Internet DRAFT - draft-ietf-emu-rfc7170bis
draft-ietf-emu-rfc7170bis
EMU working group A. DeKok (Ed)
Internet-Draft 10 March 2023
Intended status: Standards Track
Expires: 11 September 2023
Tunnel Extensible Authentication Protocol (TEAP) Version 1
draft-ietf-emu-rfc7170bis-05
Abstract
This document defines the Tunnel Extensible Authentication Protocol
(TEAP) version 1. TEAP is a tunnel-based EAP method that enables
secure communication between a peer and a server by using the
Transport Layer Security (TLS) protocol to establish a mutually
authenticated tunnel. Within the tunnel, TLV objects are used to
convey authentication-related data between the EAP peer and the EAP
server. This document obsoletes RFC 7170.
About This Document
This note is to be removed before publishing as an RFC.
Status information for this document may be found at
https://datatracker.ietf.org/doc/draft-ietf-emu-rfc7170bis/.
Discussion of this document takes place on the EMU Working Group
mailing list (mailto:emu@ietf.org), which is archived at
https://mailarchive.ietf.org/arch/browse/emu/.
Source for this draft and an issue tracker can be found at
https://github.com/emu-wg/rfc7170bis.git.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
DeKok (Ed) Expires 11 September 2023 [Page 1]
Internet-Draft TEAP March 2023
This Internet-Draft will expire on 11 September 2023.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1. Specification Requirements . . . . . . . . . . . . . . . 5
1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 5
2. Protocol Overview . . . . . . . . . . . . . . . . . . . . . . 6
2.1. Architectural Model . . . . . . . . . . . . . . . . . . . 6
2.2. Protocol-Layering Model . . . . . . . . . . . . . . . . . 7
3. TEAP Protocol . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1. Version Negotiation . . . . . . . . . . . . . . . . . . . 8
3.2. TEAP Authentication Phase 1: Tunnel Establishment . . . . 9
3.2.1. TLS Session Resume Using Server State . . . . . . . . 11
3.2.2. TLS Session Resumption . . . . . . . . . . . . . . . 11
3.3. TEAP Authentication Phase 2: Tunneled Authentication . . 11
3.3.1. Inner EAP Authentication . . . . . . . . . . . . . . 13
3.3.2. Inner Password Authentication . . . . . . . . . . . . 14
3.3.3. EAP-MSCHAPv2 . . . . . . . . . . . . . . . . . . . . 15
3.3.4. Protected Termination and Acknowledged Result
Indication . . . . . . . . . . . . . . . . . . . . . 15
3.4. Determining Peer-Id and Server-Id . . . . . . . . . . . . 16
3.5. TEAP Session Identifier . . . . . . . . . . . . . . . . . 17
3.6. Error Handling . . . . . . . . . . . . . . . . . . . . . 17
3.6.1. Outer-Layer Errors . . . . . . . . . . . . . . . . . 18
3.6.2. TLS Layer Errors . . . . . . . . . . . . . . . . . . 18
3.6.3. Phase 2 Errors . . . . . . . . . . . . . . . . . . . 19
3.7. Fragmentation . . . . . . . . . . . . . . . . . . . . . . 19
3.8. Services Requested by the Peer . . . . . . . . . . . . . 19
3.8.1. Certificate Provisioning within the Tunnel . . . . . 20
3.8.2. Server Unauthenticated Provisioning Mode . . . . . . 21
3.8.3. Channel Binding . . . . . . . . . . . . . . . . . . . 22
4. Message Formats . . . . . . . . . . . . . . . . . . . . . . . 23
4.1. TEAP Message Format . . . . . . . . . . . . . . . . . . . 23
DeKok (Ed) Expires 11 September 2023 [Page 2]
Internet-Draft TEAP March 2023
4.2. TEAP TLV Format and Support . . . . . . . . . . . . . . . 25
4.2.1. General TLV Format . . . . . . . . . . . . . . . . . 26
4.2.2. Authority-ID TLV . . . . . . . . . . . . . . . . . . 28
4.2.3. Identity-Type TLV . . . . . . . . . . . . . . . . . . 29
4.2.4. Result TLV . . . . . . . . . . . . . . . . . . . . . 30
4.2.5. NAK TLV . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.6. Error TLV . . . . . . . . . . . . . . . . . . . . . . 32
4.2.7. Channel-Binding TLV . . . . . . . . . . . . . . . . . 35
4.2.8. Vendor-Specific TLV . . . . . . . . . . . . . . . . . 35
4.2.9. Request-Action TLV . . . . . . . . . . . . . . . . . 37
4.2.10. EAP-Payload TLV . . . . . . . . . . . . . . . . . . . 39
4.2.11. Intermediate-Result TLV . . . . . . . . . . . . . . . 40
4.2.12. Crypto-Binding TLV . . . . . . . . . . . . . . . . . 41
4.2.13. Basic-Password-Auth-Req TLV . . . . . . . . . . . . . 44
4.2.14. Basic-Password-Auth-Resp TLV . . . . . . . . . . . . 44
4.2.15. PKCS#7 TLV . . . . . . . . . . . . . . . . . . . . . 46
4.2.16. PKCS#10 TLV . . . . . . . . . . . . . . . . . . . . . 47
4.2.17. Trusted-Server-Root TLV . . . . . . . . . . . . . . . 48
4.3. TLV Rules . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1. Outer TLVs . . . . . . . . . . . . . . . . . . . . . 50
4.3.2. Inner TLVs . . . . . . . . . . . . . . . . . . . . . 51
5. Cryptographic Calculations . . . . . . . . . . . . . . . . . 51
5.1. TEAP Authentication Phase 1: Key Derivations . . . . . . 51
5.2. Intermediate Compound Key Derivations . . . . . . . . . . 52
5.3. Computing the Compound MAC . . . . . . . . . . . . . . . 55
5.4. EAP Master Session Key Generation . . . . . . . . . . . . 56
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 57
7. Security Considerations . . . . . . . . . . . . . . . . . . . 57
7.1. Mutual Authentication and Integrity Protection . . . . . 58
7.2. Method Negotiation . . . . . . . . . . . . . . . . . . . 58
7.3. Separation of Phase 1 and Phase 2 Servers . . . . . . . . 59
7.4. Mitigation of Known Vulnerabilities and Protocol
Deficiencies . . . . . . . . . . . . . . . . . . . . . . 59
7.4.1. User Identity Protection and Verification . . . . . . 60
7.5. Dictionary Attack Resistance . . . . . . . . . . . . . . 61
7.5.1. Protection against Man-in-the-Middle Attacks . . . . 62
7.6. Protecting against Forged Cleartext EAP Packets . . . . . 62
7.7. Server Certificate Validation . . . . . . . . . . . . . . 63
7.8. Security Claims . . . . . . . . . . . . . . . . . . . . . 64
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 65
9. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 65
10. Changes from RFC 7170 . . . . . . . . . . . . . . . . . . . . 66
Appendix A Evaluation against Tunnel-Based EAP Method
Requirements . . . . . . . . . . . . . . . . . . . . . . 67
A.1. Requirement 4.1.1: RFC Compliance . . . . . . . . . . . . 67
A.2. Requirement 4.2.1: TLS Requirements . . . . . . . . . . . 67
A.3. Requirement 4.2.1.1.1: Ciphersuite Negotiation . . . . . 67
DeKok (Ed) Expires 11 September 2023 [Page 3]
Internet-Draft TEAP March 2023
A.4. Requirement 4.2.1.1.2: Tunnel Data Protection
Algorithms . . . . . . . . . . . . . . . . . . . . . . . 67
A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key
Establishment . . . . . . . . . . . . . . . . . . . . . 67
A.6. Requirement 4.2.1.2: Tunnel Replay Protection . . . . . . 68
A.7. Requirement 4.2.1.3: TLS Extensions . . . . . . . . . . . 68
A.8. Requirement 4.2.1.4: Peer Identity Privacy . . . . . . . 68
A.9. Requirement 4.2.1.5: Session Resumption . . . . . . . . . 68
A.10. Requirement 4.2.2: Fragmentation . . . . . . . . . . . . 68
A.11. Requirement 4.2.3: Protection of Data External to
Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.12. Requirement 4.3.1: Extensible Attribute Types . . . . . 68
A.13. Requirement 4.3.2: Request/Challenge Response
Operation . . . . . . . . . . . . . . . . . . . . . . . 68
A.14. Requirement 4.3.3: Indicating Criticality of
Attributes . . . . . . . . . . . . . . . . . . . . . . . 69
A.15. Requirement 4.3.4: Vendor-Specific Support . . . . . . . 69
A.16. Requirement 4.3.5: Result Indication . . . . . . . . . . 69
A.17. Requirement 4.3.6: Internationalization of Display
Strings . . . . . . . . . . . . . . . . . . . . . . . . 69
A.18. Requirement 4.4: EAP Channel-Binding Requirements . . . 69
A.19. Requirement 4.5.1.1: Confidentiality and Integrity . . . 69
A.20. Requirement 4.5.1.2: Authentication of Server . . . . . 69
A.21. Requirement 4.5.1.3: Server Certificate Revocation
Checking . . . . . . . . . . . . . . . . . . . . . . . . 69
A.22. Requirement 4.5.2: Internationalization . . . . . . . . 70
A.23. Requirement 4.5.3: Metadata . . . . . . . . . . . . . . 70
A.24. Requirement 4.5.4: Password Change . . . . . . . . . . . 70
A.25. Requirement 4.6.1: Method Negotiation . . . . . . . . . 70
A.26. Requirement 4.6.2: Chained Methods . . . . . . . . . . . 70
A.27. Requirement 4.6.3: Cryptographic Binding with the TLS
Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication . . 70
A.29. Requirement 4.6.5: Method Metadata . . . . . . . . . . . 70
Appendix B. Major Differences from EAP-FAST . . . . . . . . . . 71
Appendix C. Examples . . . . . . . . . . . . . . . . . . . . . . 71
C.1. Successful Authentication . . . . . . . . . . . . . . . . 71
C.2. Failed Authentication . . . . . . . . . . . . . . . . . . 72
C.3. Full TLS Handshake Using Certificate-Based Ciphersuite . 74
C.4. Client Authentication during Phase 1 with Identity
Privacy . . . . . . . . . . . . . . . . . . . . . . . . 75
C.5. Fragmentation and Reassembly . . . . . . . . . . . . . . 77
C.6. Sequence of EAP Methods . . . . . . . . . . . . . . . . . 79
C.7. Failed Crypto-Binding . . . . . . . . . . . . . . . . . . 81
C.8. Sequence of EAP Method with Vendor-Specific TLV
Exchange . . . . . . . . . . . . . . . . . . . . . . . . 82
C.9. Peer Requests Inner Method after Server Sends Result
TLV . . . . . . . . . . . . . . . . . . . . . . . . . . 84
DeKok (Ed) Expires 11 September 2023 [Page 4]
Internet-Draft TEAP March 2023
C.10. Channel Binding . . . . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Normative References . . . . . . . . . . . . . . . . . . . . . 87
Informative References . . . . . . . . . . . . . . . . . . . . 89
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 93
1. Introduction
A tunnel-based Extensible Authentication Protocol (EAP) method is an
EAP method that establishes a secure tunnel and executes other EAP
methods under the protection of that secure tunnel. A tunnel-based
EAP method can be used in any lower-layer protocol that supports EAP
authentication. There are several existing tunnel-based EAP methods
that use Transport Layer Security (TLS) [RFC5246] to establish the
secure tunnel. EAP methods supporting this include Protected EAP
(PEAP) [PEAP], EAP Tunneled Transport Layer Security (EAP-TTLS)
[RFC5281], and EAP Flexible Authentication via Secure Tunneling (EAP-
FAST) [RFC4851]. However, they all are either vendor-specific or
informational, and the industry calls for a Standards Track tunnel-
based EAP method. [RFC6678] outlines the list of requirements for a
standard tunnel-based EAP method.
Since its introduction, EAP-FAST [RFC4851] has been widely adopted in
a variety of devices and platforms. It has been adopted by the EMU
working group as the basis for the standard tunnel-based EAP method.
This document describes the Tunnel Extensible Authentication Protocol
(TEAP) version 1, based on EAP-FAST [RFC4851] with some minor changes
to meet the requirements outlined in [RFC6678] for a standard tunnel-
based EAP method.
1.1. Specification Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
1.2. Terminology
Much of the terminology in this document comes from [RFC3748].
Additional terms are defined below:
Type-Length-Value (TLV)
The TEAP protocol utilizes objects in TLV format. The TLV format
is defined in Section 4.2.
DeKok (Ed) Expires 11 September 2023 [Page 5]
Internet-Draft TEAP March 2023
Inner method
An authentication method which is sent as application data inside
of a TLS exchange which is carried over TEAP. The inner method
can be an EAP authentication method, a username / password
authentication, or a vendor-specific authentication method.
2. Protocol Overview
TEAP authentication occurs in two phases after the initial EAP
Identity request/response exchange. In the first phase, TEAP employs
the TLS [RFC5246] handshake to provide an authenticated key exchange
and to establish a protected tunnel. Once the tunnel is established,
the second phase begins with the peer and server engaging in further
conversations to establish the required authentication and
authorization policies. TEAP makes use of TLV objects to carry out
the inner authentication, results, and other information, such as
channel-binding information.
As discussed in [RFC9190] Section 2.1.7 and
[I-D.ietf-emu-tls-eap-types] Section 3.1, the outer EAP Identity
SHOULD be an anonymous NAI Network Access Identifier (NAI) [RFC7542].
Any inner identities (EAP or otherwise) SHOULD also follow the
recommendations of [I-D.ietf-emu-tls-eap-types] Section 3.1.
[RFC7170] defined a Protected Access Credential (PAC) to mirror EAP-
FAST [RFC4851]. However, implementation experience and analysis
determined that the PAC was not necessary. Instead, TEAP performs
session resumption using the NewSessionTicket message as defined in
[RFC9190] Section 2.1.2 and Section 2.1.3.
The TEAP conversation is used to establish or resume an existing
session to typically establish network connectivity between a peer
and the network. Upon successful execution of TEAP, the EAP peer and
EAP server both derive strong session key material that can then be
communicated to the network access server (NAS) for use in
establishing a link-layer security association.
2.1. Architectural Model
The network architectural model for TEAP usage is shown below:
+----------+ +----------+ +----------+ +----------+
| | | | | | | Inner |
| Peer |<---->| Authen- |<---->| TEAP |<---->| Method |
| | | ticator | | server | | server |
| | | | | | | |
+----------+ +----------+ +----------+ +----------+
DeKok (Ed) Expires 11 September 2023 [Page 6]
Internet-Draft TEAP March 2023
Figure 1: TEAP Architectural Model
The Peer and Authenticator are defined in Section 1.2 of [RFC3748].
The TEAP server is the "backend authentication server" defined in
Section 1.2 of [RFC3748]. The "Inner Method server" is usually part
of the TEAP server, and handles the application data (inner methods,
EAP, passwords, etc.) inside of the TLS tunnel.
The entities depicted above are logical entities and may or may not
correspond to separate network components. For example, the TEAP
server and Inner Method server might be a single entity; the
authenticator and TEAP server might be a single entity; or the
functions of the authenticator, TEAP server, and Inner Method server
might be combined into a single physical device. For example,
typical IEEE 802.11 deployments place the authenticator in an access
point (AP) while a RADIUS server may provide the TEAP and inner
method server components. The above diagram illustrates the division
of labor among entities in a general manner and shows how a
distributed system might be constructed; however, actual systems
might be realized more simply. The security considerations in
Section 7.3 provide an additional discussion of the implications of
separating the TEAP server from the Inner Method server.
2.2. Protocol-Layering Model
TEAP packets are encapsulated within EAP; EAP in turn requires a
transport protocol. TEAP packets encapsulate TLS, which is then used
to encapsulate user authentication information. Thus, TEAP messaging
can be described using a layered model, where each layer encapsulates
the layer above it. The following diagram clarifies the relationship
between protocols:
+------------------------------------------+
| Inner EAP Method | Other TLV information |
|------------------------------------------|
| TLV Encapsulation (TLVs) |
|------------------------------------------+---------------------+
| TLS | Optional Outer TLVs |
|----------------------------------------------------------------|
| TEAP |
|----------------------------------------------------------------|
| EAP |
|----------------------------------------------------------------|
| Carrier Protocol (EAP over LAN, RADIUS, Diameter, etc.) |
+----------------------------------------------------------------+
Figure 2: Protocol-Layering Model
DeKok (Ed) Expires 11 September 2023 [Page 7]
Internet-Draft TEAP March 2023
The TLV layer is a payload with TLV objects as defined in
Section 4.2. The TLV objects are used to carry arbitrary parameters
between an EAP peer and an EAP server. All conversations in the TEAP
protected tunnel are encapsulated in a TLV layer.
TEAP packets may include TLVs both inside and outside the TLS tunnel.
The term "Outer TLVs" is used to refer to optional TLVs outside the
TLS tunnel, which are only allowed in the first two messages in the
TEAP protocol. That is the first EAP-server-to-peer message and
first peer-to-EAP-server message. If the message is fragmented, the
whole set of messages is counted as one message. The term "Inner
TLVs" is used to refer to TLVs sent within the TLS tunnel. In TEAP
Phase 1, Outer TLVs are used to help establish the TLS tunnel, but no
Inner TLVs are used. In Phase 2 of the TEAP conversation, TLS
records may encapsulate zero or more Inner TLVs, but no Outer TLVs.
