Internet DRAFT - draft-ietf-bess-ipv6-only-pe-design

draft-ietf-bess-ipv6-only-pe-design







BESS Working Group                                             G. Mishra
Internet-Draft                                              Verizon Inc.
Intended status: Best Current Practice                         M. Mishra
Expires: 21 November 2023                                  Cisco Systems
                                                             J. Tantsura
                                                         Microsoft, Inc.
                                                              S. Madhavi
                                                  Juniper Networks, Inc.
                                                                 Q. Yang
                                                         Arista Networks
                                                              A. Simpson
                                                                   Nokia
                                                                 S. Chen
                                                     Huawei Technologies
                                                             20 May 2023


             IPv6-Only PE Design for IPv4-NLRI with IPv6-NH
                 draft-ietf-bess-ipv6-only-pe-design-04

Abstract

   As Enterprises and Service Providers upgrade their brown field or
   green field MPLS/SR core to an IPv6 transport, Multiprotocol BGP (MP-
   BGP)now plays an important role in the transition of their Provider
   (P) core network as well as Provider Edge (PE) Edge network from IPv4
   to IPv6.  Operators must be able to continue to support IPv4
   customers when both the Core and Edge networks are IPv6-Only.

   This document details an important External BGP (eBGP) PE-CE Edge and
   Inter-AS IPv6-Only peering design that leverages the MP-BGP
   capability exchange by using IPv6 peering as pure transport, allowing
   both IPv4 Network Layer Reachability Information (NLRI) and IPv6
   Network Layer Reachability Information (NLRI)to be carried over the
   same (Border Gateway Protocol) BGP TCP session.  The design change
   provides the same Dual Stacking functionality that exists today with
   separate IPv4 and IPv6 BGP sessions as we have today.  With this
   design change from a control plane perspective a single IPv6 is
   required for both IPv4 and IPv6 routing updates and from a data plane
   forwarindg perspective an IPv6 address need only be configured on the
   PE and CE interface for both IPv4 and IPv6 packet forwarding.

   This document provides a much needed solution for Internet Exchange
   Point (IXP) that are facing IPv4 address depletion at large peering
   points.  With this design, IXP can now deploy PE-CE IPv6-Only eBGP
   Edge or Inter-AS peering design to eliminate IPv4 provisioning at the
   Edge.  This core and edge IPv6-Only peering design paradigm change
   can apply to any eBGP peering, public internet or private, which can



Mishra, et al.          Expires 21 November 2023                [Page 1]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   be either Core networks, Data Center networks, Access networks or can
   be any eBGP peering scenario.  This document provides vendor specific
   test cases for the IPv6-Only peering design as well as test results
   for the five major vendors stakeholders in the routing and switching
   indusrty, Cisco, Juniper, Arista, Nokia and Huawei.  With the test
   results provided for the IPv6-Only Edge peering design, the goal is
   that all other vendors around the world that have not been tested
   will begin to adopt and implement this new Best Current Practice for
   eBGP IPv6-Only Edge peering.

   As this issue with IXP IPv4 address depletion is a critical issue
   around the world, it is imperative for an immediate solution that can
   be implemented quickly.  This Best Current Practice IPv6-only eBGP
   peering design specification will help proliferate IPv6-Only
   deployments at the eBGP Edge network peering points to starting
   immediately at a minimum with operators around the world using Cisco,
   Juniper, Arista, Nokia and Huawei.  As other vendors start to
   implement this Best Current Practice, the IXP IPv4 address depletion
   gap will eventually be eliminated.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 21 November 2023.

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.










Mishra, et al.          Expires 21 November 2023                [Page 2]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Requirements Language . . . . . . . . . . . . . . . . . . . .   6
   3.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   6
   4.  IPv6-Only Edge Peering Architecture . . . . . . . . . . . . .   7
     4.1.  Problem Statement . . . . . . . . . . . . . . . . . . . .   7
     4.2.  IPv6-Only PE-CE Design Solution . . . . . . . . . . . . .   8
     4.3.  IPv6-Only Edge Peering Design . . . . . . . . . . . . . .   9
       4.3.1.  IPv6-Only Edge Peering Packet Walk  . . . . . . . . .   9
       4.3.2.  6to4 Softwire IPv4-Only Core packet walk  . . . . . .  10
       4.3.3.  4to6 Softwire IPv6-Only Core packet walk  . . . . . .  11
     4.4.  RFC5549 and RFC8950 Applicability . . . . . . . . . . . .  13
       4.4.1.  IPv6-Only Edge Peering design next-hop encoding . . .  14
       4.4.2.  RFC8950 updates to RFC5549 applicability  . . . . . .  14
   5.  IPv6-Only PE Design Edge and Inter-AS Options E2E Test
           Cases . . . . . . . . . . . . . . . . . . . . . . . . . .  15
     5.1.  Test-1 E2E IPv6-Only PE-CE, Global Table over IPv4-Only
            Core(6PE), 6to4 softwire . . . . . . . . . . . . . . . .  17
     5.2.  Test-2 E2E IPv6-Only PE-CE, VPN over IPv4-Only Core, 6to4
            Softwire . . . . . . . . . . . . . . . . . . . . . . . .  17
     5.3.  Test-3 E2E IPv6-Only PE-CE, Global Table over IPv6-Only
            Core, 4to6 Softwire  . . . . . . . . . . . . . . . . . .  18
     5.4.  Test-4 E2E IPv6-Only PE-CE, VPN over IPv6-Only Core, 4to6
            Softwire . . . . . . . . . . . . . . . . . . . . . . . .  18
     5.5.  Test-5 E2E IPv6-Only PE-CE, Global Table over IPv4-Only
            Core(6PE), 6to4 softwire -Inter-AS Option-B  . . . . . .  19
     5.6.  Test-6 E2E IPv6-Only PE-CE, Global Table over IPv4-Only
            Core(6PE), 6to4 softwire -Inter-AS Option-C  . . . . . .  19
     5.7.  Test-7 E2E IPv6-Only PE-CE, VPN over IPv4-Only, 6to4
            softwire -Inter-AS Option-B  . . . . . . . . . . . . . .  20
     5.8.  Test-8 E2E IPv6-Only PE-CE, VPN over IPv4-Only Core, 6to4
            softwire -Inter-AS Option-C  . . . . . . . . . . . . . .  20
     5.9.  Test-9 E2E IPv6-Only PE-CE, Global Table over IPv6-Only
            Core, 4to6 softwire -Inter-AS Option-B . . . . . . . . .  21
     5.10. Test-10 E2E IPv6-Only PE-CE, Global Table over IPv6-Only
            Core, 4to6 softwire -Inter-AS Option-C . . . . . . . . .  21
     5.11. Test-11 E2E IPv6-Only PE-CE, VPN over IPv6-Only Core, 4to6
            softwire -Inter-AS Option-B  . . . . . . . . . . . . . .  22



Mishra, et al.          Expires 21 November 2023                [Page 3]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


     5.12. Test-12 E2E IPv6-Only PE-CE, VPN over IPv6-Only Core, 4to6
            softwire -Inter-AS Option-C  . . . . . . . . . . . . . .  22
     5.13. IPv6-Only PE-CE Operational Considerations Testing  . . .  23
   6.  Operational Considerations  . . . . . . . . . . . . . . . . .  23
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  24
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  24
   9.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  25
   10. Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  25
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  25
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  25
     11.2.  Informative References . . . . . . . . . . . . . . . . .  26
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  27

1.  Introduction

   As Enterprises and Service Providers upgrade their brown field or
   green field MPLS/SR core to an IPv6 transport such as MPLS LDPv6, SR-
   MPLSv6 or SRv6, Multiprotocol BGP (MP-BGP) now plays an important
   role in the transition of the Provider (P) core networks and Provider
   Edge (PE) edge networks from IPv4 to IPv6.  Operators have a
   requirement to support IPv4 customers and must be able to support
   IPv4 address family and Sub-Address-Family Virtual Private Network
   (VPN)-IPv4, and Multicast VPN IPv4 customers.

