Internet DRAFT - draft-crocker-abnf-rfc2234bis
draft-crocker-abnf-rfc2234bis
Network Working Group D. Crocker, Ed.
Internet-Draft Brandenburg InternetWorking
Obsoletes: RFC2234 (if approved) P. Overell
Expires: September 10, 2005 Demon Internet Ltd.
March 9, 2005
Augmented BNF for Syntax Specifications: ABNF
draft-crocker-abnf-rfc2234bis-00
Status of this Memo
This document is an Internet-Draft and is subject to all provisions
of Section 3 of RFC 3667. By submitting this Internet-Draft, each
author represents that any applicable patent or other IPR claims of
which he or she is aware have been or will be disclosed, and any of
which he or she become aware will be disclosed, in accordance with
RFC 3668.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on September 10, 2005.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
Internet technical specifications often need to define a format
syntax. Over the years a modified version of Backus-Naur Form (BNF),
called Augmented BNF (ABNF), has been popular among many Internet
specifications. The current specification documents ABNF. It
balances compactness and simplicity, with reasonable representational
Crocker & Overell Expires September 10, 2005 [Page 1]
Internet-Draft ABNF March 2005
power. The differences between standard BNF and ABNF involve naming
rules, repetition, alternatives, order-independence, and value
ranges. This specification also supplies additional rule definitions
and encoding for a core lexical analyzer of the type common to
several Internet specifications.
Table of Contents
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 3
2. RULE DEFINITION . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Rule Naming . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Rule Form . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Terminal Values . . . . . . . . . . . . . . . . . . . . . . 4
2.4 External Encodings . . . . . . . . . . . . . . . . . . . . . 6
3. OPERATORS . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Concatenation: Rule1 Rule2 . . . . . . . . . . . . . . . . 6
3.2 Alternatives: Rule1 / Rule2 . . . . . . . . . . . . . . . . 7
3.3 Incremental Alternatives: Rule1 =/ Rule2 . . . . . . . . . . 7
3.4 Value Range Alternatives: %c##-## . . . . . . . . . . . . . 8
3.5 Sequence Group: (Rule1 Rule2) . . . . . . . . . . . . . . . 8
3.6 Variable Repetition: *Rule . . . . . . . . . . . . . . . . 9
3.7 Specific Repetition: nRule . . . . . . . . . . . . . . . . 9
3.8 Optional Sequence: [RULE] . . . . . . . . . . . . . . . . . 9
3.9 Comment: ; Comment . . . . . . . . . . . . . . . . . . . . 9
3.10 Operator Precedence . . . . . . . . . . . . . . . . . . . . 9
4. ABNF DEFINITION OF ABNF . . . . . . . . . . . . . . . . . . 10
5. SECURITY CONSIDERATIONS . . . . . . . . . . . . . . . . . . 11
6. References . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1 Normative . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Descriptive . . . . . . . . . . . . . . . . . . . . . . . . 12
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . 12
A. ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . 12
B. APPENDIX - CORE ABNF OF ABNF . . . . . . . . . . . . . . . . 13
B.1 Core Rules . . . . . . . . . . . . . . . . . . . . . . . . . 13
B.2 Common Encoding . . . . . . . . . . . . . . . . . . . . . . 14
Intellectual Property and Copyright Statements . . . . . . . 15
Crocker & Overell Expires September 10, 2005 [Page 2]
Internet-Draft ABNF March 2005
1. INTRODUCTION
Internet technical specifications often need to define a format
syntax and are free to employ whatever notation their authors deem
useful. Over the years, a modified version of Backus-Naur Form
(BNF), called Augmented BNF (ABNF), has been popular among many
Internet specifications. It balances compactness and simplicity,
with reasonable representational power. In the early days of the
Arpanet, each specification contained its own definition of ABNF.
This included the email specifications, [RFC733] and then [RFC822]
which came to be the common citations for defining ABNF. The current
document separates out that definition, to permit selective
reference. Predictably, it also provides some modifications and
enhancements.
