flow
occurs if the user refuses the contact’s subscription request, as
descri bed bel ow.

1. If the user wants to refuse the request, the user’s client MJST
send a presence stanza of type "unsubscribed" to the contact
(instead of the presence stanza of type "subscribed" sent in Step
3 of Section 8.3):

<presence to='contact @xanpl e.org’ type= unsubscribed />

Sai nt - Andre St andards Track [ Page 43]



RFC 3921 XVPP | M Cct ober 2004

2. As aresult, the user’'s server MJST route the presence stanza of
type "unsubscribed" to the contact, first stanping the ’'from
address as the bare JI D (<user @xanpl e.conr) of the user

<presence
from=’ user @xanpl e. comi
t o=" cont act @xanpl e. org’
type=' unsubscri bed’ / >

3. Upon receiving the presence stanza of type "unsubscri bed"
addressed to the contact, the contact’s server (1) MJST deliver
that presence stanza to the contact; and (2) MJUST initiate a
roster push to all avail able resources associated with the
contact that have requested the roster, containing an updated
roster itemfor the user with the 'subscription’ attribute set to
a value of "front and with no 'ask’ attribute:

<presence
from=" user @xanpl e. coni
to=" cont act @xanpl e. org
type=' unsubscri bed’ / >

<iqg type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="user @xanpl e. con
subscription="fron
name=" SomeUser’ >
<gr oup>SoneG oup</ gr oup>
</itenp
</ query>
</ig>

4. Upon receiving the presence stanza of type "unsubscribed", the
contact SHOULD acknow edge recei pt of that subscription state
notification through either "affirnmng" it by sending a presence
stanza of type "unsubscribe" to the user or "denying" it by
sendi ng a presence stanza of type "subscribe" to the user; this
step does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the contact’s server know that it MJST no | onger send
notification of the subscription state change to the contact (see
Section 9.4).

As a result of this activity, there has been no change in the
subscription state; i.e., the contact is in the user’s roster with a
subscription state of "to" and the user is in the contact’s roster
with a subscription state of "front

Sai nt - Andre St andards Track [ Page 44]



RFC 3921 XVPP | M Cct ober 2004

8. 4.

8. 4.

Sai

Unsubscri bi ng

At any time after subscribing to a contact’s presence information, a
user MAY unsubscribe. Wile the XM. that the user sends to make this
happen is the same in all instances, the subsequent subscription
state is different depending on the subscription state obtaining when
the unsubscri be "conmand" is sent. Both possible scenarios are
descri bed bel ow.

1. Case #1: Unsubscribing Wien Subscription is Not Mitua

In the first case, the user has a subscription to the contact’s
presence information but the contact does not have a subscription to
the user’s presence information (i.e., the subscription is not yet
mut ual ).

1. If the user wants to unsubscribe fromthe contact’s presence
i nformation, the user MJST send a presence stanza of type
"unsubscribe" to the contact:

<presence to='contact @xanple.org’ type= unsubscribe’'/>

2. As aresult, the user’s server (1) MJIST send a roster push to al
of the user’s avail abl e resources that have requested the roster,
contai ning an updated roster itemfor the contact with the
"subscription’ attribute set to a value of "none"; and (2) MJST
route the presence stanza of type "unsubscribe" to the contact,
first stamping the 'from address as the bare JID
(<user @xanpl e. conr) of the user

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
subscri pti on=" none’
name="MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
<litenp
</ query>
</ig>

<presence
from=" user @xanpl e. coni
to=" cont act @xanpl e. org
type=' unsubscri be’' />

nt - Andr e St andards Track [ Page 45]



RFC 3921 XVPP | M Cct ober 2004

3. Upon receiving the presence stanza of type "unsubscri be"
addressed to the contact, the contact’s server (1) MJST initiate
a roster push to all avail able resources associated with the
contact that have requested the roster, containing an updated
roster itemfor the user with the 'subscription’ attribute set to
a value of "none" (if the contact is unavail able or has not
requested the roster, the contact’s server MJST nodify the roster
itemand send that nodified itemthe next tine the contact
requests the roster); and (2) MJIST deliver the "unsubscribe"
state change notification to the contact:

<ig type='set’>
<query xml ns='jabber:iq:roster’>
<item
jid="user @xanpl e. con
subscri pti on=" none’
name=" SomeUser’ >
<gr oup>SonmeG oup</ gr oup>
</itenp
</ query>
</ig>

<presence
from=’ user @xanpl e. comi
to=" cont act @xanpl e. org’
type=' unsubscri be’' />

4. Upon receiving the presence stanza of type "unsubscribe", the
contact SHOULD acknow edge recei pt of that subscription state
notification through either "affirnming" it by sending a presence
stanza of type "unsubscribed" to the user or "denying" it by
sendi ng a presence stanza of type "subscribed" to the user; this
step does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the contact’s server know that it MJST no | onger send
notification of the subscription state change to the contact (see
Section 9.4).

5. The contact’s server then (1) MJST send a presence stanza of type
"unsubscri bed" to the user; and (2) SHOULD send unavail abl e
presence fromall of the contact’s available resources to the
user:

<presence
from=’ cont act @xanpl e. org
to=" user @xanpl e. con
type=" unsubscri bed’ / >

Sai nt - Andre St andards Track [ Page 46]



RFC 3921 XVPP | M Cct ober 2004

8.

4.

<presence
from=’ cont act @xanpl e. org/ resource
t o=" user @xanpl e. con
type="unavail able' />

6. Wien the user’s server receives the presence stanzas of type
"unsubscri bed" and "unavailable", it MJST deliver themto the
user:

<presence
from=’ cont act @xanpl e. org’
t o=" user @xanpl e. con
type='unsubscri bed’ / >

<presence
from=’ cont act @xanpl e. or g/ resour ce’
to=" user @xanpl e. con
type='unavail able' />

7. Upon receiving the presence stanza of type "unsubscribed", the
user SHOULD acknow edge recei pt of that subscription state
notification through either "affirmng" it by sending a presence
stanza of type "unsubscribe" to the contact or "denying" it by
sendi ng a presence stanza of type "subscribe" to the contact;
this step does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the user’s server know that it MJST no | onger send notification
of the subscription state change to the user (see Section 9.4).

2. Case #2: Unsubscribing When Subscription is Mitua

In the second case, the user has a subscription to the contact’s
presence informati on and the contact also has a subscription to the
user’s presence information (i.e., the subscription is nutual).

1. |If the user wants to unsubscribe fromthe contact’s presence
i nformation, the user MJST send a presence stanza of type
"unsubscri be" to the contact:

<presence to='contact @xanpl e.org’ type= unsubscribe’'/>

2. As aresult, the user’'s server (1) MJST send a roster push to al
of the user’s avail abl e resources that have requested the roster,
contai ning an updated roster itemfor the contact with the
"subscription’ attribute set to a value of "from'; and (2) MJST
route the presence stanza of type "unsubscribe" to the contact,
first stamping the 'from address as the bare JID
(<user @xanpl e. conr) of the user

Sai nt - Andre St andards Track [ Page 47]



RFC 3921 XVPP | M Cct ober 2004

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
subscri ption="fron
name="MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
<litenp
</ query>
</ig>

<presence
from=" user @xanpl e. coni
to=" cont act @xanpl e. org
type=' unsubscri be’ />

3. Upon receiving the presence stanza of type "unsubscri be”
addressed to the contact, the contact’s server (1) MJST initiate
a roster push to all avail able resources associated with the
contact that have requested the roster, containing an updated
roster itemfor the user with the 'subscription’ attribute set to
a value of "to" (if the contact is unavail able or has not
requested the roster, the contact’s server MJST nodify the roster
itemand send that nodified itemthe next tine the contact
requests the roster); and (2) MJIST deliver the "unsubscri be"
state change notification to the contact:

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="user @xanpl e. com
subscription="to’
name=' SomeUser’ >
<gr oup>SonmeG oup</ gr oup>
<litenp
</ query>
</ig>

<presence
from=’ user @xanpl e. com
to=" cont act @xanpl e. org
type=' unsubscri be’' />

4. Upon receiving the presence stanza of type "unsubscribe", the
contact SHOULD acknow edge recei pt of that subscription state
notification through either "affirmng" it by sending a presence
stanza of type "unsubscribed" to the user or "denying" it by
sendi ng a presence stanza of type "subscribed" to the user; this

Sai nt - Andre St andards Track [ Page 48]



RFC 3921 XVPP | M Cct ober 2004

step does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the contact’s server know that it MJST no | onger send
notification of the subscription state change to the contact (see
Section 9.4).

5. The contact’'s server then (1) MJST send a presence stanza of type
"unsubscri bed" to the user; and (2) SHOULD send unavail abl e
presence fromall of the contact’s available resources to the
user:

<presence
from=’ cont act @xanpl e. org’
t o=" user @xanpl e. con
type=' unsubscri bed’ / >

<presence
from=’ cont act @xanpl e. org/ resource
t o=" user @xanpl e. con
type='unavail able' />

6. Wen the user’s server receives the presence stanzas of type
"unsubscribed" and "unavail able", it MJST deliver themto the
user:

<presence
from=’ cont act @xanpl e. org
to=" user @xanpl e. con
type=" unsubscri bed’ / >

<presence
from=’ cont act @xanpl e. org/ resource
to=" user @xanpl e. con
type='unavail able' />

7. Upon receiving the presence stanza of type "unsubscribed", the
user SHOULD acknow edge recei pt of that subscription state
notification through either "affirnmng" it by sending a presence
stanza of type "unsubscribe" to the contact or "denying" it by
sendi ng a presence stanza of type "subscribe" to the contact;
this step does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the user’s server know that it MJST no | onger send notification
of the subscription state change to the user (see Section 9.4).

Note: oviously this does not result in removal of the roster item

fromthe user’s roster, and the contact still has a subscription to
the user’s presence information. In order to both conpletely cance

Sai nt - Andre St andards Track [ Page 49]



RFC 3921 XVPP | M Cct ober 2004

a nutual subscription and fully renove the roster itemfromthe
user’s roster, the user SHOULD update the roster itemwth
subscripti on="renove’ as defined under Renoving a Roster Item and
Cancel ling Al Subscriptions (Section 8.6).

8.5. Cancelling a Subscription

At any time after approving a subscription request froma user, a
contact MAY cancel that subscription. Wile the XM. that the contact
sends to nake this happen is the sane in all instances, the
subsequent subscription state is different depending on the
subscription state obtaining when the cancellation was sent. Both
possi bl e scenarios are descri bed bel ow.

8.5.1. Case #1: Cancelling When Subscription is Not Mitua
In the first case, the user has a subscription to the contact’s

presence information but the contact does not have a subscription to
the user’s presence information (i.e., the subscription is not yet

mut ual ).

1. If the contact wants to cancel the user’s subscription, the
contact MJST send a presence stanza of type "unsubscribed" to the
user:

<presence to='user @xanpl e.conm type="unsubscribed />

2. As aresult, the contact’s server (1) MJST send a roster push to
all of the contact’s avail able resources that have requested the
roster, containing an updated roster itemfor the user with the
"subscription’ attribute set to a value of "none"; (2) MJST route
the presence stanza of type "unsubscribed" to the user, first
stanping the "froni address as the bare JID
(<cont act @xanpl e.org>) of the contact; and (3) SHOULD send
unavail abl e presence fromall of the contact’s avail able
resources to the user

<iq type='set’'>
<query xm ns='jabber:iq:roster’>
<item
j 1 d="user @xanpl e. com
subscri pti on=" none’
name=" SoneUser’ >
<gr oup>SonmeG oup</ gr oup>
<litenp
</ query>
<lig>

Sai nt - Andre St andards Track [ Page 50]



RFC 3921 XVPP | M Cct ober 2004

<presence
from=’ cont act @xanpl e. org
t o=" user @xanpl e. con
type=" unsubscri bed’ / >

<presence
from=’ cont act @xanpl e. org/ resource
t o=" user @xanpl e. con
type='unavail able' />

3. Upon receiving the presence stanza of type "unsubscri bed"
addressed to the user, the user’s server (1) MJST initiate a
roster push to all of the user’s avail abl e resources that have
requested the roster, containing an updated roster itemfor the
contact with the ’subscription’ attribute set to a val ue of
"none" (if the user is unavailable or has not requested the
roster, the user’s server MJST nodify the roster item and send
that nodified itemthe next tinme the user requests the roster);
(2) MUST deliver the "unsubscribed" state change notification to
all of the user’s avail able resources; and (3) MJST deliver the
unavai |l abl e presence to all of the user’s avail abl e resources:

<iqg type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
subscri pti on=" none’
name=" MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
</itenp
</ query>
</ig>

<presence
from=’ cont act @xanpl e. org’
t o=" user @xanpl e. con
type='unsubscri bed’ / >

<presence
from=’ cont act @xanpl e. or g/ resour ce’
to=" user @xanpl e. con
type='unavail able' />

4. Upon receiving the presence stanza of type "unsubscribed", the
user SHOULD acknow edge recei pt of that subscription state
notification through either "affirmng" it by sending a presence
stanza of type "unsubscribe" to the contact or "denying” it by
sendi ng a presence stanza of type "subscribe" to the contact;

Sai nt - Andre St andards Track [ Page 51]



RFC 3921 XVPP | M Cct ober 2004

this step does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the user’s server know that it MJST no | onger send notification
of the subscription state change to the user (see Section 9.4).