   IXP are also facing IPv4 address depletion at their peering points,
   which are large Layer 2 transit backbones that service providers peer
   and exchange IPv4 and IPv6 Network Layer Reachability Information
   (NLRI).  Today, these transit exchange points are Dual Stacked.  With
   this IPv6-only BGP peering design, only IPv6 is configured on the PE-
   CE interface, the Provider Edge (PE) - Customer Edge (CE), or Inter-
   AS ASBR (Autonomous System Boundary Router) to ASBR (Autonomous
   System Boundary Router) PE-PE Provider Edge (PE) - Provider Edge
   (PE), the IPv6 BGP peer is now used to carry IPv4 (Network Layer
   Reachability Information) NLRI over an IPv6 next hop using IPv6 next
   hop encoding defined in [RFC8950], while continuing to forward both
   IPv4 and IPv6 packets.  In the framework of this design the PE is no
   longer Dual Stacked.  However in the case of the CE, PE-CE link CE
   side of the link is no longer Dual Stacked, however all other
   internal links within the CE domain may or maynot be Dual stacked.
   In the Inter-AS case the ASBR-ASBR PE-PE peering all peerings would
   be now IPv6-Only for all Inter-AS options Peering Option-A, Option-B,
   Option-AB and Option-C per [RFC4364].  We now refer to this PE as an
   "IPv6-Only PE" using the IPv6-Only PE Design framework.

   MP-BGP specifies that the set of usable next-hop address families is
   determined by the Address Family Identifier (AFI) and the Subsequent
   Address Family Identifier (SAFI).  Historically the AFI/SAFI
   definitions for the IPv4 address family only have provisions for



Mishra, et al.          Expires 21 November 2023                [Page 4]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   advertising a Next Hop address that belongs to the IPv4 protocol when
   advertising IPv4 or VPN-IPv4.  [RFC8950] specifies the extensions
   necessary to allow advertising IPv4 NLRI, Virtual Private Network
   Unicast (VPN-IPv4) NLRI, Multicast Virtual Private Network (MVPN-
   IPv4) NLRI with a Next Hop address that belongs to the IPv6 protocol.
   This comprises of an extended next hop encoding MP-REACH BGP
   capability exchange to allow the address of the Next Hop for IPv4
   NLRI, VPN-IPv4 NLRI and MVPN-IPv4 NLRI to also belong to the IPv6
   Protocol.  [RFC8950] defines the encoding of the Next Hop to
   determine which of the protocols the address actually belongs to, and
   a new BGP Capability allowing MP-BGP Peers to discover dynamically
   whether they can exchange IPv4 NLRI and VPN-IPv4 NLRI with an IPv6
   Next Hop.

   The current specification for carrying IPv4 NLRI of a given address
   family via a Next Hop of a different address family is now defined in
   [RFC8950], and specifies the extended next hop encoding MP-REACH
   capability extension necessary to do so.  This comprises an extension
   of the AFI/SAFI definitions to allow the address of the Next Hop for
   IPv4 NLRI or VPN-IPv4 NLRI to belong to either the IPv4 or the IPv6
   protocol, the encoding of the Next Hop information to determine which
   of the protocols the address belongs to, and a new BGP Capability
   allowing MP-BGP peers to dynamically discover whether they can
   exchange IPv4 NLRI and VPN- IPv4 NLRI with an IPv6 Next Hop.

   With the new extensions defined in [RFC8950] supporting NLRI and next
   hop address family mismatch, the BGP peer session can now be treated
   as a pure TCP transport and carry both IPv4 and IPv6 NLRI at the
   Provider Edge (PE) - Customer Edge (CE) or Inter-AS ASBR to ASBR PE-
   PE over a single IPv6 TCP session.  This allows for the elimination
   of dual stack from the PE-CE and Inter-AS ASBR-ASBR PE-PE peering
   point, and now enable the peering to be IPv6-ONLY.  The elimination
   of IPv4 on the PE-CE and Inter-AS ASBR-ASBR PE-PE peering points
   translates into OPEX expenditure savings of point-to-point
   infrastructure links as well as /31 address space savings and
   administration and network management of both IPv4 and IPv6 BGP
   peers.  This reduction decreases the number of PE-CE BGP peers by
   fifty percent, which is a tremendous cost savings for operators.

   While the savings exists at the Edge eBGP PE-CE peering, on the core
   side PE to Route Reflector (RR) peering carrying <AFI/SAFI> IPv4
   <1/1>, VPN-IPV4 <1/128>, and Multicasat VPN <1/129>, there is no
   savings as the Provider (P) Core is IPv6 Only and thus can only have
   an IPv6 peer and must use [RFC8950] extended next hop encoding to
   carrying IPv4 NLRI IPV4 <2/1>, VPN-IPV4 <2/128>, and Multicasat VPN
   <2/129> over an IPv6 next hop.





Mishra, et al.          Expires 21 November 2023                [Page 5]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   This IPv6-Only PE design is applicable to both PE-CE Edge over a
   IPv4-Only Core, IPv6-Only Core as well as Global table or VPN overlay
   scenario as well as all Inter-AS Options Option-A, Option-B, Option-
   AB and Option-C The following Address Family (AFI) / Subsequent
   Address Family (SAFI) will be tested with both IPv4-Only Core,
   IPv6-Only Core and Global Routing Table (GRT) and IP Virtual Private
   Network (VPN) [RFC4364].  <AFI/SAFI> IPv4 <1/1>, VPN-IPV4 <1/128>,
   and Multicasat VPN <1/129>.

   This document provides a much needed solution for Internet Exchange
   Point (IXP) that are facing IPv4 address depletion at large peering
   points.  With this design, IXP can now use deploy PE-CE IPv6-Only
   eBGP Edge and Inter-AS peering design to eliminate IPv4 provisioning
   at the PE Edge as well as PE Inter-AS.  This core and edge IPv6-Only
   peering design paradigm change can apply to any eBGP peering, public
   internet or private, which can be either Core networks, Data Center
   networks, Access networks or can be any eBGP peering scenario.  This
   document provides detailed vendor specific test cases and test
   results for the IPv6-Only peering design as well as successful test
   results between five major vendors stakeholders in the routing and
   switching indusrty, Cisco, Juniper, Arista, Nokia and Huawei.  With
   the test results provided for the IPv6-Only Edge peering design, the
   goal is that all other vendors around the world that have not been
   tested will begin to adopt and implement this new best practice for
   eBGP IPv6-Only Edge peering.  This will give confidence to operators
   to start the proliferation of this IPv6-Only PE design.