The differences between standard BNF and ABNF involve naming rules,
repetition, alternatives, order-independence, and value ranges.
Appendix B supplies rule definitions and encoding for a core lexical
analyzer of the type common to several Internet specifications. It
is provided as a convenience and is otherwise separate from the meta
language defined in the body of this document, and separate from its
formal status.
Changes in the latest version of this Internet Draft:
In Section 3.7 the phrase: "That is, exactly <N>Ã occurrences of
<element>." was correct to: "That is, exactly <n>Ã occurrences of
<element>."
Some continuation comment lines needed to be corrected to begin
with comment character (";").
2. RULE DEFINITION
2.1 Rule Naming
The name of a rule is simply the name itself; that is, a sequence of
characters, beginning with an alphabetic character, and followed by a
combination of alphabetics, digits and hyphens (dashes).
NOTE:
Rule names are case-insensitive
The names <rulename>, <Rulename>, <RULENAME> and <rUlENamE> all refer
to the same rule.
Crocker & Overell Expires September 10, 2005 [Page 3]
Internet-Draft ABNF March 2005
Unlike original BNF, angle brackets ("<", ">") are not required.
However, angle brackets may be used around a rule name whenever their
presence will facilitate discerning the use of a rule name. This is
typically restricted to rule name references in free-form prose, or
to distinguish partial rules that combine into a string not separated
by white space, such as shown in the discussion about repetition,
below.
2.2 Rule Form
A rule is defined by the following sequence:
name = elements crlf
where <name> is the name of the rule, <elements> is one or more rule
names or terminal specifications and <crlf> is the end-of- line
indicator, carriage return followed by line feed. The equal sign
separates the name from the definition of the rule. The elements
form a sequence of one or more rule names and/or value definitions,
combined according to the various operators, defined in this
document, such as alternative and repetition.
For visual ease, rule definitions are left aligned. When a rule
requires multiple lines, the continuation lines are indented. The
left alignment and indentation are relative to the first lines of the
ABNF rules and need not match the left margin of the document.
2.3 Terminal Values
Rules resolve into a string of terminal values, sometimes called
characters. In ABNF a character is merely a non-negative integer.
In certain contexts a specific mapping (encoding) of values into a
character set (such as ASCII) will be specified.
Terminals are specified by one or more numeric characters with the
base interpretation of those characters indicated explicitly. The
following bases are currently defined:
b = binary
d = decimal
x = hexadecimal
Crocker & Overell Expires September 10, 2005 [Page 4]
Internet-Draft ABNF March 2005
Hence:
CR = %d13
CR = %x0D
respectively specify the decimal and hexadecimal representation of
[US-ASCII] for carriage return.
A concatenated string of such values is specified compactly, using a
period (".") to indicate separation of characters within that value.
Hence:
CRLF = %d13.10
ABNF permits specifying literal text string directly, enclosed in
quotation-marks. Hence:
command = "command string"
Literal text strings are interpreted as a concatenated set of
printable characters.
NOTE:
ABNF strings are case-insensitive and the character set for these
strings is us-ascii.
Hence:
rulename = "abc"
and:
rulename = "aBc"
will match "abc", "Abc", "aBc", "abC", "ABc", "aBC", "AbC" and "ABC".
To specify a rule which IS case SENSITIVE, specify the characters
individually.
For example:
rulename = %d97 %d98 %d99
or
rulename = %d97.98.99
will match only the string which comprises only lowercased
characters, abc.
Crocker & Overell Expires September 10, 2005 [Page 5]
Internet-Draft ABNF March 2005
2.4 External Encodings
External representations of terminal value characters will vary
according to constraints in the storage or transmission environment.