Methods for encapsulating EAP within carrier protocols are already
defined. For example, IEEE 802.1X [IEEE.802-1X.2013] may be used to
transport EAP between the peer and the authenticator; RADIUS
[RFC3579] or Diameter [RFC4072] may be used to transport EAP between
the authenticator and the EAP server.
3. TEAP Protocol
The operation of the protocol, including Phase 1 and Phase 2, is the
topic of this section. The format of TEAP messages is given in
Section 4, and the cryptographic calculations are given in Section 5.
3.1. Version Negotiation
TEAP packets contain a 3-bit Version field, following the TLS Flags
field, which enables future TEAP implementations to be backward
compatible with previous versions of the protocol. This
specification documents the TEAP version 1 protocol; implementations
of this specification MUST use a Version field set to 1.
Version negotiation proceeds as follows:
1. In the first EAP-Request sent with EAP type=TEAP, the EAP server
MUST set the Version field to the highest version it supports.
2. If the EAP peer supports this version of the protocol, it
responds with an EAP-Response of EAP type=TEAP, including the
version number proposed by the TEAP server.
DeKok (Ed) Expires 11 September 2023 [Page 8]
Internet-Draft TEAP March 2023
3. If the TEAP peer does not support the proposed version but
supports a lower version, it responds with an EAP-Response of EAP
type=TEAP and sets the Version field to its highest supported
version.
4. If the TEAP peer only supports versions higher than the version
proposed by the TEAP server, then use of TEAP will not be
possible. In this case, the TEAP peer sends back an EAP-Nak
either to negotiate a different EAP type or to indicate no other
EAP types are available.
5. If the TEAP server does not support the version number proposed
by the TEAP peer, it MUST either terminate the conversation with
an EAP Failure or negotiate a new EAP type.
6. If the TEAP server does support the version proposed by the TEAP
peer, then the conversation continues using the version proposed
by the TEAP peer.
The version negotiation procedure guarantees that the TEAP peer and
server will agree to the latest version supported by both parties.
If version negotiation fails, then use of TEAP will not be possible,
and another mutually acceptable EAP method will need to be negotiated
if authentication is to proceed.
The TEAP version is not protected by TLS and hence can be modified in
transit. In order to detect a modification of the TEAP version, the
peers MUST exchange the TEAP version number received during version
negotiation using the Crypto-Binding TLV described in Section 4.2.12.
The receiver of the Crypto-Binding TLV MUST verify that the version
received in the Crypto-Binding TLV matches the version sent by the
receiver in the TEAP version negotiation.
The Crypto-Binding TLV MUST be validated before any Intermediate-
Result TLV or Result TLV is examined. If the Crypto-Binding TLV
fails to be validated for any reason, then it is a fatal error and is
handled as described in Section 3.6.3.
3.2. TEAP Authentication Phase 1: Tunnel Establishment
TEAP relies on the TLS handshake [RFC5246] to establish an
authenticated and protected tunnel. The TLS version offered by the
peer and server MUST be TLS version 1.2 [RFC5246] or later. This
version of the TEAP implementation MUST support the following TLS
ciphersuites:
TLS_RSA_WITH_AES_128_CBC_SHA [RFC5246]
DeKok (Ed) Expires 11 September 2023 [Page 9]
Internet-Draft TEAP March 2023
TLS_DHE_RSA_WITH_AES_128_CBC_SHA [RFC5246]
This version of the TEAP implementation SHOULD support the following
TLS ciphersuite:
TLS_RSA_WITH_AES_256_CBC_SHA [RFC5246]
Other ciphersuites MAY be supported. It is REQUIRED that anonymous
ciphersuites such as TLS_DH_anon_WITH_AES_128_CBC_SHA [RFC5246] only
be used in the case when the inner method provides mutual
authentication, key generation, and resistance to man-in-the-middle
and dictionary attacks. TLS ciphersuites that do not provide
confidentiality MUST NOT be used. During the TEAP Phase 1
conversation, the TEAP endpoints MAY negotiate TLS compression.
During TLS tunnel establishment, TLS extensions MAY be used. For
instance, the Certificate Status Request extension [RFC6066] and the
Multiple Certificate Status Request extension [RFC6961] can be used
to leverage a certificate-status protocol such as Online Certificate
Status Protocol (OCSP) [RFC6960] to check the validity of server
certificates. TLS renegotiation indications defined in RFC 5746
[RFC5746] MUST be supported.
Use of TLS-PSK is NOT RECOMMENDED. TEAP has not been designed to
work with TLS-PSK, and no use-cases, security analyses, or
implementations have been done. TLS-PSK may work (or not) with TEAP,
depending on the status of a particular implementation, and it is
therefore not useful to deploy it.
The EAP server initiates the TEAP conversation with an EAP request
containing a TEAP/Start packet. This packet includes a set Start (S)
bit, the TEAP version as specified in Section 3.1, and an authority
identity TLV. The TLS payload in the initial packet is empty. The
authority identity TLV (Authority-ID TLV) is used to provide the peer
a hint of the server's identity that may be useful in helping the
peer select the appropriate credential to use. Assuming that the
peer supports TEAP, the conversation continues with the peer sending
an EAP-Response packet with EAP type of TEAP with the Start (S) bit
clear and the version as specified in Section 3.1. This message
encapsulates one or more TLS handshake messages. If the TEAP version
negotiation is successful, then the TEAP conversation continues until
the EAP server and EAP peer are ready to enter Phase 2. When the
full TLS handshake is performed, then the first payload of TEAP Phase
2 MAY be sent along with a server-finished handshake message to
reduce the number of round trips.
DeKok (Ed) Expires 11 September 2023 [Page 10]
Internet-Draft TEAP March 2023
TEAP implementations MUST support mutual peer authentication during
tunnel establishment using the TLS ciphersuites specified in this
section. The TEAP peer does not need to authenticate as part of the
TLS exchange but can alternatively be authenticated through
additional exchanges carried out in Phase 2.
The TEAP tunnel protects peer identity information exchanged during
Phase 2 from disclosure outside the tunnel. Implementations that
wish to provide identity privacy for the peer identity need to
carefully consider what information is disclosed outside the tunnel
prior to Phase 2. TEAP implementations SHOULD support the immediate
renegotiation of a TLS session to initiate a new handshake message
exchange under the protection of the current ciphersuite. This
allows support for protection of the peer's identity when using TLS
client authentication. An example of the exchanges using TLS
renegotiation to protect privacy is shown in Appendix C.
The following sections describe resuming a TLS session based on
server-side or client-side state.
3.2.1. TLS Session Resume Using Server State
TEAP session resumption is achieved in the same manner TLS achieves
session resume. To support session resumption, the server and peer
minimally cache the Session ID, master secret, and ciphersuite. The
peer attempts to resume a session by including a valid Session ID
from a previous TLS handshake in its ClientHello message. If the
server finds a match for the Session ID and is willing to establish a
new connection using the specified session state, the server will
respond with the same Session ID and proceed with the TEAP Phase 1
tunnel establishment based on a TLS abbreviated handshake. After a
successful conclusion of the TEAP Phase 1 conversation, the
conversation then continues on to Phase 2.
3.2.2. TLS Session Resumption
TEAP supports the resumption of sessions based on server state being
stored on the client side using the TLS SessionTicket extension
techniques described in [RFC5077] and [RFC9190].
3.3. TEAP Authentication Phase 2: Tunneled Authentication
The second portion of the TEAP authentication occurs immediately
after successful completion of Phase 1. Phase 2 occurs even if both
peer and authenticator are authenticated in the Phase 1 TLS
negotiation. Phase 2 MUST NOT occur if the Phase 1 TLS handshake
fails, as that will compromise the security as the tunnel has not
been established successfully. Phase 2 consists of a series of
DeKok (Ed) Expires 11 September 2023 [Page 11]
Internet-Draft TEAP March 2023
requests and responses encapsulated in TLV objects defined in
Section 4.2. Phase 2 MUST always end with a Crypto-Binding TLV
exchange described in Section 4.2.12 and a protected termination
exchange described in Section 3.3.4.
The TLV exchange includes the execution of zero or more inner methods
within the protected tunnel as described in Section 3.3.1 and inner-
password. A server MAY proceed directly to the protected termination
exchange, without performing any inner authentication if it does not
wish to request further authentication from the peer. A server MAY
request one or more authentications within the protected tunnel.
After completion of each inner method, the server decides whether or
not to begin another inner method, or to send a Result TLV.
Implementations MUST support at least two sequential inner methods,
which allows both Machine and User authentication to be performed.
Implementations SHOULD also limit the number of sequential inner
authentications, as there is no reason to perform a large number of
inner authentications in one TEAP conversation.
Implementations wishing to use their own proprietary authentication
method, may substitute the EAP-Payload or Basic-Password-Auth-Req TLV
for the Vendor-Specific TLV which carries another authentication
method. Any proprietary authentication method MUST support
calculation of the Crypto-Binding TLV, and MUST use Intermediate-
Result TLV and Result TLV as is done with other authentication
methods.
Implementations SHOULD support both inner EAP authentication methods
and inner password authentication. Implementations which support
multiple authentication methods MUST support those methods in any
order or combination. That is, it is explicitly permitted to "mix
and match" inner methods.
However, the peer and server MUST NOT assume that either will skip
inner methods or other TLV exchanges, as the other peer might have a
different security policy. The peer may have roamed to a network
that requires conformance with a different authentication policy, or
the peer may request the server take additional action (e.g., channel
binding) through the use of the Request-Action TLV as defined in
Section 4.2.9.
DeKok (Ed) Expires 11 September 2023 [Page 12]
Internet-Draft TEAP March 2023
The completion of each inner method is signalled by an Intermediate-
Result TLV. Where the Intermediate-Result TLV indicates failure, an
Error TLV SHOULD also be included. The Intermediate-Result TLV may
be accompanied by another TLV indicating that the server wishes to
perform a subsequent authentication. When the authentication
sequence completes, the server MUST send a Result TLV indicating
success or failure instead of a TLV which carries an inner method.
3.3.1. Inner EAP Authentication
EAP [RFC3748] prohibits use of multiple authentication methods within
a single EAP conversation in order to limit vulnerabilities to man-
in-the-middle attacks. TEAP addresses man-in-the-middle attacks
through support for cryptographic protection of the inner EAP
exchange and cryptographic binding of the inner EAP method(s) to the
protected tunnel. Inner EAP methods are executed serially in a
sequence. This version of TEAP does not support initiating multiple
inner EAP methods simultaneously in parallel. The inner EAP methods
need not be distinct. For example, EAP-TLS ([RFC5216] and [RFC9190])
could be run twice as an inner method, first using machine
credentials followed by a second instance using user credentials.
Inner EAP method messages are carried within EAP-Payload TLVs defined
in Section 4.2.10. Note that in this use-case, TEAP is simply a
carrier for EAP, much as RADIUS is a carrier for EAP. The full EAP
state machine is run as normal, and is carried over the EAP-Payload
TLV. Each distinct EAP authentication MUST be managed as a separate
EAP state machine.
A TEAP server therefore MUST begin an EAP authentication with an EAP-
Request/Identity (carried in an EAP-Payload TLV). However, a TEAP
server MUST NOT finish the EAP conversation with an EAP Success or
EAP Failure packet, the Intermediate-Result TLV is used instead.
Upon completion of each EAP authentication in the tunnel, the server
MUST send an Intermediate-Result TLV indicating the result of that
authentication. When the result indicates, success it MUST be
accompanied by a Crypto-Binding TLV. The peer MUST respond to the
Intermediate-Result TLV indicating its own result and similarly on
success MUST accompany the TLV with it's own Crypto-Binding TLV. The
Crypto-Binding TLV is further discussed in Section 4.2.12 and
Section 5.3. The Intermediate-Result TLVs can be included with other
TLVs which indicate a subsequent authentication, or with the Result
TLV used in the protected termination exchange.
If both peer and server indicate success, then the authentication is
considered successful. If either indicates failure, then the
authentication is considered failed. The result of failure of an EAP
DeKok (Ed) Expires 11 September 2023 [Page 13]
Internet-Draft TEAP March 2023
authentication does not always imply a failure of the overall
authentication. If one authentication method fails, the server may
attempt to authenticate the peer with a different method (EAP or
password).
If a particular authentication method succeeds, the server SHOULD NOT
attempt a subsequent authentication method. For example, if a user
is authenticated via an inner method of EAP-TLS, there is no benefit
to also requesting additional authentication via a different EAP
method, or via a password.
3.3.2. Inner Password Authentication
The authentication server initiates password authentication by
sending a Basic-Password-Auth-Req TLV defined in Section 4.2.13. If
the peer wishes to participate in password authentication, then it
responds with a Basic-Password-Auth-Resp TLV as defined in
Section 4.2.15 that contains the username and password. If it does
not wish to perform password authentication, then it responds with a
NAK TLV indicating the rejection of the Basic-Password-Auth-Req TLV.
Multiple round trips of password authentication requests and
responses MAY be used to support some "housecleaning" functions such
as a password or pin change before a user is considered to be
authenticated. Multiple rounds MAY also be used to communicate a
users password, and separately a one-time password.
The first Basic-Password-Auth-Req TLV received in a session MUST
include a prompt, which the peer displays to the user. Subsequent
authentication rounds SHOULD include a prompt, but it is not always
necessary.
When the peer first receives a Basic-Password-Auth-Req TLV, it should
allow the user to enter both a Username and a Password, which are
then placed in the Basic-Password-Auth-Resp TLV. If the peer
receives subsequent Basic-Password-Auth-Req TLVs in the same
authentication session, it MUST NOT prompt for a Username, and
instead allow the user to enter only a password. The peer MUST copy
the Username used in the first Basic-Password-Auth-Resp TLV into all
subsequent Basic-Password-Auth-Resp TLVs.
Servers MUST track the Username across multiple password rounds, and
reject authentication if the identity changes from one Basic-
Password-Auth-Resp TLV to the next. There is no reason for a user
(or machine) to change identities in the middle of authentication.
DeKok (Ed) Expires 11 September 2023 [Page 14]
Internet-Draft TEAP March 2023
Upon reception of a Basic-Password-Auth-Resp TLV in the tunnel, the
server MUST send an Intermediate-Result TLV indicating the result.
The peer MUST respond to the Intermediate-Result TLV indicating its
result. If the result indicates success, the Intermediate-Result TLV
MUST be accompanied by a Crypto-Binding TLV. The Crypto-Binding TLV
is further discussed in Section 4.2.12 and Section 5.3.
The Intermediate-Result TLVs can be included with other TLVs which
indicate a subsequent authentication, or with the Result TLV used in
the protected termination exchange.
The use of EAP-FAST-GTC as defined in RFC 5421 [RFC5421] is NOT
RECOMMENDED with TEAPv1 because EAP-FAST-GTC is not compliant with
EAP-GTC defined in [RFC3748]. Implementations should instead make
use of the password authentication TLVs defined in this
specification.
3.3.3. EAP-MSCHAPv2
If using EAP-MSCHAPv2 [KAMATH] as an inner EAP method, the EAP-FAST-
MSCHAPv2 variant defined in Section 3.2.3 of [RFC5422] MUST be used,
instead of the derivation defined in [MSCHAP].
The difference between EAP-MSCHAPv2 and EAP-FAST-MSCHAPv2 is that the
first and the second 16 octets of EAP-MSCHAPv2 MSK are swapped when
it is used as the Inner Method Session Keys (IMSK) for TEAP.
3.3.4. Protected Termination and Acknowledged Result Indication
A successful TEAP Phase 2 conversation MUST always end in a
successful Crypto-Binding TLV and Result TLV exchange. A TEAP server
may initiate the Crypto-Binding TLV and Result TLV exchange without
initiating any EAP conversation in TEAP Phase 2. After the final
Result TLV exchange, the TLS tunnel is terminated, and a cleartext
EAP Success or EAP Failure is sent by the server. Peers implementing
TEAP MUST NOT accept a cleartext EAP Success or failure packet prior
to the peer and server reaching synchronized protected result
indication.
The Crypto-Binding TLV exchange is used to prove that both the peer
and server participated in the tunnel establishment and sequence of
authentications. It also provides verification of the TEAP type,
version negotiated, and Outer TLVs exchanged before the TLS tunnel
establishment. Except as noted below, the Crypto-Binding TLV MUST be
exchanged and verified before the final Result TLV exchange,
regardless of whether or not there is an inner EAP authentication
method. The Crypto-Binding TLV and Intermediate-Result TLV MUST be
included to perform cryptographic binding after each successful
DeKok (Ed) Expires 11 September 2023 [Page 15]
Internet-Draft TEAP March 2023
authentication in a sequence of one or more inner methods. The
server may send the final Result TLV along with an Intermediate-
Result TLV and a Crypto-Binding TLV to indicate its intention to end
the conversation. If the peer requires nothing more from the server,
it will respond with a Result TLV indicating success accompanied by a
Crypto-Binding TLV and Intermediate-Result TLV if necessary. The
server then tears down the tunnel and sends a cleartext EAP Success
or EAP Failure.
If the peer receives a Result TLV indicating success from the server,
but its authentication policies are not satisfied (for example, it
requires a particular authentication mechanism be run), it may
request further action from the server using the Request-Action TLV.
The Request-Action TLV is sent with a Status field indicating what
EAP Success/Failure result the peer would expect if the requested
action is not granted. The value of the Action field indicates what
the peer would like to do next. The format and values for the
Request-Action TLV are defined in Section 4.2.9.
Upon receiving the Request-Action TLV, the server may process the
request or ignore it, based on its policy. If the server ignores the
request, it proceeds with termination of the tunnel and sends the
cleartext EAP Success or Failure message based on the Status field of
the peer's Request-Action TLV. If the server honors and processes
the request, it continues with the requested action. The
conversation completes with a Result TLV exchange. The Result TLV
may be included with the TLV that completes the requested action.
