Internet DRAFT - draft-mglt-ipsecme-diet-esp

draft-mglt-ipsecme-diet-esp







IPsecme                                                       D. Migault
Internet-Draft                                                  Ericsson
Intended status: Standards Track                             T. Guggemos
Expires: 31 December 2023                                            LMU
                                                              C. Bormann
                                                 Universitaet Bremen TZI
                                                             D. Schinazi
                                                              Google LLC
                                                            29 June 2023


                     ESP Header Compression Profile
                     draft-mglt-ipsecme-diet-esp-10

Abstract

   ESP Header Compression Profile (EHCP) defines a profile to compress
   communications protected with IPsec/ESP.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 31 December 2023.

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.











Migault, et al.         Expires 31 December 2023                [Page 1]

Internet-Draft                    EHCP                         June 2023


   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Requirements notation . . . . . . . . . . . . . . . . . . . .   2
   2.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  ESP Header Compression Context  . . . . . . . . . . . . . . .   4
   4.  New SCHC Compression / Decompression Actions (CDA)  . . . . .   8
   5.  Clear Text ESP Compression / Decompression  . . . . . . . . .   9
     5.1.  Inner Packet Payload Compression  . . . . . . . . . . . .  10
     5.2.  Inner IPv4 Compression  . . . . . . . . . . . . . . . . .  10
     5.3.  Inner IPv6 Compression  . . . . . . . . . . . . . . . . .  11
     5.4.  ESP Compression . . . . . . . . . . . . . . . . . . . . .  12
   6.  Encrypted ESP Compression . . . . . . . . . . . . . . . . . .  12
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  13
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  13
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  13
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  13
     10.2.  Informative References . . . . . . . . . . . . . . . . .  14
   Appendix A.  Illustrative Example . . . . . . . . . . . . . . . .  14
     A.1.  Single UDP Session IoT VPN  . . . . . . . . . . . . . . .  14
     A.2.  Single TCP session IoT VPN  . . . . . . . . . . . . . . .  17
     A.3.  Traditional VPN . . . . . . . . . . . . . . . . . . . . .  19
       A.3.1.  IPv6 in IPv6  . . . . . . . . . . . . . . . . . . . .  21
       A.3.2.  IPv6 in IPv4  . . . . . . . . . . . . . . . . . . . .  23
       A.3.3.  IPv4 in IPv4  . . . . . . . . . . . . . . . . . . . .  24
       A.3.4.  IPv4 in IPv6  . . . . . . . . . . . . . . . . . . . .  26
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  26

1.  Requirements notation

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.







Migault, et al.         Expires 31 December 2023                [Page 2]

Internet-Draft                    EHCP                         June 2023


2.  Introduction

   This document defines a profile to compress IPsec/ESP [RFC4301] /
   [RFC4303] traffic represented by Figure 1.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ----
|               Security Parameters Index (SPI)                 | ^Int.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-
|                      Sequence Number                          | |ered
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ----
|                    Payload Data* (variable)                   | |   ^
~                                                               ~ |   |
|                                                               | |Conf.
+               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-
|               |     Padding (0-255 bytes)                     | |ered*
+-+-+-+-+-+-+-+-+               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |   |
|                               |  Pad Length   | Next Header   | v   v
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ------
|         Integrity Check Value-ICV   (variable)                |
~                                                               ~
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 1: Top-Level Format of an ESP Packet

   The main principle is to avoid sending information that has already
   been shared by the peers.  As depicted in Figure 2, this profiles
   defines two levels of compression.  The first level is the Clear Text
   ESP Compression (CTE C) compresses all fields that will later be
   encrypted by ESP - that is the Payload Data, the Padding, the Pad
   Length and the Next Header.  The second is the Encrypted ESP
   Compression (EE C) compresses ESP remaining fields that is the
   Security Parameters Index (SPI) and Sequence Number (SN).

   The decompression of the inbound packet follows the reverse path the
   Encrypted ESP Decompression (EE D) decompressed the unencrypted ESP
   header fields while the Clear Text ESP Decompression (CT D) is
   performed once the ESP packet is decrypted.

   Note that implementation MAY differ from the architectural
   description but it is assumed the outputs will be the same.








Migault, et al.         Expires 31 December 2023                [Page 3]

Internet-Draft                    EHCP                         June 2023


   The CTE C/D and EE C/D are expressed via the Generic Framework for
   Static Context Header (SCHC) [RFC8724].  The SCHC rules are derived
   from the ESP Compression Header Context which includes the Security
   Association (SA) as well as an additional parameters.  This is the
   main content of this document.

   It is expected that all necessary arguments are agreed via IKEv2
   [I-D.mglt-ipsecme-ikev2-diet-esp-extension].

   In some case, additional compression may occur on the inner IP packet
   before being processed by IPsec/ESP as well as over the Outer IP
   packet.  Such compression, decompression are outside the scope of
   this document.

                   +--------------------------------+
                   | ESP Header Compression Context |
                   |   - Security Association       |
                   |   - Additional Parameters      |
                   +--------------------------------+
                                    |
                                    |
     +-----------------+            |             +------------------+
     | Inner IP Packet |            |             | Inner IP Packet  |
     +-----------------+            |             +------------------+
     | Clear Text ESP  |            v             | Clear Text ESP   |
     +-----------------+<-- Clear Text ESP C/D -->+------------------+
     | Encrypted ESP   |            v             | Encrypted ESP    |
     +-----------------+<-- Encrypted ESP C/D  -->+------------------+
     | Outer IP Packet |                          | Outer IP Packet  |
     +-----------------+                          +------------------+

                   Figure 2: ESP Compression Architecture

3.  ESP Header Compression Context

   The EHC Context provides the necessary information to generate the
   SCHC Rules.  Most pieces of information are already available from
   the negotiated SA [RFC4301].  Other pieces of information needs to be
   specifically configured or agreed via other mechanisms like for
   example [I-D.mglt-ipsecme-ikev2-diet-esp-extension].
   The reference column of Figure 3 indicates how the information is
   defined.