Hence, the same ABNF-based grammar may have multiple external
encodings, such as one for a 7-bit US-ASCII environment, another for
a binary octet environment and still a different one when 16-bit
Unicode is used. Encoding details are beyond the scope of ABNF,
although Appendix A (Core) provides definitions for a 7-bit US-ASCII
environment as has been common to much of the Internet.
By separating external encoding from the syntax, it is intended that
alternate encoding environments can be used for the same syntax.
3. OPERATORS
3.1 Concatenation: Rule1 Rule2
A rule can define a simple, ordered string of values -- i.e., a
concatenation of contiguous characters -- by listing a sequence of
rule names. For example:
foo = %x61 ; a
bar = %x62 ; b
mumble = foo bar foo
So that the rule <mumble> matches the lowercase string "aba".
LINEAR WHITE SPACE: Concatenation is at the core of the ABNF
parsing model. A string of contiguous characters (values) is
parsed according to the rules defined in ABNF. For Internet
specifications, there is some history of permitting linear white
space (space and horizontal tab) to be freely and implicitly
interspersed around major constructs, such as delimiting special
characters or atomic strings.
NOTE:
NOTE: This specification for ABNF does not provide for implicit
specification of linear white space.
Any grammar which wishes to permit linear white space around
delimiters or string segments must specify it explicitly. It is
often useful to provide for such white space in "core" rules that are
then used variously among higher-level rules. The "core" rules might
be formed into a lexical analyzer or simply be part of the main
Crocker & Overell Expires September 10, 2005 [Page 6]
Internet-Draft ABNF March 2005
ruleset.
3.2 Alternatives: Rule1 / Rule2
Elements separated by forward slash ("/") are alternatives.
Therefore,
foo / bar
will accept <foo> or <bar>.
NOTE:
A quoted string containing alphabetic characters is special form
for specifying alternative characters and is interpreted as a
non-terminal representing the set of combinatorial strings with
the contained characters, in the specified order but with any
mixture of upper and lower case..
3.3 Incremental Alternatives: Rule1 =/ Rule2
It is sometimes convenient to specify a list of alternatives in
fragments. That is, an initial rule may match one or more
alternatives, with later rule definitions adding to the set of
alternatives. This is particularly useful for otherwise- independent
specifications which derive from the same parent rule set, such as
often occurs with parameter lists. ABNF permits this incremental
definition through the construct:
oldrule =/ additional-alternatives
So that the rule set
ruleset = alt1 / alt2
ruleset =/ alt3
ruleset =/ alt4 / alt5
is the same as specifying
ruleset = alt1 / alt2 / alt3 / alt4 / alt5
Crocker & Overell Expires September 10, 2005 [Page 7]
Internet-Draft ABNF March 2005
3.4 Value Range Alternatives: %c##-##
A range of alternative numeric values can be specified compactly,
using dash ("-") to indicate the range of alternative values. Hence:
DIGIT = %x30-39
is equivalent to:
DIGIT = "0" / "1" / "2" / "3" / "4" / "5" / "6" /
"7" / "8" / "9"
Concatenated numeric values and numeric value ranges can not be
specified in the same string. A numeric value may use the dotted
notation for concatenation or it may use the dash notation to specify
one value range. Hence, to specify one printable character, between
end of line sequences, the specification could be:
char-line = %x0D.0A %x20-7E %x0D.0A
3.5 Sequence Group: (Rule1 Rule2)
Elements enclosed in parentheses are treated as a single element,
whose contents are STRICTLY ORDERED. Thus,
elem (foo / bar) blat
which matches (elem foo blat) or (elem bar blat).
elem foo / bar blat
matches (elem foo) or (bar blat).
NOTE:
It is strongly advised to use grouping notation, rather than to
rely on proper reading of "bare" alternations, when alternatives
consist of multiple rule names or literals.
Hence it is recommended that instead of the above form, the form:
(elem foo) / (bar blat)
be used. It will avoid misinterpretation by casual readers.
The sequence group notation is also used within free text to set off
an element sequence from the prose.