   As this issue with IXP address depletion is a critical issue around
   the world, it is imperative for an immediate solution that can be
   implemented quickly.  This best practice IPv6-only eBGP peering
   design specification will help proliferate IPv6-Only deployments at
   the eBGP Edge and Inter-AS network peering points starting
   immediately at a minimum with operators around the world using Cisco,
   Juniper, Arista, Nokia and Huawei.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Terminology

   Terminolgoy used in defining the IPv6-Only Edge specification.

   AFBR: Address Family Border Router Provider Edge (PE).



Mishra, et al.          Expires 21 November 2023                [Page 6]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   Edge: PE-CE Edge Network Provider Edge - Customer Edge

   Core: P Core Network Provider (P)

   4to6 Softwire : IPv4 edge over an IPv6-Only core

   6to4 Softwire: IPv6 edge over an IPv4-Only core

   E2E: End to End

4.  IPv6-Only Edge Peering Architecture

4.1.  Problem Statement

   This specification addresses a real world issue that has been
   discussed at many operator groups around the world related to IXP
   major peering points where hundreds of AS's have both IPv4 and IPv6
   dual stacked peering.  IPv4 address depletion have been a major issue
   issue for many years now.  Operators around the world are clamoring
   for a solution that can help solve issues related to IPv4 address
   depletion at these large IXP peering points.  With this solution IXPs
   as well as all infrastructure networks such as Core networks, DC
   networks, Access networks as well as any PE-CE public or private
   network can now utilize this IPv6-Only Edge solution and reap the
   benefits immediately on IPv4 address space saving.


                               IXP Problem Statement

                        Dual Stacked            Dual Stacked
                             CE                      PE

                          +-------+ IPv4 BGP Peer +-------+
                          |       |---------------|       |
                          |   CE  | IPv6 BGP Peer |  PE   |
                          |       |---------------|       |
                          +-------+               +-------+
                         IPv4 forwarding            IPv4 forwarding
                         IPv6 forwarding            IPv6 forwarding


            Figure 1: Problem Statement - IXP Dual Stack Peering









Mishra, et al.          Expires 21 November 2023                [Page 7]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                               ________
    Dual Stacked     _____    /        \                Dual Stacked
      PE / CE       /     \__/          \___              PE / CE
  +----+  +----+   /                        \        +------+   +-----+
  |    |  |    |  |0====VPN Overlay Tunnel ==0|      |      |   |     |
  |    |  |    |  |                             \    |      |   |     |
  | CE |--| PE |--\         IPv6-Only Core      |----|  PE  |---|  CE |
  |    |  |    |    \0=========Underlay =======0|    |      |   |     |
  +----+  +----+     \                        __/    +------+   +-----+
  IPv4 IPv6 BGP peer  \ IP / MPLS / SR domain /     IPv4 and IPv6 BGP peer
  IPv4 forwarding      \__         __       /          IPv4 forwarding
  IPv6 forwarding         \_______/  \_____/           IPv6 forwarding




          Figure 2: Problem Statement - E2E Dual Stack Edge

4.2.  IPv6-Only PE-CE Design Solution

   The IPv6-Only Edge design solution provides a means of E2E single
   protocol design solution extension of [RFC5565] Softwire Mesh
   framework from the PE-CE Edge to the Core from ingres so egress
   through the entire operators domain.  This solution eliminates all
   IPv4 addressing from end to end while still providing the same Dual
   Stack functionality of IPv4 and IPv6 packet forwarding from a data
   plane perspective by leveraging the [RFC8950] extended next hop
   encoding so that IPv4 NLRI can be advertised over a single IPv6 pure
   transport TCP session.  This IPv6-Only E2E architecture eliminates
   all IPv4 peering and IPv4 addressing E2E from the ingress CE to
   ingress PE to egress PE to egress CE and all hops along the operator
   E2E path.


                             Solution applicable to
                  any Edge peering scenario - IXP, Core, DC, Access, etc

                   +-------+                +-------+
                   |       |  IPv6 Only     |       |
                   |   CE  |----------------|  PE   |
                   |       |  IPv6 BGP Peer |       |
                   +-------+                +-------+
                  IPv4 forwarding            IPv4 forwarding
                  IPv6 forwarding            IPv6 forwarding


              Figure 3: IPv6-Only Solution Applicability




Mishra, et al.          Expires 21 November 2023                [Page 8]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                                ________
      IPv6-Only       _____    /        \                 IPv6-Only
       PE / CE       /     \__/          \___              PE / CE
   +----+  +----+   /                        \        +------+   +-----+
   |    |  |    |  |0====VPN Overlay Tunnel ==0|      |      |   |     |
   |    |  |    |  |                             \    |      |   |     |
   | CE |--| PE |--\         IPv6-Only Core      |----|  PE  |---|  CE |
   |    |  |    |    \0=========Underlay ===== ==0    |      |   |     |
   +----+  +----+     \                        __/    +------+   +-----+
   IPv6 BGP peer        \IP / MPLS / SR domain /        IPv6 BGP peer
   IPv4 forwarding      \__         __       /          IPv4 forwarding
   IPv6 forwarding         \_______/  \_____/           IPv6 forwarding




                       Figure 4: E2E VPN Solution

4.3.  IPv6-Only Edge Peering Design

4.3.1.  IPv6-Only Edge Peering Packet Walk

   The IPv6-Only Edge Peering design utilizes two key E2E Softwire Mesh
   Framework scenario's, 4to6 softwire and 6to4 softwire.  The Softwire
   mesh framework concept is based on the overlay and underlay MPLS or
   SR based technology framework, where the underlay is the transport
   layer and the overlay is a Virtual Private Network (VPN) layer, and
   is the the tunneled virtualization layer containing the customer
   payload.  The concept of a 6to4 Softwire is based on transmission of
   IPv6 packets at the edge of the network by tunneling the IPv6 packets
   over an IPv4-Only Core.  The concept of a 4to6 Softwire is also based
   on transmission of IPv4 packets at the edge of the network by
   tunneling the IPv4 packets over an IPv6-Only Core.

   This document describes End to End (E2E) test scenarios that follow a
   packet flow from IPv6-Only attachment circuit from ingress PE-CE to
   egress PE-CE tracing the routing protocol control plane and data
   plane forwarding of IPv4 packets in a 4to6 softwire or 6to4 softwire
   within the IPv4-Only or IPv6-Only Core network.  In both secneario we
   are focusing on IPv4 packets and the control plane and data plane
   forwarding aspects of IPv4 packets from the PE-CE Edge network over
   an IPv6-Only P (Provider) core network or IPv4-Only P (Provider) core
   network.  With this IPv6-Only Edge peering design, the Softwire Mesh
   Framework is not extended beyond the Provider Edge (PE) and continues
   to terminate on the PE router.