Error handling for Phase 2 is discussed in Section 3.6.3.
3.4. Determining Peer-Id and Server-Id
The Peer-Id and Server-Id [RFC5247] may be determined based on the
types of credentials used during either the TEAP tunnel creation or
authentication. In the case of multiple peer authentications, all
authenticated peer identities and their corresponding identity types
(Section 4.2.3) need to be exported. In the case of multiple server
authentications, all authenticated server identities need to be
exported.
When X.509 certificates are used for peer authentication, the Peer-Id
is determined by the subject and subjectAltName fields in the peer
certificate. As noted in [RFC5280]:
DeKok (Ed) Expires 11 September 2023 [Page 16]
Internet-Draft TEAP March 2023
The subject field identifies the entity associated with the public
key stored in the subject public key field. The subject name MAY
be carried in the subject field and/or the subjectAltName
extension. . . . If subject naming information is present only in
the subjectAltName extension (e.g., a key bound only to an email
address or URI), then the subject name MUST be an empty sequence
and the subjectAltName extension MUST be critical.
Where it is non-empty, the subject field MUST contain an X.500
distinguished name (DN).
If an inner EAP authentication method is run, then the Peer-Id is
obtained from that inner EAP authentication method.
When the server uses an X.509 certificate to establish the TLS
tunnel, the Server-Id is determined in a similar fashion as stated
above for the Peer-Id, e.g., the subject and subjectAltName fields in
the server certificate define the Server-Id.
3.5. TEAP Session Identifier
The EAP session identifier [RFC5247] is constructed using the tls-
unique from the Phase 1 outer tunnel at the beginning of Phase 2 as
defined by Section 3.1 of [RFC5929]. The Session-Id is defined as
follows:
Session-Id = teap_type | tls-unique
where | denotes concatenation, and teap_type is the EAP Type
assigned to TEAP
tls-unique = tls-unique from the Phase 1 outer tunnel at the
beginning of Phase 2 as defined by Section 3.1 of [RFC5929]
3.6. Error Handling
TEAP uses the error-handling rules summarized below:
1. Errors in the outer EAP packet layer are handled as defined in
Section 3.6.1.
2. Errors in the TLS layer are communicated via TLS alert messages
in all phases of TEAP.
3. The Intermediate-Result TLVs carry success or failure indications
of the individual inner methods in TEAP Phase 2. Errors within
the EAP conversation in Phase 2 are expected to be handled by
individual EAP authentication methods.
DeKok (Ed) Expires 11 September 2023 [Page 17]
Internet-Draft TEAP March 2023
4. Violations of the Inner TLV rules are handled using Result TLVs
together with Error TLVs.
5. Tunnel-compromised errors (errors caused by a failed or missing
Crypto-Binding) are handled using Result TLVs and Error TLVs.
3.6.1. Outer-Layer Errors
Errors on the TEAP outer-packet layer are handled in the following
ways:
1. If Outer TLVs are invalid or contain unknown values, they will be
ignored.
2. The entire TEAP packet will be ignored if other fields (version,
length, flags, etc.) are inconsistent with this specification.
3.6.2. TLS Layer Errors
If the TEAP server detects an error at any point in the TLS handshake
or the TLS layer, the server SHOULD send a TEAP request encapsulating
a TLS record containing the appropriate TLS alert message rather than
immediately terminating the conversation so as to allow the peer to
inform the user of the cause of the failure and possibly allow for a
restart of the conversation. The peer MUST send a TEAP response to
an alert message. The EAP-Response packet sent by the peer may
encapsulate a TLS ClientHello handshake message, in which case the
TEAP server MAY allow the TEAP conversation to be restarted, or it
MAY contain a TEAP response with a zero-length message, in which case
the server MUST terminate the conversation with an EAP Failure
packet. It is up to the TEAP server whether or not to allow
restarts, and, if allowed, how many times the conversation can be
restarted. Per TLS [RFC5246], TLS restart is only allowed for non-
fatal alerts. A TEAP server implementing restart capability SHOULD
impose a limit on the number of restarts, so as to protect against
denial-of-service attacks. If the TEAP server does not allow
restarts, it MUST terminate the conversation with an EAP Failure
packet.
If the TEAP peer detects an error at any point in the TLS layer, the
TEAP peer SHOULD send a TEAP response encapsulating a TLS record
containing the appropriate TLS alert message. The server may restart
the conversation by sending a TEAP request packet encapsulating the
TLS HelloRequest handshake message. The peer may allow the TEAP
conversation to be restarted, or it may terminate the conversation by
sending a TEAP response with a zero-length message.
DeKok (Ed) Expires 11 September 2023 [Page 18]
Internet-Draft TEAP March 2023
3.6.3. Phase 2 Errors
Any time the peer or the server finds a fatal error outside of the
TLS layer during Phase 2 TLV processing, it MUST send a Result TLV of
failure and an Error TLV with the appropriate error code. For errors
involving the processing of the sequence of exchanges, such as a
violation of TLV rules (e.g., multiple EAP-Payload TLVs), the error
code is Unexpected TLVs Exchanged. For errors involving a tunnel
compromise, the error code is Tunnel Compromise Error. Upon sending
a Result TLV with a fatal Error TLV, the sender terminates the TLS
tunnel. Note that a server will still wait for a message from the
peer after it sends a failure; however, the server does not need to
process the contents of the response message.
For the inner method, retransmission is not needed and SHOULD NOT be
attempted, as the Outer TLS tunnel can be considered a reliable
transport. If there is a non-fatal error while running the inner
method, the receiving side SHOULD NOT silently drop the inner method
exchange. Instead, it SHOULD reply with an Error TLV containing the
value Inner Method Error. This response is a positive indication
that there was an error processing the current inner method. The
side receiving a non-fatal Error TLV MAY decide to start a new inner
method instead or to send back a Result TLV to terminate the TEAP
authentication session.
If a server receives a Result TLV of failure with a fatal Error TLV,
it MUST send a cleartext EAP Failure. If a peer receives a Result
TLV of failure, it MUST respond with a Result TLV indicating failure.
If the server has sent a Result TLV of failure, it ignores the peer
response, and it MUST send a cleartext EAP Failure.
3.7. Fragmentation
Fragmentation of EAP packets is dicussed in [RFC5216] Section 2.1.5.
There is no special handling of fragments for TEAP.
3.8. Services Requested by the Peer
Several TEAP operations, including server unauthenticated
provisioning, certificate provisioning, and channel binding, depend
on the peer trusting the TEAP server. If the peer trusts the
provided server certificate, then the server is authenticated.
Typically, this authentication process involves the peer both
validating the certificate to a trust anchor and confirming that the
entity named by the certificate is the intended server. Server
authentication also occurs when the procedures in Section 5.1 are
used to resume a session where the peer and server were previously
DeKok (Ed) Expires 11 September 2023 [Page 19]
Internet-Draft TEAP March 2023
mutually authenticated. Alternatively, the server is deemed to be
authenticated if an inner EAP method provides mutual authentication
along with a Master Session Key (MSK) and/or Extended Master Session
Key (EMSK). The inner method MUST also provide for cryptographic
binding via the Compound Message Authentication Code (MAC), as
discussed in Section 4.2.12. This issue is further described in
Section 3.8.2.
TEAP peers MUST track whether or not server authentication has taken
place. When the server cannot be authenticated, the peer MUST NOT
request any services from it.
Peer implementations MUST be configurated so that by default, the
current authentication session fails if the server cannot be
authenticated. However, it is possible to have a configuration flag
which permits access to networks where the server cannot be
authenticated. Such configurations are NOT recommended, and further
discussion is outside of the scope of this specification.
An additional complication arises when an inner method authenticates
multiple parties such as authenticating both the peer machine and the
peer user to the EAP server. Depending on how authentication is
achieved, only some of these parties may have confidence in it. For
example, if a strong shared secret is used to mutually authenticate
the user and the EAP server, the machine may not have confidence that
the EAP server is the authenticated party if the machine cannot trust
the user not to disclose the shared secret to an attacker. In these
cases, the parties who participate in the authentication need to be
considered when evaluating whether the peer should request these
services, or whether the server should provide them.
The server MUST also authenticate the peer before providing these
services. The alternative is to send provisioning data to
unauthenticated and potentially malicious peers, which can have
negative impacts on security.
3.8.1. Certificate Provisioning within the Tunnel
Provisioning of a peer's certificate is supported in TEAP by
performing the Simple PKI Request/Response from [RFC5272] using
PKCS#10 and PKCS#7 TLVs, respectively. A peer sends the Simple PKI
Request using a PKCS#10 CertificateRequest [RFC2986] encoded into the
body of a PKCS#10 TLV (see Section 4.2.16). The TEAP server issues a
Simple PKI Response using a PKCS#7 [RFC2315] degenerate "Certificates
Only" message encoded into the body of a PKCS#7 TLV (see
Section 4.2.15), only after an authentication method has run and
provided an identity proof on the peer prior to a certificate is
being issued.
DeKok (Ed) Expires 11 September 2023 [Page 20]
Internet-Draft TEAP March 2023
In order to provide linking identity and proof-of-possession by
including information specific to the current authenticated TLS
session within the signed certification request, the peer generating
the request SHOULD obtain the tls-unique value from the TLS subsystem
as defined in "Channel Bindings for TLS" [RFC5929]. The TEAP peer
operations between obtaining the tls-unique value through generation
of the Certification Signing Request (CSR) that contains the current
tls-unique value and the subsequent verification of this value by the
TEAP server are the "phases of the application protocol during which
application-layer authentication occurs" that are protected by the
synchronization interoperability mechanism described in the
interoperability note in "Channel Bindings for TLS" ([RFC5929],
Section 3.1). When performing renegotiation, TLS
"secure_renegotiation" [RFC5746] MUST be used.
The tls-unique value is base-64-encoded as specified in Section 4 of
[RFC4648], and the resulting string is placed in the certification
request challengePassword field ([RFC2985], Section 5.4.1). The
challengePassword field is limited to 255 octets (Section 7.4.9 of
[RFC5246] indicates that no existing ciphersuite would result in an
issue with this limitation). If tls-unique information is not
embedded within the certification request, the challengePassword
field MUST be empty to indicate that the peer did not include the
optional channel-binding information (any value submitted is verified
by the server as tls-unique information).
The server SHOULD verify the tls-unique information. This ensures
that the authenticated TEAP peer is in possession of the private key
used to sign the certification request.
The Simple PKI Request/Response generation and processing rules of
[RFC5272] SHALL apply to TEAP, with the exception of error
conditions. In the event of an error, the TEAP server SHOULD respond
with an Error TLV using the most descriptive error code possible; it
MAY ignore the PKCS#10 request that generated the error.
3.8.2. Server Unauthenticated Provisioning Mode
In Server Unauthenticated Provisioning Mode, an unauthenticated
tunnel is established in Phase 1, and the peer and server negotiate
an EAP method in Phase 2 that supports mutual authentication and key
derivation that is resistant to attacks such as man-in-the-middle and
dictionary attacks. This provisioning mode enables the bootstrapping
of peers when the peer lacks the ability to authenticate the server
during Phase 1. This includes both cases in which the ciphersuite
negotiated does not provide authentication and in which the
ciphersuite negotiated provides the authentication but the peer is
unable to validate the identity of the server for some reason.
DeKok (Ed) Expires 11 September 2023 [Page 21]
Internet-Draft TEAP March 2023
Upon successful completion of the EAP authentication method in Phase
2, the peer and server exchange a Crypto-Binding TLV to bind the
inner method with the outer tunnel and ensure that a man-in-the-
middle attack has not been attempted.
Support for the Server Unauthenticated Provisioning Mode is optional.
The ciphersuite TLS_DH_anon_WITH_AES_128_CBC_SHA is RECOMMENDED when
using Server Unauthenticated Provisioning Mode, but other anonymous
ciphersuites MAY be supported as long as the TLS pre-master secret is
generated from contribution from both peers. Phase 2 EAP
authentication methods used in Server Unauthenticated Provisioning
Mode MUST provide mutual authentication, provide key generation, and
be resistant to dictionary attack. Example inner methods include
EAP-pwd [RFC5931] and EAP-EKE [RFC6124], but not EAP-FAST-MSCHAPv2.
When a strong inner method is not used with Server Unauthenticated
Provisioning Mode, it is possible for an attacker to perform a man-
in-the-middle attack. In effect, Server Unauthenticated Provisioning
Mode has similar security issues as just running the inner method in
the open, without the protection of TLS. All of the information in
the tunnel should be assumed to be visible to, and modifiable by, an
attacker.
Implementations SHOULD exchange minimal data in Server
Unauthenticated Provisioning Mode. Instead, they should use that
mode to set up a secure / authenticated tunnel, and then use that
tunnel to perform any needed data exchange.
It is RECOMMENDED that client implementations and deployments
authenticate TEAP servers if at all possible. Authenticating the
server means that a client can be provisioned securely with no chance
of an attacker eaves-dropping on the connection.
3.8.3. Channel Binding
[RFC6677] defines EAP channel bindings to solve the "lying NAS" and
the "lying provider" problems, using a process in which the EAP peer
gives information about the characteristics of the service provided
by the authenticator to the Authentication, Authorization, and
Accounting (AAA) server protected within the EAP authentication
method. This allows the server to verify the authenticator is
providing information to the peer that is consistent with the
information received from this authenticator as well as the
information stored about this authenticator.
TEAP supports EAP channel binding using the Channel-Binding TLV
defined in Section 4.2.7. If the TEAP server wants to request the
channel-binding information from the peer, it sends an empty Channel-
DeKok (Ed) Expires 11 September 2023 [Page 22]
Internet-Draft TEAP March 2023
Binding TLV to indicate the request. The peer responds to the
request by sending a Channel-Binding TLV containing a channel-binding
message as defined in [RFC6677]. The server validates the channel-
binding message and sends back a Channel-Binding TLV with a result
code. If the server didn't initiate the channel-binding request and
the peer still wants to send the channel-binding information to the
server, it can do that by using the Request-Action TLV along with the
Channel-Binding TLV. The peer MUST only send channel-binding
information after it has successfully authenticated the server and
established the protected tunnel.
4. Message Formats
The following sections describe the message formats used in TEAP.
The fields are transmitted from left to right in network byte order.
4.1. TEAP Message Format
A summary of the TEAP Request/Response packet format is shown below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Code | Identifier | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Flags | Ver | Message Length :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Message Length | Outer TLV Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Outer TLV Length | TLS Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Code
The Code field is one octet in length and is defined as follows:
1 Request
2 Response
Identifier
The Identifier field is one octet and aids in matching responses
with requests. The Identifier field MUST be changed on each
Request packet. The Identifier field in the Response packet MUST
match the Identifier field from the corresponding request.
DeKok (Ed) Expires 11 September 2023 [Page 23]
Internet-Draft TEAP March 2023
Length
The Length field is two octets and indicates the length of the EAP
packet including the Code, Identifier, Length, Type, Flags, Ver,
Message Length, TLS Data, and Outer TLVs fields. Octets outside
the range of the Length field should be treated as Data Link Layer
padding and should be ignored on reception.
Type
55 for TEAP
Flags
0 1 2 3 4
+-+-+-+-+-+
|L M S O R|
+-+-+-+-+-+
L Length included; set to indicate the presence of the four-octet
Message Length field. It MUST be present for the first
fragment of a fragmented message. It MUST NOT be present for
any other message.
M More fragments; set on all but the last fragment.
S TEAP start; set in a TEAP Start message sent from the server to
the peer.
O Outer TLV length included; set to indicate the presence of the
four-octet Outer TLV Length field. It MUST be present only in
the initial request and response messages. If the initial
message is fragmented, then it MUST be present only on the
first fragment.
R Reserved (MUST be zero and ignored upon receipt)
Ver
This field contains the version of the protocol. This document
describes version 1 (001 in binary) of TEAP.
Message Length
The Message Length field is four octets and is present only if the
L bit is set. This field provides the total length of the message
that may be fragmented over the data fields of multiple packets.
DeKok (Ed) Expires 11 September 2023 [Page 24]
Internet-Draft TEAP March 2023
Outer TLV Length
The Outer TLV Length field is four octets and is present only if
the O bit is set. This field provides the total length of the
Outer TLVs if present.
TLS Data
When the TLS Data field is present, it consists of an encapsulated
TLS packet in TLS record format. A TEAP packet with Flags and
Version fields, but with zero length TLS Data field, is used to
indicate TEAP acknowledgement for either a fragmented message, a
TLS Alert message, or a TLS Finished message.
Outer TLVs
The Outer TLVs consist of the optional data used to help establish
the TLS tunnel in TLV format. They are only allowed in the first
two messages in the TEAP protocol. That is the first EAP-server-
to-peer message and first peer-to-EAP-server message. The start
of the Outer TLVs can be derived from the EAP Length field and
Outer TLV Length field.
4.2. TEAP TLV Format and Support
The TLVs defined here are TLV objects. The TLV objects could be used
to carry arbitrary parameters between an EAP peer and EAP server
within the protected TLS tunnel.
The EAP peer may not necessarily implement all the TLVs supported by
the EAP server. To allow for interoperability, TLVs are designed to
allow an EAP server to discover if a TLV is supported by the EAP peer
using the NAK TLV. The mandatory bit in a TLV indicates whether
support of the TLV is required. If the peer or server does not
support a TLV marked mandatory, then it MUST send a NAK TLV in the
response, and all the other TLVs in the message MUST be ignored. If
an EAP peer or server finds an unsupported TLV that is marked as
optional, it can ignore the unsupported TLV. It MUST NOT send a NAK
TLV for a TLV that is not marked mandatory. If all TLVs in a message
are marked optional and none are understood by the peer, then a NAK
TLV or Result TLV could be sent to the other side in order to
continue the conversation.