   The Compression / Decompression (C / D) column specifies in which of
   the compression the parameter is being used.






Migault, et al.         Expires 31 December 2023                [Page 4]

Internet-Draft                    EHCP                         June 2023


   Note that additional Compression might be performed especially on the
   inner IP packet - for example, including the TCP layer.  However,
   this profiles limits the scope of the compression to UDP packets as
   well as the inner IP header.  We believe that is a reasonable scope
   for ESP to address both IoT UDP packets as well as large VPN traffic.
   If further compression are needed, this should be achieved by sending
   an IP packet with an SCHC payload where the expected compression is
   achieved outside ESP.

   The following attributes are considered by this EHC Context.
   Implementations may consider different expression of the parameters
   but their behavior is expected to remain compatible with this
   specification.

   +===================+==========================+===========+=======+
   | EHC Context       | Possible Values          | Reference | C / D |
   +===================+==========================+===========+=======+
   | alignment         | "8 bit", "32 bit"        | ThisRFC   | CT E  |
   | ipsec_mode        | "Tunnel", "Transport"    | RFC4301   | CT E  |
   | tunnel_ip         | IPv4, IPv6 address       | RFC4301   | CT E  |
   | esp_spi           | ESP SPI                  | RFC4301   | EE    |
   | esp_spi_lsb       | 0, 1, 2, 3, 4*           | ThisRFC   | EE    |
   | esp_sn            | ESP Sequence Number      | RFC4301   | EE    |
   | esp_sn_lsb        | 0, 1, 2, 3, 4*           | ThisRFC   | EE    |
   | esp_encr          | ESP Encryption Algorithm | RFC4301   | CT E  |
   | ts_flow_label     | True, False              | ThisRFC   | CT E  |
   | ts_ip_version     | 4, 6                     | ThisRFC   | CT E  |
   | ts_ip_src_start   | IP4 or IPv6 address      | ThisRFC   | CT E  |
   | ts_ip_src_end     | IP4 or IPv6 address      | ThisRFC   | CT E  |
   | ts_ip_dst_start   | IPv4 or IPv6 address     | ThisRFC   | CT E  |
   | ts_ip_dst_end     | IPv4 or IPv6 address     | ThisRFC   | CT E  |
   | ts_proto_list     | TCP, UDP, ..., 0         | ThisRFC   | CT E  |
   | ts_port_src_start | Port number              | ThisRFC   | CT E  |
   | ts_port_src_end   | Port number              | ThisRFC   | CT E  |
   | ts_port_dst_start | Port number              | ThisRFC   | CT E  |
   | ts_port_dst_end   | Port number              | ThisRFC   | CT E  |
   | ts_dsp_list       | DSCP number              | RFCYYYY   | CT E  |
   +-------------------+--------------------------+-----------+-------+

                    Figure 3: EHC ESP related parameter

   alignment:  indicates the byte alignement supported by the OS for the
      ESP extension.  By default, the alignement is 32 bit for IPv6, but
      some systems may also support a 8 bit alignement.  Note that when
      a block cipher such as AES-CCM is used, an 8 bit alignment is
      overwritten by the block size.

   ipsec_mode:  designates the IPsec mode defined in [RFC4301].  In this



Migault, et al.         Expires 31 December 2023                [Page 5]

Internet-Draft                    EHCP                         June 2023


      document, the possible values are "tunnel" for the Tunnel mode and
      "transport" for the Transport mode.

   tunnel_ip:  designates the IP address of the tunnel defined in
      [RFC4301].  This field is only applicable when the Tunnel mode is
      used.  That IP address can be and IPv4 or IPv6 address.

   esp_spi:  designates the Security Policy Index defined in [RFC4301].

   esp_spi_lsb:  designates the LSB to be considered for the compressed
      SPI.  This parameter is defined by this specification and can take
      the following values 0, 1, 2, 4 respectively meaning that the
      compressed SPI will consist of the esp_spi_lsb LSB bytes of the
      original SPI.  A value esp_spi_lsb will let the SPI unchanged.

   esp_sn:  designates the Sequence Number (SN) field defined in
      [RFC4301].

   esp_sn_lsb:  designates the LSB to be considered for the compressed
      SN and is defined by this specification.  It works similarly to
      esp_spi_lsb.

   esp_encr:  designates the encryption algorithm used.  For the purpose
      of compression is is RECOMMENDED to use [RFC8750].

   ts_ * parameters are associated to the Traffic Selectors of the SA
   and introduces by this specification.  This specification limits the
   expression of the Traffic Selector to be of the form (IP source
   range, IP destination range, Port source range, Port destination
   range, Protocol ID list, DSCP list).  This limits the original
   flexibility of the expression of TS, but we believe that provides
   sufficient flexibility.

   ts_flow_label:  indicates the Flow Label field of the inner IPv6 or
      the Identification field of the IPv4 is copied from the outer IP
      address.

   ts_ip_version:  designates the IP version of the Traffic Selectors
      and its values is set to 4 when only IPv4 IP addresses are
      considered and to 6 when only IPv6 addresses are considered.
      Practically, when IKEv2 is used, it means that the agreed TSi or
      TSr results only in a mutually exclusive combination of
      TS_IPv4_ADDR_RANGE or TS_IPV6_ADDR_RANGE payloads.  When the
      traffic selectors result in a combination of IPv4 and IPv6
      addresses, ts_ip_version is undefined.

   ts_ip_src_start:  designates the starting value range of source IP




Migault, et al.         Expires 31 December 2023                [Page 6]