Mishra, et al.          Expires 21 November 2023                [Page 9]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


4.3.2.  6to4 Softwire IPv4-Only Core packet walk

   6to4 softwire where IPv6-Edge eBGP IPv6 peering where IPv4 packets at
   network Edge traverse a IPv4-Only Core

   In the scenario where IPv4 packets originating from a PE-CE edge are
   tunneled over an MPLS or Segment Routing IPv4 underlay core network,
   the PE and CE only have an IPv6 address configured on the interface.
   In this scenario the IPv4 packets that ingress the CE from within the
   CE AS are over an IPv6-Only interface and are forwarded to an IPv4
   NLRI destination prefix learned from the Pure Transport Single IPv6
   BGP Peer.  In the IPv6-Only Edge peering architecture the PE is
   IPv6-Only as all PE-CE interfaces are IPv6-Only.  However, on the CE,
   the PE-CE interface is the only interface that is IPv6-Only and all
   other interfaces may or may not be IPv6-Only.  Following the data
   plane packet flow, IPv4 packets are forwarded from the ingress CE to
   the IPv6-Only ingress PE where the VPN label imposition push per
   prefix, per-vrf, per-CE occurs and the labeled packet is forwarded
   over a 6to4 softwire IPv4-Only core, to the egress PE where the VPN
   label disposition pop occurs and the native IPv4 packet is forwarded
   to the egress CE.  In the reverse direction IPv4 packets are
   forwarded from the egress CE to egress PE where the VPN label
   imposition per prefix, per-vrf, per-CE push occurs and the labeled
   packet is forwarded back over the 6to4 softwire IPv4-Only core, to
   the ingress PE where the VPN label disposition pop occurs and the
   native IPv4 packet is forwarded to the ingress CE. . The
   functionality of the IPv4 forwarding plane in this scenario is
   identical from a data plane forwarding perspective to Dual Stack IPv4
   forwarding scenario.






















Mishra, et al.          Expires 21 November 2023               [Page 10]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                             +--------+   +--------+
                             |  IPv4  |   |  IPv4  |
                             | Client |   | Client |
                             | Network|   | Network|
                             +--------+   +--------+
                                 |   \     /   |
                                 |    \   /    |
                                 |     \ /     |
                                 |      X      |
                                 |     / \     |
                                 |    /   \    |
                                 |   /     \   |
                             +--------+   +--------+
                             |  AFBR  |   |  AFBR  |
                          +--| IPv4/6 |---| IPv4/6 |--+
                          |  +--------+   +--------+  |
          +--------+      |                           |       +--------+
          |  IPv4  |      |                           |       |  IPv4  |
          | Client |      |                           |       | Client |
          | Network|------|            IPv4           |-------| Network|
          +--------+      |            only           |       +--------+
                          |                           |
                          |  +--------+   +--------+  |
                          +--|  AFBR  |---|  AFBR  |--+
                             | IPv4/6 |   | IPv4/6 |
                             +--------+   +--------+
                               |   \     /   |
                               |    \   /    |
                               |     \ /     |
                               |      X      |
                               |     / \     |
                               |    /   \    |
                               |   /     \   |
                            +--------+   +--------+
                            |  IPv6  |   |  IPv4  |
                            | Client |   | Client |
                            | Network|   | Network|
                            +--------+   +--------+



         Figure 5: 6to4 Softwire - IPv6 Edge over an IPv4-Only Core

4.3.3.  4to6 Softwire IPv6-Only Core packet walk

   4to6 softwire where IPv6-Edge eBGP IPv6 peering where IPv4 packets at
   network Edge traverse a IPv6-Only Core




Mishra, et al.          Expires 21 November 2023               [Page 11]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   In the scenario where IPv4 packets originating from a PE-CE edge are
   tunneled over an MPLS or Segment Routing IPv4 underlay core network,
   the PE and CE only have an IPv6 address configured on the interface.
   In this scenario the IPv4 packets that ingress the CE from within the
   CE AS are over an IPv6-Only interface and are forwarded to an IPv4
   NLRI destination prefix learned from the Pure Transport Single IPv6
   BGP Peer.  In the IPv6-Only Edge peering architecture the PE is
   IPv6-Only as all PE-CE interfaces are IPv6-Only.  However, on the CE,
   the PE-CE interface is the only interface that is IPv6-Only and all
   other interfaces may or may not be IPv6-Only.  Following the data
   plane packet flow, IPv4 packets are forwarded from the ingress CE to
   the IPv6-Only ingress PE where the VPN label imposition push per
   prefix, per-vrf, per-CE occurs and the labeled packet is forwarded
   over a 4to6 softwire IPv6-Only core, to the egress PE where the VPN
   label disposition pop occurs and the native IPv4 packet is forwarded
   to the egress CE.  In the reverse direction IPv4 packets are
   forwarded from the egress CE to egress PE where the VPN label
   imposition per prefix, per-vrf, per-CE push occurs and the labeled
   packet is forwarded back over the 4to6 softwire IPv6-Only core, to
   the ingress PE where the VPN label disposition pop occurs and the
   native IPv4 packet is forwarded to the ingress CE. . The
   functionality of the IPv4 forwarding plane in this scenario is
   identical from a data plane forwarding perspective to Dual Stack IPv4
   forwarding scenario.



























Mishra, et al.          Expires 21 November 2023               [Page 12]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                             +--------+   +--------+
                             |  IPv4  |   |  IPv4  |
                             | Client |   | Client |
                             | Network|   | Network|
                             +--------+   +--------+
                                 |   \     /   |
                                 |    \   /    |
                                 |     \ /     |
                                 |      X      |
                                 |     / \     |
                                 |    /   \    |
                                 |   /     \   |
                             +--------+   +--------+
                             |  AFBR  |   |  AFBR  |
                          +--| IPv4/6 |---| IPv4/6 |--+
                          |  +--------+   +--------+  |
          +--------+      |                           |       +--------+
          |  IPv6  |      |                           |       |  IPv6  |
          | Client |      |                           |       | Client |
          | Network|------|            IPv6           |-------| Network|
          +--------+      |            only           |       +--------+
                          |                           |
                          |  +--------+   +--------+  |
                          +--|  AFBR  |---|  AFBR  |--+
                             | IPv4/6 |   | IPv4/6 |
                             +--------+   +--------+
                               |   \     /   |
                               |    \   /    |
                               |     \ /     |
                               |      X      |
                               |     / \     |
                               |    /   \    |
                               |   /     \   |
                            +--------+   +--------+
                            |  IPv4  |   |  IPv4  |
                            | Client |   | Client |
                            | Network|   | Network|
                            +--------+   +--------+




         Figure 6: 4to6 Softwire - IPv4 Edge over an IPv6-Only Core

4.4.  RFC5549 and RFC8950 Applicability






Mishra, et al.          Expires 21 November 2023               [Page 13]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


4.4.1.  IPv6-Only Edge Peering design next-hop encoding

   This section describes [RFC8950] next hop encoding updates to
   [RFC5549] applicability to this specification.  IPv6-only eBGP Edge
   PE-CE peering to carry IPv4 Unicast NLRI <AFI/SAFI> IPv4 <1/1> over
   an IPv6 next hop BGP capability extended hop encoding IANA capability
   codepoint value 5 defined is applicable to both [RFC5549] and
   [RFC8950] as IPv4 Unicast NLRI <AFI/SAFI> IPv4 <1/1> does not change
   in the RFC updates.