Crocker & Overell Expires September 10, 2005 [Page 8]
Internet-Draft ABNF March 2005
3.6 Variable Repetition: *Rule
The operator "*" preceding an element indicates repetition. The full
form is:
<a>*<b>element
where <a> and <b> are optional decimal values, indicating at least
<a> and at most <b> occurrences of element.
Default values are 0 and infinity so that *<element> allows any
number, including zero; 1*<element> requires at least one;
3*3<element> allows exactly 3 and 1*2<element> allows one or two.
3.7 Specific Repetition: nRule
A rule of the form:
<n>element
is equivalent to
<n>*<n>element
That is, exactly <n> occurrences of <element>. Thus 2DIGIT is a
2-digit number, and 3ALPHA is a string of three alphabetic
characters.
3.8 Optional Sequence: [RULE]
Square brackets enclose an optional element sequence:
[foo bar]
is equivalent to
*1(foo bar).
3.9 Comment: ; Comment
A semi-colon starts a comment that continues to the end of line.
This is a simple way of including useful notes in parallel with the
specifications.
3.10 Operator Precedence
The various mechanisms described above have the following precedence,
from highest (binding tightest) at the top, to lowest and loosest at
the bottom:
Crocker & Overell Expires September 10, 2005 [Page 9]
Internet-Draft ABNF March 2005
Strings, Names formation
Comment
Value range
Repetition
Grouping, Optional
Concatenation
Alternative
Use of the alternative operator, freely mixed with concatenations can
be confusing.
Again, it is recommended that the grouping operator be used to
make explicit concatenation groups.
4. ABNF DEFINITION OF ABNF
NOTES:
1. This syntax requires formatting of rules that is relatively
strict. Hence the version of a ruleset included in a
specification might need preprocessing, to ensure that it can
be interpreted by an ABNF parser.
2. This syntax uses the rules provided in Appendix B (Core).
rulelist = 1*( rule / (*c-wsp c-nl) )
rule = rulename defined-as elements c-nl
; continues if next line starts
; with white space
rulename = ALPHA *(ALPHA / DIGIT / "-")
defined-as = *c-wsp ("=" / "=/") *c-wsp
; basic rules definition and
; incremental alternatives
elements = alternation *c-wsp
c-wsp = WSP / (c-nl WSP)
Crocker & Overell Expires September 10, 2005 [Page 10]
Internet-Draft ABNF March 2005
c-nl = comment / CRLF
; comment or newline
comment = ";" *(WSP / VCHAR) CRLF
alternation = concatenation
*(*c-wsp "/" *c-wsp concatenation)
concatenation = repetition *(1*c-wsp repetition)
repetition = [repeat] element
repeat = 1*DIGIT / (*DIGIT "*" *DIGIT)
element = rulename / group / option /
char-val / num-val / prose-val
group = "(" *c-wsp alternation *c-wsp ")"
option = "[" *c-wsp alternation *c-wsp "]"
char-val = DQUOTE *(%x20-21 / %x23-7E) DQUOTE
; quoted string of SP and VCHAR
; without DQUOTE
num-val = "%" (bin-val / dec-val / hex-val)
bin-val = "b" 1*BIT
[ 1*("." 1*BIT) / ("-" 1*BIT) ]
; series of concatenated bit values
; or single ONEOF range
dec-val = "d" 1*DIGIT
[ 1*("." 1*DIGIT) / ("-" 1*DIGIT) ]
hex-val = "x" 1*HEXDIG
[ 1*("." 1*HEXDIG) / ("-" 1*HEXDIG) ]
prose-val = "<" *(%x20-3D / %x3F-7E) ">"
; bracketed string of SP and VCHAR
; without angles
; prose description, to be used as
; last resort
5. SECURITY CONSIDERATIONS
Security is truly believed to be irrelevant to this document.