Internet-Draft                    EHCP                         June 2023


      addresses of the inner packet and has the same meaning as the
      Starting Address field of the Traffic Selector payload defined in
      [RFC7296], Section 3.13.  Note however that in this specification,
      ts_ip_src_start applies for all agreed Traffic Selector payloads.
      When the IP addresses cannot be expressed as a range, that exactly
      expressed as [ ts_ip_src_start, ts_ip_src_end ], ts_ip_src_start
      is undefined.

   ts_ip_src_end:  designates the high end value range of source IP
      addresses of the inner packet and has the same meaning as the
      Ending Address field of the Traffic Selector payload defined in
      [RFC7296], Section 3.13.  Similarly to ts_ip_src_end, when the IP
      addresses cannot be expressed as a range, ts_ip_src_end is
      undefined.

   ts_port_src_start:  designates the starting value of the port range
      of the inner packet and has the same meaning as the Start Port
      field of the Traffic Selector payload defined in [RFC7296],
      Section 3.13.

   ts_port_src_end:  designates the starting value of the port range of
      the inner packet and has the same meaning as the End Port field of
      the Traffic Selector payload defined in [RFC7296], Section 3.13.

   ts_proto_list:  designates the list of Protocol ID field whose
      meaning is defined in [RFC7296], Section 3.13.

   ts_dscp_list:  designates the list of DSCP values used by the Traffic
      Selector and have the same meaning as the List of DSCP Values
      defined in [I-D.mglt-ipsecme-ts-dscp].

   Ports and IP addresses and ports are defined as range and compressed
   using the LSB.  For a range defined by a start and end value, let
   define msb( start, end ) the function that returns the MSB that
   remains unchanged while the value evolves between start and end.
   Similarly, let define lsb( start, end ) the function that returns the
   LSB that change while the value evolves between start and end.
   Fnally, let's consider len( x ) the function that returns the number
   of bits of the bit array x.

   We note for convenience:

   *  msb( ip_src ) = msb( ts_ip_src_start, ts_ip_src_end ) the MSB bits
      of the IP address range.

   *  msb( ip_dst ) = msb( ts_ip_dst_start, ts_ip_dst_end ) the MSB bits
      of the IP address range.




Migault, et al.         Expires 31 December 2023                [Page 7]

Internet-Draft                    EHCP                         June 2023


   *  lsb( ip_src ) = msb( ts_ip_src_start, ts_ip_src_end ) the LSB bits
      of the IP address range.

   *  lsb( ip_dst ) = msb( ts_ip_dst_start, ts_ip_dst_end ) the LSB bits
      of the IP address range.

   *  msb( port_src ) = msb( ts_port_src_start, ts_port_src_end ) the
      MSB bits of the source port range.

   *  msb( port_dst ) = msb( ts_port_dst_start, ts_port_dst_end ) the
      MSB bits of the destination port range.

   *  lsb( port_src ) = msb( ts_port_src_start, ts_port_src_end ) the
      LSB bits of the source port range.

   *  lsb( port_dst ) = msb( ts_port_dst_start, ts_port_dst_end ) the
      LSB bits of the destination port range.

   Protocol IDs and DSP are defined as list of non consecutive values.
   A target value is defined when the list contains a single element.

4.  New SCHC Compression / Decompression Actions (CDA)

   In addition to the Compression / Decompression Action defined in
   [RFC8724], Section 7.4, this specification uses the CAD as presented
   in Figure 4.  These CDA are either refinement of the compute- * CDA
   or result in a combination CDA and are mostly used for convenience.

 +=================+=====================+=============================+
 | Action          | Compression         | Decompression               |
 +=================+=====================+=============================+
 | lower           | elided              | Get from lower layer        |
 | checksum        | elided              | Compute checksum            |
 | padding         | elided              | Compute padding             |
 +-----------------+---------------------+-----------------------------+

                  Figure 4: EHC ESP related parameter

   More specifically, when the list contains 0 or a single element, that
   value can be decompressed without ambiguity and as such an index does
   not need to be sent.  When more than one value is present in the
   list, the index needs to be sent.

   lower:  designates an action where the compression consists in







Migault, et al.         Expires 31 December 2023                [Page 8]

Internet-Draft                    EHCP                         June 2023


      eliding the field.  The decompression consists in retrieving the
      field from the lower layers of the packet.  A typical example is
      when both IP and UDP carry the length of the payload, then the
      length of the UDP payload can be inferred from the one of the IP
      layer.

   checksum:  designates an action where the compression consists in
      eliding a checksum field.  The decompression consists in re-
      computing the checksum.  ESP provides an integrity-check based on
      signature of the ESP payload (ICV).  This makes removing checksum
      possible, without harming the checksum mechanism.

   padding:  designates an action where the compression consists in
      eliding the padding field.  The decompression consists in re-
      computing the padding field as described in ESP [RFC4303].

5.  Clear Text ESP Compression / Decompression

   The Clear Text ESP Compression is performed on the ESP fields not yet
   encrypted, that is the ESP Payload Data, the ESP padding field, the
   Pad Length field as well as the Next Header field which indicates the
   type of the inner packet.

   When ipsec_mode is set to "Transport", the Clear Text ESP packet that
   corresponds to an IPv4 packet will have the Payload Data set to the
   IPv4 Payload and the Next Header set to the Protocol ID - that is
   typically UDP, TCP or SCHC when the payload results from an SCHC
   compression.  The Clear Text ESP packet that corresponds to an IPv6
   packet will have the Payload Data set may include some IPv6
   extensions that precede the IP payload.  In that case, the Next
   Header will have the value that corresponds to that first IPv6
   extension being encrypted.

   When ipsec_mode is set to "Tunnel", the Clear Text ESP packet has the
   Payload Data set to the IP packet with the Next Header field
   indicating whether this is an IPv4, an IPv6 or an SCHC packet..

   SA are unidirectional and the Direction Indicator (DI) reflects that
   direction and is set to Up for outbound SA and Down for inbound SA.
   Fields that are not compressed have no Target Value (TV), their
   Matching Operator (MO) is set to ignore and Compression/Decompression
   Actions (CDA) to "value-sent".  Unless specified the Field Position
   (FP) is set to 1.