   IPv4 packets over an IPv6-Only core 4to6 Softwire E2E packet flow is
   part of the IPv6-Only design vendor interoperaiblity test cases and
   in that respect is applicable as [RFC8950] updates [RFC5549] for
   <AFI/SAFI> VPN-IPV4 <1/128>, and Multicasat VPN <1/129>

4.4.2.  RFC8950 updates to RFC5549 applicability

   This section describes the [RFC8950] next hop encoding updates to
   [RFC5549]

   In [RFC5549] when AFI/SAFI 1/128 is used, the next-hop address is
   encoded as an IPv6 address with a length of 16 or 32 bytes.  This
   document modifies how the next-hop address is encoded to accommodate
   all existing implementations and bring consistency with VPNv4oIPv4
   and VPNv6oIPv6.  The next-hop address is now encoded as a VPN-IPv6
   address with a length of 24 or 48 bytes [RFC8950] (see Sections 3 and
   6.2 of this document).  This change addresses Erratum ID 5253
   (Err5253).  As all known and deployed implementations are
   interoperable today and use the new proposed encoding, the change
   does not break existing interoperability.  Updates to [RFC8950] is
   applicable to the IPv6-Only PE-CE edge design for the IPv6 next hop
   encoding E2E test case of IPv4 packets over and IPv6-Only core 4to6
   Softwire.  In this test case IPv4 Unicast NLRI <AFI/SAFI> IPv4 <1/1>
   is advertised over the PE to RR core peering 4to6 softwire in <AFI/
   SAFI> VPN-IPV4 <1/128>.  In this test case label allocation mode
   comes into play which is discussed in section 8.9.

   [RFC5549] next hop encoding of MP_REACH_NLRI with:

   *  NLRI= NLRI as per current AFI/SAFI definition

   Advertising with [RFC4760] MP_REACH_NLRI with:

   *  AFI = 1

   *  SAFI = 128 or 129

   *  Length of Next Hop Address = 16 or 32



Mishra, et al.          Expires 21 November 2023               [Page 14]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   *  NLRI= NLRI as per current AFI/SAFI definition

   [RFC8950] next hop encoding of MP_REACH_NLRI with:

   *  NLRI= NLRI as per current AFI/SAFI definition

   Advertising with [RFC4760] MP_REACH_NLRI with:

   *  AFI = 1

   *  SAFI = 128 or 129

   *  Length of Next Hop Address = 24 or 48

   *  Next Hop Address = VPN-IPv6 address of next hop with an 8-octet RD
      set to zero (potentially followed by the link-local VPN-IPv6
      address of the next hop with an 8-octet RD is set to zero).

   *  NLRI= NLRI as per current AFI/SAFI definition

5.  IPv6-Only PE Design Edge and Inter-AS Options E2E Test Cases

   Proof of conept interoperability testing of the 4 test cases between
   the 5 vendors Cisco, Juniper, Arista, Nokia and Huawei.

   Cisco, Juniper, Arista, Nokia, Huawei, platform, code revision and
   test results for all use cases

   Cisco: Edge Router- XR ASR 9910 IOS XR 7.4.1, Core Router- NCS 6000
   7.2.2, CRS-X 6.7.4

   Juniper: Edge Router- MX platform MX480, MX960, Core Router- PTX
   Platform PTX5000, PTC10K8 (JUNOS and EVO) Release 20.4R2

   Tested v4 edge over v6 core in a virtual setup using vMX platforrm
   and 20.4R2 and LDPv6 as underlay, but there were some data plane
   forwarding issues.  Tested same setup on latest release 21.4 and it
   worked.  Investigating what the minimum version is for this setup to
   work.












Mishra, et al.          Expires 21 November 2023               [Page 15]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   Tested on above Juniper platforms.  Completed IPv6-Only PE design
   functionality test with PE-CE IPv6 peer carrying IPv4 and IPv6
   prefixes control plane validation and data plane forwarding plane
   validation and verified end to end reachability CE to CE forwarding
   plane with Default Per-CE label allocation mode.  Tested with
   IPv4-Only Core and IPv6-Only Core and proved that the IPv6-Only PE
   design solution works.  Both IPv4 and IPv6 packets were forwarded
   identical functionality of Dual Stack without having IPv4 address
   configured.

   Nokia: Edge and Core-7750 Service Router, Release R21

   Huawei: Edge and Core-VRPv8, Release VRP-V800R020C10

   Arista:

   Intra-AS tests PE-CE Edge Peering IPv4-Only Core, IPv6-Only Core,
   Global Table (GRT) and IP VPN

   AFI/SAFI IPv4-Unicast SAFI IPv6-Unicast SAFI

   IPv4 Core:

   Test-1 Global table (6PE)

   Test-2 IP VPN

   Global table IPv6

   IPv6 Core:

   Test-3 Global table

   Test-4 IP VPN

   Inter-AS Options tests IPv4-Only Core, IPv6-Only Core, Global
   Table (GRT) and IP VPN

   AFI/SAFI VPN and MVPN

   IPv4-Only Core

   Test-5 Global table 6PE Option-B (Segmented LSP stitched IPv4 Core -
   Inter-AS Link IPv6-Only PE - IPv4 Core)

   Test-6 Global table 6PE Option-C (Redistribute IPv4 Loopbacks into
   BGP-LU AFI/SAFI 2/6)




Mishra, et al.          Expires 21 November 2023               [Page 16]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   Test-7 IP VPN Inter AS Option-B (Segmented LSP stitched IPv4 Core -
   Inter-AS Link IPv6-Only PE - IPv4 Core)

   Test-8 IP VPN Inter AS Option-C (Redistribute IPv4 Loopbacks into
   BGP-LU AFI/SAFI 2/6)

   IPv6-Only Core

   Test-9 Global table Option-B

   Test-10 Global table Option-C

   Test-11 IP VPN Inter AS Option-B

   Test-12 IP VPN Inter AS Option-C

5.1.  Test-1 E2E IPv6-Only PE-CE, Global Table over IPv4-Only Core(6PE),
      6to4 softwire


                                ________
      IPv6-Only       _____    /        \                 IPv6-Only
       PE / CE       /     \__/          \___              PE / CE
   +----+  +----+   /                        \        +------+   +-----+
   |    |  |    |  |                          |_      |      |   |     |
   |    |  |    |  |                             \    |      |   |     |
   | CE |--| PE |--\         IPv4-Only Core      |----|  PE  |---|  CE |
   |    |  |    |    \0=========Underlay =======0|    |      |   |     |
   +----+  +----+     \                        __/    +------+   +-----+
   IPv6 BGP peer       \     MPLS / SR domain /         IPv6 BGP peer
   IPv4 forwarding      \__         __       /          IPv4 forwarding
   IPv6 forwarding         \_______/  \_____/           IPv6 forwarding




   Figure 7: Test-1 E2E IPv6-Only PE-CE, Global Table over IPv4-Only
                               Core (6PE)

5.2.  Test-2 E2E IPv6-Only PE-CE, VPN over IPv4-Only Core, 6to4 Softwire











Mishra, et al.          Expires 21 November 2023               [Page 17]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                                ________
      IPv6-Only       _____    /        \                 IPv6-Only
       PE / CE       /     \__/          \___              PE / CE
   +----+  +----+   /                        \        +------+   +-----+
   |    |  |    |  | 0====VPN Overlay Tunnel ==0|     |      |   |     |
   |    |  |    |  |                             \    |      |   |     |
   | CE |--| PE |--\         IPv4-Only Core      |----|  PE  |---|  CE |
   |    |  |    |    \0=========Underlay =======0|    |      |   |     |
   +----+  +----+     \                        __/    +------+   +-----+
   IPv6 BGP peer       \   MPLS / SR domain   /         IPv6 BGP peer
   IPv4 forwarding      \__         __       /          IPv4 forwarding
   IPv6 forwarding         \_______/  \_____/           IPv6 forwarding