Note that a peer or server may support a TLV with the mandatory bit
set but may not understand the contents. The appropriate response to
a supported TLV with content that is not understood is defined by the
individual TLV specification.
DeKok (Ed) Expires 11 September 2023 [Page 25]
Internet-Draft TEAP March 2023
EAP implementations compliant with this specification MUST support
TLV exchanges as well as the processing of mandatory/optional
settings on the TLV. Implementations conforming to this
specification MUST support the following TLVs:
Authority-ID TLV
Identity-Type TLV
Result TLV
NAK TLV
Error TLV
Request-Action TLV
EAP-Payload TLV
Intermediate-Result TLV
Crypto-Binding TLV
Basic-Password-Auth-Req TLV
Basic-Password-Auth-Resp TLV
4.2.1. General TLV Format
TLVs are defined as described below. The fields are transmitted from
left to right.
If a peer or server receives a TLV which is not of the correct
format, the TLV MUST be discarded. It is generally useful to log an
error or debugging message which indicates which TLV had an issue,
and what the problem is. However, TLVs which are malformed are
invalid, and cannot be used.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
DeKok (Ed) Expires 11 September 2023 [Page 26]
Internet-Draft TEAP March 2023
0 Optional TLV
1 Mandatory TLV
R
Reserved, set to zero (0)
TLV Type
A 14-bit field, denoting the TLV type. Allocated types include:
0 Unassigned
1 Authority-ID TLV (Section 4.2.2)
2 Identity-Type TLV (Section 4.2.3)
3 Result TLV (Section 4.2.4)
4 NAK TLV (Section 4.2.5)
5 Error TLV (Section 4.2.6)
6 Channel-Binding TLV (Section 4.2.7)
7 Vendor-Specific TLV (Section 4.2.8)
8 Request-Action TLV (Section 4.2.9)
9 EAP-Payload TLV (Section 4.2.10)
10 Intermediate-Result TLV (Section 4.2.11)
11 PAC TLV (DEPRECATED)
12 Crypto-Binding TLV (Section 4.2.12)
13 Basic-Password-Auth-Req TLV (Section 4.2.13)
14 Basic-Password-Auth-Resp TLV (Section 4.2.15)
15 PKCS#7 TLV (Section 4.2.15)
16 PKCS#10 TLV (Section 4.2.16)
17 Trusted-Server-Root TLV (Section 4.2.17)
DeKok (Ed) Expires 11 September 2023 [Page 27]
Internet-Draft TEAP March 2023
Length
The length of the Value field in octets.
Value
The value of the TLV.
4.2.2. Authority-ID TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ID...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 - Optional TLV
R
Reserved, set to zero (0)
TLV Type
1 - Authority-ID
Length
The Length field is two octets and contains the length of the ID
field in octets.
ID
Hint of the identity of the server to help the peer to match the
credentials available for the server. It should be unique across
the deployment.
DeKok (Ed) Expires 11 September 2023 [Page 28]
Internet-Draft TEAP March 2023
4.2.3. Identity-Type TLV
The Identity-Type TLV allows an EAP server to send a hint to help the
EAP peer select the right type of identity, for example, user or
machine. TEAPv1 implementations MUST support this TLV. Only one
Identity-Type TLV SHOULD be present in the TEAP request or response
packet. The Identity-Type TLV request MUST come with an EAP-Payload
TLV, Basic-Password-Auth-Req TLV, or a vendor-specific authentication
method. If the EAP peer has an identity corresponding to the
identity type requested, then the peer SHOULD respond with an
Identity-Type TLV with the requested type, along with TLVs which
perform the requested inner method. If the Identity-Type field does
not contain one of the known values, or if the EAP peer does not have
an identity corresponding to the identity type requested, then the
peer SHOULD respond with an Identity-Type TLV with the one of
identity types which it has available.
If server receives an identity type in the response that does not
match the type that it requested, then this is an indication to the
server that the peer does not possess the requested credential type.
Depending on local policies, the server can either proceed with
authentication for the credential type proposed by the peer, or it
can send Result TLV with Failure.
The Identity-Type TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identity-Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
2 - Identity-Type TLV
Length
DeKok (Ed) Expires 11 September 2023 [Page 29]
Internet-Draft TEAP March 2023
2
Identity-Type
The Identity-Type field is two octets. Values include:
1 User
2 Machine
4.2.4. Result TLV
The Result TLV provides support for acknowledged success and failure
messages for protected termination within TEAP. If the Status field
does not contain one of the known values, then the peer or EAP server
MUST treat this as a fatal error of Unexpected TLVs Exchanged. The
behavior of the Result TLV is further discussed in Section 3.3.4 and
Section 3.6.3 A Result TLV indicating failure MUST NOT be accompanied
by the following TLVs: NAK, EAP-Payload TLV, or Crypto-Binding TLV.
The Result TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
3 - Result TLV
Length
2
Status
The Status field is two octets. Values include:
DeKok (Ed) Expires 11 September 2023 [Page 30]
Internet-Draft TEAP March 2023
1 Success
2 Failure
4.2.5. NAK TLV
The NAK TLV allows a peer to detect TLVs that are not supported by
the other peer. A TEAP packet can contain 0 or more NAK TLVs. A NAK
TLV should not be accompanied by other TLVs. A NAK TLV MUST NOT be
sent in response to a message containing a Result TLV, instead a
Result TLV of failure should be sent indicating failure and an Error
TLV of Unexpected TLVs Exchanged. The NAK TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor-Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NAK-Type | TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
4 - NAK TLV
Length
>=6
Vendor-Id
The Vendor-Id field is four octets and contains the Vendor-Id of
the TLV that was not supported. The high-order octet is 0, and
the low-order three octets are the Structure of Management
Information (SMI) Network Management Private Enterprise Number of
the Vendor in network byte order. The Vendor-Id field MUST be
zero for TLVs that are not Vendor-Specific TLVs.
DeKok (Ed) Expires 11 September 2023 [Page 31]
Internet-Draft TEAP March 2023
NAK-Type
The NAK-Type field is two octets. The field contains the type of
the TLV that was not supported. A TLV of this type MUST have been
included in the previous packet.
TLVs
This field contains a list of zero or more TLVs, each of which
MUST NOT have the mandatory bit set. These optional TLVs are for
future extensibility to communicate why the offending TLV was
determined to be unsupported.
4.2.6. Error TLV
The Error TLV allows an EAP peer or server to indicate errors to the
other party. A TEAP packet can contain 0 or more Error TLVs. The
Error-Code field describes the type of error. Error codes 1-999
represent successful outcomes (informative messages), 1000-1999
represent warnings, and 2000-2999 represent fatal errors. A fatal
Error TLV MUST be accompanied by a Result TLV indicating failure, and
the conversation is terminated as described in Section 3.6.3.
Many of the error codes below refer to errors in inner method
processing that may be retrieved if made available by the inner
method. Implementations MUST take care that error messages do not
reveal too much information to an attacker. For example, the usage
of error message 1031 (User account credentials incorrect) is NOT
RECOMMENDED, because it allows an attacker to determine valid
usernames by differentiating this response from other responses. It
should only be used for troubleshooting purposes.
The Error TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error-Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
DeKok (Ed) Expires 11 September 2023 [Page 32]
Internet-Draft TEAP March 2023
Reserved, set to zero (0)
TLV Type
5 - Error TLV
Length
4
Error-Code
The Error-Code field is four octets. Currently defined values for
Error-Code include:
1 User account expires soon
2 User account credential expires soon
3 User account authorizations change soon
4 Clock skew detected
5 Contact administrator
6 User account credentials change required
1001 Inner Method Error
1002 Unspecified authentication infrastructure problem
1003 Unspecified authentication failure
1004 Unspecified authorization failure
1005 User account credentials unavailable
1006 User account expired
1007 User account locked: try again later
1008 User account locked: admin intervention required
1009 Authentication infrastructure unavailable
1010 Authentication infrastructure not trusted
1011 Clock skew too great
DeKok (Ed) Expires 11 September 2023 [Page 33]
Internet-Draft TEAP March 2023
1012 Invalid inner realm
1013 Token out of sync: administrator intervention required
1014 Token out of sync: PIN change required
1015 Token revoked
1016 Tokens exhausted
1017 Challenge expired
1018 Challenge algorithm mismatch
1019 Client certificate not supplied
1020 Client certificate rejected
1021 Realm mismatch between inner and outer identity
1022 Unsupported Algorithm In Certificate Signing Request
1023 Unsupported Extension In Certificate Signing Request
1024 Bad Identity In Certificate Signing Request
1025 Bad Certificate Signing Request
1026 Internal CA Error
1027 General PKI Error
1028 Inner method's channel-binding data required but not
supplied
1029 Inner method's channel-binding data did not include
required information
1030 Inner method's channel binding failed
1031 User account credentials incorrect [USAGE NOT RECOMMENDED]
2001 Tunnel Compromise Error
2002 Unexpected TLVs Exchanged
DeKok (Ed) Expires 11 September 2023 [Page 34]
Internet-Draft TEAP March 2023
4.2.7. Channel-Binding TLV
The Channel-Binding TLV provides a mechanism for carrying channel-
binding data from the peer to the EAP server and a channel-binding
response from the EAP server to the peer as described in [RFC6677].
TEAPv1 implementations MAY support this TLV, which cannot be
responded to with a NAK TLV. If the Channel-Binding data field does
not contain one of the known values or if the EAP server does not
support this TLV, then the server MUST ignore the value. The
Channel-Binding TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 - Optional TLV
R
Reserved, set to zero (0)
TLV Type
6 - Channel-Binding TLV
Length
variable
Data
The data field contains a channel-binding message as defined in
Section 5.3 of [RFC6677].
4.2.8. Vendor-Specific TLV
The Vendor-Specific TLV is available to allow vendors to support
their own extended attributes not suitable for general usage. A
Vendor-Specific TLV attribute can contain one or more TLVs, referred
to as Vendor TLVs. The TLV type of a particular Vendor TLV is
defined by the vendor. All the Vendor TLVs inside a single Vendor-
Specific TLV belong to the same vendor. There can be multiple
DeKok (Ed) Expires 11 September 2023 [Page 35]
Internet-Draft TEAP March 2023
Vendor-Specific TLVs from different vendors in the same message.
Error handling in the Vendor TLV could use the vendor's own specific
error-handling mechanism or use the standard TEAP error codes
defined.
Vendor TLVs may be optional or mandatory. Vendor TLVs sent with
Result TLVs MUST be marked as optional. If the Vendor-Specific TLV
is marked as mandatory, then it is expected that the receiving side
needs to recognize the vendor ID, parse all Vendor TLVs within, and
deal with error handling within the Vendor-Specific TLV as defined by
the vendor.
Where a Vendor-Specific TLV carries an authentication protocol in the
inner method, it MUST define values for MSK and EMSK. Where these
values cannot be derived from cryptographic primitives, they MUST be
set to zero, as happens when Basic-Password-Auth-Req is used.
The Vendor-Specific TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor-Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor TLVs....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 or 1
R
Reserved, set to zero (0)
TLV Type
7 - Vendor-Specific TLV
Length
4 + cumulative length of all included Vendor TLVs
Vendor-Id
DeKok (Ed) Expires 11 September 2023 [Page 36]
Internet-Draft TEAP March 2023
The Vendor-Id field is four octets and contains the Vendor-Id of
the TLV. The high-order octet is 0, and the low-order 3 octets
are the SMI Network Management Private Enterprise Number of the
Vendor in network byte order.
Vendor TLVs
This field is of indefinite length. It contains Vendor-Specific
TLVs, in a format defined by the vendor.
4.2.9. Request-Action TLV
The Request-Action TLV MAY be sent by both the peer and the server in
response to a successful or failed Result TLV. It allows the peer or
server to request the other side to negotiate additional inner
methods or process TLVs specified in the response packet. The
receiving side MUST process this TLV. The processing for the TLV is
as follows:
The receiving entity MAY choose to process any of the TLVs that
are included in the message.
If the receiving entity chooses NOT to process any TLV in the
list, then it sends back a Result TLV with the same code in the
Status field of the Request-Action TLV.
If multiple Request-Action TLVs are in the request, the session
can continue if any of the TLVs in any Request-Action TLV are
processed.
If multiple Request-Action TLVs are in the request and none of
them is processed, then the most fatal status should be used in
the Result TLV returned. If a status code in the Request-Action
TLV is not understood by the receiving entity, then it should be
treated as a fatal error.
After processing the TLVs or inner method in the request, another
round of Result TLV exchange would occur to synchronize the final
status on both sides.
The peer or the server MAY send multiple Request-Action TLVs to the
other side. Two Request-Action TLVs MUST NOT occur in the same TEAP
packet if they have the same Status value. The order of processing
multiple Request-Action TLVs is implementation dependent. If the
receiving side processes the optional (non-fatal) items first, it is
possible that the fatal items will disappear at a later time. If the
receiving side processes the fatal items first, the communication
time will be shorter.
DeKok (Ed) Expires 11 September 2023 [Page 37]
Internet-Draft TEAP March 2023
The peer or the server MAY return a new set of Request-Action TLVs
after one or more of the requested items has been processed and the
other side has signaled it wants to end the EAP conversation.
The Request-Action TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | Action | TLVs....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
8 - Request-Action TLV
Length
2 + cumulative length of all included TLVs
Status
The Status field is one octet. This indicates the result if the
party who receives this TLV does not process the action. Values
include:
1 Success
2 Failure
Action
The Action field is one octet. Values include:
1 Process-TLV
2 Negotiate-EAP
DeKok (Ed) Expires 11 September 2023 [Page 38]
Internet-Draft TEAP March 2023
TLVs
This field is of indefinite length. It contains TLVs that the
peer wants the server to process.
4.2.10. EAP-Payload TLV
To allow piggybacking an EAP request or response with other TLVs, the
EAP-Payload TLV is defined, which includes an encapsulated EAP packet
and a list of optional TLVs. The optional TLVs are provided for
future extensibility to provide hints about the current EAP
authentication. Only one EAP-Payload TLV is allowed in a message.
The EAP-Payload TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| EAP packet...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
9 - EAP-Payload TLV
Length
length of embedded EAP packet + cumulative length of additional
TLVs
EAP packet
This field contains a complete EAP packet, including the EAP
header (Code, Identifier, Length, Type) fields. The length of
this field is determined by the Length field of the encapsulated
EAP packet.
DeKok (Ed) Expires 11 September 2023 [Page 39]
Internet-Draft TEAP March 2023
TLVs
This (optional) field contains a list of TLVs associated with the
EAP packet field. The TLVs MUST NOT have the mandatory bit set.
The total length of this field is equal to the Length field of the
EAP-Payload TLV, minus the Length field in the EAP header of the
EAP packet field.
4.2.11. Intermediate-Result TLV
The Intermediate-Result TLV signals intermediate Success and Failure
messages for all inner methods. The Intermediate-Result TLV MUST be
be used for all inner methods.
An Intermediate-Result TLV indicating Success MUST be accompanied by
a Crypto-Binding TLV.
An Intermediate-Result TLV indicating Failure SHOULD be accompanied
by an Error TLV which indicates why the authentication failed.
The optional TLVs associated with this TLV are provided for future
extensibility to provide hints about the current result. The
Intermediate-Result TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
10 - Intermediate-Result TLV
Length
2 + cumulative length of the embedded associated TLVs
DeKok (Ed) Expires 11 September 2023 [Page 40]
Internet-Draft TEAP March 2023
Status
The Status field is two octets. Values include:
1 Success
2 Failure
TLVs
This field is of indeterminate length and contains zero or more of
the TLVs associated with the Intermediate Result TLV. The TLVs in
this field MUST NOT have the mandatory bit set.
4.2.12. Crypto-Binding TLV
The Crypto-Binding TLV is used to prove that both the peer and server
participated in the tunnel establishment and sequence of
authentications. It also provides verification of the TEAP type,
version negotiated, and Outer TLVs exchanged before the TLS tunnel
establishment.
The Crypto-Binding TLV MUST be exchanged and validated before any
Intermediate-Result or Result TLV value is examined, regardless of
whether there is an inner authentication method or not. It MUST be
included with the Intermediate-Result TLV to perform cryptographic
binding after each successful inner method in a sequence of inner
methods, before proceeding with another inner method. If no MSK or
EMSK has been generated and a Crypto-Binding TLV is required then the
MSK Compound MAC field contains the MAC using keys generated
according to Section 5.3.
The Crypto-Binding TLV is valid only if the following checks pass:
o The Crypto-Binding TLV version is supported.
o The MAC verifies correctly.
o The received version in the Crypto-Binding TLV matches the version
sent by the receiver during the EAP version negotiation.
o The subtype is set to the correct value.
If any of the above checks fails, then the TLV is invalid. An
invalid Crypto-Binding TLV is a fatal error and is handled as
described in Section 3.6.3
The Crypto-Binding TLV is defined as follows:
DeKok (Ed) Expires 11 September 2023 [Page 41]
Internet-Draft TEAP March 2023
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Version | Received Ver.| Flags|Sub-Type|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Nonce ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ EMSK Compound MAC ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ MSK Compound MAC ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
12 - Crypto-Binding TLV
Length
76
Reserved
Reserved, set to zero (0)
Version
The Version field is a single octet, which is set to the version
of Crypto-Binding TLV the TEAP method is using. For an
implementation compliant with this version of TEAP, the version
number MUST be set to one (1).