   Note that for both the IP payload and the IP header, some fields are
   Compressed / Decompressed independently of the value of Traffic
   Selectors EHC Context, while some other fields require the Traffic
   Selectors to be expressed under a specific format.



Migault, et al.         Expires 31 December 2023                [Page 9]

Internet-Draft                    EHCP                         June 2023


5.1.  Inner Packet Payload Compression

   An SCHC payload is not compressed.

   If the inner IP payload is an UDP or TCP packet the checksum is
   elided.  For both TCP or UDP, FL is set to 16 bit, TV is not set, MO
   is set to "ignore" and CDA is et to "checksum".  This may result is
   decompressing a zero-checksum UDP packet with a valid checksum, but
   this has no impact as valid checksum are universally accepted.

   If the inner packet is an UDP or UDP-Lite the length field is elided.
   FL is set to 16, TV is not set, MO is set to "ignore" and CDA is set
   to "lower" as the length field of the decompressed UDP packet is
   expressed in bytes and is derived from the length of the compressed
   UDP packet by adding the 16 bit UDP Checksum, the 16 bit UDP Length
   field as well as the respective length of the respective source MSB
   port and destination MSB ports.

UDP.Length = ( len( compressed UDP) + 16 + 16 + len( lsb( port_src ) ) \
               + len( lsb( port_src ) ) ) / 8

   Note that for each SA, LSB and MSB are of fixed length.  When the
   port has a single value this is equivalent to TV containing the port
   value, MO is set to "equal" and CDA set to not_sent.

5.2.  Inner IPv4 Compression

   When ts_ip_src/dst range is defined and ts_ipversion is set to
   "IPv4", IPv4 addresses of the inner IP packet are compressed.  FL is
   set to 32, TV to msb(ip_src) or msb(ip_dst), the MO is set to "MSB"
   and the CDA is set to "LSB".

   The IPv4 Header checksum is elided.  FL is set to 16, TV is omitted,
   MO is set to "ignore" and CDA is set to "checksum".

   The Protocol field sets FL to 8 bits.  If ts_proto_list contains the
   value 0, TV is not set, MO is set to ignore and CDA is set to "value-
   sent".  If "proto_id" does not contain 0 and the list contains less
   or exactly 1 value, TV is set to that value, MO is set to "equal" and
   CDA is set to "mot-sent".  In any other case, TV is set to the
   proto_list, MO is set to "match-mapping" and CDA is set to "mapping-
   sent".

   The IPv4 TTL field is derived from the IPv4 TTL field of the outer
   IPv4 address or the IPv6 Hop limit.  FL is set to 8 bits, TV is
   omitted, MO is set to ignore and CDA is set to lower.





Migault, et al.         Expires 31 December 2023               [Page 10]

Internet-Draft                    EHCP                         June 2023


   The IPv4 Total Length is elided.  FL is set to 16 bits, TV is not
   set, MO is set to "ignore" and CDA is set to "lower".

   DSP, ECN are either retrieved from the SA or from the outer IP
   header.  Fl is set to 8.  When the DSP, ECN are defined by the SA via
   [I-D.mglt-ipsecme-ts-dscp] and ts_dsp_list contains a single element,
   TV is set to that element MO is set to "equal" and CDA is set to
   "not-sent".  When the DSP, ECN are defined by the SA via
   [I-D.mglt-ipsecme-ts-dscp] and ts_dsp_list contains more than one
   element, TV is set to the list, MO is set to "match-mapping" and CDA
   is set to "mapping-sent".  When the DSP, ECN are not defined by the
   SA, MO is set to "ignore" and the CDA is set to "lower".

   When ts_ip_version can be inferred from the ts, the IP version is
   elided.  FL is set to 4 bits, the TV is set to ts_ip_version, MO is
   set to "equal" and CDA to "not-sent".

   When the inner IP address has the same version as the outer_ip and
   ts_traffic_flow is defined and set to True, the Identification field
   of the IPv4 inner packet or the Traffic Flow field of the IPv6 packet
   is elided and read from the outer IP address field.  For IPv4, FL is
   set to 16 bits, TV is ignored, MO is set to "ignore" and CDA is set
   to "lower".  For IPv6, FL is set to 20 bits, TV is ignored, MO is set
   to "ignore" and CDA is set to "lower".

   When the inner is IPv4 and the outer IP is IPv6 and ts_traffic_flow
   is set to True, the LSB 16 bits of the outer IP address are
   considered.  This results in a lossless compression.  When the inner
   is IPv6 and the outer IP is IPv4 and ts_traffic_flow is set to True,
   the LSB 16 bits of inner Traffic Flow fields are set to the outer
   Identification field and the remaining 4 MSB bits are set to 0.  Such
   compression is not lossless and needs to be considered cautiously.
   Note that the Flow Label of the inner packet arriving at the
   destination may have another value than the initial Flow Label.
   However, the Flow Label value set at the source ends up with the same
   value at the destination, with of course a lower entropy.

5.3.  Inner IPv6 Compression

   The compression / decompression of the IPv6 fields are compressed /
   decompressed in a similar way as in IPv4 (see Section 5.2).  IPv6
   addresses are compressed decompressed as IPv4 addresses except that
   FL is set to 128.  IPv6 Hop limit is compressed / decompressed as the
   IPv4 TTL field.  The last Next Header with a transport protocol value
   is compressed / decompressed as IPv4 Protocol field.  The Total
   Length is compressed / decompressed similarly to the IPv4 Length
   except that the IPv6 length includes the IPv6 header.  Traffic Class
   is compressed / decompressed similarly to the DSP,ECN field.  IP



Migault, et al.         Expires 31 December 2023               [Page 11]

Internet-Draft                    EHCP                         June 2023


   version is compressed / decompressed as in IPv4.  The Traffic Flow
   field is compressed / decompressed similarly to the IPv4
   Identification field except that FL is set to 20 bits.