     Figure 8: Test-2 E2E IPv6-Only PE-CE, VPN over IPv4-Only Core

5.3.  Test-3 E2E IPv6-Only PE-CE, Global Table over IPv6-Only Core, 4to6
      Softwire


                                ________
      IPv6-Only       _____    /        \                 IPv6-Only
       PE / CE       /     \__/          \___              PE / CE
   +----+  +----+   /                        \        +------+   +-----+
   |    |  |    |  |                          |_      |      |   |     |
   |    |  |    |  |                             \    |      |   |     |
   | CE |--| PE |--\         IPv6-Only Core      |----|  PE  |---|  CE |
   |    |  |    |    \0=========Underlay =======0|    |      |   |     |
   +----+  +----+     \                        __/    +------+   +-----+
   IPv6 BGP peer       \     MPLS / SR domain /         IPv6 BGP peer
   IPv4 forwarding      \__         __       /          IPv4 forwarding
   IPv6 forwarding         \_______/  \_____/           IPv6 forwarding




   Figure 9: Test-3 E2E IPv6-Only PE-CE, Global Table over IPv6-Only
                                  Core

5.4.  Test-4 E2E IPv6-Only PE-CE, VPN over IPv6-Only Core, 4to6 Softwire









Mishra, et al.          Expires 21 November 2023               [Page 18]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                                ________
      IPv6-Only       _____    /        \                 IPv6-Only
       PE / CE       /     \__/          \___              PE / CE
   +----+  +----+   /                        \        +------+   +-----+
   |    |  |    |  | 0====VPN Overlay Tunnel ==0|     |      |   |     |
   |    |  |    |  |                             \    |      |   |     |
   | CE |--| PE |--\         IPv6-Only Core      |----|  PE  |---|  CE |
   |    |  |    |    \0=========Underlay =======0|    |      |   |     |
   +----+  +----+     \                        __/    +------+   +-----+
   IPv6 BGP peer       \    MPLS / SR domain  /         IPv6 BGP peer
   IPv4 forwarding      \__         __       /          IPv4 forwarding
   IPv6 forwarding         \_______/  \_____/           IPv6 forwarding




     Figure 10: Test-4 E2E IPv6-Only PE-CE, VPN over IPv6-Only Core

5.5.  Test-5 E2E IPv6-Only PE-CE, Global Table over IPv4-Only Core(6PE),
      6to4 softwire -Inter-AS Option-B



                    Inter-AS ASBR-ASBR link is IPv6-Only PE
     IPv6-Only       __________          __________      IPv6-Only
      PE / CE       /          \        /          \      PE / CE
     +--+ +----+   /            \      /            \    +--+ +--+
     |  | |    |  |    AS 1      \     |    AS 2     \   |  | |  |
     |  | |    |  |               \IPv6|              \  |  | |  |
     |CE|-| PE |--| IPv4-Only Core|----|IPv4-Only Core|--|PE|-|CE|
     |  | |    |  |0=Underlay==0  |    |0==Underlay==0|  |  | |  |
     +--+ +----+   \             /     \             /   +--+ +--+
     IPv6 BGP peer  \ MPLS/SR   /       \ MPLS/SR   /   IPv6 BGP peer
     IPv4 forwarding \_________/         \_________/    IPv4 forwarding
     IPv6 forwarding                                    IPv6 forwarding



          Figure 11: Test-5 E2E IPv6-Only PE-CE, Global Table over
                  IPv4-Only Core (6PE) - Inter-AS Option-B

5.6.  Test-6 E2E IPv6-Only PE-CE, Global Table over IPv4-Only Core(6PE),
      6to4 softwire -Inter-AS Option-C








Mishra, et al.          Expires 21 November 2023               [Page 19]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                   Inter-AS ASBR-ASBR link is IPv6-Only PE
     IPv6-Only       __________          __________      IPv6-Only
      PE / CE       /          \        /          \      PE / CE
     +--+ +----+   /            \      /            \    +--+ +--+
     |  | |    |  |    AS 1      \     |    AS 2     \   |  | |  |
     |  | |    |  |               \IPv6|              \  |  | |  |
     |CE|-| PE |--| IPv4-Only Core|----|IPv4-Only Core|--|PE|-|CE|
     |  | |    |  |0=Underlay==0  |    |0==Underlay==0|  |  | |  |
     +--+ +----+   \             /     \             /   +--+ +--+
     IPv6 BGP peer  \ MPLS/SR   /       \ MPLS/SR   /   IPv6 BGP peer
     IPv4 forwarding \_________/         \_________/    IPv4 forwarding
     IPv6 forwarding                                    IPv6 forwarding




          Figure 12: Test-6 E2E IPv6-Only PE-CE, Global Table over
                  IPv4-Only Core (6PE) - Inter-AS Option-C

5.7.  Test-7 E2E IPv6-Only PE-CE, VPN over IPv4-Only, 6to4 softwire -
      Inter-AS Option-B


                  Inter-AS ASBR-ASBR link is IPv6-Only PE
     IPv6-Only       __________          __________      IPv6-Only
      PE / CE       /          \        /          \      PE / CE
     +--+ +----+   /            \      /            \    +--+ +--+
     |  | |    |  |    AS 1      \     |    AS 2     \   |  | |  |
     |  | |    |  |               \IPv6|              \  |  | |  |
     |CE|-| PE |--| IPv4-Only Core|----|IPv4-Only Core|--|PE|-|CE|
     |  | |    |  |0=Overlay===0  |    |0==Overlay===0|  |  | |  |
     +--+ +----+   \             /     \             /   +--+ +--+
     IPv6 BGP peer  \ MPLS/SR   /       \ MPLS/SR   /   IPv6 BGP peer
     IPv4 forwarding \_________/         \_________/    IPv4 forwarding
     IPv6 forwarding                                    IPv6 forwarding




      Figure 13: Test-7 E2E IPv6-Only PE-CE, VPN over IPv4-Only Core -
                             Inter-AS Option-B

5.8.  Test-8 E2E IPv6-Only PE-CE, VPN over IPv4-Only Core, 6to4 softwire
      -Inter-AS Option-C







Mishra, et al.          Expires 21 November 2023               [Page 20]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                  Inter-AS ASBR-ASBR link is IPv6-Only PE
     IPv6-Only       __________          __________      IPv6-Only
      PE / CE       /          \        /          \      PE / CE
     +--+ +----+   /            \      /            \    +--+ +--+
     |  | |    |  |    AS 1      \     |    AS 2     \   |  | |  |
     |  | |    |  |               \IPv6|              \  |  | |  |
     |CE|-| PE |--| IPv4-Only Core|----|IPv4-Only Core|--|PE|-|CE|
     |  | |    |  |0=Overlay===0  |    |0==Overlay===0|  |  | |  |
     +--+ +----+   \             /     \             /   +--+ +--+
     IPv6 BGP peer  \ MPLS/SR   /       \ MPLS/SR   /   IPv6 BGP peer
     IPv4 forwarding \_________/         \_________/    IPv4 forwarding
     IPv6 forwarding                                    IPv6 forwarding