8.5.2. Case #2: Cancelling Wien Subscription is Mitua
In the second case, the user has a subscription to the contact’s

presence informati on and the contact also has a subscription to the
user’s presence information (i.e., the subscription is nutual).

1. |If the contact wants to cancel the user’s subscription, the
contact MJST send a presence stanza of type "unsubscribed" to the
user:

<presence to='user @xanpl e.com type="unsubscribed />

2. As aresult, the contact’s server (1) MJST send a roster push to
all of the contact’s avail able resources that have requested the
roster, containing an updated roster itemfor the user with the
"subscription’ attribute set to a value of "to"; (2) MJST route
the presence stanza of type "unsubscribed" to the user, first
stanping the "froni address as the bare JID
(<cont act @xanpl e.org>) of the contact; and (3) SHOULD send
unavail abl e presence fromall of the contact’s avail able
resources to all of the user’s avail able resources:

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="user @xanpl e. com
subscription="to’
name=' SomeUser’ >
<gr oup>SonmeG oup</ gr oup>
<litenp
</ query>
</ig>

<presence
from=’ cont act @xanpl e. org
to=" user @xanpl e. con
type=' unsubscri bed’ / >

<presence
from=’ cont act @xanpl e. org/ resource
to=" user @xanpl e. con
type='unavail able' />

Sai nt - Andre St andards Track [ Page 52]



RFC 3921 XVPP | M Cct ober 2004

3. Upon receiving the presence stanza of type "unsubscri bed"
addressed to the user, the user’'s server (1) MJST initiate a
roster push to all of the user’s avail able resources that have
requested the roster, containing an updated roster itemfor the
contact with the ’subscription’ attribute set to a val ue of
"fronm' (if the user is unavailable or has not requested the
roster, the user’s server MJST nodify the roster itemand send
that nodified itemthe next time the user requests the roster);
and (2) MJST deliver the "unsubscribed" state change notification
to all of the user’s available resources; and (3) MJST deliver
the unavail abl e presence to all of the user’s avail able
resour ces:

<iq type='set’'>
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
subscription="fron
name=" MyCont act’ >
<gr oup>MyBuddi es</ gr oup>
<litenp
</ query>
<lig>

<presence
from=’ cont act @xanpl e. org
t o=" user @xanpl e. con
type=' unsubscri bed’ / >

<presence
from=’ cont act @xanpl e. org/ resource
t o=" user @xanpl e. con
type='unavail able' />

4. Upon receiving the presence stanza of type "unsubscribed", the
user SHOULD acknow edge recei pt of that subscription state
notification through either "affirnming" it by sending a presence
stanza of type "unsubscribe" to the contact or "denying" it by
sendi ng a presence stanza of type "subscribe" to the contact;
this step does not necessarily affect the subscription state (see
Subscription States (Section 9) for details), but instead lets
the user’s server know that it MJST no | onger send notification
of the subscription state change to the user (see Section 9.4).

Note: oviously this does not result in renmoval of the roster item
fromthe contact’s roster, and the contact still has a subscription
to the user’s presence information. 1In order to both completely

cancel a nutual subscription and fully renove the roster itemfrom

Sai nt - Andre St andards Track [ Page 53]



RFC 3921 XVPP | M Cct ober 2004

the contact’s roster, the contact should update the roster itemwth
subscription="renove’ as defined under Renoving a Roster Item and
Cancel ling Al Subscriptions (Section 8.6).

8.6. Rempoving a Roster Itemand Cancelling Al Subscriptions

Because there nmay be nmany steps involved in conpletely renoving a
roster itemand cancelling subscriptions in both directions, the
roster managenent protocol includes a "shortcut" nethod for doing so.
The process may be initiated no matter what the current subscription
state is by sending a roster set containing an itemfor the contact
with the "subscription attribute set to a value of "renove":

<iq type='set’ id='renpvel >
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
subscription="renove' />
</ query>
</ig>

When the user renoves a contact fromhis or her roster by setting the
"subscription’” attribute to a value of "renove", the user’s server
(1) MUST autommtically cancel any existing presence subscription

bet ween the user and the contact (both 'to’ and '"froni as
appropriate); (2) MJST renpve the roster itemfromthe user’'s roster
and informall of the user’s avail able resources that have requested
the roster of the roster itemrenoval; (3) MJST informthe resource
that initiated the renoval of success; and (4) SHOULD send
unavail abl e presence fromall of the user’s available resources to
the contact:

<presence
from=’ user @xanpl e. com
to=" cont act @xanpl e. org
type=' unsubscri be’' />

<presence
frome’ user @xanpl e. con
to=" cont act @xanpl e. org’
type=" unsubscri bed’ / >

Sai nt - Andre St andards Track [ Page 54]



RFC 3921 XVPP | M Cct ober 2004

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="contact @xanpl e.org
subscri ption="renove’ />
</ query>
</ig>

<iqg type="result’ id="renovel />

<presence
from=’ user @xanpl e. coni resource
t o=" cont act @xanpl e. org’
type='unavail able' />

Upon receiving the presence stanza of type "unsubscribe", the
contact’s server (1) MJIST initiate a roster push to all avail able
resources associated with the contact that have requested the roster,
contai ning an updated roster itemfor the user with the
"subscription’ attribute set to a value of "to" (if the contact is
unavail able or has not requested the roster, the contact’s server
MUST nodify the roster itemand send that nodified itemthe next tine
the contact requests the roster); and (2) MJST al so deliver the
"unsubscri be" state change notification to all of the contact’s
avai |l abl e resources:

<iq type='set’ >
<query xm ns='jabber:iq:roster’>
<item
jid="user @xanpl e. com
subscription="to’
name=' SoneUser’ >
<gr oup>SonmeG oup</ gr oup>
<litenp
</ query>
</ig>

<presence
frome’ user @xanpl e. con
to=" cont act @xanpl e. org’
type=' unsubscri be’ />

Upon receiving the presence stanza of type "unsubscribed", the
contact’s server (1) MJST initiate a roster push to all avail able
resources associated with the contact that have requested the roster,
contai ning an updated roster itemfor the user with the
"subscription’ attribute set to a value of "none" (if the contact is
unavail able or has not requested the roster, the contact’s server

Sai nt - Andre St andards Track [ Page 55]



RFC 3921 XVPP | M Cct ober 2004

MUST nodify the roster itemand send that nodified itemthe next tine
the contact requests the roster); and (2) MJST al so deliver the
"unsubscri be" state change notification to all of the contact’s
avai |l abl e resources:

<ig type='set’>
<query xm ns='jabber:iq:roster’>
<item
jid="user @xanpl e. con
subscri pti on=" none’
name=" SomeUser’ >
<gr oup>SoneG& oup</ gr oup>
</itenp
</ query>
</ig>

<presence
from=’ user @xanpl e. comi
to=" cont act @xanpl e. org’
type=' unsubscri bed’ / >

Upon receiving the presence stanza of type "unavail abl e" addressed to
the contact, the contact’s server MJST deliver the unavail able
presence to all of the user’s avail abl e resources:

<presence
from=’ user @xanpl e. coni resource
to=" cont act @xanpl e. org’
type='unavail able’ />

Not e: When the user renoves the contact fromthe user’'s roster, the
end state of the contact’s roster is that the user is still in the
contact’s roster with a subscription state of "none"; in order to
conpletely remove the roster itemfor the user, the contact needs to
al so send a roster renoval request.

9. Subscription States
This section provides detailed informati on about subscription states
and server handling of subscription-related presence stanzas (i.e.
presence stanzas of type "subscribe", "subscribed", "unsubscribe",
and "unsubscri bed").

9.1. Defined States

There are nine possible subscription states, which are described here
fromthe user’s (not contact’s) perspective:

Sai nt - Andre St andards Track [ Page 56]



RFC 3921 XVPP | M Cct ober 2004

1. "None" = contact and user are not subscribed to each other, and
neither has requested a subscription fromthe other

2. "None + Pending Qut" = contact and user are not subscribed to
each other, and user has sent contact a subscription request but
contact has not replied yet

3. "None + Pending In" = contact and user are not subscribed to each
ot her, and contact has sent user a subscription request but user
has not replied yet (note: contact’s server SHOULD NOT push or
deliver roster items in this state, but instead SHOULD wait unti
contact has approved subscription request from user)

4. "None + Pending Qut/In" = contact and user are not subscribed to
each other, contact has sent user a subscription request but user
has not replied yet, and user has sent contact a subscription
request but contact has not replied yet

5. "To" = user is subscribed to contact (one-way)

6. "To + Pending In" = user is subscribed to contact, and contact
has sent user a subscription request but user has not replied yet

7. "Fromt = contact is subscribed to user (one-way)

8. "From + Pending Qut" = contact is subscribed to user, and user
has sent contact a subscription request but contact has not
replied yet

9. "Both" = user and contact are subscribed to each ot her (two-way)

9.2. Server Handling of Qutbound Presence Subscription Stanzas

Qut bound presence subscription stanzas enable the user to manage his
or her subscription to the contact’s presence information (via the
"subscribe" and "unsubscribe" types), and to manage the contact’s
access to the user’s presence information (via the "subscribed" and
"unsubscri bed" types).

Because it is possible for the user’s server and the contact’s server
to | ose synchronization regardi ng subscription states, the user’s
server MJST without exception route all outbound presence stanzas of
type "subscribe" or "unsubscribe" to the contact so that the user is
able to resynchronize his or her subscription to the contact’s
presence information if needed.

Sai nt - Andre St andards Track [ Page 57]



RFC 3921 XVPP | M Cct ober 2004

The user’s server SHOULD NOT route a presence stanza of type

"subscri bed" or "unsubscribed" to the contact if the stanza does not
result in a subscription state change fromthe user’s perspective,
and MUST NOT meke a state change. |If the stanza results in a
subscription state change, the user’s server MJST route the stanza to
the contact and MUST nake the appropriate state change. These rules
are sumari zed in the follow ng tables.

Table 1: Recommended handling of outbound "subscribed" stanzas

o m e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e mm - +
| EXI STI NG STATE | ROUTE? | NEW STATE |
o m o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eem e +
| " None" | no | no state change |
| "None + Pending Qut" | no | no state change

| "None + Pending In" | vyes | "Front

| "None + Pending Qut/In" | yes | "From+ Pending Qut"

| "To" | no | no state change |
| "To + Pending In" | vyes | "Both" |
| "Front | no | no state change |
| "From+ Pending Qut" | no | no state change

| "Both" | no | no state change |
o m e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e mm - +

Tabl e 2: Recommended handl i ng of outbound "unsubscribed" stanzas

o m o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e me e e +
| EXI STI NG STATE | ROUTE? | NEW STATE |
o m e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e mm - +
| " None" | no | no state change |
| "None + Pending Qut" | no | no state change

| "None + Pending In" | vyes | " None" |
| "None + Pending Qut/In" | yes | "None + Pending Qut"

| "To" | no | no state change |
| "To + Pending In" | vyes | "To" |
| "Front | vyes | " None"

| "From+ Pending Qut" | vyes | "None + Pending Qut"

| "Both" | vyes | "To" |
o m o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e me e e +

9.3. Server Handling of Inbound Presence Subscription Stanzas

| nbound presence subscription stanzas request a subscription-rel ated
action fromthe user (via the "subscribe" type), informthe user of
subscription-rel ated actions taken by the contact (via the
"unsubscri be" type), or enable the contact to nanage the user’s
access to the contact’s presence information (via the "subscribed"
and "unsubscri bed" types).

Sai nt - Andre St andards Track [ Page 58]



RFC 3921 XVPP | M Cct ober 2004

When the user’s server receives a subscription request for the user
fromthe contact (i.e., a presence stanza of type "subscribe"), it
MUST deliver that request to the user for approval if the user has
not already granted the contact access to the user’s presence
information and if there is no pending i nbound subscription request;
however, the user’s server SHOULD NOT deliver the new request if
there is a pending i nbound subscription request, since the previous
subscription request will have been recorded. |I|f the user has

al ready granted the contact access to the user’s presence

i nformation, the user’s server SHOULD auto-reply to an inbound
presence stanza of type "subscribe" fromthe contact by sending a
presence stanza of type "subscribed" to the contact on behal f of the
user; this rule enables the contact to resynchroni ze the subscription
state if needed. These rules are summuarized in the follow ng table.