5.4.  ESP Compression

   When ipsec_mode is set to "Tunnel" and ts_ip_version can be
   determined, the Next Header Field is elided.  FL is set to 8 bits, TV
   is set to IPv4 or IPv6 depending on the ts_ip_version, MO is set to
   "equal" and CDA is set to "not-sent".

   If the esp_encr does not require a specific block size, Padding and
   Pad Length are elided.  FL is defined by the type that is to (Pad
   Length + 1 ) * 8 bits, TV is unset, MO is set to "ignore" and CDA is
   set to padding.

   Encryption may require require the clear text to respect a given size
   block.  In addition, IP networking may also require a special
   alignment which is 32 bits by default for IPv6 Extensions, but may
   also be overwritten by the EHC Context.  The Padding is defined by
   pad_value and pad_size appended to the clear text payload - similarly
   to what ESP does with Padding and Pad Len.  An 8 bit alignment is
   interpreted by SCHC as a Word of 8 bits, and a 32 bit alignment is
   interpreted as a Word of 32 bits.  The padding size pad_size is
   defined by the alignment and set to 3 bits for an 8 bit alignment
   (2*3) and 5 bits for 32 bit alignement (2*5).  If pad designates the
   number of bits to be padded, the pad value is set to pad_value = (
   pad + len( pad_size ) % Word.  This results in an additional
   pad_value + pad_size bits.

6.  Encrypted ESP Compression

   SPI is compressed to its LSB.  FL is set to 32 bits, TV is not set,
   MO is set to "MSB( 4 - esp_spi_lsb)" and CDA is set to "LSB".

   If the esp_encr considers implicit IV [RFC8750], Sequence Number are
   not compressed.  Otherwise, SN are compressed to their LSB similarly
   to the SPI.  FL is set to 32 bits, TV is not set, MO is set to "MSB(
   4 - esp_spi_lsb)" and CDA is set to "LSB".

   Note that the use of implicit IV always result in a better
   compression as an 64 bit IV to be sent while compression of the SN
   alone results at best in a reduction of 32 bits.

   The IPv6 Next Header field or the IPv4 Protocol that contains the
   "ESP" value is changed to "SCHC".





Migault, et al.         Expires 31 December 2023               [Page 12]

Internet-Draft                    EHCP                         June 2023


7.  IANA Considerations

   There is no IANA parameters to be registered.

8.  Security Considerations

   There is no specific considerations associated to the profile other
   than the security considerations of ESP [RFC4303] and those of SCHC
   [RFC8724].

9.  Acknowledgements

   We would like to thank Laurent Toutain for its guidance on SCHC.
   Robert Moskowitz for

10.  References

10.1.  Normative References

   [I-D.mglt-ipsecme-ts-dscp]
              Migault, D., Halpern, J. M., Parkholm, U., and D. Liu,
              "Traffic Selector for Internet Key Exchange version 2 to
              add support Differentiated Services Field Codepoints
              (DSCP)", Work in Progress, Internet-Draft, draft-mglt-
              ipsecme-ts-dscp-02, 18 April 2023,
              <https://datatracker.ietf.org/doc/html/draft-mglt-ipsecme-
              ts-dscp-02>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
              Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
              December 2005, <https://www.rfc-editor.org/info/rfc4301>.

   [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
              RFC 4303, DOI 10.17487/RFC4303, December 2005,
              <https://www.rfc-editor.org/info/rfc4303>.

   [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
              Kivinen, "Internet Key Exchange Protocol Version 2
              (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
              2014, <https://www.rfc-editor.org/info/rfc7296>.






Migault, et al.         Expires 31 December 2023               [Page 13]

Internet-Draft                    EHCP                         June 2023


   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8724]  Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
              Zuniga, "SCHC: Generic Framework for Static Context Header
              Compression and Fragmentation", RFC 8724,
              DOI 10.17487/RFC8724, April 2020,
              <https://www.rfc-editor.org/info/rfc8724>.

   [RFC8750]  Migault, D., Guggemos, T., and Y. Nir, "Implicit
              Initialization Vector (IV) for Counter-Based Ciphers in
              Encapsulating Security Payload (ESP)", RFC 8750,
              DOI 10.17487/RFC8750, March 2020,
              <https://www.rfc-editor.org/info/rfc8750>.

10.2.  Informative References

   [I-D.mglt-ipsecme-ikev2-diet-esp-extension]
              Migault, D., Guggemos, T., and D. Schinazi, "Internet Key
              Exchange version 2 (IKEv2) extension for the ESP Header
              Compression (EHC) Strategy", Work in Progress, Internet-
              Draft, draft-mglt-ipsecme-ikev2-diet-esp-extension-02, 13
              May 2022, <https://datatracker.ietf.org/doc/html/draft-
              mglt-ipsecme-ikev2-diet-esp-extension-02>.

   [RFC4309]  Housley, R., "Using Advanced Encryption Standard (AES) CCM
              Mode with IPsec Encapsulating Security Payload (ESP)",
              RFC 4309, DOI 10.17487/RFC4309, December 2005,
              <https://www.rfc-editor.org/info/rfc4309>.

Appendix A.  Illustrative Example

A.1.  Single UDP Session IoT VPN

   This section considers a IoT IPv6 probe hosting a UDP application.
   The probe is dedicated to a single application and establishes a
   single UDP session with a server, and sets a VPN to connect its
   secure domain - like a home gateway.  The home gateway will be
   responsible to decompress the compress packet and provides
   interoperability with standard application server.

   The EHC Context is defined as mentioned below:

   *  alignment is set to 8 bits

   *  ipsec_mode is set to "Tunnel"




Migault, et al.         Expires 31 December 2023               [Page 14]

Internet-Draft                    EHCP                         June 2023


   *  tunnel_ip_srct is set to the IPv6_m, the IPv6 address of the mote.