Crocker & Overell Expires September 10, 2005 [Page 11]
Internet-Draft ABNF March 2005
6. References
6.1 Normative
[US-ASCII]
American National Standards Institute, "Coded Character
Set -- 7-bit American Standard Code for Information
Interchange", ANSI X3.4, 1986.
6.2 Descriptive
[RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, November 1997.
[RFC733] Crocker, D., Vittal, J., Pogran, K. and D. Henderson,
"Standard for the format of ARPA network text messages",
RFC 733, November 1977.
[RFC822] Crocker, D., "Standard for the format of ARPA Internet
text messages", STD 11, RFC 822, August 1982.
Authors' Addresses
Dave Crocker (editor)
Brandenburg InternetWorking
675 Spruce Dr.
Sunnyvale, CA 94086
US
Phone: +1.408.246.8253
Email: dcrocker@bbiw.net
Paul Overell
Demon Internet Ltd.
Dorking Business Park
Dorking
Surrey, England RH4 1HN
UK
Email: paulo@turnpike.com
Appendix A. ACKNOWLEDGEMENTS
The syntax for ABNF was originally specified in RFC 733. Ken L.
Harrenstien, of SRI International, was responsible for re-coding the
BNF into an augmented BNF that makes the representation smaller and
Crocker & Overell Expires September 10, 2005 [Page 12]
Internet-Draft ABNF March 2005
easier to understand.
This recent project began as a simple effort to cull out the portion
of RFC 822 which has been repeatedly cited by non-email specification
writers, namely the description of augmented BNF. Rather than simply
and blindly converting the existing text into a separate document,
the working group chose to give careful consideration to the
deficiencies, as well as benefits, of the existing specification and
related specifications available over the last 15 years and therefore
to pursue enhancement. This turned the project into something rather
more ambitious than first intended. Interestingly the result is not
massively different from that original, although decisions such as
removing the list notation came as a surprise.
This "separated" version of the specification was part of the DRUMS
working group, with significant contributions from Jerome Abela ,
Harald Alvestrand, Robert Elz, Roger Fajman, Aviva Garrett, Tom
Harsch, Dan Kohn, Bill McQuillan, Keith Moore, Chris Newman , Pete
Resnick and Henning Schulzrinne.
Julian Reschke warrants special thanks, for converting the Draft
Standard version to XML source form.
Appendix B. APPENDIX - CORE ABNF OF ABNF
This Appendix is provided as a convenient core for specific grammars.
The definitions may be used as a core set of rules.
B.1 Core Rules
Certain basic rules are in uppercase, such as SP, HTAB, CRLF, DIGIT,
ALPHA, etc.
ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
BIT = "0" / "1"
CHAR = %x01-7F
; any 7-bit US-ASCII character,
; excluding NUL
CR = %x0D
; carriage return
CRLF = CR LF
; Internet standard newline
CTL = %x00-1F / %x7F
Crocker & Overell Expires September 10, 2005 [Page 13]
Internet-Draft ABNF March 2005
; controls
DIGIT = %x30-39
; 0-9
DQUOTE = %x22
; " (Double Quote)
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
HTAB = %x09
; horizontal tab
LF = %x0A
; linefeed
LWSP = *(WSP / CRLF WSP)
; linear white space (past newline)
OCTET = %x00-FF
; 8 bits of data
SP = %x20
VCHAR = %x21-7E
; visible (printing) characters
WSP = SP / HTAB
; white space
B.2 Common Encoding
Externally, data are represented as "network virtual ASCII", namely
7-bit US-ASCII in an 8-bit field, with the high (8th) bit set to
zero. A string of values is in "network byte order" with the
higher-valued bytes represented on the left-hand side and being sent
over the network first.
Crocker & Overell Expires September 10, 2005 [Page 14]
Internet-Draft ABNF March 2005
Intellectual Property Statement
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Disclaimer of Validity
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment
Funding for the RFC Editor function is currently provided by the
Internet Society.
Crocker & Overell Expires September 10, 2005 [Page 15]