Tabl e 3: Recommended handl i ng of inbound "subscribe" stanzas

o m ot m e o e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo oo +
| EXI STI NG STATE | DELIVER? | NEW STATE
T e N N . +
| " None" | vyes | "None + Pending In"

| "None + Pending Qut" | vyes | "None + Pending Qut/In"

| "None + Pending In" | no | no state change

| "None + Pending Qut/In" | no | no state change

| "To" | vyes | "To + Pending In"

| "To + Pending In" | no | no state change

| "Front | no * | no state change |
| "From+ Pending Qut" | no * | no state change

| "Both" | no * | no state change |
o m ot m e o e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo oo +

* Server SHOULD auto-reply with "subscribed" stanza

VWhen the user’s server receives a presence stanza of type
"unsubscri be" for the user fromthe contact, if the stanza results in
a subscription state change fromthe user’s perspective then the
user’s server SHOULD auto-reply by sending a presence stanza of type
"unsubscribed" to the contact on behalf of the user, MJST deliver the
"unsubscri be" stanza to the user, and MJUST change the state. If no
subscription state change results, the user’s server SHOULD NOT
deliver the stanza and MJUST NOT change the state. These rules are
sunmari zed in the follow ng table.

Sai nt - Andre St andards Track [ Page 59]



RFC 3921 XVPP | M Cct ober 2004

Tabl e 4: Recommended handling of inbound "unsubscribe" stanzas

o m o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eaao o +
| EXI STI NG STATE | DELIVER? | NEW STATE |
o m e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mm e emm o +
| " None" | no | no state change

| "None + Pending Qut" | no | no state change

| "None + Pending In" | yes * | " None"

| "None + Pending Qut/In" | vyes * | "None + Pending Qut"

| "To" | no | no state change

| "To + Pending In" | yes * | "To"

| "Front | vyes * | " None" |
| "From+ Pending Qut" | yes * | "None + Pendi ng Qut

| "Both" | yes * | "To" |
o m o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eaao o +

* Server SHOULD auto-reply with "unsubscri bed" stanza

When the user’s server receives a presence stanza of type

"subscri bed" for the user fromthe contact, it MJST NOT deliver the
stanza to the user and MJUST NOT change the subscription state if
there is no pending outbound request for access to the contact’s
presence information. |If there is a pending outbound request for
access to the contact’s presence information and the inbound presence
stanza of type "subscribed" results in a subscription state change,
the user’s server MJST deliver the stanza to the user and MJST change
the subscription state. |f the user already has access to the
contact’s presence information, the inbound presence stanza of type
"subscri bed" does not result in a subscription state change;
therefore the user’s server SHOULD NOT deliver the stanza to the user
and MUST NOT change the subscription state. These rules are
summarized in the follow ng table.

Tabl e 5: Recommended handl i ng of inbound "subscribed" stanzas

o m ot m e o e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo oo +
| EXI STI NG STATE | DELIVER? | NEW STATE

o m o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eaa— o +
| " None" | no | no state change

| "None + Pending Qut" | vyes | "To"

| "None + Pending In" | no | no state change

| "None + Pending Qut/In" | vyes | "To + Pending In"

| "To" | no | no state change

| "To + Pending In" | no | no state change

| "Front | no | no state change |
| "From+ Pending Qut" | vyes | "Both" |
| "Both" | no | no state change |
o m ot m e o e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo oo +

Sai nt - Andre St andards Track [ Page 60]



RFC 3921 XVPP | M Cct ober 2004

Sai

When the user’s server receives a presence stanza of type
"unsubscribed" for the user fromthe contact, it MJST deliver the
stanza to the user and MJST change the subscription state if there is
a pendi ng out bound request for access to the contact’s presence
information or if the user currently has access to the contact’s
presence information. Oherw se, the user’s server SHOULD NOT
deliver the stanza and MJST NOT change the subscription state. These
rules are sunmarized in the follow ng table.

Tabl e 6: Recommended handl i ng of inbound "unsubscribed" stanzas

o m ot m e o e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo oo +
| EXI STI NG STATE | DELIVER? | NEW STATE
T e N N . +
| " None" | no | no state change

| "None + Pending Qut" | vyes | " None" |
| "None + Pending In" | no | no state change

| "None + Pending Qut/In" | yes | "None + Pending In" |
| "To" | vyes | " None"

| "To + Pending In" | vyes | "None + Pending In"

| "Front | no | no state change |
| "From+ Pending Qut" | vyes | "Front |
| "Both" | vyes | "Front |
o m ot m e o e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo oo +

Server Delivery and Cient Acknow edgenent of Subscription
Requests and State Change Notifications

VWhen a server receives an i nbound presence stanza of type "subscribe”
(i.e., a subscription request) or of type "subscribed",
"unsubscri be", or "unsubscribed" (i.e., a subscription state change
notification), in addition to sending the appropriate roster push (or
updated roster when the roster is next requested by an avail able
resource), it MJIST deliver the request or notification to the

i ntended recipient at |east once. A server MAY require the recipient
to acknow edge receipt of all state change notifications (and MJST
requi re acknow edgenent in the case of subscription requests, i.e.,
presence stanzas of type "subscribe"). |In order to require

acknow edgenent, a server SHOULD send the request or notification to
the recipient each tine the recipient logs in, until the recipient
acknow edges receipt of the notification by "affirmng" or "denying"
the notification, as shown in the follow ng table:

nt - Andr e St andards Track [ Page 61]



RFC 3921 XVPP | M Cct ober 2004

10.

Tabl e 7: Acknow edgenment of subscription state change notifications

o m o e e e e e e e e e e e e e e e e e e e e e e +
| STANZA TYPE | ACCEPT | DENY

o m m e e e e e e e e e e e e e e e e e e e e e e e mm e aa o s +
| subscribe | subscribed | unsubscribed |
| subscribed | subscribe | unsubscribe

| unsubscribe | unsubscribed | subscribed

| unsubscribed | unsubscribe | subscribe

o m m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo +

Qovi ously, given the foregoing subscription state charts, sone of the
acknow edgenment stanzas will be routed to the contact and result in
subscription state changes, while others will not. However, any such
stanzas MJST result in the server’s no | onger sending the
subscription state notification to the user

Because a user’s server MJST automatically generate outbound presence
stanzas of type "unsubscribe" and "unsubscri bed" upon receiving a
roster set with the 'subscription’ attribute set to a val ue of
"renove" (see Renmpbving a Roster Itemand Cancelling Al Subscriptions
(Section 8.6)), the server MIST treat a roster renmpbve request as

equi val ent to sending both of those presence stanzas for purposes of
det erm ni ng whet her to continue sendi ng subscription state change
notifications of type "subscribe" or "subscribed" to the user

Bl ocki ng Conmuni cati on
Most instant nessagi ng systens have found it necessary to inplenent
sone nethod for users to block communi cations from particul ar ot her
users (this is also required by sections 5.1.5, 5.1.15, 5.3.2, and
5.4.10 of [IMP-REQS]). In XMPP this is done by managi ng one’s
privacy lists using the 'jabber:iq:privacy' nanespace.

Server-side privacy |lists enable successful conpletion of the
foll owi ng use cases:

0 Retrieving one’s privacy |ists.
o Adding, removing, and editing one's privacy lists.
o Setting, changing, or declining active lists.

o Setting, changing, or declining the default list (i.e., the list
that is active by default).

o Allow ng or blocking nessages based on JID, group, or subscription
type (or globally).

Sai nt - Andre St andards Track [ Page 62]



RFC 3921 XVPP | M Cct ober 2004

o

Al'l owi ng or bl ocki ng i nbound presence notifications based on JID
group, or subscription type (or globally).

Al l ow ng or bl ocki ng out bound presence notifications based on JID
group, or subscription type (or globally).

Al l owi ng or blocking I Q stanzas based on JI D, group, or
subscription type (or globally).

Al'l ow ng or blocking all conmunicati ons based on JI D, group, or
subscription type (or globally).

Not e: Presence notifications do not include presence subscriptions,
only presence information that is broadcasted to entities that are
subscribed to a user’s presence information. Thus this includes
presence stanzas with no "type’ attribute or of type= unavail abl e
only.

10. 1.

Syntax and Semantics

A user MAY define one or nore privacy lists, which are stored by the
user’'s server. Each <list/> elenent contains one or nore rules in
the formof <itenl> elenents, and each <itenl > el enent uses
attributes to define a privacy rule type, a specific value to which
the rule applies, the relevant action, and the place of the itemin
the processing order.

The syntax is as foll ows:

<ig>

<query xm ns='jabber:iq:privacy’ >
<list name='foo0’ >
<item
type='[jid| group|subscription]’
val ue=’ bar’
action='[all o deny]
order =" unsi gnedi nt’ >
[ <nessage/ >]
[ <presence-in/>]
[ <pr esence-out/ >]
[<ial>]
</itenp
</list>
</ query>

</ig>

Sai nt - Andre St andards Track [ Page 63]



RFC 3921 XVPP | M Cct ober 2004

If the type is "jid", then the 'value' attribute MJST contain a valid
Jabber ID. JIDs SHOULD be matched in the follow ng order

1. <user @omai n/resource> (only that resource natches)
2. <user @onai n> (any resource mat ches)
3. <dommi n/resource> (only that resource matches)

4. <dommin> (the domain itself matches, as does any user @omai n
domai n/ resource, or address containing a subdonmain)

If the type is "group", then the 'value’ attribute SHOULD contain the
name of a group in the user’s roster. (If a client attenpts to
update, create, or delete a list itemwith a group that is not in the
user’s roster, the server SHOULD return to the client an

<i temnot-found/ > stanza error.)

If the type is "subscription", then the 'value' attribute MIUST be one
of "both", "to", "fronm', or "none" as defined under Roster Syntax and
Semantics (Section 7.1), where "none" includes entities that are
totally unknown to the user and therefore not in the user’s roster at
all.

If no "type’ attribute is included, the rule provides the
“fall-through" case.

The "action’ attribute MJST be included and its val ue MJST be either
"all ow' or "deny".

The "order’ attribute MUST be included and its val ue MJST be a
non-negative integer that is unique anmong all itens in the list. (If
aclient attenpts to create or update a list with non-uni que order
val ues, the server MJST return to the client a <bad-request/> stanza
error.)

The <itenl > el ement MAY contain one or nmore child el ements that
enable an entity to specify nore granular control over which kinds of
stanzas are to be bl ocked (i.e., rather than blocking all stanzas).
The all owabl e child el enents are:

o <nessage/> -- bl ocks incon ng nessage stanzas

0 <ig/> -- blocks incomng |IQ stanzas

0 <presence-in/> -- blocks incomng presence notifications
0 <presence-out/> -- bl ocks outgoing presence notifications

Sai nt - Andre St andards Track [ Page 64]



RFC 3921 XVPP | M Cct ober 2004

10.

Wthin the 'jabber:iq:privacy' nanespace, the <query/> child of an I Q
stanza of type "set" MJST NOT include nore than one child el enent
(i.e., the stanza MJST contain only one <active/> elenent, one
<default/> element, or one <list/> elenent); if a sending entity
violates this rule, the receiving entity MJST return a <bad-request/>
stanza error.

When a client adds or updates a privacy list, the <list/> el enent
SHOULD contain at |east one <item > child elenment; when a client
renmoves a privacy list, the <list/> element MJUST NOT contain any
<iteml > child el enents.

When a client updates a privacy list, it rmust include all of the
desired itens (i.e., not a "delta").

2. Business Rul es

1. If there is an active list set for a session, it affects only the
session(s) for which it is activated, and only for the duration
of the session(s); the server MJST apply the active list only and
MUST NOT apply the default list (i.e., there is no "layering" of
lists).

2. The default list applies to the user as a whole, and is processed
if there is no active list set for the target session/resource to
which a stanza is addressed, or if there are no current sessions
for the user.

3. If there is no active list set for a session (or there are no
current sessions for the user), and there is no default |ist,
then all stanzas SHOULD BE accepted or appropriately processed by
the server on behalf of the user in accordance with the Server
Rul es for Handling XM. Stanzas (Section 11).

4. Privacy lists MIST be the first delivery rule applied by a
server, superseding (1) the routing and delivery rules specified
in Server Rules for Handling XML Stanzas (Section 11), and (2)
the handling of subscription-related presence stanzas (and
correspondi ng generation of roster pushes) specified in
Integration of Roster Itenms and Presence Subscriptions (Section
8).

5. The order in which privacy list itens are processed by the server
is important. List itens MJUST be processed in ascendi ng order
determ ned by the integer values of the "order’ attribute for
each <iteni >

Sai nt - Andre St andards Track [ Page 65]



RFC 3921 XVPP | M Cct ober 2004

6. As soon as a stanza is matched against a privacy list rule, the
server MJST appropriately handle the stanza in accordance with
the rul e and cease processing.

7. If no fall-through itemis provided in a list, the fall-through
action is assuned to be "all ow'

8. If a user updates the definition for an active list, subsequent
processi ng based on that active list MJST use the updated
definition (for all resources to which that active list currently

applies).

9. |If a change to the subscription state or roster group of a roster
itemdefined in an active or default list occurs during a user’s
sessi on, subsequent processing based on that |ist MJST take into
account the changed state or group (for all resources to which
that list currently applies).