   *  tunnel_ip_dst is set to IPv6_gw, the IPv6 of the security gateway.

   *  esp_spi is agreed by the IKEv2.

   *  esp_spi_lsb is set to 0 as IPv6_m provides sufficient context to
      associate the right SA.

   *  esp_sn results from the standard IPsec, and not impacted.

   *  esp_sn_lsb is set to 2 even though we are considering AES-
      CCM_8_IIV [RFC8750] which uses the ESP Sequence Number to
      generated the IV.  This results in a 8 bytes reduction compared to
      the AES-CCM_8 [RFC4309].

   *  esp_encr is configured with AES-CCM_8_IIV [RFC8750].  This cipher
      suite does not require a block size and so no padding is required
      and does not support SN compression.

   *  ts_flow_label As the inner traffic and the encrypted traffic are
      very correlated, it makes sense to re-use the flow label and
      ts_flow_label is set to True.

   *  ts_ip_version is set to IPv6.

   *  ts_ip_src_start is set to IPv6_m.  In this example, the SA is
      associated to messages sent by the mote to the application server
      (IPv6_server)

   *  ts_ip_src_end is set to IPv6_m

   *  ts_ip_dst_end the IPv6 address of the application server
      (IPv6_server).

   *  ts_ip_dst_end IPv6_server

   *  ts_proto_list [ UDP ], in the case of a very constraint mote, only
      UDP messages are considered.

   *  ts_port_src_start port_m.  The mote and the application server are
      using dedicated ports.

   *  ts_port_src_end port_m.  The mote and the application server are
      using dedicated ports.  The use of a specific single port enables
      their elision.

   *  ts_port_dst_end port_server



Migault, et al.         Expires 31 December 2023               [Page 15]

Internet-Draft                    EHCP                         June 2023


   *  ts_port_dst_end port_server

   *  ts_dsp_list [ 0 ] the default standard value, we MAY assume that
      value has been negotiated via IKEv2 or that it as been set as the
      default value left to the lower layers.

   Figure 5 illustrates an UDP packet being protected by ESP in the
   tunnel mode using AES-CCM_8_IIV.  This packet is compressed as
   depicted in Figure 6.
   EHC reduces the packet size by 53 bytes.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
   E|               Security Parameters Index (SPI)                 |  ^
   S+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   P|                      Sequence Number (SN)                     |  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   I|version| traffic class |               flow label              |^ |
   P+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   v|         payload length        |  next header  |   hop limit   || |
   6+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                                                               || a
    |                      inner source IP                          || u
    |                                                               |e t
    |                                                               |n h
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+c e
    |                                                               |r n
    |                    inner destination IP                       |y t
    |                                                               |p i
    |                                                               |t c
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+e a
   U|          source port          |           dest port           |d t
   D+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| e
   P|             length            |            checksum           || d
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                                                               || |
    ~                        APPLICATION DATA                       ~| |
    |                                                               || |
   -|                                               +-+-+-+-+-+-+-+-+| |
   E|                                               |    Padding    || |
   S+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   P|     Padding (continue)        |  Pad Length   | Next Header   |v v
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
    |         Integrity Check Value-ICV   (variable)                |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Migault, et al.         Expires 31 December 2023               [Page 16]

Internet-Draft                    EHCP                         June 2023


       Figure 5: Standard ESP packet for IoT UDP in Tunnel mode more
                            with AES- CCM_8_IIV

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--
   |      Sequence Number          |                               | ^
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               | aut
   |                                                               | hen
   ~                        APPLICATION DATA                       ~ tic
   |                          (encrypted)                          | ate
   |               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |               |                                               | V
   +-+-+-+-+-+-+-+-+                                               |--
   |         Integrity Check Value-ICV   (variable)                |
   |               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               |
   +-+-+-+-+-+-+-+-+

       Figure 6: EHC ESP packet for IoT UDP in Tunnel mode more with
                               AES-CCM_8_IIV

A.2.  Single TCP session IoT VPN

   This section is very similar to Appendix A.1 except that a TCP
   session is used instead.

   The compression on the TCP payload is very limited, and in a case
   where the TCP end point is the same as the ESP end point additionnal
   compression could be performed.  Additional fields such as TCP
   options, urgent pointers, the SN and ACK Number could be compressed
   by a specific profile agreed at the TCP level as opposed to the ESP
   level.

   The ESP encapsulated TCP packet described in Figure 7 is compressed
   by EHCP using th esam eEHCP context as in Appendix A.1 and EHCP
   reduces that packet by 55 bytes, as depicted in Figure 6.














Migault, et al.         Expires 31 December 2023               [Page 17]

Internet-Draft                    EHCP                         June 2023


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
   E|               Security Parameters Index (SPI)                 |  ^
   S+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   P|                      Sequence Number (SN)                     |  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   I|version| traffic class |               flow label              |^ |
   P+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   v|         payload length        |  next header  |   hop limit   || |
   6+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                                                               || a
    |                      inner source IP                          || u
    |                                                               |e t
    |                                                               |n h
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+c e
    |                                                               |r n
    |                    inner destination IP                       |y t
    |                                                               |p i
    |                                                               |t c
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+e a
   T|          source port          |           dest port           |d t
   C+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| e
   P|                      Sequence Number (SN)                     || d
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                     ACK Sequence Number                       || |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |Off. | Rserv |      Flags      |         Window Size           || |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |             Checksum          |      Urgent Pointer           || |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                                                               || |
    ~                        APPLICATION DATA                       ~| |
    |                                                               || |
    |                                               +-+-+-+-+-+-+-+-+| |
   E|                                               |    Padding    || |
   S+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   P|     Padding (continue)        |  Pad Length   | Next Header   |V V
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
    |         Integrity Check Value-ICV   (variable)                |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 7: Standard ESP packet for IoT TCP in Tunnel mode more
                            with AES- CCM_8_IIV