Received Ver
DeKok (Ed) Expires 11 September 2023 [Page 42]
Internet-Draft TEAP March 2023
The Received Ver field is a single octet and MUST be set to the
TEAP version number received during version negotiation. Note
that this field only provides protection against downgrade
attacks, where a version of EAP requiring support for this TLV is
required on both sides.
Flags
The Flags field is four bits. Defined values include
1 EMSK Compound MAC is present
2 MSK Compound MAC is present
3 Both EMSK and MSK Compound MAC are present
Sub-Type
The Sub-Type field is four bits. Defined values include
0 Binding Request
< 1 Binding Response
Nonce
The Nonce field is 32 octets. It contains a 256-bit nonce that is
temporally unique, used for Compound MAC key derivation at each
end. The nonce in a request MUST have its least significant bit
set to zero (0), and the nonce in a response MUST have the same
value as the request nonce except the least significant bit MUST
be set to one (1).
EMSK Compound MAC
The EMSK Compound MAC field is 20 octets. This can be the Server
MAC (B1_MAC) or the Client MAC (B2_MAC). The computation of the
MAC is described in Section 5.3.
Note that this field is always 20 octets in length. Any larger
MAC is simply truncated. All validations or comparisons MUST be
done on the truncated value.
MSK Compound MAC
The MSK Compound MAC field is 20 octets. This can be the Server
MAC (B1_MAC) or the Client MAC (B2_MAC). The computation of the
MAC is described in Section 5.3.
DeKok (Ed) Expires 11 September 2023 [Page 43]
Internet-Draft TEAP March 2023
Note that this field is always 20 octets in length. Any larger
MAC is simply truncated. All validations or comparisons MUST be
done on the truncated value.
4.2.13. Basic-Password-Auth-Req TLV
The Basic-Password-Auth-Req TLV is used by the authentication server
to request a username and password from the peer. It contains an
optional user prompt message for the request. The peer is expected
to obtain the username and password and send them in a Basic-
Password-Auth-Resp TLV.
The Basic-Password-Auth-Req TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prompt ....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
13 - Basic-Password-Auth-Req TLV
Length
variable
Prompt
optional user prompt message in UTF-8 [RFC3629] format
4.2.14. Basic-Password-Auth-Resp TLV
The Basic-Password-Auth-Resp TLV is used by the peer to respond to a
Basic-Password-Auth-Req TLV with a username and password. The TLV
contains a username and password. The username and password are in
UTF-8 [RFC3629] format.
DeKok (Ed) Expires 11 September 2023 [Page 44]
Internet-Draft TEAP March 2023
The Basic-Password-Auth-Resp TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Userlen | Username
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Username ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Passlen | Password
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Password ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
14 - Basic-Password-Auth-Resp TLV
Length
variable
Userlen
Length of Username field in octets
The value of Userlen MUST NOT be zero.
Username
Username in UTF-8 [RFC3629] format
The content of Username SHOULD follow the guidelines set in
[I-D.ietf-emu-tls-eap-types] Section 3.1.
Passlen
Length of Password field in octets
DeKok (Ed) Expires 11 September 2023 [Page 45]
Internet-Draft TEAP March 2023
The value of Passlen MUST NOT be zero.
Password
Password in UTF-8 [RFC3629] format
Note that there is no requirement that passwords be humanly
readable. Octets in a passwords may have values less than 0x20,
including 0x00.
4.2.15. PKCS#7 TLV
The PKCS#7 TLV is used by the EAP server to deliver certificate(s) to
the peer. The format consists of a certificate or certificate chain
in binary DER encoding [X.690] in a degenerate Certificates Only
PKCS#7 SignedData Content as defined in [RFC5652].
When used in response to a Trusted-Server-Root TLV request from the
peer, the EAP server MUST send the PKCS#7 TLV inside a Trusted-
Server-Root TLV. When used in response to a PKCS#10 certificate
enrollment request from the peer, the EAP server MUST send the PKCS#7
TLV without a Trusted-Server-Root TLV. The PKCS#7 TLV is always
marked as optional, which cannot be responded to with a NAK TLV.
TEAP implementations that support the Trusted-Server-Root TLV or the
PKCS#10 TLV MUST support this TLV. Peers MUST NOT assume that the
certificates in a PKCS#7 TLV are in any order.
TEAP servers MAY return self-signed certificates. Peers that handle
self-signed certificates or trust anchors MUST NOT implicitly trust
these certificates merely due to their presence in the certificate
bag. Note: Peers are advised to take great care in deciding whether
to use a received certificate as a trust anchor. The authenticated
nature of the tunnel in which a PKCS#7 bag is received can provide a
level of authenticity to the certificates contained therein. Peers
are advised to take into account the implied authority of the EAP
server and to constrain the trust it can achieve through the trust
anchor received in a PKCS#7 TLV.
The PKCS#7 TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PKCS#7 Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
DeKok (Ed) Expires 11 September 2023 [Page 46]
Internet-Draft TEAP March 2023
M
0 - Optional TLV
R
Reserved, set to zero (0)
TLV Type
15 - PKCS#7 TLV
Length
The length of the PKCS#7 Data field.
PKCS#7 Data
This field contains the DER-encoded X.509 certificate or
certificate chain in a Certificates-Only PKCS#7 SignedData
message.
4.2.16. PKCS#10 TLV
The PKCS#10 TLV is used by the peer to initiate the "simple PKI"
Request/Response from [RFC5272]. The format of the request is as
specified in Section 6.4 of [RFC4945]. The PKCS#10 TLV is always
marked as optional, which cannot be responded to with a NAK TLV.
The PKCS#10 TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PKCS#10 Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
M
0 - Optional TLV
R
Reserved, set to zero (0)
TLV Type
DeKok (Ed) Expires 11 September 2023 [Page 47]
Internet-Draft TEAP March 2023
16 - PKCS#10 TLV
Length
The length of the PKCS#10 Data field.
PKCS#10 Data
This field contains the DER-encoded PKCS#10 certificate request.
4.2.17. Trusted-Server-Root TLV
Trusted-Server-Root TLV facilitates the request and delivery of a
trusted server root certificate. The Trusted-Server-Root TLV can be
exchanged in regular TEAP authentication mode or provisioning mode.
The Trusted-Server-Root TLV is always marked as optional and cannot
be responded to with a Negative Acknowledgement (NAK) TLV. The
Trusted-Server-Root TLV MUST only be sent as an Inner TLV (inside the
protection of the tunnel).
After the peer has determined that it has successfully authenticated
the EAP server and validated the Crypto-Binding TLV, it MAY send one
or more Trusted-Server-Root TLVs (marked as optional) to request the
trusted server root certificates from the EAP server. The EAP server
MAY send one or more root certificates with a Public Key
Cryptographic System #7 (PKCS#7) TLV inside the Trusted-Server-Root
TLV. The EAP server MAY also choose not to honor the request.
The Trusted-Server-Root TLV allows the peer to send a request to the
EAP server for a list of trusted roots. The server may respond with
one or more root certificates in PKCS#7 [RFC2315] format.
If the EAP server sets the credential format to PKCS#7-Server-
Certificate-Root, then the Trusted-Server-Root TLV should contain the
root of the certificate chain of the certificate issued to the EAP
server packaged in a PKCS#7 TLV. If the server certificate is a
self-signed certificate, then the root is the self-signed
certificate.
If the Trusted-Server-Root TLV credential format contains a value
unknown to the peer, then the EAP peer should ignore the TLV.
The Trusted-Server-Root TLV is defined as follows:
DeKok (Ed) Expires 11 September 2023 [Page 48]
Internet-Draft TEAP March 2023
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Credential-Format | Cred TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
M
0 - Optional TLV
R
Reserved, set to zero (0)
TLV Type
17 - Trusted-Server-Root TLV
Length
>=2 octets
Credential-Format
The Credential-Format field is two octets. Values include:
1 - PKCS#7-Server-Certificate-Root
Cred TLVs
This field is of indefinite length. It contains TLVs associated
with the credential format. The peer may leave this field empty
when using this TLV to request server trust roots.
4.3. TLV Rules
To save round trips, multiple TLVs can be sent in a single TEAP
packet. However, multiple EAP Payload TLVs, multiple Basic Password
Authentication TLVs, or an EAP Payload TLV with a Basic Password
Authentication TLV within one single TEAP packet is not supported in
this version and MUST NOT be sent. If the peer or EAP server
receives multiple EAP Payload TLVs, then it MUST terminate the
connection with the Result TLV. The order in which TLVs are encoded
in a TEAP packet does not matter, however there is an order in which
TLVs in a packet must be processed:
DeKok (Ed) Expires 11 September 2023 [Page 49]
Internet-Draft TEAP March 2023
1. Crypto-Binding TLV
2. Intermediate-Result TLV
3. Result TLV or Request-Action TLV
4. Identity-Type TLV
5. EAP-Payload TLV[Identity-Request] or Basic-Password-Auth-Req TLV
6. Other TLVs
That is, cryptographic binding is checked before any result is used,
and identities are checked before proposing an authentication method,
as the identity may influence the chosen authentication method.
The following define the meaning of the table entries in the sections
below:
0 This TLV MUST NOT be present in the message.
0+ Zero or more instances of this TLV MAY be present in the
message.
0-1 Zero or one instance of this TLV MAY be present in the message.
1 Exactly one instance of this TLV MUST be present in the
message.
4.3.1. Outer TLVs
The following table provides a guide to which TLVs may be included in
the TEAP packet outside the TLS channel, which kind of packets, and
in what quantity:
Request Response Success Failure TLVs
0-1 0 0 0 Authority-ID
0-1 0-1 0 0 Identity-Type
0+ 0+ 0 0 Vendor-Specific
Outer TLVs MUST be marked as optional. Vendor TLVs inside of a
Vendor- Specific TLV MUST be marked as optional when included in
Outer TLVs. Outer TLVs MUST NOT be included in messages after the
first two TEAP messages sent by peer and EAP-server respectively.
That is the first EAP-server-to-peer message and first peer-to-EAP-
server message. If the message is fragmented, the whole set of
messages is counted as one message. If Outer TLVs are included in
messages after the first two TEAP messages, they MUST be ignored.
DeKok (Ed) Expires 11 September 2023 [Page 50]
Internet-Draft TEAP March 2023
4.3.2. Inner TLVs
The following table provides a guide to which Inner TLVs may be
encapsulated in TLS in TEAP Phase 2, in which kind of packets, and in
what quantity. The messages are as follows: Request is a TEAP
Request, Response is a TEAP Response, Success is a message containing
a successful Result TLV, and Failure is a message containing a failed
Result TLV.
Request Response Success Failure TLVs
0-1 0-1 0 0 Identity-Type
0-1 0-1 1 1 Result
0+ 0+ 0 0 NAK
0+ 0+ 0+ 0+ Error
0-1 0-1 0 0 Channel-Binding
0+ 0+ 0+ 0+ Vendor-Specific
0+ 0+ 0+ 0+ Request-Action
0-1 0-1 0 0 EAP-Payload
0-1 0-1 0-1 0-1 Intermediate-Result
0-1 0-1 0-1 0-1 Crypto-Binding
0-1 0 0 0 Basic-Password-Auth-Req
0 0-1 0 0 Basic-Password-Auth-Resp
0-1 0 0-1 0 PKCS#7
0 0-1 0 0 PKCS#10
0-1 0-1 0-1 0 Trusted-Server-Root
NOTE: Vendor TLVs (included in Vendor-Specific TLVs) sent with a
Result TLV MUST be marked as optional.
5. Cryptographic Calculations
For key derivation and crypto-binding, TEAP uses the Pseudorandom
Function (PRF) and MAC algorithms negotiated in the underlying TLS
session. Since these algorithms depend on the TLS version and
ciphersuite, TEAP implementations need a mechanism to determine the
version and ciphersuite in use for a particular session. The
implementation can then use this information to determine which PRF
and MAC algorithm to use.
5.1. TEAP Authentication Phase 1: Key Derivations
With TEAPv1, the TLS master secret is generated as specified in TLS.
If session resumption is used, then the master secret is obtained as
described in [RFC5077].
TEAPv1 makes use of the TLS Keying Material Exporters defined in
[RFC5705] to derive the session_key_seed as follows:
DeKok (Ed) Expires 11 September 2023 [Page 51]
Internet-Draft TEAP March 2023
session_key_seed = TLS-Exporter(
"EXPORTER: teap session key seed",, 40)
No context data is used in the export process.
The session_key_seed is used by the TEAP authentication Phase 2
conversation to both cryptographically bind the inner method(s) to
the tunnel as well as generate the resulting TEAP session keys. The
other TLS keying materials are derived and used as defined in
[RFC5246].
5.2. Intermediate Compound Key Derivations
The session_key_seed derived as part of TEAP Phase 2 is used in TEAP
Phase 2 to generate an Intermediate Compound Key (IMCK) used to
verify the integrity of the TLS tunnel after each successful inner
authentication and in the generation of Master Session Key (MSK) and
Extended Master Session Key (EMSK) defined in [RFC3748]. Note that
the IMCK MUST be recalculated after each successful inner method.
The first step in these calculations is the generation of the base
compound key, IMCK[j] from the session_key_seed, and any session keys
derived from the successful execution of jth inner methods. The
inner method(s) MUST provide Inner Method Session Keys (IMSKs),
IMSK[1]..IMSK[n], corresponding to inner method 1 through n. When a
particular authentication method does not provide key material (such
as with password exchange) then a special "all zero" IMSK is used as
described below.
If an inner method supports export of an Extended Master Session Key
(EMSK), then the IMSK SHOULD be derived from the EMSK as defined in
[RFC5295]. The usage label used is "TEAPbindkey@ietf.org", and the
length is 64 octets. Optional data parameter is not used in the
derivation.
IMSK[j] = First 32 octets of TLS-PRF(secret, "TEAPbindkey@ietf.org",
0x00 \| 0x00 \| 0x40)
where "|" denotes concatenation and the TLS-PRF is defined in
[RFC5246] as
PRF(secret, label, seed) = P_<hash>(secret, label | seed).
DeKok (Ed) Expires 11 September 2023 [Page 52]
Internet-Draft TEAP March 2023
The secret is the EMSK or MSK from the j'th inner method, the
label is "TEAPbindkey@ietf.org" consisting of the ASCII value for
the label "TEAPbindkey@ietf.org" (without quotes), the seed
consists of the "\0" null delimiter (0x00) and 2-octet unsigned
integer length in network byte order (0x00 | 0x40) specified in
[RFC5295].
If an inner method does not support export of an Extended Master
Session Key (EMSK), then the IMSK is derived from the MSK of the
inner method. The EMSK or MSK is truncated at 32 octets if it is
longer than 32 octets or padded to a length of 32 octets with
zeros if it is less than 32 octets.
If no inner EAP authentication method is run then no EMSK or MSK
will be generated (e.g. when basic password authentication is used
or when no inner method has been run and the crypto-binding TLV
for the Result TLV needs to be generated). In this case, IMSK[j]
is set to zero (i.e., MSK = 32 octets of 0x00s).
However, it is possible that the peer and server sides might not have
the same capability to export EMSK. In order to maintain maximum
flexibility while prevent downgrading attack, the following mechanism
is in place.
On the sender of the Crypto-Binding TLV side:
If the EMSK is not available, then the sender computes the
Compound MAC using the MSK of the inner method.
If the EMSK is available and the sender's policy accepts MSK-based
MAC, then the sender computes two Compound MAC values. The first
is computed with the EMSK. The second one is computed using the
MSK. Both MACs are then sent to the other side.
If the EMSK is available but the sender's policy does not allow
downgrading to MSK-generated MAC, then the sender SHOULD only send
EMSK-based MAC.
On the receiver of the Crypto-Binding TLV side:
If the EMSK is not available and an MSK-based Compound MAC was
sent, then the receiver validates the Compound MAC and sends back
an MSK-based Compound MAC response.
If the EMSK is not available and no MSK-based Compound MAC was
sent, then the receiver handles like an invalid Crypto-Binding TLV
with a fatal error.
DeKok (Ed) Expires 11 September 2023 [Page 53]
Internet-Draft TEAP March 2023
If the EMSK is available and an EMSK-based Compound MAC was sent,
then the receiver validates it and creates a response Compound MAC
using the EMSK.
If the EMSK is available but no EMSK-based Compound MAC was sent
and its policy accepts MSK-based MAC, then the receiver validates
it using the MSK and, if successful, generates and returns an MSK-
based Compound MAC.
If the EMSK is available but no EMSK Compound MAC was sent and its
policy does not accept MSK-based MAC, then the receiver handles
like an invalid Crypto-Binding TLV with a fatal error.
If an inner method results in failure, then it is not included in
this calculation.
The derivation of S-IMCK is as follows:
S-IMCK[0] = session_key_seed
For j = 1 to n-1 do
IMCK[j] = the first 60 octets of TLS-PRF(S-IMCK[j-1],
"Inner Methods Compound Keys",
IMSK[j])
S-IMCK[j] = first 40 octets of IMCK[j]
CMK[j] = last 20 octets of IMCK[j]
where TLS-PRF is the PRF described above negotiated as part of TLS
handshake [RFC5246]. The value j refers to a corresponding inner
method 1 through n. The special value of S-IMCK[0] is used to
bootstrap the calculations, and can be done as soon as the TLS
connection is established, and before any inner methods are run.