10. Wen the definition for a rule is nodified, the server MIST send
an | Q stanza of type "set" to all connected resources, containing
a <query/> element with only one <list/> child el ement, where the
"name’ attribute is set to the name of the nodified privacy list.
These "privacy |ist pushes" adhere to the sanme semantics as the
"roster pushes" used in roster managenent, except that only the
list nane itself (not the full list definition or the "delta") is
pushed to the connected resources. It is up to the receiving
resource to determ ne whether to retrieve the nodified |ist
definition, although a connected resource SHOULD do so if the
list currently applies to it.

11. When a resource attenpts to renove a list or specify a new
default list while that list applies to a connected resource
ot her than the sending resource, the server MJST return a
<conflict/> error to the sending resource and MJUST NOT make the
request ed change.

10.3. Retrieving One’'s Privacy Lists
Exampl e: dient requests nanmes of privacy lists fromserver:
<iq from= roneo@xanpl e. net/orchard’ type="get’ id="getlistl >

<query xm ns='jabber:iq:privacy'/>
</ig>

Sai nt - Andre St andards Track [ Page 66]



RFC 3921 XVPP | M Cct ober 2004

Exanmpl e: Server sends names of privacy lists to client, preceded by
active list and default list:

<ig type="result’ id="getlistl to="roneo@xanple.net/orchard >
<query xm ns='jabber:iq: privacy’ >
<active name='private />
<default name= public' />
<list name="public'/>
<list name='private' />
<list name="special’/>
</ query>
</ig>

Exampl e: Cient requests a privacy list fromserver:

<iq from=’ roneo@xanpl e. net/orchard’ type="get’ id="getlist2 >
<query xm ns='jabber:iq: privacy’ >
<list name="public’'/>
</ query>
</ig>

Exampl e: Server sends a privacy list to client:

<ig type="result’ id="getlist2" to=roneo@xanple.net/orchard’ >
<query xm ns='jabber:iq:privacy’ >
<list name='public’ >

<itemtype="jid
val ue="tybal t @xanpl e. con
action="deny’
order="1"/>

<itemaction="allow order="2"/>

</list>
</ query>
</ig>

Exampl e: dient requests another privacy list fromserver:

<iq from=’ roneo@xanpl e. net/orchard’ type="get’ id="getlist3 >
<query xm ns=’"j abber:iq:privacy’ >
<list name='private' />
</ query>
</ig>

Sai nt - Andre St andards Track [ Page 67]



RFC 3921 XVPP | M Cct ober 2004

Exanpl e: Server sends another privacy list to client:

<ig type="result’ id="getlist3 to=roneo@xanple.net/orchard’ >
<query xm ns='jabber:iq: privacy’ >
<list name="private >

<itemtype='subscription
val ue=' bot h’
action="all ow
order="10"/>

<item action="deny’ order="15/>

</list>
</ query>
</ig>

Exampl e: Cient requests yet another privacy list from server:

<iq fronm= roneo@xanpl e. net/orchard’ type='get’ id="getlist4 >
<query xm ns='jabber:iq: privacy’ >
<list nanme="special’/>
</ query>
</ig>

Exampl e: Server sends yet another privacy list to client:

<iqg type="result’ id="getlistd4 to=roneo@xanple.net/orchard’ >
<query xm ns='jabber:iq:privacy’ >
<list name=’special’ >
<itemtype='jid
val ue="j ul i et @xanpl e. con
action="all ow
order="6"/>
<itemtype="jid
val ue=' benvol i o@xanpl e. org
action="all ow
order="7"/>
<itemtype='jid
val ue=" mer cuti o@xanpl e. org’
action="all ow
order="42'/>
<item acti on="deny’ order='666"/>

</list>
</ query>
</ig>

In this exanple, the user has three lists: (1) 'public’, which allows
conmuni cati ons from everyone except one specific entity (this is the
default list); (2) '"private’, which allows comunications only with

Sai nt - Andre St andards Track [ Page 68]



RFC 3921 XVPP | M Cct ober 2004

10.

contacts who have a bidirectional subscription with the user (this is
the active list); and (3) 'special’, which allows comrunications only
with three specific entities.

If the user attenpts to retrieve a list but a list by that name does
not exist, the server MJUST return an <itemnot-found/ > stanza error
to the user:

Exanple: Cient attenpts to retrieve non-existent |ist:

<ig to="romeo@xanpl e. net/orchard’ type="error’ id="getlist5 >
<query xm ns='jabber:iq: privacy’ >
<list name="The Enpty Set’'/>
</ query>
<error type='cancel’ >
<i tem not - f ound
xm ns="urn:ietf:parans: xm : ns: xnpp- st anzas’ / >
</error>
</ig>

The user is allowed to retrieve only one list at atine. |If the user
attenpts to retrieve nore than one list in the sane request, the
server MJST return a <bad request/> stanza error to the user

Example: Cient attenpts to retrieve nore than one list:

<iq to="ronmeo@xanpl e. net/orchard’ type="error’ id="getlist6 >
<query xm ns='jabber:iq:privacy’ >
<list name="public’/>
<list nanme="private' />
<list nanme="special’/>
</ query>
<error type= nodify’ >
<bad- r equest
xm ns="urn:ietf:parans: xm : ns: xnpp- st anzas’ / >
</error>
</ig>

4. Managi ng Active Lists

In order to set or change the active list currently being applied by
the server, the user MUST send an | Q stanza of type "set" with a
<query/> elenent qualified by the 'jabber:iq:privacy’ nanespace that
contains an enpty <active/> child el ement possessing a ’'nange’
attribute whose value is set to the desired |ist nane.

Sai nt - Andre St andards Track [ Page 69]



RFC 3921 XVPP | M Cct ober 2004

Exampl e: dient requests change of active list:

<iq from= roneo@xanpl e. net/orchard’ type="set’ id="activel >
<query xm ns='jabber:iq: privacy’ >
<active name='special’ />
</ query>
</ig>

The server MUST activate and apply the requested list before sending
the result back to the client.

Exanpl e: Server acknow edges success of active |ist change:
<iqg type='result’ id="activel to="ronmeo@xanple.net/orchard />

If the user attenpts to set an active list but a list by that name
does not exist, the server MIUST return an <itemnot-found/> stanza
error to the user:

Example: Cient attenpts to set a non-existent |ist as active:

<igq to='roneo@xanpl e. net/orchard’ type="error’ id="active2 >
<query xm ns='jabber:iq: privacy’ >
<active name=' The Enpty Set’/>
</ query>
<error type='cancel’ >
<i tem not - f ound
xm ns="urn:ietf:paranms: xm : ns: xnmpp- st anzas’ />
</error>
</ig>

In order to decline the use of any active list, the connected
resource MJST send an enpty <active/> elenent with no ’nane’
attribute.
Exanmpl e: dient declines the use of active lists:
<iq from’ roneo@xanpl e. net/orchard’ type="set’ id="active3 >
<query xm ns=’"j abber:iq:privacy’ >
<active/ >
</ query>
</ig>
Exanpl e: Server acknow edges success of declining any active |ist:

<ig type="result’ id="active3 to="ronmeo@xanple.net/orchard />

Sai nt - Andre St andards Track [ Page 70]



RFC 3921 XVPP | M Cct ober 2004

10.

5. Managing the Default List

In order to change its default list (which applies to the user as a
whol e, not only the sending resource), the user MJST send an | Q
stanza of type "set" with a <query/> elenent qualified by the
"jabber:iqg:privacy’ nanespace that contains an enpty <default/> child
el ement possessing a 'nanme’ attribute whose value is set to the
desired list nane.

Exampl e: User requests change of default |ist:

<iq from=' roneo@xanpl e. net/orchard’ type='set’ id="defaultl >
<query xm ns='jabber:iq:privacy’ >
<default name='special’/>
</ query>
</ig>

Exampl e: Server acknow edges success of default |ist change:
<iqg type="result’ id="defaultl to=roneo@xanple.net/orchard' />

If the user attenpts to change which list is the default list but the
default list is in use by at |east one connected resource other than
the sending resource, the server MJST return a <conflict/> stanza
error to the sending resource:

Example: Cient attenpts to change the default list but that list is
in use by another resource:

<ig to="romeo@xanpl e. net/orchard’ type="error’ id="defaultl >
<query xm ns='jabber:iq:privacy’ >
<default name=' special’/>

</ query>
<error type='cancel’>
<conflict
xm ns="urn:ietf:parans: xm : ns: xnmpp- stanzas’ />
</error>
</ig>

If the user attenpts to set a default list but a list by that name
does not exist, the server MIUST return an <itemnot-found/> stanza
error to the user:

Sai nt - Andre St andards Track [ Page 71]



RFC 3921 XVPP | M Cct ober 2004

Example: Cient attenpts to set a non-existent |list as default:

<iq to="ronmeo@xanpl e. net/orchard’ type="error’ id="defaultl >
<query xm ns='jabber:iq: privacy’ >
<default name=’ The Enpty Set’'/>
</ query>
<error type='cancel’ >
<item not - f ound
xm ns="urn:ietf:parans: xm :ns: xnmpp- stanzas’ />
</error>
<lig>

In order to decline the use of a default list (i.e., to use the
domain’s stanza routing rules at all tinmes), the user MIUST send an
enpty <default/> elenent with no 'nane’ attribute.

Exampl e: dient declines the use of the default list:

<iq from=' roneo@xanpl e. net/orchard’ type='set’ id="default2 >
<query xm ns='jabber:iq:privacy’ >
<defaul t/>
</ query>
<lig>

Exanpl e: Server acknow edges success of declining any default |ist:
<iqg type="result’ id="default2’ to=roneo@xanple.net/orchard’ />

I f one connected resource attenpts to decline the use of a default

list for the user as a whole but the default list currently applies
to at | east one other connected resource, the server MUST return a
<conflict/> error to the sending resource:

Example: Cient attenpts to decline a default list but that list is
in use by anot her resource:

<iq to='romeo@xanpl e. net/orchard’ type="error’ id="default3 >
<query xm ns="j abber:iq:privacy’ >
<defaul t/>

</ query>
<error type=' cancel’ >
<conflict
xm ns="urn:ietf:parans: xm :ns: xnmpp- stanzas’ />
</error>
</ig>

Sai nt - Andre St andards Track [ Page 72]



RFC 3921 XVPP | M Cct ober 2004

10.6. Editing a Privacy List

In order to edit a privacy list, the user MIUST send an | Q stanza of
type "set" with a <query/> elenment qualified by the
"jabber:iqg:privacy’ nanmespace that contains one <list/> child el enent
possessing a 'name’ attribute whose value is set to the list name the
user would like to edit. The <list/> element MJST contain one or
nore <item > el ements, which specify the user’s desired changes to
the list by including all elenents in the list (not the "delta").

Example: Cient edits a privacy list:

<iq from= roneo@xanpl e. net/orchard’ type="set’ id="editl >
<query xm ns='jabber:iq:privacy’ >
<list name='public’ >
<itemtype='jid
val ue="tybal t @xanpl e. con
action="deny’
order="3"/>
<itemtype="jid
val ue=' pari s@xanpl e. org
action="deny’
order="5"/>
<itemaction="all ow order='68"/>

</list>
</ query>
</ig>

Exampl e: Server acknow edges success of list edit:
<ig type="result’ id="editl to="ronmeo@xanple.net/orchard />

Note: The value of the ’'order’ attribute for any given itemis not
fixed. Thus in the foregoing exanple if the user would like to add 4
items between the "tybalt @xanple.conmt itemand the

"pari s@xanple.org" item the user’s client MJST renunber the

rel evant itenms before submitting the list to the server.

The server MUST now send a "privacy list push" to all connected
resour ces:

Exanmpl e: Privacy list push on list edit:

<iq to='ronmeo@xanpl e. net/orchard’ type='set’ id= pushl' >
<query xm ns=’"j abber:iq:privacy’ >
<list name="public’'/>
</ query>
</ig>

Sai nt - Andre St andards Track [ Page 73]



RFC 3921 XVPP | M Cct ober 2004

10.

10.

<iq to="roneo@xanpl e. net/hone’ type='set’ id=' push2’'>
<query xm ns='jabber:iq:privacy’ >
<list name="public’'/>
</ query>
<lig>

In accordance with the semantics of |1Q stanzas defined in
[ XMPP- CORE], each connected resource MJUST return an 1Qresult to the
server as well:

Exampl e: Acknow edgi ng recei pt of privacy |ist pushes:

<iq from=' roneo@xanpl e. net/orchard
type='result’
i d=" pushl’' />

<iq frone roneo@xanpl e. net/ hone’
type='result’
i d=" push2’' />

7. Adding a New Privacy List

The sane protocol used to edit an existing list is used to create a
new list. |If the |ist name matches that of an existing list, the
request to add a new list will overwite the old one. As with |ist
edits, the server MJST also send a "privacy list push" to al
connect ed resources.