Migault, et al.         Expires 31 December 2023               [Page 18]

Internet-Draft                    EHCP                         June 2023


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
   |  Sequence Number (SN) (ESP)   |          Sequence Number      ~   ^
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |
   ~       (SN) (TCP)              |                ACK            ~^ |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| a
   ~      Sequence Number          |Off. | Rserv |      Flags      || u
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+e t
   |         Window Size           |      Urgent Pointer           |n h
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+c |
   |      Urgent Pointer           |                               |r |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |y |
   |                                                               ~p |
   ~                        APPLICATION DATA                       |t |
   |                                                               || |
   |               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   |               |                                               |v v
   +-+-+-+-+-+-+-+-+                                               |---
   |         Integrity Check Value-ICV   (variable)                |
   |               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               |
   +-+-+-+-+-+-+-+-+

       Figure 8: EHC ESP packet for IoT TCP in Tunnel mode more with
                               AES-CCM_8_IIV

A.3.  Traditional VPN

   This section illustrates the case of an company VPN that allows web
   browsing.  The VPN is typically set by a remote host that forwards
   all its traffic to the security gateway.
   In this case, the SA does not specify the protocol (TCP and UDP
   packet can be sent), nor the ports.  Regarding ports it could be
   possible to restrict the user to only use high range ports (0 - 2 **
   10) - especially if the VPN is only supporting web browsing - but we
   did not consider this in this example.  The destination IP address is
   also expect to take any value, while the IPv6 source in the case of a
   road warrior scenarios us expected to take a single value.  We
   consider the VPN client is using an IPv4 or an IPv6 address.
   Regarding ESP, we considered the VPN client is using AES-GCM_16,
   though AES-GCM_IIV would be the RECOMMENDED transform.  The VPN
   client is also expected to have a reasonably low throughput which
   enables the SN to be coded over 16 bits as opposed to 32 bits.
   Similarly, the number of connection is expected to remain
   sufficiently low so that a 16 bit SPI remains sufficient.

   The EHC Context is defined as mentioned below:



Migault, et al.         Expires 31 December 2023               [Page 19]

Internet-Draft                    EHCP                         June 2023


   *  alignment is set to 8 bits

   *  ipsec_mode is set to "Tunnel"

   *  tunnel_ip_src is set to the IPv6_user, the IPv6 address of the
      mote.

   *  tunnel_ip_dst is set to IPv6_gw, the IPv6 of the security gateway.

   *  esp_spi: is agreed by the IKEv2.

   *  esp_spi_lsb: is set to 2 bytes.

   *  esp_sn: results from the standard IPsec, and not impacted.

   *  esp_sn_lsb: is set to 16 bits.  Note that such compression is
      possible since AES-GCM_16 is used instead of AES-GCM_16_IIV.
      While this results in better performances for EHC, it is not an
      optimal choice as IIV transforms results always in better
      comprehensions.

   *  esp_encr: is configured with AES-GCM_16 [RFC8750].

   *  ts_flow_label: is set to True, note as the outer IP address is
      IPv6, the compression is lossless.

   *  ts_ip_version: is set not set as the VPN user can use either an
      IPv4 or an IPv6 address.

   *  ts_ip_src_start: is set to IPv6_user or IPv4_user.  Note that the
      version can be inferred by the Next Header, and the version can
      deterministically determine the IP in use.

   *  ts_ip_src_end: is set to IPv6_user or IPv4_user

   *  ts_ip_dst_end: IP destination is set to take any value, so the
      range is unspecified and the start/ end addresses are undefined.

   *  ts_ip_dst_end: undefined.

   *  ts_proto_list: undefined

   *  ts_port_src_start: undefined.

   *  ts_port_src_end: undefined.

   *  ts_port_dst_end: undefined




Migault, et al.         Expires 31 December 2023               [Page 20]

Internet-Draft                    EHCP                         June 2023


   *  ts_port_dst_end: undefined

   *  ts_dsp_list: [ 0 ] the default standard value, we MAY assume that
      value has been negotiated via IKEv2 or that it as been set as the
      default value left to the lower layers.

A.3.1.  IPv6 in IPv6

   Figure 9 represents the original ESP TCP packet with IPv6 inner IP
   addresses and Figure 10 represents the corresponding packet
   compressed with EHC.

   The compression with Diet-ESP results in a reduction of 32 bytes.






































Migault, et al.         Expires 31 December 2023               [Page 21]

Internet-Draft                    EHCP                         June 2023


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
   E|               Security Parameters Index (SPI)                 |  ^
   S+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   P|                      Sequence Number (SN)                     |  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
    |                                                               |  |
    |                             IV                                |  |
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |
   I|version| traffic class |               flow label              |^ |
   P+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   v|         payload length        |  next header  |   hop limit   || |
   6+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                                                               || a
    |                      inner source IP                          || u
    |                                                               |e t
    |                                                               |n h
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+c e
    |                                                               |r n
    |                    inner destination IP                       |y t
    |                                                               |p i
    |                                                               |t c
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+e a
   T|          source port          |           dest port           |d t
   C+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| e
   P|                      Sequence Number (SN)                     || d
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                     ACK Sequence Number                       || |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |Off. | Rserv |      Flags      |         Window Size           || |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |             Checksum          |      Urgent Pointer           || |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                                                               || |
    ~                        APPLICATION DATA                       ~| |
    |                                                               || |
   -|                                               +-+-+-+-+-+-+-+-+| |
   E|                                               |    Padding    || |
   S+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   P|     Padding (continue)        |  Pad Length   | Next Header   |V V
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
    |                                                               |
    |         Integrity Check Value-ICV   (variable)                |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Migault, et al.         Expires 31 December 2023               [Page 22]