      Figure 14: Test-8 E2E IPv6-Only PE-CE, VPN over IPv4-Only Core -
                             Inter-AS Option-C

5.9.  Test-9 E2E IPv6-Only PE-CE, Global Table over IPv6-Only Core, 4to6
      softwire -Inter-AS Option-B


                  Inter-AS ASBR-ASBR link is IPv6-Only PE
     IPv6-Only       __________          __________      IPv6-Only
      PE / CE       /          \        /          \      PE / CE
     +--+ +----+   /            \      /            \    +--+ +--+
     |  | |    |  |    AS 1      \     |    AS 2     \   |  | |  |
     |  | |    |  |               \IPv6|              \  |  | |  |
     |CE|-| PE |--| IPv6-Only Core|----|IPv6-Only Core|--|PE|-|CE|
     |  | |    |  |0=Underlay==0  |    |0==Underlay==0|  |  | |  |
     +--+ +----+   \             /     \             /   +--+ +--+
     IPv6 BGP peer  \ MPLS/SR   /       \ MPLS/SR   /   IPv6 BGP peer
     IPv4 forwarding \_________/         \_________/    IPv4 forwarding
     IPv6 forwarding                                    IPv6 forwarding




          Figure 15: Test-9 E2E IPv6-Only PE-CE, Global Table over
                    IPv6-Only Core - Inter- AS Option-B

5.10.  Test-10 E2E IPv6-Only PE-CE, Global Table over IPv6-Only Core,
       4to6 softwire -Inter-AS Option-C







Mishra, et al.          Expires 21 November 2023               [Page 21]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                  Inter-AS ASBR-ASBR link is IPv6-Only PE
     IPv6-Only       __________          __________      IPv6-Only
      PE / CE       /          \        /          \      PE / CE
     +--+ +----+   /            \      /            \    +--+ +--+
     |  | |    |  |    AS 1      \     |    AS 2     \   |  | |  |
     |  | |    |  |               \IPv6|              \  |  | |  |
     |CE|-| PE |--| IPv6-Only Core|--- |IPv6-Only Core|--|PE|-|CE|
     |  | |    |  |0=Underlay==0  |    |0==Underlay==0|  |  | |  |
     +--+ +----+   \             /     \             /   +--+ +--+
     IPv6 BGP peer  \ MPLS/SR   /       \ MPLS/SR   /   IPv6 BGP peer
     IPv4 forwarding \_________/         \_________/    IPv4 forwarding
     IPv6 forwarding                                    IPv6 forwarding




         Figure 16: Test-10 E2E IPv6-Only PE-CE, Global Table over
                     IPv6-Only Core - Inter-AS Option-C

5.11.  Test-11 E2E IPv6-Only PE-CE, VPN over IPv6-Only Core, 4to6
       softwire -Inter-AS Option-B


                  Inter-AS ASBR-ASBR link is IPv6-Only PE
     IPv6-Only       __________          __________      IPv6-Only
      PE / CE       /          \        /          \      PE / CE
     +--+ +----+   /            \      /            \    +--+ +--+
     |  | |    |  |    AS 1      \     |    AS 2     \   |  | |  |
     |  | |    |  |               \IPv6|              \  |  | |  |
     |CE|-| PE |--| IPv6-Only Core|--- |IPv6-Only Core|--|PE|-|CE|
     |  | |    |  |0=Overlay===0  |    |0==Overlay===0|  |  | |  |
     +--+ +----+   \             /     \             /   +--+ +--+
     IPv6 BGP peer  \ MPLS/SR   /       \ MPLS/SR   /   IPv6 BGP peer
     IPv4 forwarding \_________/         \_________/    IPv4 forwarding
     IPv6 forwarding                                    IPv6 forwarding




     Figure 17: Test-11 E2E IPv6-Only PE-CE, VPN over IPv6-Only Core -
                             Inter-AS Option-B

5.12.  Test-12 E2E IPv6-Only PE-CE, VPN over IPv6-Only Core, 4to6
       softwire -Inter-AS Option-C







Mishra, et al.          Expires 21 November 2023               [Page 22]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


                  Inter-AS ASBR-ASBR link is IPv6-Only PE
     IPv6-Only       __________          __________      IPv6-Only
      PE / CE       /          \        /          \      PE / CE
     +--+ +----+   /            \      /            \    +--+ +--+
     |  | |    |  |    AS 1      \     |    AS 2     \   |  | |  |
     |  | |    |  |               \IPv6|              \  |  | |  |
     |CE|-| PE |--| IPv6-Only Core|--- |IPv6-Only Core|--|PE|-|CE|
     |  | |    |  |0=Overlay===0  |    |0==Overlay===0|  |  | |  |
     +--+ +----+   \             /     \             /   +--+ +--+
     IPv6 BGP peer  \ MPLS/SR   /       \ MPLS/SR   /   IPv6 BGP peer
     IPv4 forwarding \_________/         \_________/    IPv4 forwarding
     IPv6 forwarding                                    IPv6 forwarding




     Figure 18: Test-12 E2E IPv6-Only PE-CE, VPN over IPv6-Only Core -
                             Inter-AS Option-C

5.13.  IPv6-Only PE-CE Operational Considerations Testing


                       Ping CE to PE when destination prefix is withdrawn
                       Traceroute CE to PE and test all ICMPv4 and ICMPv6 type codes

                   +-------+                +-------+
                   |       |  IPv6 Only     |       |
                   |   CE  |----------------|  PE   |
                   |       |  IPv6 BGP Peer |       |
                   +-------+                +-------+
                  IPv4 forwarding            IPv4 forwarding
                  IPv6 forwarding            IPv6 forwarding


                 Figure 19: Ping and Trace Test Case

6.  Operational Considerations

   With a single IPv6 Peer carrying both IPv4 and IPv6 NLRI there are
   some operational considerations in terms of what changes and what
   does not change.

   What does not change with a single IPv6 transport peer carrying IPv4
   NLRI and IPv6 NLRI below:

   Routing Policy configuration is still separate for IPv4 and IPv6
   configured by capability as previously.




Mishra, et al.          Expires 21 November 2023               [Page 23]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   Layer 1, Layer 2 issues such as one-way fiber or fiber cut will
   impact both IPv4 and IPv6 as previously.

   If the interface is in the Admin Down state, the IPv6 peer would go
   down, and IPv4 NLRI and IPv6 NLRI would be withdrawn as previously.

   Changes resulting from a single IPv6 transport peer carrying IPv4
   NLRI and IPv6 NLRI below:

   Physical interface is no longer dual stacked.

   Any change in IPv6 address or DAD state will impact both IPv4 and
   IPv6 NLRI exchange.

   Single BFD session for both IPv4 and IPv6 NLRI fate sharing as the
   session is now tied to the transport, which now is only IPv6 address
   family.

   Both IPv4 and IPv6 peer now exists under the IPv6 address family
   configuration.

   Fate sharing of IPv4 and IPv6 address family from a logical
   perspective now carried over a single physical IPv6 peer.