8. Rernpbving a Privacy List

In order to renove a privacy list, the user MUST send an | Q stanza of
type "set" with a <query/> elenent qualified by the
"jabber:iqg:privacy’ nanmespace that contains one enpty <list/> child
el ement possessing a 'nanme’ attribute whose value is set to the list
nane the user would like to renove

Exampl e: Cient renpbves a privacy list:
<iq from= roneo@xanpl e. net/orchard’ type="set’ id="renovel >
<query xm ns='jabber:iq:privacy’ >
<list name="private’ />
</ query>
</ig>
Exanpl e: Server acknow edges success of list renoval:

<iqg type="result’ id="renovel to="ronmeo@xanple.net/orchard />

Sai nt - Andre St andards Track [ Page 74]



RFC 3921 XVPP | M Cct ober 2004

If a user attenpts to renpbve a list that is currently being applied
to at | east one resource other than the sending resource, the server
MUST return a <conflict/> stanza error to the user; i.e., the user
MJUST first set another list to active or default before attenpting to
renove it. |If the user attenpts to renove a list but a list by that
name does not exist, the server MJST return an <itemnot-found/>
stanza error to the user. |If the user attenpts to renbve nore than
one list in the same request, the server MIST return a <bad request/>
stanza error to the user.

10.9. Bl ocki ng Messages

Server-side privacy |lists enable a user to bl ock incom ng nmessages
fromother entities based on the entity’s JID, roster group, or
subscription status (or globally). The follow ng exanples illustrate
the protocol. (Note: For the sake of brevity, |1Q stanzas of type
"result" are not shown in the foll ow ng exanples, nor are "privacy
list pushes".)

Exanmpl e: User bl ocks based on JID

<iq fronm= roneo@xanpl e. net/orchard’ type="set’ id="nmsgl’ >
<query xm ns='jabber:iq: privacy’ >
<l i st nanme=" nessage-ji d-exanpl e’ >
<itemtype="jid
val ue="t ybal t @xanpl e. coni
action='deny’
order="3" >
<message/ >
</itenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
wi Il not receive nessages fromthe entity with the specified JID

Exanpl e: User bl ocks based on roster group

<iq fronm= roneo@xanpl e. net/orchard’ type="set’ id="nmsg2’ >
<query xm ns='jabber:iq: privacy’ >
<l i st nanme=’ nessage- gr oup- exanpl e’ >

<itemtype=' group
val ue=' Enemi es’
action='deny’
order="4">

<message/ >
</itenp

Sai nt - Andre St andards Track [ Page 75]



RFC 3921 XVPP | M Cct ober 2004

10.

</list>
</ query>
</ig>
As a result of creating and applying the foregoing list, the user
will not receive nessages fromany entities in the specified roster
gr oup.

Exanpl e: User bl ocks based on subscription type:

<iq frone roneo@xanpl e. net/orchard’ type="set’ id="nmsg3’ >
<query xm ns='jabber:iq: privacy’ >
<l i st name=" nessage- sub- exanpl e’ >
<itemtype='subscription
val ue=’ none’
action="deny’
order="5" >
<nessage/ >
</itenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
wi Il not receive nessages fromany entities with the specified
subscription type.

Exampl e: User bl ocks gl obal ly:

<iqg from roneo@xanpl e. net/orchard’ type='set’ id= nsg4’ >
<query xm ns='jabber:iq:privacy’ >
<l i st name=" nessage- gl obal - exanpl e’ >
<item acti on="deny’ order="6">
<message/ >
<litenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
wi Il not receive nmessages from any ot her users.

10. Bl ocking I nbound Presence Notifications

Server-side privacy lists enable a user to bl ock inconing presence
notifications fromother entities based on the entity’'s JID, roster
group, or subscription status (or globally). The follow ng exanpl es
illustrate the protocol

Sai nt - Andre St andards Track [ Page 76]



RFC 3921 XVPP | M Cct ober 2004

Not e: Presence notifications do not include presence subscriptions,
only presence information that is broadcasted to the user because the
user is currently subscribed to a contact’s presence information.
Thus this includes presence stanzas with no "type' attribute or of
type='unavail able’ only.

Exampl e: User bl ocks based on JID

<iq from= roneo@xanpl e. net/orchard’ type="set’ id= presinl >
<query xm ns='jabber:iq: privacy’ >
<list name="presin-jid-example’ >
<itemtype='jid
val ue='tybal t @xanpl e. con
action='deny’
order="7 >
<presence-in/>
<litenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
wi Il not receive presence notifications fromthe entity with the
specified JID

Exanpl e: User bl ocks based on roster group

<iq from= roneo@xanpl e. net/orchard’ type="set’ id= presin2’ >
<query xm ns='jabber:iq: privacy’ >
<l i st nanme=’ presi n-group-exanpl e’ >
<itemtype=' group
val ue=' Enemi es’
action='deny’
order="8 >
<presence-in/>
</itenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user

will not receive presence notifications fromany entities in the
specified roster group

Sai nt - Andre St andards Track [ Page 77]



RFC 3921 XVPP | M Cct ober 2004

Exampl e: User bl ocks based on subscription type:

<iq from= roneo@xanpl e. net/orchard’ type="set’ id= presin3 >
<query xm ns='jabber:iq: privacy’ >
<l i st name=’ presin-sub-exampl e’ >
<itemtype='subscription
val ue="to’
action='deny’
order="9' >
<presence-in/>
<litenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
wi Il not receive presence notifications fromany entities with the
speci fied subscription type.

Exanpl e: User bl ocks gl obal | y:

<iq from= roneo@xanpl e. net/orchard’ type="set’ id= presin4d’ >
<query xm ns='jabber:iq: privacy’ >
<l i st nanme=’ presin-gl obal - exanpl e’ >
<item action="deny’ order="11">
<presence-in/>
<litenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
will not receive presence notifications fromany other users.

10. 11. Bl ocki ng Qut bound Presence Notifications

Server-side privacy |lists enable a user to bl ock outgoing presence
notifications to other entities based on the entity's JID, roster
group, or subscription status (or globally). The follow ng exanpl es
illustrate the protocol

Not e: Presence notifications do not include presence subscriptions,
only presence information that is broadcasted to contacts because
those contacts are currently subscribed to the user’s presence
information. Thus this includes presence stanzas with no 'type
attribute or of type='unavail able’ only.

Sai nt - Andre St andards Track [ Page 78]



RFC 3921 XVPP | M Cct ober 2004

Exampl e: User bl ocks based on JID

<iq from=' roneo@xanpl e. net/orchard’ type='set’ id= presoutl >
<query xm ns='jabber:iq: privacy’ >
<l i st name=’ presout-jid-exanple >
<itemtype='jid
val ue='tybal t @xanpl e. coni
action='deny’
order="13" >
<pr esence-out/ >

</itenp
</list>
</ query>
</ig>
As a result of creating and applying the foregoing list, the user
wi Il not send presence notifications to the entity with the specified
| D.

Exanpl e: User bl ocks based on roster group

<iq from=' roneo@xanpl e. net/orchard’ type=set’ id= presout2’ >
<query xm ns='jabber:iq: privacy’ >
<l i st nanme=’ presout-group-exanpl e’ >
<itemtype=' group
val ue=' Enemi es’
action='deny’
order="15" >
<pr esence-out />
</itenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
wi Il not send presence notifications to any entities in the specified
roster group.

Exanpl e: User bl ocks based on subscription type:

<iq fronm= roneo@xanpl e. net/orchard’ type= set’ id= presout3 >
<query xm ns='jabber:iq: privacy’ >
<l i st name=’ presout - sub-exanpl e’ >
<itemtype="subscription

val ue="fron
acti on="deny’
order="17" >

<pr esence-out />

Sai nt - Andre St andards Track [ Page 79]



RFC 3921 XVPP | M Cct ober 2004

10.

</itenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
wi Il not send presence notifications to any entities with the
speci fied subscription type.

Exampl e: User bl ocks gl obally:

<iq from=' roneo@xanpl e. net/orchard’ type='set’ id= presout4d4 >
<query xm ns='jabber:iq:privacy’ >
<l i st name=’ presout - gl obal - exanpl e’ >
<item acti on="deny’ order='23 >
<pr esence-out/ >
<litenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
wi Il not send presence notifications to any other users.

12. Bl ocking | Q Stanzas

Server-side privacy lists enable a user to block incomng | Q stanzas
fromother entities based on the entity’s JID, roster group, or
subscription status (or globally). The follow ng exanples illustrate
t he protocol

Exanmpl e: User bl ocks based on JID

<iq fronm= roneo@xanpl e. net/orchard’ type="set’ id="iql >
<query xm ns='jabber:iq: privacy’ >
<list nanme="ig-jid-exanple >
<itemtype="jid
val ue="t ybal t @xanpl e. coni
action='deny’
order="29" >
<igl/>
</itenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
will not receive 1Q stanzas fromthe entity with the specified JID

Sai nt - Andre St andards Track [ Page 80]



RFC 3921 XVPP | M Cct ober 2004

Exampl e: User bl ocks based on roster group

<iq from=' roneo@xanpl e. net/orchard’ type="set’ id="iq2 >
<query xm ns='jabber:iq: privacy’ >
<li st name=’ig-group-exanple’ >
<itemtype=' group
val ue=" Enemi es’
action='deny’
order="31" >

<iqgl>
</itenp
</list>
</ query>
</ig>
As a result of creating and applying the foregoing list, the user
will not receive 1Q stanzas fromany entities in the specified roster
group.

Exanpl e: User bl ocks based on subscription type:

<iq fronm= roneo@xanpl e. net/orchard’ type="set’ id="iq3 >
<query xm ns='jabber:iq: privacy’ >
<list nanme='ig-sub-exanpl e’ >
<itemtype='subscription
val ue=’ none’
action='deny’
order="17">
<igl/>
</itenp
</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user

will not receive 1 Q stanzas fromany entities with the specified
subscription type.

Sai nt - Andre St andards Track [ Page 81]



RFC 3921 XVPP | M Cct ober 2004

10.

Exampl e: User bl ocks gl obal lvy:

<iq from=’ roneo@xanpl e. net/orchard’ type="set’ id="iqg4 >
<query xm ns='jabber:iq: privacy’ >
<li st name=’ig-gl obal - exanpl e’ >
<item action="deny’ order=1">
<iqgl>
</itenp
</list>
</ query>
<lig>

As a result of creating and applying the foregoing list, the user
will not receive | Q stanzas from any other users.

13. Blocking Al Conmuni cation

Server-side privacy |lists enable a user to block all stanzas from and
to other entities based on the entity’'s JID, roster group, or
subscription status (or globally). Note that this includes
subscription-rel ated presence stanzas, which are excluded by Bl ocking
I nbound Presence Notifications (Section 10.10). The follow ng
exanples illustrate the protocol

Exampl e: User bl ocks based on JID

<iq from=’ roneo@xanpl e. net/orchard’ type="set’ id="alll >
<query xm ns='jabber:iq:privacy’ >
<list name="all-jid-example’ >
<itemtype='jid
val ue='tybal t @xanpl e. con
action='deny’
order='23"/>

</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
will not receive any communi cations from nor send any stanzas to,
the entity with the specified JID

Exanpl e: User bl ocks based on roster group

<iq from=' roneo@xanpl e. net/orchard’ type="set’ id="all2' >
<query xm ns=’"j abber:iq:privacy’ >
<list name="all-group-exanple’ >
<item type='group’
val ue=" Enem es’

Sai nt - Andre St andards Track [ Page 82]



RFC 3921 XVPP | M Cct ober 2004

10.

action='deny’
order="13"/>

</list>
</ query>
<lig>

As a result of creating and applying the foregoing list, the user
will not receive any comuni cations from nor send any stanzas to,
any entities in the specified roster group

Exampl e: User bl ocks based on subscription type:

<iq from= roneo@xanpl e. net/orchard’ type="set’ id="all3 >
<query xm ns='jabber:iq:privacy’ >
<list name='all-sub-exanple’ >
<itemtype=' subscription’
val ue=’ none’
action="deny’
order="11"/>

</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
wi Il not receive any comuni cations from nor send any stanzas to,
any entities with the specified subscription type.

Exampl e: User bl ocks gl obal ly:

<iqg fronme roneo@xanpl e. net/orchard’ type='set’ id="all4 >
<query xm ns='jabber:iq:privacy’ >
<list name="all-gl obal -exanpl e’ >
<item acti on="deny’ order="7/>

</list>
</ query>
</ig>

As a result of creating and applying the foregoing list, the user
will not receive any communi cations from nor send any stanzas to,
any ot her users.

14. Blocked Entity Attenpts to Comrunicate with User
If a blocked entity attenpts to send nessage or presence stanzas to

the user, the user’s server SHOULD silently drop the stanza and MJST
NOT return an error to the sending entity.

Sai nt - Andre St andards Track [ Page 83]



RFC 3921 XVPP | M Cct ober 2004

10.

If a blocked entity attenpts to send an |1 Q stanza of type "get" or
"set" to the user, the user’s server MJST return to the sending
entity a <service-unavail abl e/> stanza error, since this is the
standard error code sent froma client that does not understand the
nanespace of an 1Q get or set. 1Q stanzas of other types SHOULD be
silently dropped by the server.