Internet-Draft                    EHCP                         June 2023


     Figure 9: Standard ESP packet for VPN traffic mode with AES-GCM_16

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
   |             SPI               |              SN               |  ^
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   |                                                               |  |
   |                             IV                                |  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--|
   |  Next Header  |                                               |^ |
   +-+-+-+-+-+-+-+-+                                               || |
   |                                                               || |
   |                    inner destination IP                       || |
   |                                                               || |a
   |               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |u
   |               |          source port          |  destination  ~|e|t
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|n|h
   ~ port          |     TCP Sequence Number (SN)                  ~|c|e
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|r|n
   ~  (continue)   |    ACK Sequence Number (SN)                   ~|y|t
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|p|i
   ~  (continue)   |Off. | Rserv |      Flags      |    Window     ~|t|c
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|e|a
   ~   Size        |   Urgent   Pointer            |               ~|d|t
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |e
   |                                                               || |d
   ~                        APPLICATION DATA                       ~| |
   |                                                               || |
   |                             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ || |
   |                             |  Next Header    | Integrity     ~v v
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               +---
   |                                                               |
   |         Integrity Check Value-ICV   (variable)                |
   |                                               +-+-+-+-+-+-+-+-+
   |                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 10: Compressed IPv6 in IPv6 ESP packet for VPN traffic
                           mode with AES- GCM_16

A.3.2.  IPv6 in IPv4

   For IPv6 in IPv4, the compression is similar when ts_traffic_flow is
   set, otherwise these 20 bits needs to be provided explicitly.

   When ts_traffic_flow is set to True, the resulting decompressed IPv6
   packet will be as follows (see the flow label field):



Migault, et al.         Expires 31 December 2023               [Page 23]

Internet-Draft                    EHCP                         June 2023


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    I|version| traffic class |0 0 0 0        flow label              |
    P+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    v|         payload length        |  next header  |   hop limit   |
    6+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                      inner source IP                          |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                    inner destination IP                       |
     |                                                               |
     |                                                               |
    -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    T|          source port          |           dest port           |
    C+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    P|                      Sequence Number (SN)                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     ACK Sequence Number                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Off. | Rserv |      Flags      |         Window Size           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Checksum          |      Urgent Pointer           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                        APPLICATION DATA                       ~
     |                                                               |
     |                                               +-+-+-+-+-+-+-+-+
     |                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 11: Decompressed IPv6 encapsulated in IPv4 ESP packet

A.3.3.  IPv4 in IPv4

   Figure 12 represents the original ESP TCP packet with IPv6 inner IP
   addresses and Figure 13 represents the corresponding packet
   compressed with EHC.

   The compression with Diet-ESP results in a reduction of 24 bytes.








Migault, et al.         Expires 31 December 2023               [Page 24]

Internet-Draft                    EHCP                         June 2023


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
   E|               Security Parameters Index (SPI)                 |  ^
   S+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   P|                      Sequence Number (SN)                     |  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
    |                                                               |  |
    |                             IV                                |  |
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |
   I|Version|  IHL  |Type of Service|          Total Length         |^ |
   P+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   v|         Identification        |Flags|      Fragment Offset    || a
   4+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| u
    |  Time to Live |    Protocol   |         Header Checksum       |e t
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+n h
    |                       Source Address                          |c e
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+r n
    |                    Destination Address                        |y t
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+p i
    |                    Options                    |    Padding    |t c
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+e a
   T|          source port          |           dest port           |d t
   C+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| e
   P|                      Sequence Number (SN)                     || d
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                     ACK Sequence Number                       || |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |Off. | Rserv |      Flags      |         Window Size           || |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |             Checksum          |      Urgent Pointer           || |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
    |                                                               || |
    ~                        APPLICATION DATA                       ~| |
    |                                                               || |
   -|                                               +-+-+-+-+-+-+-+-+| |
   E|                                               |    Padding    || |
   S+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   P|     Padding (continue)        |  Pad Length   | Next Header   |V V
   -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
    |                                                               |
    |                                                               |
    |         Integrity Check Value-ICV   (variable)                |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 12: Standard IPv4 in IPv4 ESP packet for VPN traffic mode
                              with AES-GCM_16



Migault, et al.         Expires 31 December 2023               [Page 25]

Internet-Draft                    EHCP                         June 2023


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
   |             SPI               |              SN               |  ^
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   |                                                               |  |
   |                             IV                                |  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--|
   |    Protocol   |     inner destination IP                      ~^ |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|| |
   ~  (continue)   |            source port        |  destination  ~| |a
   |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |u
   |     port      |         TCP Sequence Number (SN)              ~|e|t
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|n|h
   ~  (continue)   |     ACK Sequence Number                       ~|c|e
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|r|n
   ~  (continue)   |Off. | Rserv |      Flags      |   Window       ~y|t
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|p|i
   |         Size  |        Urgent Pointer         |               ||t|c
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               ||e|a
   |                                                               ||d|t
   |                        APPLICATION DATA                       || |e
   ~                                                               || |d
   |                             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| |
   |                             |    Padding    |                 |v v
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 |
   |                                                               |
   |                                                               |
   |       Integrity Check Value-ICV  (variable) +-+-+-+-+-+-+-+-+-+
   |                                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 13: Compressed IPv4 in IPv4 ESP packet for VPN traffic
                           mode with AES- GCM_16

A.3.4.  IPv4 in IPv6

   TBD

Authors' Addresses

   Daniel Migault
   Ericsson
   Email: daniel.migault@ericsson.com


   Tobias Guggemos
   LMU



Migault, et al.         Expires 31 December 2023               [Page 26]

Internet-Draft                    EHCP                         June 2023


   Email: guggemos@nm.ifi.lmu.de


   Carsten. Bormann
   Universitaet Bremen TZI
   Email: cabo@tzi.org


   David Schinazi
   Google LLC
   Email: dschinazi.ietf@gmail.com








































Migault, et al.         Expires 31 December 2023               [Page 27]