In practice, the requirement to use either MSK or EMSK means that an
implement MUST track two independent derivations of IMCK[j], one
which depends on the MSK, and another which depends on EMSK. That
is, we have both values derived from MSK:
IMSK_MSK[j]
S-IMCK_MSK[j]
CMK_MSK[j]
and then also values derived from EMSK:
IMSK_EMSK[j]
S-IMCK_EMSK[j]
CMK_EMSK[j]
DeKok (Ed) Expires 11 September 2023 [Page 54]
Internet-Draft TEAP March 2023
5.3. Computing the Compound MAC
For inner methods that generate keying material, further protection
against man-in-the-middle attacks is provided through
cryptographically binding keying material established by both TEAP
Phase 1 and TEAP Phase 2 conversations. After each successful inner
EAP authentication, EAP EMSK and/or MSKs are cryptographically
combined with key material from TEAP Phase 1 to generate a Compound
Session Key (CMK). The CMK is used to calculate the Compound MAC as
part of the Crypto-Binding TLV described in Section 4.2.12, which
helps provide assurance that the same entities are involved in all
communications in TEAP. During the calculation of the Compound MAC,
the MAC field is filled with zeros.
The Compound MAC computation is as follows:
Compound-MAC = the first 20 octets of MAC( CMK[n], BUFFER )
where n is the number of the last successfully executed inner method,
MAC is the MAC function negotiated in TLS (e.g. TLS 1.2 in
[RFC5246]), and BUFFER is created after concatenating these fields in
the following order:
1. The entire Crypto-Binding TLV attribute with both the EMSK and
MSK Compound MAC fields zeroed out.
2. The EAP Type sent by the other party in the first TEAP message,
which MUST be TEAP, encoded as one octet of 0x37.
3. All the Outer TLVs from the first TEAP message sent by EAP server
to peer. If a single TEAP message is fragmented into multiple
TEAP packets, then the Outer TLVs in all the fragments of that
message MUST be included.
4. All the Outer TLVs from the first TEAP message sent by the peer
to the EAP server. If a single TEAP message is fragmented into
multiple TEAP packets, then the Outer TLVs in all the fragments
of that message MUST be included.
If no inner EAP authentication method is run then no EMSK or MSK will
be generated. If an IMSK needs to be generated then the MSK and
therefore the IMSK is set to 0 (e.g., MSK = 32 octets of 0x00s).
DeKok (Ed) Expires 11 September 2023 [Page 55]
Internet-Draft TEAP March 2023
5.4. EAP Master Session Key Generation
TEAP authentication assures the Master Session Key (MSK) and Extended
Master Session Key (EMSK) output from the EAP authentication method
are the result of all authentication conversations by generating an
Intermediate Compound Key (IMCK). The IMCK is mutually derived by
the peer and the server as described in Section 5.2 by combining the
MSKs from inner methods with key material from TEAP Phase 1. The
resulting MSK and EMSK are generated from the final ("n"th) inner
method, as part of the IMCK[n] key hierarchy via the following
derivation:
MSK = the first 64 octets of TLS-PRF(S-IMCK[n],
"Session Key Generating Function")
EMSK = the first 64 octets of TLS-PRF(S-IMCK[n],
"Extended Session Key Generating Function")
The TLS-PRF is defined in [RFC5246] as
PRF(secret, label, seed) = P_<hash>(secret, label | seed).
where "|" denotes concatenation. The secret is S-IMCK[n] where n is
the number of the last generated S-IMCK[j] from Section 5.2. The
label is is the ASCII value for the string without quotes. The seed
is empty (0 length) and is omitted from the derivation.
The EMSK is typically only known to the TEAP peer and server and is
not provided to a third party. The derivation of additional keys and
transportation of these keys to a third party are outside the scope
of this document.
If no EAP authentication methods have been negotiated inside the
tunnel or no EAP authentication methods have been successfully
completed inside the tunnel, the MSK and EMSK will be generated
directly from the session_key_seed meaning S-IMCK[0] =
session_key_seed.
As we noted above, not all inner methods generate both MSK and EMSK,
so we have to maintain two independent derivations of S-IMCK[j], one
for each of MSK[j] and EMSK[j]. The final derivation using S-IMCK[n]
must choose only one of these keys.
If the Crypto-Binding TLV contains an EMSK compound MAC, then the
derivation is taken from the S_IMCK_EMSK[n]. Otherwise it is taken
from the S_IMCK_MSK[n].
DeKok (Ed) Expires 11 September 2023 [Page 56]
Internet-Draft TEAP March 2023
6. IANA Considerations
This section provides guidance to the Internet Assigned Numbers
Authority (IANA) regarding registration of values related to the TEAP
protocol, in accordance with BCP 26 [RFC5226].
IANA is instructed to update the references in the "Tunnel Extensible
Authentication Protocol (TEAP) Parameters" registry as follows.
Value,Description,Reference
0,Unassigned,
1,Authority-ID TLV,[THIS-DOCUMENT]
2,Identity-Type TLV,[THIS-DOCUMENT]
3,Result TLV,[THIS-DOCUMENT]
4,NAK TLV,[THIS-DOCUMENT]
5,Error TLV,[THIS-DOCUMENT]
6,Channel-Binding TLV,[THIS-DOCUMENT]
7,Vendor-Specific TLV,[THIS-DOCUMENT]
8,Request-Action TLV,[THIS-DOCUMENT]
9,EAP-Payload TLV,[THIS-DOCUMENT]
10,Intermediate-Result TLV,[THIS-DOCUMENT]
11,PAC TLV,(DEPRECATED) [RFC7170]
12,Crypto-Binding TLV,[THIS-DOCUMENT]
13,Basic-Password-Auth-Req TLV,[THIS-DOCUMENT]
14,Basic-Password-Auth-Resp TLV,[THIS-DOCUMENT]
15,PKCS#7 TLV,[THIS-DOCUMENT]
16,PKCS#10 TLV,[THIS-DOCUMENT]
17,Trusted-Server-Root TLV,[THIS-DOCUMENT]
18-16383,Unassigned,
IANA is instructed to update the "TEAP PAC TLV (value 11) PAC
Attribute Type Codes" and "TEAP PAC TLV (value 11) PAC-Type Type
Codes" registries with a NOTE:
This registry was deprecated by [THIS-DOCUMENT]
7. Security Considerations
TEAP is designed with a focus on wireless media, where the medium
itself is inherent to eavesdropping. Whereas in wired media an
attacker would have to gain physical access to the wired medium,
wireless media enables anyone to capture information as it is
transmitted over the air, enabling passive attacks. Thus, physical
security can not be assumed, and security vulnerabilities are far
greater. The threat model used for the security evaluation of TEAP
is defined in EAP [RFC3748].
DeKok (Ed) Expires 11 September 2023 [Page 57]
Internet-Draft TEAP March 2023
7.1. Mutual Authentication and Integrity Protection
As a whole, TEAP provides message and integrity protection by
establishing a secure tunnel for protecting the inner method(s). The
confidentiality and integrity protection is defined by TLS and
provides the same security strengths afforded by TLS employing a
strong entropy shared master secret. The integrity of the key
generating inner methods executed within the TEAP tunnel is verified
through the calculation of the Crypto-Binding TLV. This ensures that
the tunnel endpoints are the same as the inner method endpoints.
The Result TLV is protected and conveys the true Success or Failure
of TEAP, and it should be used as the indicator of its success or
failure respectively. However, as EAP terminates with either a
cleartext EAP Success or Failure, a peer will also receive a
cleartext EAP Success or Failure. The received cleartext EAP Success
or Failure MUST match that received in the Result TLV; the peer
SHOULD silently discard those cleartext EAP Success or Failure
messages that do not coincide with the status sent in the protected
Result TLV.
7.2. Method Negotiation
As is true for any negotiated EAP protocol, NAK packets used to
suggest an alternate EAP authentication method are sent unprotected
and, as such, are subject to spoofing. During unprotected EAP method
negotiation, NAK packets may be interjected as active attacks to
negotiate down to a weaker form of authentication, such as EAP-MD5
(which only provides one-way authentication and does not derive a
key). Both the peer and server should have a method selection policy
that prevents them from negotiating down to weaker methods. Inner
method negotiation resists attacks because it is protected by the
mutually authenticated TLS tunnel established. Selection of TEAP as
an authentication method does not limit the potential inner methods,
so TEAP should be selected when available.
An attacker cannot readily determine the inner method used, except
perhaps by traffic analysis. It is also important that peer
implementations limit the use of credentials with an unauthenticated
or unauthorized server.
DeKok (Ed) Expires 11 September 2023 [Page 58]
Internet-Draft TEAP March 2023
7.3. Separation of Phase 1 and Phase 2 Servers
Separation of the TEAP Phase 1 from the Phase 2 conversation is NOT
RECOMMENDED. Allowing the Phase 1 conversation to be terminated at a
different server than the Phase 2 conversation can introduce
vulnerabilities if there is not a proper trust relationship and
protection for the protocol between the two servers. Some
vulnerabilities include:
o Loss of identity protection
o Offline dictionary attacks
o Lack of policy enforcement
o Man-in-the-middle attacks (as described in [RFC7029])
There may be cases where a trust relationship exists between the
Phase 1 and Phase 2 servers, such as on a campus or between two
offices within the same company, where there is no danger in
revealing the inner identity and credentials of the peer to entities
between the two servers. In these cases, using a proxy solution
without end-to-end protection of TEAP MAY be used. The TEAP
encrypting/decrypting gateway MUST, at a minimum, provide support for
IPsec, TLS, or similar protection in order to provide confidentiality
for the portion of the conversation between the gateway and the EAP
server. In addition, separation of the TEAP server and Inner servers
allows for crypto-binding based on the inner method MSK to be
thwarted as described in [RFC7029]. Implementation and deployment
SHOULD adopt various mitigation strategies described in [RFC7029].
If the inner method is deriving EMSK, then this threat is mitigated
as TEAP utilizes the mutual crypto-binding based on EMSK as described
in [RFC7029].
On the other hand, if the inner method is not deriving EMSK as with
password authentication or unauthenticated provisioning, then this
thread still exists.
7.4. Mitigation of Known Vulnerabilities and Protocol Deficiencies
TEAP addresses the known deficiencies and weaknesses in some EAP
authentication methods. By employing a shared secret between the
peer and server to establish a secured tunnel, TEAP enables:
o Per-packet confidentiality and integrity protection
o User identity protection
DeKok (Ed) Expires 11 September 2023 [Page 59]
Internet-Draft TEAP March 2023
o Better support for notification messages
o Protected inner method negotiation, including EAP method
o Sequencing of inner methods, including EAP methods
o Strong mutually derived MSKs
o Acknowledged success/failure indication
o Faster re-authentications through session resumption
o Mitigation of offline dictionary attacks
o Mitigation of man-in-the-middle attacks
o Mitigation of some denial-of-service attacks
It should be noted that in TEAP, as in many other authentication
protocols, a denial-of-service attack can be mounted by adversaries
sending erroneous traffic to disrupt the protocol. This is a problem
in many authentication or key agreement protocols and is therefore
noted for TEAP as well.
TEAP was designed with a focus on protected inner methods that
typically rely on weak credentials, such as password-based secrets.
To that extent, the TEAP authentication mitigates several
vulnerabilities, such as offline dictionary attacks, by protecting
the weak credential-based inner method. The protection is based on
strong cryptographic algorithms in TLS to provide message
confidentiality and integrity. The keys derived for the protection
relies on strong random challenges provided by both peer and server
as well as an established key with strong entropy. Implementations
should follow the recommendation in [RFC4086] when generating random
numbers.
7.4.1. User Identity Protection and Verification
The initial identity request response exchange is sent in cleartext
outside the protection of TEAP. Typically, the Network Access
Identifier (NAI) [RFC7542] in the identity response is useful only
for the realm of information that is used to route the authentication
requests to the right EAP server. This means that the identity
response may contain an anonymous identity and just contain realm
information. In other cases, the identity exchange may be eliminated
altogether if there are other means for establishing the destination
realm of the request. In no case should an intermediary place any
trust in the identity information in the identity response since it
DeKok (Ed) Expires 11 September 2023 [Page 60]
Internet-Draft TEAP March 2023
is unauthenticated and may not have any relevance to the
authenticated identity. TEAP implementations should not attempt to
compare any identity disclosed in the initial cleartext EAP Identity
response packet with those Identities authenticated in Phase 2.
Identity request/response exchanges sent after the TEAP tunnel is
established are protected from modification and eavesdropping by
attackers.
Note that since TLS client certificates are sent in the clear with
TLS 1.2 and earlier, if identity protection is required, then it is
possible for the TLS authentication to be renegotiated after the
first server authentication. To accomplish this, the server will
typically not request a certificate in the server_hello; then, after
the server_finished message is sent and before TEAP Phase 2, the
server MAY send a TLS hello_request. This allows the peer to perform
client authentication by sending a client_hello if it wants to or
send a no_renegotiation alert to the server indicating that it wants
to continue with TEAP Phase 2 instead. Assuming that the peer
permits renegotiation by sending a client_hello, then the server will
respond with server_hello, certificate, and certificate_request
messages. The peer replies with certificate, client_key_exchange,
and certificate_verify messages. Since this renegotiation occurs
within the encrypted TLS channel, it does not reveal client
certificate details. It is possible to perform certificate
authentication using an EAP authentication method (for example, EAP-
TLS) within the TLS session in TEAP Phase 2 instead of using TLS
handshake renegotiation.
When a client certificate is sent outside of the TLS tunnel, the peer
MUST include Identity-Type as an outer TLV, in order to signal the
type of identity which that client certificate is for. Further, when
a client certificate is sent outside of the TLS tunnel, the server
MUST proceed with phase 2, either for authentication or provisioning.
If there is no Phase 2 data, then the EAP server MUST reject the
session. There is no reason to have TEAP devolve to EAP-TLS.
7.5. Dictionary Attack Resistance
TEAP was designed with a focus on protected inner methods that
typically rely on weak credentials, such as password-based secrets.
TEAP mitigates offline dictionary attacks by allowing the
establishment of a mutually authenticated encrypted TLS tunnel
providing confidentiality and integrity to protect the weak
credential-based inner method.
TEAP mitigates dictionary attacks by permitting inner methods such as
EAP-pwd which are not vulnerable to dictionary attacks.
DeKok (Ed) Expires 11 September 2023 [Page 61]
Internet-Draft TEAP March 2023
TEAP implementations can mitigate against online "brute force"
dictionary attempts by limiting the number of failed authentication
attempts for a particular identity.
7.5.1. Protection against Man-in-the-Middle Attacks
Allowing authentication methods to be executed both with and without
the protection of a secure tunnel opens up a possibility of a man-in-
the-middle attack. To avoid man-in-the-middle attacks it is
recommended to always deploy authentication methods with the
protection of TEAP. TEAP provides protection from man-in-the-middle
attacks even if a deployment chooses to execute inner methods both
with and without TEAP protection. TEAP prevents this attack in a few
ways:
1. By using a certificates or a session ticket to mutually
authenticate the peer and server during TEAP authentication Phase
1 establishment of a secure tunnel.
2. When the tunnel is not secured, by using the keys generated by
the inner method (if the inner methods are key generating) in the
crypto-binding exchange and in the generation of the key material
exported by the EAP authentication method described in Section 5.
TEAP crypto binding does not guarantee man-in-the-middle protection
if the client allows a connection to an untrusted server, such as in
the case where the client does not properly validate the server's
certificate. If the TLS ciphersuite derives the master secret solely
from the contribution of secret data from one side of the
conversation (such as ciphersuites based on RSA key transport), then
an attacker who can convince the client to connect and engage in
authentication can impersonate the client to another server even if a
strong inner method is executed within the tunnel. If the TLS
ciphersuite derives the master secret from the contribution of
secrets from both sides of the conversation (such as in ciphersuites
based on Diffie-Hellman), then crypto binding can detect an attacker
in the conversation if a strong inner method is used.
7.6. Protecting against Forged Cleartext EAP Packets
EAP Success and EAP Failure packets are, in general, sent in
cleartext and may be forged by an attacker without detection. Forged
EAP Failure packets can be used to attempt to convince an EAP peer to
disconnect. Forged EAP Success packets may be used to attempt to
convince a peer that authentication has succeeded, even though the
authenticator has not authenticated itself to the peer.
DeKok (Ed) Expires 11 September 2023 [Page 62]
Internet-Draft TEAP March 2023
By providing message confidentiality and integrity, TEAP provides
protection against these attacks. Once the peer and authentication
server (AS) initiate the TEAP authentication Phase 2, compliant TEAP
implementations MUST silently discard all cleartext EAP messages,
unless both the TEAP peer and server have indicated success or
failure using a protected mechanism. Protected mechanisms include
the TLS alert mechanism and the protected termination mechanism
described in Section 3.3.4.
The success/failure decisions within the TEAP tunnel indicate the
final decision of the TEAP authentication conversation. After a
success/failure result has been indicated by a protected mechanism,
the TEAP peer can process unprotected EAP Success and EAP Failure
messages; however, the peer MUST ignore any unprotected EAP Success
or Failure messages where the result does not match the result of the
protected mechanism.
To abide by [RFC3748], the server sends a cleartext EAP Success or
EAP Failure packet to terminate the EAP conversation. However, since
EAP Success and EAP Failure packets are not retransmitted, the final
packet may be lost. While a TEAP-protected EAP Success or EAP
Failure packet should not be a final packet in a TEAP conversation,
it may occur based on the conditions stated above, so an EAP peer
should not rely upon the unprotected EAP Success and Failure
messages.