Exanpl e: Bl ocked entity attenpts to send | Q get:

<iq type=' get’
to="romeo@xanpl e. net’
from=' tybal t @xanpl e. com pda
i d=" probi ngl’ >
<query xm ns='jabber:iq:version'/>
</ig>

Exampl e: Server returns error to bl ocked entity:

<iq type='error’
from=’ roneo@xanpl e. net’
to="tybal t @xanpl e. com pda
i d=" probi ngl’ >
<query xm ns='jabber:iq:version' />
<error type=' cancel’ >
<servi ce-unavail abl e
xm ns="urn:ietf:parans: xm :ns: xnmpp-stanzas’ />
</error>
</ig>

15. Higher-Level Heuristics

When buil ding a representation of a higher-1evel privacy heuristic, a
client SHOULD use the sinplest possible representation

For exanple, the heuristic "block all communications with any user
not in ny roster"” could be constructed in any of the follow ng ways:

o allow conmunications fromall JIDs in nmy roster (i.e., listing
each JID as a separate list iten), but block comrunications wth
everyone el se

o allow comunications fromany user who is in one of the groups
that make up ny roster (i.e., listing each group as a separate
list iten), but block communications fromeveryone el se

o allow comunications fromany user with whom| have a subscription
of "both” or "to or '"from (i.e., listing each subscription value
separately), but block comunications fromeveryone el se

Sai nt - Andre St andards Track [ Page 84]



RFC 3921 XVPP | M Cct ober 2004

11.

11.

o block comunications from anyone whose subscription state is
"none’

The final representation is the sinplest and SHOULD be used; here is
the XML that would be sent in this case:

<iq type='set’ id="heuristicl >
<query xm ns='jabber:iq:privacy’ >
<list name=’heuristic-exanple’ >
<itemtype=" subscription’
val ue=' none’
action="deny’
order="437"/>

</list>
</ query>
</ig>

Server Rules for Handling XM. Stanzas

Basic routing and delivery rules for servers are defined in
[ XMPP- CORE] . This section defines additional rules for
XMPP-compl i ant i nstant messagi ng and presence servers.

1. Inbound Stanzas

If the hostnane of the domain identifier portion of the JID contained
inthe "to’ attribute of an inbound stanza natches a hostname of the
server itself and the JID contained in the "to attribute is of the

f orm <user @xanpl e. conr or <user @xanpl e. con resource>, the server
MUST first apply any privacy lists (Section 10) that are in force,
then follow the rul es defined bel ow

1. If the JIDis of the form <user @omai n/resource> and an avail abl e
resource matches the full JID, the recipient’s server MJST
deliver the stanza to that resource

2. Else if the JIDis of the form <user @onai n> or <user @omai n/
resource> and the associ ated user account does not exist, the
reci pient’s server (a) SHOULD silently ignore the stanza (i.e.
neither deliver it nor return an error) if it is a presence
stanza, (b) MJST return a <service-unavail abl e/> stanza error to
the sender if it is an I Q stanza, and (c) SHOULD return a
<servi ce-unavail abl e/ > stanza error to the sender if it is a
nmessage stanza.

3. Elseif the JIDis of the form <user @omai n/ resour ce> and no
avai |l abl e resource matches the full JID, the recipient’s server
(a) SHOULD silently ignore the stanza (i.e., neither deliver it

Sai nt - Andre St andards Track [ Page 85]



RFC 3921 XVPP | M Cct ober 2004

nor return an error) if it is a presence stanza, (b) MJST return
a <service-unavail abl e/> stanza error to the sender if it is an
| Q stanza, and (c) SHOULD treat the stanza as if it were
addressed to <user@omain> if it is a nmessage stanza.

4., Else if the JIDis of the form <user @omai n> and there is at
| east one avail able resource available for the user, the
reci pient’s server MJST foll ow these rules:

1. For nessage stanzas, the server SHOULD deliver the stanza to
the highest-priority available resource (if the resource did
not provide a value for the <priority/> elenent, the server
SHOULD consider it to have provided a value of zero). If two
or nore avail abl e resources have the sane priority, the
server MAY use sone other rule (e.g., npbst recent connect
time, nost recent activity tine, or highest availability as
determ ned by some hierarchy of <show > val ues) to choose
bet ween them or MAY deliver the nessage to all such
resources. However, the server MJUST NOT deliver the stanza
to an avail able resource with a negative priority; if the
only avail abl e resource has a negative priority, the server
SHOULD handl e the message as if there were no avail able
resources (defined below). In addition, the server MJST NOT
rewite the 'to’ attribute (i.e., it MIJST leave it as
<user @onai n> rather than change it to <user @onai n/
resource>).

2. For presence stanzas other than those of type "probe", the
server MJST deliver the stanza to all avail abl e resources;
for presence probes, the server SHOULD reply based on the

rul es defined in Presence Probes (Section 5.1.3). In
addition, the server MUST NOT rewite the "to attribute
(i.e., it MIST leave it as <user @onmi n> rather than change

it to <user @omai n/resource>).

3. For 1Q stanzas, the server itself MJST reply on behal f of the
user with either an IQresult or an I1Q error, and MJST NOT
deliver the 1Q stanza to any of the avail abl e resources.
Specifically, if the semantics of the qualifying nanespace
define a reply that the server can provide, the server MJST
reply to the stanza on behalf of the user; if not, the server
MUST reply with a <service-unavail abl e/> stanza error

5. Else if the JIDis of the form <user @onmai n> and there are no

avai |l abl e resources associated with the user, how the stanza is
handl ed depends on the stanza type:

Sai nt - Andre St andards Track [ Page 86]



RFC 3921 XVPP | M Cct ober 2004

11.

1. For presence stanzas of type "subscribe", "subscribed"
"unsubscribe", and "unsubscribed", the server MJST naintain a
record of the stanza and deliver the stanza at |east once
(i.e., when the user next creates an avail able resource); in
addition, the server MJST continue to deliver presence
stanzas of type "subscribe" until the user either approves or
deni es the subscription request (see al so Presence
Subscriptions (Section 5.1.6)).

2. For all other presence stanzas, the server SHOULD silently
i gnore the stanza by not storing it for |later delivery or
replying to it on behalf of the user

3. For nessage stanzas, the server MAY choose to store the
stanza on behalf of the user and deliver it when the user
next becomes available, or forward the nessage to the user
via sone other nmeans (e.g., to the user’s email account).
However, if offline nmessage storage or nessage forwarding is
not enabl ed, the server MJST return to the sender a
<servi ce-unavail abl e/ > stanza error. (Note: Ofline nessage
storage and nessage forwarding are not defined in XMPP, since
they are strictly a matter of inplenentation and service
provi si oni ng.)

4. For 1Q stanzas, the server itself MJST reply on behalf of the
user with either an IQresult or an IQerror. Specifically,
if the semantics of the qualifying namespace define a reply
that the server can provide, the server MJST reply to the
stanza on behal f of the user; if not, the server MJIST reply
with a <service-unavail abl e/ > stanza error

2. Qutbound Stanzas

If the hostnane of the domain identifier portion of the address
contained in the "to’ attribute of an outbound stanza matches a

host nane of the server itself, the server MJST deliver the stanza to
a local entity according the rules for Inbound Stanzas (Section
11.1).

If the hostnane of the domain identifier portion of the address
contained in the 'to’ attribute of an outbound stanza does not match
a hostnane of the server itself, the server MJST attenpt to route the
stanza to the foreign domain. The recommended order of actions is as
fol | ows:

Sai nt - Andre St andards Track [ Page 87]



RFC 3921 XVPP | M Cct ober 2004

12.

12.

1. First attenpt to resolve the foreign hostnane using an [ SRV
Service of "xmpp-server" and Proto of "tcp", resulting in
resource records such as "_xnpp-server._tcp. exanple.com", as
specified in [ XMPP- CORE] .

2. If the "xnpp-server" address record resolution fails, attenpt to
resolve the " _inl' or " pres" [SRV] Service as specified in
[ MP-SRV], using the " im Service for <message/> stanzas and the
" _pres" Service for <presence/> stanzas (it is up to the
i mpl enentati on how to handle <iqg/> stanzas). This will result in
one or nore resolutions of the form™"_im <proto>. exanple.com"” or
" _pres.<proto>. exanple.com"”, where "<proto>" would be a | abe
registered in the Instant Messagi ng SRV Protocol Label registry
or the Presence SRV Protocol Label registry: either " xnmpp" for
an XMPP-aware domai n or some other | ANA-registered |abel (e.g.
"_sinple") for a non- XMPP-aware domain.

3. If both SRV address record resolutions fail, attenpt to performa
normal | Pv4/1Pv6 address record resolution to determine the IP
address using the "xnpp-server" port of 5269 registered with the
| ANA, as specified in [ XMPP-CORE] .

Admi ni strators of server deploynments are strongly encouraged to keep
the _im _xnmpp, _pres._xnmpp, and _xnpp. _tcp SRV records properly
synchroni zed, since different inplenentations nmght performthe " _inf
and " _pres" | ookups before the "xnpp-server" | ookup

I M and Presence Conpliance Requirenents

This section sunmari zes the specific aspects of the Extensible
Messagi ng and Presence Protocol that MJST be supported by instant
nessagi ng and presence servers and clients in order to be considered
conpliant inplenentations. Al such applications MJST conmply with
the requirenents specified in [ XMPP-CORE]. The text in this section
speci fies additional compliance requirements for instant messagi ng
and presence servers and clients; note well that the requirenents
descri bed here suppl enent but do not supersede the core requirenents.
Note al so that a server or client MAY support only presence or

i nstant nessaging, and is not required to support both if only a
presence service or an instant nessaging service is desired.

1. Servers
In addition to core server conpliance requirenents, an instant

nmessagi ng and presence server MJST additionally support the follow ng
pr ot ocol s:

Sai nt - Andre St andards Track [ Page 88]



RFC 3921 XVPP | M Cct ober 2004

12.

13.

14.

o Al server-related instant nessagi ng and presence syntax and
semantics defined in this docunent, including presence broadcast
on behal f of clients, presence subscriptions, roster storage and
mani pul ation, privacy lists, and I Mspecific routing and delivery
rul es

2. dients

In addition to core client conpliance requirenents, an instant
nmessagi ng and presence client MJST additionally support the follow ng
pr ot ocol s:

0 Ceneration and handling of the | Mspecific semantics of XM
stanzas as defined by the XM. schemas, including the 'type
attribute of message and presence stanzas as well as their child
el enent s

o Al client-related instant nessagi ng syntax and semantics defined
in this docurment, including presence subscriptions, roster
managenment, and privacy lists

o End-to-end object encryption as defined in End-to-End Object
Encryption in the Extensible Messagi ng and Presence Protoco
(XMPP) [ XMPP- E2E]

A client MUST al so handl e addresses that are encoded as "im" URIs as
specified in [CPIM, and MAY do so by renoving the "im" schene and
entrusting address resolution to the server as specified under

Qut bound Stanzas (Section 11.2).

I nternationalization Considerations

For internationalization considerations, refer to the rel evant
section of [ XMPP-CORE] .

Security Considerations

Core security considerations for XMPP are defined in the rel evant
section of [ XMPP-CORE].

Addi tional considerations that apply only to instant nessagi ng and
presence applications of XMPP are defined in several places within
this neno; specifically:

Sai nt - Andre St andards Track [ Page 89]



RFC 3921 XVPP | M Cct ober 2004

15.

15.

o Wien a server processes an inbound stanza of any ki nd whose
i ntended recipient is a user associated with one of the server’s
host nanmes, the server MJST first apply any privacy lists (Section
10) that are in force (see Server Rules for Handling XM. Stanzas
(Section 11)).

o Wien a server processes an inbound presence stanza of type "probe"
whose intended recipient is a user associated with one of the
server’s hostnames, the server MJST NOT reveal the user’s presence
information if the sender is an entity that is not authorized to
receive that information as determ ned by presence subscriptions
(see Client and Server Presence Responsibilities (Section 5.1)).

o Wien a server processes an outbound presence stanza with no type
or of type "unavailable", it MJST follow the rul es defined under
Client and Server Presence Responsibilities (Section 5.1) in order
to ensure that such presence information is not broadcasted to
entities that are not authorized to know such infornmation.

o Wen a server generates an error stanza in response to receiving a
stanza for a user who does not exist, the use of the
<servi ce-unavail abl e/> error condition hel ps protect against
wel | -known dictionary attacks, since this is the same error
condition that is returned if, for instance, the nanespace of an
IQchild elenment is not understood, or if offline nessage storage
or nmessage forwarding is not enabled for a domain

| ANA Consi der ati ons

For a number of related | ANA considerations, refer to the rel evant
section of [ XMPP-CORE].

1. XM Nanespace Nane for Session Data

A URN sub- namespace for session-related data in the Extensible
Messagi ng and Presence Protocol (XWMPP) is defined as follows. (This
nanespace nanme adheres to the format defined in The | ETF XM. Registry
[ XM.- REG .)