   From an operations perspective, prior to elimination of IPv4 peers,
   an audit is recommended to identify and IPv4 and IPv6 peering
   incongruencies that may exist and to rectify them.  No operational
   impacts or issues are expected with this change.

   With MPLS VPN overlay, per-CE next-hop label allcoation mode where
   both IPv4 and IPv6 prefixes have the same label in no table lookup
   pop-n-forward mode should be taken into consideration.

7.  IANA Considerations

   There are not any IANA considerations.

8.  Security Considerations

   The extensions defined in this document allow BGP to propagate
   reachability information about IPv4 prefixes over an MPLS or SR
   IPv6-Only core network.  As such, no new security issues are raised
   beyond those that already exist in BGP-4 and the use of MP-BGP for
   IPv6.  Both IPv4 and IPv6 peers exist under the IPv6 address family
   configuration.  The security features of BGP and corresponding
   security policy defined in the ISP domain are applicable.  For the
   inter-AS distribution of IPv6 routes according to case (a) of
   Section 4 of this document, no new security issues are raised beyond



Mishra, et al.          Expires 21 November 2023               [Page 24]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   those that already exist in the use of eBGP for IPv6 [RFC2545].

9.  Acknowledgments

   Thanks to Kaliraj Vairavakkalai, Linda Dunbar, Aijun Wang, Eduardfor
   Vasilenko, Joel Harlpern, Michael McBride, Ketan Talaulikar for
   review comments.

10.  Contributors

   The following people contributed substantive text to this document:

       Mohana Sundari
       EMail: mohanas@juniper.net


11.  References

11.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2545]  Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol
              Extensions for IPv6 Inter-Domain Routing", RFC 2545,
              DOI 10.17487/RFC2545, March 1999,
              <https://www.rfc-editor.org/info/rfc2545>.

   [RFC4291]  Hinden, R. and S. Deering, "IP Version 6 Addressing
              Architecture", RFC 4291, DOI 10.17487/RFC4291, February
              2006, <https://www.rfc-editor.org/info/rfc4291>.

   [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
              Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
              2006, <https://www.rfc-editor.org/info/rfc4364>.

   [RFC4760]  Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
              "Multiprotocol Extensions for BGP-4", RFC 4760,
              DOI 10.17487/RFC4760, January 2007,
              <https://www.rfc-editor.org/info/rfc4760>.

   [RFC5492]  Scudder, J. and R. Chandra, "Capabilities Advertisement
              with BGP-4", RFC 5492, DOI 10.17487/RFC5492, February
              2009, <https://www.rfc-editor.org/info/rfc5492>.





Mishra, et al.          Expires 21 November 2023               [Page 25]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8277]  Rosen, E., "Using BGP to Bind MPLS Labels to Address
              Prefixes", RFC 8277, DOI 10.17487/RFC8277, October 2017,
              <https://www.rfc-editor.org/info/rfc8277>.

11.2.  Informative References

   [I-D.ietf-idr-dynamic-cap]
              Chen, E. and S. R. Sangli, "Dynamic Capability for BGP-4",
              Work in Progress, Internet-Draft, draft-ietf-idr-dynamic-
              cap-16, 21 October 2021,
              <https://datatracker.ietf.org/doc/html/draft-ietf-idr-
              dynamic-cap-16>.

   [RFC4659]  De Clercq, J., Ooms, D., Carugi, M., and F. Le Faucheur,
              "BGP-MPLS IP Virtual Private Network (VPN) Extension for
              IPv6 VPN", RFC 4659, DOI 10.17487/RFC4659, September 2006,
              <https://www.rfc-editor.org/info/rfc4659>.

   [RFC4684]  Marques, P., Bonica, R., Fang, L., Martini, L., Raszuk,
              R., Patel, K., and J. Guichard, "Constrained Route
              Distribution for Border Gateway Protocol/MultiProtocol
              Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual
              Private Networks (VPNs)", RFC 4684, DOI 10.17487/RFC4684,
              November 2006, <https://www.rfc-editor.org/info/rfc4684>.

   [RFC4798]  De Clercq, J., Ooms, D., Prevost, S., and F. Le Faucheur,
              "Connecting IPv6 Islands over IPv4 MPLS Using IPv6
              Provider Edge Routers (6PE)", RFC 4798,
              DOI 10.17487/RFC4798, February 2007,
              <https://www.rfc-editor.org/info/rfc4798>.

   [RFC4925]  Li, X., Ed., Dawkins, S., Ed., Ward, D., Ed., and A.
              Durand, Ed., "Softwire Problem Statement", RFC 4925,
              DOI 10.17487/RFC4925, July 2007,
              <https://www.rfc-editor.org/info/rfc4925>.

   [RFC5549]  Le Faucheur, F. and E. Rosen, "Advertising IPv4 Network
              Layer Reachability Information with an IPv6 Next Hop",
              RFC 5549, DOI 10.17487/RFC5549, May 2009,
              <https://www.rfc-editor.org/info/rfc5549>.

   [RFC5565]  Wu, J., Cui, Y., Metz, C., and E. Rosen, "Softwire Mesh
              Framework", RFC 5565, DOI 10.17487/RFC5565, June 2009,
              <https://www.rfc-editor.org/info/rfc5565>.



Mishra, et al.          Expires 21 November 2023               [Page 26]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   [RFC6074]  Rosen, E., Davie, B., Radoaca, V., and W. Luo,
              "Provisioning, Auto-Discovery, and Signaling in Layer 2
              Virtual Private Networks (L2VPNs)", RFC 6074,
              DOI 10.17487/RFC6074, January 2011,
              <https://www.rfc-editor.org/info/rfc6074>.

   [RFC6513]  Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/
              BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February
              2012, <https://www.rfc-editor.org/info/rfc6513>.

   [RFC6514]  Aggarwal, R., Rosen, E., Morin, T., and Y. Rekhter, "BGP
              Encodings and Procedures for Multicast in MPLS/BGP IP
              VPNs", RFC 6514, DOI 10.17487/RFC6514, February 2012,
              <https://www.rfc-editor.org/info/rfc6514>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

   [RFC8950]  Litkowski, S., Agrawal, S., Ananthamurthy, K., and K.
              Patel, "Advertising IPv4 Network Layer Reachability
              Information (NLRI) with an IPv6 Next Hop", RFC 8950,
              DOI 10.17487/RFC8950, November 2020,
              <https://www.rfc-editor.org/info/rfc8950>.

Authors' Addresses

   Gyan Mishra
   Verizon Inc.
   Email: gyan.s.mishra@verizon.com


   Mankamana Mishra
   Cisco Systems
   821 Alder Drive,
   MILPITAS
   Email: mankamis@cisco.com


   Jeff Tantsura
   Microsoft, Inc.
   Email: jefftant.ietf@gmail.com


   Sudha Madhavi
   Juniper Networks, Inc.
   Email: smadhavi@juniper.net



Mishra, et al.          Expires 21 November 2023               [Page 27]

Internet-Draft        IPv6-Only PE IPv4 NLRI IPv6NH             May 2023


   Qing Yang
   Arista Networks
   Email: qyang@arista.com


   Adam Simpson
   Nokia
   Email: adam.1.simpson@nokia.com


   Shuanglong Chen
   Huawei Technologies
   Email: chenshuanglong@huawei.com






































Mishra, et al.          Expires 21 November 2023               [Page 28]