7.7. Server Certificate Validation
As part of the TLS negotiation, the server presents a certificate to
the peer. The peer SHOULD verify the validity of the EAP server
certificate and SHOULD also examine the EAP server name presented in
the certificate in order to determine whether the EAP server can be
trusted. When performing server certificate validation,
implementations MUST provide support for the rules in [RFC5280] for
validating certificates against a known trust anchor. In addition,
implementations MUST support matching the realm portion of the peer's
NAI against a SubjectAltName of type dNSName within the server
certificate. However, in certain deployments, this might not be
turned on. Please note that in the case where the EAP authentication
is remote, the EAP server will not reside on the same machine as the
authenticator, and therefore, the name in the EAP server's
certificate cannot be expected to match that of the intended
destination. In this case, a more appropriate test might be whether
the EAP server's certificate is signed by a certification authority
(CA) controlling the intended domain and whether the authenticator
can be authorized by a server in that domain.
DeKok (Ed) Expires 11 September 2023 [Page 63]
Internet-Draft TEAP March 2023
7.8. Security Claims
This section provides the needed security claim requirement for EAP
[RFC3748].
Auth. mechanism: Certificate-based, shared-secret-based, and
various tunneled authentication mechanisms.
Ciphersuite negotiation: Yes
Mutual authentication: Yes
Integrity protection: Yes. Any method executed within the TEAP
tunnel is integrity protected. The
cleartext EAP headers outside the tunnel are
not integrity protected.
Replay protection: Yes
Confidentiality: Yes
Key derivation: Yes
Key strength: See Note 1 below.
Dictionary attack prot.: See Note 2 below.
Fast reconnect: Yes
Cryptographic binding: Yes
Session independence: Yes
Fragmentation: Yes
Key Hierarchy: Yes
Channel binding: Yes
Notes
DeKok (Ed) Expires 11 September 2023 [Page 64]
Internet-Draft TEAP March 2023
1. BCP 86 [RFC3766] offers advice on appropriate key sizes. The
National Institute for Standards and Technology (NIST) also
offers advice on appropriate key sizes in [NIST-SP-800-57].
[RFC3766], Section 5 advises use of the following required RSA or
DH (Diffie-Hellman) module and DSA (Digital Signature Algorithm)
subgroup size in bits for a given level of attack resistance in
bits. Based on the table below, a 2048-bit RSA key is required
to provide 112-bit equivalent key strength:
Attack Resistance RSA or DH Modulus DSA subgroup
(bits) size (bits) size (bits)
----------------- ----------------- ------------
70 947 129
80 1228 148
90 1553 167
100 1926 186
150 4575 284
200 8719 383
250 14596 482
1. TEAP protects against offline dictionary attacks when secure
inner methods are used. TEAP protects against online dictionary
attacks by limiting the number of failed authentications for a
particular identity.
8. Acknowledgements
Nearly all of the text in this document was taken directly from
[RFC7170]. We are grateful to the original authors and reviewers for
that document. The acknowledgements given here are only for the
changes which resulted in this document.
Alexander Clouter provided substantial and detailed technical
feedback on nearly every aspect of the specification. The
corrections in this document are based on his work.
We wish to thank the many reviewers and commenters in the EMU WG,
including Eliot Lear, Jouni Malinen, Joe Salowey, Heikki Vatiainen,
and Bruno Pereria Vidal.
9. Contributors
DeKok (Ed) Expires 11 September 2023 [Page 65]
Internet-Draft TEAP March 2023
Hao Zhou
(Original Co-author of RFC 7170)
Joseph Salowey
Venafi
joe@salowey.net
(Original Co-author of RFC 7170)
Nancy Cam-Winget
Cisco
email: ncamwing@cisco.com
(Original Co-author of RFC 7170)
Stephen Hanna
email: steve.hanna@infineon.com
(Original Co-author of RFC 7170)
10. Changes from RFC 7170
Alan DeKok was added as editor.
The document was converted to Markdown, from the [RFC7170] text
output.
Any formatting changes mostly result from differences between using
Markdown versus XML for source.
The IANA considerations section was replaced with a note to change
the IANA registry references to this document.
A new section was added to explain that the inner EAP-MSCHAPv2
derivation follows EAP-FAST. This is the largest technical change
from the previous revision of this document, and follows existing
implementations.
Many small changes have been made throughout the document to correct
inconsistencies, and to address mistakes. At a high level:
* All open errata have been addressed.
* A new term "inner method" has been defined.
* The definitions and derivation of IMSK, S-IMCK, etc. have been
corrected and clarified.
* The diagrams in Appendix C have been updated to match the TEAP
state machine
DeKok (Ed) Expires 11 September 2023 [Page 66]
Internet-Draft TEAP March 2023
All uses of the PAC were removed. It had not been implemented, and
there were no plans by implementors to use it.
Text was added on recommendations for inner and outer identities.
Appendix A Evaluation against Tunnel-Based EAP Method Requirements
This section evaluates all tunnel-based EAP method requirements
described in [RFC6678] against TEAP version 1.
A.1. Requirement 4.1.1: RFC Compliance
TEAPv1 meets this requirement by being compliant with RFC 3748
[RFC3748], RFC 4017 [RFC4017], RFC 5247 [RFC5247], and RFC 4962
[RFC4962]. It is also compliant with the "cryptographic algorithm
agility" requirement by leveraging TLS 1.2 for all cryptographic
algorithm negotiation.
A.2. Requirement 4.2.1: TLS Requirements
TEAPv1 meets this requirement by mandating TLS version 1.2 support as
defined in Section 5.1.
A.3. Requirement 4.2.1.1.1: Ciphersuite Negotiation
TEAPv1 meets this requirement by using TLS to provide protected
ciphersuite negotiation.
A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms
TEAPv1 meets this requirement by mandating
TLS_RSA_WITH_AES_128_CBC_SHA as a mandatory-to-implement ciphersuite
as defined in Section 5.1.
A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key Establishment
TEAPv1 meets this requirement by mandating
TLS_RSA_WITH_AES_128_CBC_SHA as a mandatory-to-implement ciphersuite
that provides certificate-based authentication of the server and is
approved by NIST. The mandatory-to-implement ciphersuites only
include ciphersuites that use strong cryptographic algorithms. They
do not include ciphersuites providing mutually anonymous
authentication or static Diffie-Hellman ciphersuites as defined in
Section 5.1.
DeKok (Ed) Expires 11 September 2023 [Page 67]
Internet-Draft TEAP March 2023
A.6. Requirement 4.2.1.2: Tunnel Replay Protection
TEAPv1 meets this requirement by using TLS to provide sufficient
replay protection.
A.7. Requirement 4.2.1.3: TLS Extensions
TEAPv1 meets this requirement by allowing TLS extensions, such as TLS
Certificate Status Request extension [RFC6066] and SessionTicket
extension [RFC5077], to be used during TLS tunnel establishment.
A.8. Requirement 4.2.1.4: Peer Identity Privacy
TEAPv1 meets this requirement by establishment of the TLS tunnel and
protection identities specific to the inner method. In addition, the
peer certificate can be sent confidentially (i.e., encrypted).
A.9. Requirement 4.2.1.5: Session Resumption
TEAPv1 meets this requirement by mandating support of TLS session
resumption as defined in Section 3.2.1 and TLS session resumption
using the methods defined in [RFC9190]
A.10. Requirement 4.2.2: Fragmentation
TEAPv1 meets this requirement by leveraging fragmentation support
provided by TLS as defined in Section 3.7.
A.11. Requirement 4.2.3: Protection of Data External to Tunnel
TEAPv1 meets this requirement by including the TEAP version number
received in the computation of the Crypto-Binding TLV as defined in
Section 4.2.12.
A.12. Requirement 4.3.1: Extensible Attribute Types
TEAPv1 meets this requirement by using an extensible TLV data layer
inside the tunnel as defined in Section 4.2.
A.13. Requirement 4.3.2: Request/Challenge Response Operation
TEAPv1 meets this requirement by allowing multiple TLVs to be sent in
a single EAP request or response packet, while maintaining the half-
duplex operation typical of EAP.
DeKok (Ed) Expires 11 September 2023 [Page 68]
Internet-Draft TEAP March 2023
A.14. Requirement 4.3.3: Indicating Criticality of Attributes
TEAPv1 meets this requirement by having a mandatory bit in each TLV
to indicate whether it is mandatory to support or not as defined in
Section 4.2.
A.15. Requirement 4.3.4: Vendor-Specific Support
TEAPv1 meets this requirement by having a Vendor-Specific TLV to
allow vendors to define their own attributes as defined in
Section 4.2.8.
A.16. Requirement 4.3.5: Result Indication
TEAPv1 meets this requirement by having a Result TLV to exchange the
final result of the EAP authentication so both the peer and server
have a synchronized state as defined in Section 4.2.4.
A.17. Requirement 4.3.6: Internationalization of Display Strings
TEAPv1 meets this requirement by supporting UTF-8 format in the
Basic-Password-Auth-Req TLV as defined in Section 4.2.13 and the
Basic-Password-Auth-Resp TLV as defined in Section 4.2.15.
A.18. Requirement 4.4: EAP Channel-Binding Requirements
TEAPv1 meets this requirement by having a Channel-Binding TLV to
exchange the EAP channel-binding data as defined in Section 4.2.7.
A.19. Requirement 4.5.1.1: Confidentiality and Integrity
TEAPv1 meets this requirement by running the password authentication
inside a protected TLS tunnel.
A.20. Requirement 4.5.1.2: Authentication of Server
TEAPv1 meets this requirement by mandating authentication of the
server before establishment of the protected TLS and then running
inner password authentication as defined in Section 5.1.
A.21. Requirement 4.5.1.3: Server Certificate Revocation Checking
TEAPv1 meets this requirement by supporting TLS Certificate Status
Request extension [RFC6066] during tunnel establishment.
DeKok (Ed) Expires 11 September 2023 [Page 69]
Internet-Draft TEAP March 2023
A.22. Requirement 4.5.2: Internationalization
TEAPv1 meets this requirement by supporting UTF-8 format in Basic-
Password-Auth-Req TLV as defined in Section 4.2.13 and Basic-
Password-Auth-Resp TLV as defined in Section 4.2.15.
A.23. Requirement 4.5.3: Metadata
TEAPv1 meets this requirement by supporting Identity-Type TLV as
defined in Section 4.2.3 to indicate whether the authentication is
for a user or a machine.
A.24. Requirement 4.5.4: Password Change
TEAPv1 meets this requirement by supporting multiple Basic-Password-
Auth-Req TLV and Basic-Password-Auth-Resp TLV exchanges within a
single EAP authentication, which allows "housekeeping"" functions
such as password change.
A.25. Requirement 4.6.1: Method Negotiation
TEAPv1 meets this requirement by supporting inner EAP method
negotiation within the protected TLS tunnel.
A.26. Requirement 4.6.2: Chained Methods
TEAPv1 meets this requirement by supporting inner EAP method chaining
within protected TLS tunnels as defined in Section 3.3.1.
A.27. Requirement 4.6.3: Cryptographic Binding with the TLS Tunnel
TEAPv1 meets this requirement by supporting cryptographic binding of
the inner EAP method keys with the keys derived from the TLS tunnel
as defined in Section 4.2.12.
A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication
TEAPv1 meets this requirement by supporting the Request-Action TLV as
defined in Section 4.2.9 to allow a peer to initiate another inner
EAP method.
A.29. Requirement 4.6.5: Method Metadata
TEAPv1 meets this requirement by supporting the Identity-Type TLV as
defined in Section 4.2.3 to indicate whether the authentication is
for a user or a machine.
DeKok (Ed) Expires 11 September 2023 [Page 70]
Internet-Draft TEAP March 2023
Appendix B. Major Differences from EAP-FAST
This document is a new standard tunnel EAP method based on revision
of EAP-FAST version 1 [RFC4851] that contains improved flexibility,
particularly for negotiation of cryptographic algorithms. The major
changes are:
1. The EAP method name has been changed from EAP-FAST to TEAP; this
change thus requires that a new EAP Type be assigned.
2. This version of TEAP MUST support TLS 1.2 [RFC5246]. TLS 1.1 and
earlier MUST NOT be used with TEAP.
3. The key derivation now makes use of TLS keying material exporters
[RFC5705] and the PRF and hash function negotiated in TLS. This
is to simplify implementation and better support cryptographic
algorithm agility.
4. TEAP is in full conformance with TLS ticket extension [RFC5077].
5. Support is provided for passing optional Outer TLVs in the first
two message exchanges, in addition to the Authority-ID TLV data
in EAP-FAST.
6. Basic password authentication on the TLV level has been added in
addition to the existing inner EAP method.
7. Additional TLV types have been defined to support EAP channel
binding and metadata. They are the Identity-Type TLV and
Channel-Binding TLVs, defined in Section 4.2.
Appendix C. Examples
C.1. Successful Authentication
The following exchanges show a successful TEAP authentication with
basic password authentication. The conversation will appear as
follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
DeKok (Ed) Expires 11 September 2023 [Page 71]
Internet-Draft TEAP March 2023
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
(TLS change_cipher_spec,
TLS finished)
EAP-Response/
EAP-Type=TEAP, V=1 ->
(TLS change_cipher_spec,
TLS finished)
TLS channel established
(messages sent within the TLS channel)
<- Basic-Password-Auth-Req TLV, Challenge
Basic-Password-Auth-Resp TLV, Response with both
username and password) ->
optional additional exchanges (new pin mode,
password change, etc.) ...
<- Intermediate-Result TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate-Result TLV (Success),
Crypto-Binding TLV(Response),
Result TLV (Success) ->
TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
C.2. Failed Authentication
The following exchanges show a failed TEAP authentication due to
wrong user credentials. The conversation will appear as follows:
DeKok (Ed) Expires 11 September 2023 [Page 72]
Internet-Draft TEAP March 2023
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
(TLS change_cipher_spec,
TLS finished)
EAP-Response/
EAP-Type=TEAP, V=1 ->
(TLS change_cipher_spec,
TLS finished)
TLS channel established
(messages sent within the TLS channel)
<- Basic-Password-Auth-Req TLV, Challenge
Basic-Password-Auth-Resp TLV, Response with both
username and password) ->
<- Intermediate-Result TLV (Failure),
Result TLV (Failure)
Intermediate-Result TLV (Failure),
Result TLV (Failure) ->
TLS channel torn down
(messages sent in cleartext)
<- EAP-Failure
DeKok (Ed) Expires 11 September 2023 [Page 73]
Internet-Draft TEAP March 2023
C.3. Full TLS Handshake Using Certificate-Based Ciphersuite
In the case within TEAP Phase 1 where an abbreviated TLS handshake is
tried, fails, and falls back to the certificate-based full TLS
handshake, the conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/Identity
EAP-Response/
Identity (MyID1) ->
// Identity sent in the clear. May be a hint to help route
the authentication request to EAP server, instead of the
full user identity.
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello with
SessionTicket extension)->
// If the server rejects the session resumption,
it falls through to the full TLS handshake.
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
EAP-Response/
EAP-Type=TEAP, V=1
([TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
EAP-Payload TLV[EAP-Request/
Identity])
DeKok (Ed) Expires 11 September 2023 [Page 74]
Internet-Draft TEAP March 2023
// TLS channel established
(messages sent within the TLS channel)
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel.
EAP-Payload TLV
[EAP-Response/Identity (MyID2)]->
// identity protected by TLS.
<- EAP-Payload TLV
[EAP-Request/EAP-Type=X]
EAP-Payload TLV
[EAP-Response/EAP-Type=X] ->
// Method X exchanges followed by Protected Termination
<- Intermediate-Result TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate-Result TLV (Success),
Crypto-Binding TLV (Response),
Result TLV (Success) ->
// TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
C.4. Client Authentication during Phase 1 with Identity Privacy
In the case where a certificate-based TLS handshake occurs within
TEAP Phase 1 and client certificate authentication and identity
privacy is desired (and therefore TLS renegotiation is being used to
transmit the peer credentials in the protected TLS tunnel), the
conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/Identity
EAP-Response/
Identity (MyID1) ->
// Identity sent in the clear. May be a hint to help route
the authentication request to EAP server, instead of the
DeKok (Ed) Expires 11 September 2023 [Page 75]
Internet-Draft TEAP March 2023
full user identity.
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_key_exchange,
TLS change_cipher_spec,
TLS finished) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
EAP-Payload TLV[EAP-Request/
Identity])
// TLS channel established
(EAP Payload messages sent within the TLS channel)
// peer sends TLS client_hello to request TLS renegotiation
TLS client_hello ->
<- TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done
[TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished ->
<- TLS change_cipher_spec,
TLS finished,
Crypto-Binding TLV (Request),
Result TLV (Success)
DeKok (Ed) Expires 11 September 2023 [Page 76]
Internet-Draft TEAP March 2023
Crypto-Binding TLV (Response),
Result TLV (Success)) ->
//TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
C.5. Fragmentation and Reassembly
In the case where TEAP fragmentation is required, the conversation
will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
(Fragment 1: L, M bits set)
EAP-Response/
EAP-Type=TEAP, V=1 ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(Fragment 2: M bit set)
EAP-Response/
EAP-Type=TEAP, V=1 ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(Fragment 3)
EAP-Response/
DeKok (Ed) Expires 11 September 2023 [Page 77]
Internet-Draft TEAP March 2023
EAP-Type=TEAP, V=1
([TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished)
(Fragment 1: L, M bits set)->
<- EAP-Request/
EAP-Type=TEAP, V=1
EAP-Response/
EAP-Type=TEAP, V=1
(Fragment 2)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
[EAP-Payload TLV[
EAP-Request/Identity]])
// TLS channel established
(messages sent within the TLS channel)
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel.
EAP-Payload TLV
[EAP-Response/Identity (MyID2)]->
// identity protected by TLS.