URI: urn:ietf:parans: xm :ns: xnpp-sessi on

Speci fication: RFC 3921

Description: This is the XM. nanespace nane for session-rel ated data
in the Extensible Messagi ng and Presence Protocol (XWMPP) as
defined by RFC 3921

Regi strant Contact: |ETF, XMPP Worki ng Group, <xmppwg@ abber. org>

Sai nt - Andre St andards Track [ Page 90]



RFC 3921 XVPP | M Cct ober 2004

15.

15.

16.

16.

2. Instant Messagi ng SRV Protocol Label Registration

Address Resolution for Instant Messaging and Presence [I| MP-SRV]
defines an | nstant Messagi ng SRV Protocol Label registry for
protocol s that can provide services that conformto the "_im SRV
Service | abel. Because XMPP is one such protocol, the I ANA registers
the " _xmpp" protocol |abel in the appropriate registry, as follows:

Prot ocol |abel: _xnpp

Speci fication: RFC 3921

Description: Instant nessagi ng protocol |abel for the Extensible
Messagi ng and Presence Protocol (XWMPP) as defined by RFC 3921.

Regi strant Contact: |ETF, XMPP Wbrki ng Group, <xnmppwg@ abber. org>

3. Presence SRV Protocol Label Registration

Address Resolution for Instant Messaging and Presence [I| MP-SRV]
defines a Presence SRV Protocol Label registry for protocols that can
provi de services that conformto the " pres" SRV Service | abel
Because XMPP is one such protocol, the | ANA registers the " xnmpp"
protocol label in the appropriate registry, as foll ows:

Prot ocol |abel: _xnpp

Speci fication: RFC 3921

Description: Presence protocol |abel for the Extensible Messagi ng and
Presence Protocol (XMPP) as defined by RFC 3921.

Regi strant Contact: |ETF, XMPP Worki ng Group, <xmppwg@ abber. org>

Ref er ences
1. Normative References

[CPIM Peterson, J., "Common Profile for |Instant Messaging
(CPIM", RFC 3860, August 2004.

[ MP-REQS] Day, M, Aggarwal, S., Mhr, G, and J. Vincent, "Instant
Messagi ng/ Presence Protocol Requirements", RFC 2779,
February 2000.

[ 1 MP- SRV] Peterson, J., "Address Resolution for Instant Messaging
and Presence", RFC 3861, August 2004.

[ SRV] Gul brandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
specifying the | ocation of services (DNS SRV)", RFC 2782,
February 2000.

[ TERVS] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

Sai nt - Andre St andards Track [ Page 91]



RFC 3921 XMPP | M Oct ober 2004
[ XM_] Bray, T., Paoli, J., Sperberg-MQeen, C., and E. Mler,
"Ext ensi bl e Markup Language (XM.) 1.0 (2nd ed)", WBC
REC-xm , COct ober 2000, <http://wwv. wW3. org/ TR/ REC- xmi >.
[ XML- NAMES] Bray, T., Hollander, D., and A Layman, "Nanmespaces in
XM.", WBC REC-xm - nanmes, January 1999,
<http://ww. w3. or g/ TR/ REC- xm - names>.
[ XMPP- CORE] Sai nt-Andre, P., "Extensible Messaging and Presence
Protocol (XMPP): Core", RFC 3920, October 2004.
[ XMPP- E2E] Saint-Andre, P., "End-to-End Object Encryption in the
Ext ensi bl e Messagi ng and Presence Protocol (XMPP)", RFC
3923, Cctober 2004.
16.2. Informative References
[ MP- MODEL] Day, M, Rosenberg, J., and H Sugano, "A Mdel for
Presence and | nstant Messagi ng", RFC 2778, February 2000.
[1RC G karinen, J. and D. Reed, "Internet Relay Chat
Protocol ", RFC 1459, May 1993.
[ JEP-0054] Saint-Andre, P., "vcard-temp", JSF JEP 0054, March 2003.
[JEP-0077] Saint-Andre, P., "In-Band Registration", JSF JEP 0077,
August 2004.
[JEP-0078] Saint-Andre, P., "Non-SASL Authentication", JSF JEP 0078,
July 2004.
[ IJSF] Jabber Sof tware Foundation, "Jabber Software Foundation",
<http://ww.j abber. org/ >.
[ VCARD] Dawson, F. and T. Howes, "vCard M ME Directory Profile",
RFC 2426, Septenber 1998.
[ XM_- REG Meal ling, M, "The I ETF XML Regi stry", BCP 81, RFC 3688,
January 2004.
Sai nt - Andre St andards Track [ Page 92]



RFC 3921 XVPP | M Cct ober 2004

Appendi x A, vCards

Sections 3.1.3 and 4.1.4 of [IMP-REQS] require that it be possible to
retrieve out-of-band contact information for other users (e.g.

tel ephone nunber or emanil address). An XM representation of the
vCard specification defined in RFC 2426 [VCARD] is in commpn use
within the Jabber community to provide such information but is out of
scope for XMPP (documentation of this protocol is contained in

[ JEP-0054], published by the Jabber Software Foundation [JSF]).

Appendi x B. XM. Schenas

The foll owing XM. schenas are descriptive, not normative. For
schemas defining the core features of XMPP, refer to [ XMPP-CORE].

B.1 jabber:client
<?xm version="1.0" encodi ng=" UTF-8' ?>

<xs:schemn
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema
t ar get Nanespace="j abber:client’
xm ns="j abber:client’
el ement For mDef aul t =" qual i fi ed’ >

<xs:inport namespace='urn:ietf:paranms: xm :ns: xnpp-stanzas’'/>

<xs: el enent nane=' nessage’ >
<xs: conpl exType>
<XS: sequence>
<xs:choi ce m nCccurs="0" nmaxQccur s=" unbounded’ >
<xs: el enent ref="subject’/>
<xs: el enent ref="body' />
<xs:elenment ref="thread />
</ xs: choi ce>
<Xs:any nanmespace=' ##ot her’
m nCccurs="0’
maxQccur s=’ unbounded’ / >
<xs:elenent ref="error’
m nCccurs="0"/>

Sai nt - Andre St andards Track [ Page 93]



RFC 3921 XVPP | M Cct ober 2004

</ xs: sequence>
<xs:attribute name="fron
type='xs:string’
use="optional ' />
<xs:attribute nanme="id
type=" xs: NMTOKEN
use="optional ' />
<xs:attribute name="to’
type='xs:string’
use="optional ' />
<xs:attribute name="type wuse='optional’ default="normal’>
<xs: si npl eType>
<xs:restriction base="xs: NCNange' >
<xs: enuneration val ue='chat’/>
<xs:enuneration value="error’'/>
<xs:enuneration val ue=’ groupchat’/>
<xs:enuneration val ue=" headline' />
<xs: enuneration val ue="normal />
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute ref="xm :lang’ use="optional’/>
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nane=' body’ >
<xs: conpl exType>
<xs: si mpl eCont ent >
<xs: extensi on base="xs:string >
<xs:attribute ref="xm :lang’ use="optional’' />
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme=' subj ect’ >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extensi on base="xs:string >
<xs:attribute ref="xm :lang’ use="optional’/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent name="thread type="xs: NMTOKEN />

<xs: el enent name=' presence’ >

Sai nt - Andre St andards Track [ Page 94]



RFC 3921

<xs: conpl exType>

<XS:sequence>

<xs: choi ce m nCccurs="0’

XVPP | M

<xs: el enment ref="show />
<xs:elenment ref="status’'/>
<xs:elenent ref="priority’ />

maxQccur s=' unbounded’ >

</ xs: choi ce>
<XS:any

nanespace=' ##ot her’

m nCccurs='0’

maxQCccur s=' unbounded’ / >
<xs:elenment ref="error’

m nCccurs="0"/ >

</ xs: sequence>

<xs:attribute name="fron
type='xs:string’
use="optional ' />
<xs:attribute name="id
type=" xs: NMTOKEN
use="optional ' />
<xs:attribute name="to’
type='xs:string’
use="optional ' />
<xs:attribute name="type

<xs: si npl eType>

use="optional ’ >

<xs:restriction base="xs: NCNane’ >
<XS:enuneration va
<XS:enuneration va
<XS:enuneration va
<XS:enuneration va
<XS:enuneration va
<XS:enuneration va
<XS:enuneration va

ue="error’'/>

ue=' probe’ />
ue="subscri be’' />
ue=" subscri bed' />
ue="unavail abl e’ />
ue=' unsubscri be’' />
ue=' unsubscri bed’ / >

</xs:restriction>
</ xs:si npl eType>
</ xs:attribute>

<xs:attribute

ref="xm :lang’ use='optional’/>

</ xs: conpl exType>

</ xs: el enent >

<xs: el emrent nane=’

<xs:si npl eType>

show >

<xs:restriction base="xs: NCNane’ >
<xs: enuneration val ue=" away’ />
<xs:enuneration value='chat’'/>
<xs:enuneration value="dnd />
<XS:enuneration val ue="xa'/>

</xs:restriction>

</ xs: si npl eType>

Sai nt - Andr e

St andards Track

Cct ober 2004

[ Page 95]



RFC 3921 XVPP | M Cct ober

</ xs: el enent >

<xs:el enent nane="status’ >
<xs: conpl exType>
<xs: si mpl eCont ent >
<xs: extensi on base='xs:string >
<xs:attribute ref="xm :lang’ use="optional’'/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent name='priority’ type= xs:byte'/>

<xs:el enent nane="iq >
<xs: conpl exType>
<XS:sequence>
<Xs:any nanmespace=' ##ot her’
m nCccurs="0"/>
<xs:elenent ref="error’
m nQCccurs="0"/>
</ xs: sequence>
<xs:attribute name="fron
type=' xs:string’
use="optional ' />
<xs:attribute nanme="id
type=" xs: NMITOCKEN
use="required />
<xs:attribute name="to’
type=' xs:string’
use="optional ' />
<xs:attribute name="type' use='required >
<xs: si npl eType>
<xs:restriction base=" xs: NCNanme’' >
<xs:enuneration value="error’/>
<xs:enuneration value="get’'/>
<xs:enuneration value="result’/>
<xs:enuneration val ue="set’'/>
</xs:restriction>
</ xs:si npl eType>
</xs:attribute>
<xs:attribute ref="xm :lang’ use="optional’' />
</ xs: conpl exType>
</ xs: el ement >

<xs:el enent nanme="error’>
<xs: conpl exType>

2004

<xs:sequence xnins:err="urn:ietf:parans:xm:ns: xnpp-stanzas’ >

Sai nt - Andre St andards Track [ Page 96]



RFC 3921 XVPP | M Cct ober 2004

<XS: group ref="err:stanzaErrorGoup’ />
<xs:elenment ref="err:text’
m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="code’ type='xs:byte wuse= optional’/>
<xs:attribute nanme="type use=required >
<xs: si npl eType>
<xs:restriction base="xs: NCNane' >
<xs:enuneration value="auth' />
<XS:enuneration val ue="cancel '/ >
<XS:enuneration val ue="conti nue' />
<xs:enuneration value="nodify' />
<xs:enuneration value="wait’'/>
</xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
</ xs: conpl exType>
</ xs: el ement >

</ xs: schema>
B.2 | abber:server
<?xm version="1.0" encodi ng=" UTF-8' ?>

<xs:schemn
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema
t ar get Nanespace='j abber: server’
xm ns="j abber: server’
el ement For mDef aul t =" qual i fi ed’ >

<xs:inport namespace='urn:ietf:paranms: xm :ns: xnpp-stanzas’'/>

<xs: el enent nane=' nessage’ >
<xs: conpl exType>
<XS: sequence>
<xs:choi ce m nCccurs="0" nmaxQccur s=" unbounded’ >
<xs: el enent ref="subject’/>
<xs: el enent ref="body />
<xs:elenment ref="thread />
</ xs: choi ce>
<Xs:any nanmespace=' ##ot her’
m nCccurs="0’
maxQccur s=’ unbounded’ / >
<xs:elenment ref="error’
m nCccurs="0"/>
</ xs: sequence>

Sai nt - Andre St andards Track [ Page 97]



RFC 3921 XVPP | M Cct ober 2004

<xs:attribute nanme='froni
type='xs:string’
use="required />
<xs:attribute nanme='id
type=" xs: NMTOKEN
use="optional ' />
<xs:attribute nane='to’
type='xs:string’
use="required />
<xs:attribute name="type wuse='optional’ default="normal’>
<xs:si npl eType>
<xs:restriction base="xs: NCNane’ >
<xs:enuneration value='chat’'/>
<xs:enuneration value="error’'/>
<xs:enuneration val ue=’ groupchat’/>
<xXxs:enuneration val ue=" headline' />
<XS:enuneration value="normal’'/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute ref="xm :lang’ use="optional’'/>
</ xs: conpl exType>
</ xs: el enent >