<- EAP-Payload TLV
[EAP-Request/EAP-Type=X]
EAP-Payload TLV
[EAP-Response/EAP-Type=X] ->
// Method X exchanges followed by Protected Termination
<- Intermediate-Result TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate-Result TLV (Success),
Crypto-Binding TLV (Response),
Result TLV (Success) ->
// TLS channel torn down
DeKok (Ed) Expires 11 September 2023 [Page 78]
Internet-Draft TEAP March 2023
(messages sent in cleartext)
<- EAP-Success
C.6. Sequence of EAP Methods
When TEAP is negotiated with a sequence of EAP method X followed by
method Y, the conversation will occur as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
EAP-Response/
EAP-Type=TEAP, V=1
([TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
Identity-Type TLV,
EAP-Payload TLV[
EAP-Request/Identity])
// TLS channel established
(messages sent within the TLS channel)
DeKok (Ed) Expires 11 September 2023 [Page 79]
Internet-Draft TEAP March 2023
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel
Identity_Type TLV
EAP-Payload TLV
[EAP-Response/Identity] ->
<- EAP-Payload TLV
[EAP-Request/EAP-Type=X]
EAP-Payload TLV
[EAP-Response/EAP-Type=X] ->
// Optional additional X Method exchanges...
<- EAP-Payload TLV
[EAP-Request/EAP-Type=X]
EAP-Payload TLV
[EAP-Response/EAP-Type=X]->
<- Intermediate Result TLV (Success),
Crypto-Binding TLV (Request),
Identity-Type TLV,
EAP-Payload TLV[
EAP-Request/Identity])
// Compound MAC calculated using keys generated from
EAP method X and the TLS tunnel.
// Next EAP conversation started (with EAP-Request/Identity)
after successful completion of previous method X. The
Intermediate-Result and Crypto-Binding TLVs are sent in
the next packet to minimize round trips.
Intermediate Result TLV (Success),
Crypto-Binding TLV (Response),
EAP-Payload TLV [EAP-Response/Identity (MyID2)] ->
// Optional additional EAP method Y exchanges...
<- EAP Payload TLV [
EAP-Type=Y]
EAP Payload TLV
[EAP-Type=Y] ->
<- Intermediate-Result TLV (Success),
DeKok (Ed) Expires 11 September 2023 [Page 80]
Internet-Draft TEAP March 2023
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate-Result TLV (Success),
Crypto-Binding TLV (Response),
Result TLV (Success) ->
// Compound MAC calculated using keys generated from EAP
methods X and Y and the TLS tunnel. Compound keys are
generated using keys generated from EAP methods X and Y
and the TLS tunnel.
// TLS channel torn down (messages sent in cleartext)
<- EAP-Success
C.7. Failed Crypto-Binding
The following exchanges show a failed crypto-binding validation. The
conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS Server Key Exchange
TLS Server Hello Done)
EAP-Response/
EAP-Type=TEAP, V=1 ->
(TLS Client Key Exchange
TLS change_cipher_spec,
TLS finished)
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec
TLS finished)
DeKok (Ed) Expires 11 September 2023 [Page 81]
Internet-Draft TEAP March 2023
EAP-Payload TLV[
EAP-Request/Identity])
// TLS channel established
(messages sent within the TLS channel)
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel.
EAP-Payload TLV/
EAP Identity Response ->
<- EAP Payload TLV, EAP-Request,
(EAP-MSCHAPV2, Challenge)
EAP Payload TLV, EAP-Response,
(EAP-MSCHAPV2, Response) ->
<- EAP Payload TLV, EAP-Request,
(EAP-MSCHAPV2, Success Request)
EAP Payload TLV, EAP-Response,
(EAP-MSCHAPV2, Success Response) ->
<- Intermediate-Result TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate-Result TLV (Success),
Result TLV (Failure)
Error TLV with
(Error Code = 2001) ->
// TLS channel torn down
(messages sent in cleartext)
<- EAP-Failure
C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange
When TEAP is negotiated with a sequence of EAP methods followed by a
Vendor-Specific TLV exchange, the conversation will occur as follows:
DeKok (Ed) Expires 11 September 2023 [Page 82]
Internet-Draft TEAP March 2023
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
EAP-Response/
EAP-Type=TEAP, V=1
([TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
EAP-Payload TLV[
EAP-Request/Identity])
// TLS channel established
(messages sent within the TLS channel)
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel.
EAP-Payload TLV
[EAP-Response/Identity] ->
<- EAP-Payload TLV
[EAP-Request/EAP-Type=X]
EAP-Payload TLV
DeKok (Ed) Expires 11 September 2023 [Page 83]
Internet-Draft TEAP March 2023
[EAP-Response/EAP-Type=X] ->
<- EAP-Payload TLV
[EAP-Request/EAP-Type=X]
EAP-Payload TLV
[EAP-Response/EAP-Type=X]->
<- Intermediate Result TLV (Success),
Crypto-Binding TLV (Request),
Vendor-Specific TLV,
// Vendor-Specific TLV exchange started after successful
completion of previous method X. The Intermediate-Result
and Crypto-Binding TLVs are sent with Vendor-Specific TLV
in next packet to minimize round trips.
// Compound MAC calculated using keys generated from
EAP method X and the TLS tunnel.
Intermediate Result TLV (Success),
Crypto-Binding TLV (Response),
Vendor-Specific TLV ->
// Optional additional Vendor-Specific TLV exchanges...
<- Vendor-Specific TLV
Vendor-Specific TLV ->
<- Result TLV (Success)
Result TLV (Success) ->
// TLS channel torn down (messages sent in cleartext)
<- EAP-Success
C.9. Peer Requests Inner Method after Server Sends Result TLV
In the case where the peer is authenticated during Phase 1 and the
server sends back a Result TLV but the peer wants to request another
inner method, the conversation will appear as follows:
DeKok (Ed) Expires 11 September 2023 [Page 84]
Internet-Draft TEAP March 2023
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/Identity
EAP-Response/
Identity (MyID1) ->
// Identity sent in the clear. May be a hint to help route
the authentication request to EAP server, instead of the
full user identity. TLS client certificate is also sent.
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
EAP-Response/
EAP-Type=TEAP, V=1
[TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
Crypto-Binding TLV (Request),
Result TLV (Success))
// TLS channel established
(TLV Payload messages sent within the TLS channel)
Crypto-Binding TLV(Response),
Request-Action TLV
(Status=Failure, Action=Negotiate-EAP)->
<- EAP-Payload TLV
[EAP-Request/Identity]
DeKok (Ed) Expires 11 September 2023 [Page 85]
Internet-Draft TEAP March 2023
EAP-Payload TLV
[EAP-Response/Identity] ->
<- EAP-Payload TLV
[EAP-Request/EAP-Type=X]
EAP-Payload TLV
[EAP-Response/EAP-Type=X] ->
<- EAP-Payload TLV
[EAP-Request/EAP-Type=X]
EAP-Payload TLV
[EAP-Response/EAP-Type=X]->
<- Intermediate Result TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate Result TLV (Success),
Crypto-Binding TLV (Response),
Result TLV (Success)) ->
// TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
C.10. Channel Binding
The following exchanges show a successful TEAP authentication with
basic password authentication and channel binding using a Request-
Action TLV. The conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello) ->
DeKok (Ed) Expires 11 September 2023 [Page 86]
Internet-Draft TEAP March 2023
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
(TLS change_cipher_spec,
TLS finished)
EAP-Response/
EAP-Type=TEAP, V=1 ->
(TLS change_cipher_spec,
TLS finished)
TLS channel established
(messages sent within the TLS channel)
<- Basic-Password-Auth-Req TLV, Challenge
Basic-Password-Auth-Resp TLV, Response with both
username and password) ->
optional additional exchanges (new pin mode,
password change, etc.) ...
<- Crypto-Binding TLV (Request),
Result TLV (Success),
Crypto-Binding TLV(Response),
Request-Action TLV
(Status=Failure, Action=Process TLV,
TLV=Channel-Binding TLV)->
<- Channel-Binding TLV (Response),
Result TLV (Success),
Result TLV (Success) ->
TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
References
Normative References
[BCP14] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
DeKok (Ed) Expires 11 September 2023 [Page 87]
Internet-Draft TEAP March 2023
[I-D.ietf-emu-tls-eap-types]
DeKok, A., "TLS-based EAP types and TLS 1.3", Work in
Progress, Internet-Draft, draft-ietf-emu-tls-eap-types-13,
16 February 2023, <https://datatracker.ietf.org/doc/html/
draft-ietf-emu-tls-eap-types-13>.
[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
Levkowetz, Ed., "Extensible Authentication Protocol
(EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
<https://www.rfc-editor.org/info/rfc3748>.
[RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
"Transport Layer Security (TLS) Session Resumption without
Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
January 2008, <https://www.rfc-editor.org/info/rfc5077>.
[RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
March 2008, <https://www.rfc-editor.org/info/rfc5216>.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", RFC 5226,
DOI 10.17487/RFC5226, May 2008,
<https://www.rfc-editor.org/info/rfc5226>.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<https://www.rfc-editor.org/info/rfc5246>.
[RFC5295] Salowey, J., Dondeti, L., Narayanan, V., and M. Nakhjiri,
"Specification for the Derivation of Root Keys from an
Extended Master Session Key (EMSK)", RFC 5295,
DOI 10.17487/RFC5295, August 2008,
<https://www.rfc-editor.org/info/rfc5295>.
[RFC5705] Rescorla, E., "Keying Material Exporters for Transport
Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
March 2010, <https://www.rfc-editor.org/info/rfc5705>.
[RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
"Transport Layer Security (TLS) Renegotiation Indication
Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
<https://www.rfc-editor.org/info/rfc5746>.
[RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
<https://www.rfc-editor.org/info/rfc5929>.
DeKok (Ed) Expires 11 September 2023 [Page 88]
Internet-Draft TEAP March 2023
[RFC6677] Hartman, S., Ed., Clancy, T., and K. Hoeper, "Channel-
Binding Support for Extensible Authentication Protocol
(EAP) Methods", RFC 6677, DOI 10.17487/RFC6677, July 2012,
<https://www.rfc-editor.org/info/rfc6677>.
[RFC7170] Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
"Tunnel Extensible Authentication Protocol (TEAP) Version
1", RFC 7170, DOI 10.17487/RFC7170, May 2014,
<https://www.rfc-editor.org/info/rfc7170>.
[RFC9190] Preuß Mattsson, J. and M. Sethi, "EAP-TLS 1.3: Using the
Extensible Authentication Protocol with TLS 1.3",
RFC 9190, DOI 10.17487/RFC9190, February 2022,
<https://www.rfc-editor.org/info/rfc9190>.
Informative References
[IEEE.802-1X.2013]
IEEE, "Local and Metropolitan Area Networks: Port-Based
Network Access Control", December 2017.
[KAMATH] Palekar, R. H. and A., "Microsoft EAP CHAP Extensions",
June 2007.
[MSCHAP] Corporation, M., "Master Session Key (MSK) Derivation",
n.d., <https://learn.microsoft.com/en-
us/openspecs/windows_protocols/ms-chap/5a860bf5-2aeb-485b-
82ee-fac1e8e6b76f>.
[NIST-SP-800-57]
Technology, N. I. of S. and., "Recommendation for Key
Management", July 2012.
[PEAP] Corporation, M., "[MS-PEAP]: Protected Extensible
Authentication Protocol (PEAP)", February 2014.
[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,
<https://www.rfc-editor.org/info/rfc2315>.
[RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
Classes and Attribute Types Version 2.0", RFC 2985,
DOI 10.17487/RFC2985, November 2000,
<https://www.rfc-editor.org/info/rfc2985>.
DeKok (Ed) Expires 11 September 2023 [Page 89]
Internet-Draft TEAP March 2023
[RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
Request Syntax Specification Version 1.7", RFC 2986,
DOI 10.17487/RFC2986, November 2000,
<https://www.rfc-editor.org/info/rfc2986>.
[RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
Dial In User Service) Support For Extensible
Authentication Protocol (EAP)", RFC 3579,
DOI 10.17487/RFC3579, September 2003,
<https://www.rfc-editor.org/info/rfc3579>.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
2003, <https://www.rfc-editor.org/info/rfc3629>.
[RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
Public Keys Used For Exchanging Symmetric Keys", BCP 86,
RFC 3766, DOI 10.17487/RFC3766, April 2004,
<https://www.rfc-editor.org/info/rfc3766>.
[RFC4017] Stanley, D., Walker, J., and B. Aboba, "Extensible
Authentication Protocol (EAP) Method Requirements for
Wireless LANs", RFC 4017, DOI 10.17487/RFC4017, March
2005, <https://www.rfc-editor.org/info/rfc4017>.
[RFC4072] Eronen, P., Ed., Hiller, T., and G. Zorn, "Diameter
Extensible Authentication Protocol (EAP) Application",
RFC 4072, DOI 10.17487/RFC4072, August 2005,
<https://www.rfc-editor.org/info/rfc4072>.
[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC 4086,
DOI 10.17487/RFC4086, June 2005,
<https://www.rfc-editor.org/info/rfc4086>.
[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
<https://www.rfc-editor.org/info/rfc4648>.
[RFC4851] Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou, "The
Flexible Authentication via Secure Tunneling Extensible
Authentication Protocol Method (EAP-FAST)", RFC 4851,
DOI 10.17487/RFC4851, May 2007,
<https://www.rfc-editor.org/info/rfc4851>.
DeKok (Ed) Expires 11 September 2023 [Page 90]
Internet-Draft TEAP March 2023
[RFC4945] Korver, B., "The Internet IP Security PKI Profile of
IKEv1/ISAKMP, IKEv2, and PKIX", RFC 4945,
DOI 10.17487/RFC4945, August 2007,
<https://www.rfc-editor.org/info/rfc4945>.
[RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
Authorization, and Accounting (AAA) Key Management",
BCP 132, RFC 4962, DOI 10.17487/RFC4962, July 2007,
<https://www.rfc-editor.org/info/rfc4962>.
[RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
Authentication Protocol (EAP) Key Management Framework",
RFC 5247, DOI 10.17487/RFC5247, August 2008,
<https://www.rfc-editor.org/info/rfc5247>.
[RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
(CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
<https://www.rfc-editor.org/info/rfc5272>.
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
<https://www.rfc-editor.org/info/rfc5280>.
[RFC5281] Funk, P. and S. Blake-Wilson, "Extensible Authentication
Protocol Tunneled Transport Layer Security Authenticated
Protocol Version 0 (EAP-TTLSv0)", RFC 5281,
DOI 10.17487/RFC5281, August 2008,
<https://www.rfc-editor.org/info/rfc5281>.
[RFC5421] Cam-Winget, N. and H. Zhou, "Basic Password Exchange
within the Flexible Authentication via Secure Tunneling
Extensible Authentication Protocol (EAP-FAST)", RFC 5421,
DOI 10.17487/RFC5421, March 2009,
<https://www.rfc-editor.org/info/rfc5421>.
[RFC5422] Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou,
"Dynamic Provisioning Using Flexible Authentication via
Secure Tunneling Extensible Authentication Protocol (EAP-
FAST)", RFC 5422, DOI 10.17487/RFC5422, March 2009,
<https://www.rfc-editor.org/info/rfc5422>.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,
<https://www.rfc-editor.org/info/rfc5652>.
DeKok (Ed) Expires 11 September 2023 [Page 91]
Internet-Draft TEAP March 2023
[RFC5931] Harkins, D. and G. Zorn, "Extensible Authentication
Protocol (EAP) Authentication Using Only a Password",
RFC 5931, DOI 10.17487/RFC5931, August 2010,
<https://www.rfc-editor.org/info/rfc5931>.
[RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
Extensions: Extension Definitions", RFC 6066,
DOI 10.17487/RFC6066, January 2011,
<https://www.rfc-editor.org/info/rfc6066>.
[RFC6124] Sheffer, Y., Zorn, G., Tschofenig, H., and S. Fluhrer, "An
EAP Authentication Method Based on the Encrypted Key
Exchange (EKE) Protocol", RFC 6124, DOI 10.17487/RFC6124,
February 2011, <https://www.rfc-editor.org/info/rfc6124>.
[RFC6678] Hoeper, K., Hanna, S., Zhou, H., and J. Salowey, Ed.,
"Requirements for a Tunnel-Based Extensible Authentication
Protocol (EAP) Method", RFC 6678, DOI 10.17487/RFC6678,
July 2012, <https://www.rfc-editor.org/info/rfc6678>.
[RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
Galperin, S., and C. Adams, "X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP",
RFC 6960, DOI 10.17487/RFC6960, June 2013,
<https://www.rfc-editor.org/info/rfc6960>.
[RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
Multiple Certificate Status Request Extension", RFC 6961,
DOI 10.17487/RFC6961, June 2013,
<https://www.rfc-editor.org/info/rfc6961>.
[RFC7029] Hartman, S., Wasserman, M., and D. Zhang, "Extensible
Authentication Protocol (EAP) Mutual Cryptographic
Binding", RFC 7029, DOI 10.17487/RFC7029, October 2013,
<https://www.rfc-editor.org/info/rfc7029>.
[RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
"Enrollment over Secure Transport", RFC 7030,
DOI 10.17487/RFC7030, October 2013,
<https://www.rfc-editor.org/info/rfc7030>.
[RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,
DOI 10.17487/RFC7542, May 2015,
<https://www.rfc-editor.org/info/rfc7542>.
[X.690] ITU-T, "SN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)", November 2008.
DeKok (Ed) Expires 11 September 2023 [Page 92]
Internet-Draft TEAP March 2023
Author's Address
Alan DeKok
Email: aland@freeradius.org
DeKok (Ed) Expires 11 September 2023 [Page 93]