<xs: el enent nane=' body’ >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extension base="xs:string >
<xs:attribute ref="xm :lang’ use="optional’ />
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent name=’ subj ect’ >
<xs: conpl exType>
<xs: si nmpl eCont ent >
<xs: extensi on base="xs:string >
<xs:attribute ref="xm :lang’ use="optional’'/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent name='thread type='xs: NMTOKEN />

<xs: el enent name=’ presence’ >
<xs: conpl exType>

Sai nt - Andre St andards Track [ Page 98]



RFC 3921

<XS:sequence>

<xs:choi ce m nCccurs="0" nmaxQccurs=" unbounded’ >

XVPP | M

<xs: el enent ref="show />
<xs:elenment ref="status’'/>
<xs:elenment ref="priority’ />

</ xs: choi ce>

<Xs: any

<xs: el ement

</ xs: sequence>

<xs:attribute

<xs:attribute

<xs:attribute

nanespace=' ##ot her’

m nCccurs='0’
maxQccur s=' unbounded’ / >
ref="error’

m nCccurs="0"/>

name="fromn
type='xs:string’
use="required />
name="id’
type=" xs: NMTOKEN
use="optional ' />
name='to’
type='xs:string’
use="required />

<xs:attribute name="type

<xs:si npl eType>

use="optional ' >

<xs:restriction base="xs: NCNane’ >

<XS:enunerati
<xs:enunerati
<xs:enunerati
<XS: enumer at i
<XS: enuner ati
<XS:enunerati
<XS:enunerati

on value="error’'/>

on val ue=' probe’' />

on val ue=' subscribe’ />

on val ue=' subscri bed’ />
on val ue="unavail abl e’ />
on val ue=" unsubscri be’ />
on val ue=" unsubscri bed’ />

</xs:restriction>

</ xs: si npl eType>
</xs:attribute>
<xs:attribute ref=
</ xs: conpl exType>
</ xs: el enent >

<xs: el enent nanme=' show
<xs:si npl eType>

xm : I ang’

>

<xs:restriction base=" xs: NCNane’ >
<xs: enuneration val ue=" anway’ />
<xs:enuneration value='chat’'/>
<xs:enuneration value="dnd />
<Xs:enuneration val ue='xa'/>

</xs:restriction>
</ xs:si npl eType>
</ xs: el enent >

Sai nt - Andr e

St andards Track

use="optional ' />

Cct ober

[ Page

2004

99]



RFC 3921 XVPP | M Cct ober

<xs:el enent nane="status’ >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extension base="xs:string >
<xs:attribute ref="xnm:Iang
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

use="optional ' />

<xs: el enment name="priority’ type= xs:byte' />
<xs: el enent nane='iq >

<xs: conpl exType>

<XS:sequence>
<XS:any nanespace=' ##ot her’

m nOccurs="0"/>
ref="error’
m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name='fron
type='xs:string’
use="required />
name="1id’
type=" xs: NMTOKEN
use="required />
nane='to’
type='xs:string’
use="required />
<xs:attribute nane="type use=required >

<xs: si npl eType>

<xs:restriction base=" xs: NCNane’ >

<xs: el enent

<xs:attribute

<xs:attribute

<XS:enuneration
<XS:enuneration
<XS:enuneration
<XS:enuneration
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>

<xs:attribute ref="xnl:Iang

</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme='error’ >
<xs: conpl exType>
<XS:sequence

val ue="error’'/>
val ue="get’ />
value="result’ />
val ue="set’ />

use="optional ' />

<XS: group
<xs: el enent

Sai nt - Andr e

ref="err:stanzaError G oup’ />
ref="err:text’

St andards Track

2004

xm ns:err="urn:ietf:paranms: xm : ns: xnpp- st anzas’ >

[ Page 100]



RFC 3921 XVPP | M Cct ober 2004

m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="code’ type='xs:byte use=optional’'/>
<xs:attribute name="type use='required >
<xs:si npl eType>
<xs:restriction base="xs: NCNane’ >
<xs:enuneration value="auth' />
<xs:enuneration val ue='cancel ' />
<xXs:enuneration val ue='continue’'/>
<xs:enuneration value="nodify' />
<XS:enuneration value="wait’'/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el enent >

</ xs: schema>
B.3 session
<?xm version="1.0" encodi ng=" UTF-8’ ?>
<xs:schemn
xm ns: xs=" http://ww. w3. or g/ 2001/ XM_Schen®a’
target Nanespace="urn:ietf: parans: xm : ns: xnmpp- sessi on
xm ns="urn:ietf:parans: xm :ns: xmpp- sessi on’
el ement For mDef aul t =" qual i fi ed’ >
<xs: el enent nanme=' session’ type="enpty’/>
<xs: si npl eType nane='enpty’ >
<xs:restriction base="xs:string >
<xs:enuneration value="/>
</xs:restriction>
</ xs: si npl eType>
</ xs: schema>
B.4 jabber:iq:privacy
<?xm version="1.0" encodi ng=" UTF-8' ?>
<xs:schemn

xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema
t ar get Nanespace="j abber:i qg: privacy’

Sai nt - Andre St andards Track [ Page 101]



RFC 3921 XVPP | M Cct ober 2004

xm ns="j abber:iq: privacy’
el ement For mDef aul t =" qual i fi ed’ >

<xs:el enent nanme=" query’ >
<xs: conpl exType>
<XS: sequence>
<xs: el enent ref="active’
m nCccurs="0"/>
<xs:elenent ref="default’
m nCccurs="0"/>
<xs:elenment ref="1ist’
m nCccurs='0’
maxQccur s=’ unbounded’ / >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

<xs: el enent nane="active’ >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extensi on base=' xs: NMTOKEN >
<xs:attribute name=' nane’
type='xs:string’
use="optional ' />
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el enent >

<xs: el enent nanme="defaul t’ >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: ext ensi on base=' xs: NMTOKEN >
<xs:attribute name=' nane’
type='xs:string’
use="optional ' />
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el enent >

<xs: el enent nanme="list’>
<xs: conpl exType>
<XSs:sequence>
<xs:elenment ref="iten
m nCccurs="0’
maxQccur s=' unbounded’ / >
</ xs: sequence>

Sai nt - Andre St andards Track [ Page 102]



RFC 3921 XVPP | M

<xs:attribute name='nange’
type='xs:string’
use="required />
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="iten >
<xs: conpl exType>

<XS:sequence>
<xs: el enent name="iq’
m nOccurs="0’
type='enpty’' />
<xs: el enent nanme=' nessage
m nCccurs=" 0’
type="enpty’' />
<xs: el enent name=' presence-in’
m nOccurs="0’
type='enpty’' />
<xs: el enent name=' presence-out’
m nCccurs=" 0’
type='enpty’' />
</ xs: sequence>
<xs:attribute name="action’ use=required >
<xs: si npl eType>
<xs:restriction base="xs: NCNane’ >
<xs:enuneration value="allow />
<xs:enuneration val ue=" deny’/>
</xs:restriction>
</ xs:si npl eType>
</xs:attribute>
<xs:attribute name='order’
type=' xs: unsi gnedl nt’
use="required />
<xs:attribute name="type use= optional’>
<xs:si npl eType>
<xs:restriction base="xs: NCNane’ >
<xs: enuneration val ue="group’'/>
<xs:enuneration value="jid />
<xs:enuneration val ue=" subscription’/>
</xs:restriction>
</ xs:si npl eType>
</xs:attribute>
<xs:attribute name='val ue
type='xs:string’
use="optional ' />

</ xs: conpl exType>
</ xs: el ement >

Sai nt - Andr e St andards Track

Cct ober

[ Page

2004

103]



RFC 3921 XVPP | M Cct ober

<xs: si npl eType nane='enpty’ >
<xs:restriction base="xs:string >
<xs:enuneration value=""/>
</xs:restriction>
</ xs:si npl eType>

</ xs: schema>
B.5 jabber:ig:roster
<?xm version="1.0" encodi ng=" UTF-8 ?>

<xs:schem
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema
t ar get Nanespace='j abber:iqg:roster’
xm ns="j abber:iqg:roster’
el ement For mDef aul t =" qual i fi ed” >

<xs: el enent nane=' query’ >
<xs: conpl exType>
<Xs:sequence>
<xs:elenent ref="iten
m nOccurs="0’
maxQccur s=" unbounded’ / >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent name="item >
<xs: conpl exType>
<XS:sequence>
<xs: el enent ref="group
m nOccurs="0’
maxQOccur s=" unbounded’ / >
</ xs: sequence>
<xs:attribute nanme="ask’ use='optional’>
<xs: si npl eType>
<xs:restriction base="xs: NCNane' >
<xs:enuneration val ue=’ subscribe’/>
</xs:restriction>
</ xs:si npl eType>
</xs:attribute>
<xs:attribute name="jid type=' xs:string use="required />
<xs:attribute nanme="nane’ type='xs:string’ use= optional’/>
<xs:attribute name=" subscription’ use='optional’ >
<xs:si npl eType>
<xs:restriction base="xs: NCNane’ >

2004

Sai nt - Andre St andards Track [ Page 104]



RFC 3921 XVPP | M Cct ober 2004

<xs:enuneration val ue="both' />
<xs:enuneration value="from/>
<xs:enuneration val ue=’ none’'/>
<XS:enuneration val ue="renove'/>
<XS:enuneration value="to' />
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el enent >

<xs: el enent nanme='group’ type='xs:string' />
</ xs: schema>
Appendi x C. Differences Between Jabber | M Presence Protocols and XMPP
This section is non-normative.

XMPP has been adapted fromthe protocols originally devel oped in the
Jabber open-source comunity, which can be thought of as "XWPP 0.9".
Because there exists a large installed base of Jabber inplenentations
and deploynments, it may be hel pful to specify the key differences

bet ween the rel evant Jabber protocols and XMPP in order to expedite
and encourage upgrades of those inplenentations and depl oynents to
XMPP.  This section sunmarizes the differences that relate
specifically to instant nessagi ng and presence applications, while
the correspondi ng section of [ XMPP-CORE] summarizes the differences
that relate to all XMPP applications.

C.1 Session Establishnent

The client-to-server authentication protocol devel oped in the Jabber
conmuni ty assumed that every client is an IMclient and therefore
initiated an | M sessi on upon successful authentication and resource
bi ndi ng, which are performed sinultaneously (docunentation of this
protocol is contained in [JEP-0078], published by the Jabber Software
Foundation [JSF]). XWPP maintains a stricter separation between core
functionality and I Mfunctionality; therefore, an | M session is not
created until the client specifically requests one using the protoco
defi ned under Session Establishment (Section 3).

Sai nt - Andre St andards Track [ Page 105]



RFC 3921 XVPP | M Cct ober 2004

C.2 Privacy Lists

The Jabber comunity began to define a protocol for communications

bl ocking (privacy lists) in late 2001, but that effort was deprecated
once the XMPP Wirking G oup was forned. Therefore the protoco

defi ned under Bl ocki ng Conmuni cation (Section 10) is the only such
protocol defined for use in the Jabber community.

Contri butors

Most of the core aspects of the Extensible Messaging and Presence
Prot ocol were developed originally within the Jabber open-source
conmunity in 1999. This comunity was founded by Jerenie MIler, who
rel eased source code for the initial version of the jabberd server in
January 1999. Major early contributors to the base protocol also

i ncl uded Ryan Eatnon, Peter M|l ard, Thomas Ml downey, and Dave
Smith. Wrk specific to instant nessagi ng and presence by the XWPP
Wor ki ng Group has concentrated especially on I M session establishnent
and comuni cation bl ocking (privacy lists); the session establishnment
protocol was nainly devel oped by Rob Norris and Joe Hil debrand, and
the privacy lists protocol was originally contributed by Peter

M1 I ard.

Acknowl edgenent s

Thanks are due to a nunber of individuals in addition to the
contributors listed. Although it is difficult to provide a conplete
list, the follow ng individuals were particularly hel pful in defining
the protocols or in comrenting on the specifications in this meno:
Thomas Charron, Richard Dobson, Schuyl er Heath, Jonathan Hogg, Craig
Kaes, Jacek Konieczny, Lisa Dusseault, Al exey Ml nikov, Keith

M nkler, Julian Mssig, Pete Resnick, Marshall Rose, Jean-Louis

Segui neau, Al exey Shchepin, lain Shigeoka, and David Waite. Thanks
al so to menbers of the XMPP Working G oup and the | ETF community for
comments and feedback provided throughout the life of this neno.

Aut hor’ s Addr ess

Peter Saint-Andre (editor)
Jabber Software Foundati on

EMai | : stpeter @ abber.org

Sai nt - Andre St andards Track [ Page 106]



RFC 3921 XVPP | M Cct ober 2004

Ful | Copyright Statenent
Copyright (C The Internet Society (2004).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATION HE/ S HE
REPRESENTS OR |'S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE
| NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS COR

| MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI' N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the |ETF' s procedures with respect to rights in | ETF Docunents can
be found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the information to the IETF at ietf-
ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Sai nt - Andre St andards Track [ Page 107]






